1
|
Jana RD, Nguyen HD, Yan G, Chen TY, Do LH. Reversing Signs of Parkinsonism in a Cell Model Using Mitochondria-Targeted Organoiridium Catalysis. J Med Chem 2025; 68:1970-1983. [PMID: 39749732 PMCID: PMC11757046 DOI: 10.1021/acs.jmedchem.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We report the application of organoiridium complexes as catalytic agents for the detoxification of biogenic reactive aldehyde species (RASP), which are implicated in the pathogenesis of neurodegenerative disorders. We show that Ir complexes functionalized with phosphonium cations localize selectively in the mitochondria and have better cellular retention compared to that of their parent Ir species. In a cell model for Parkinsonism, the mitochondria-targeted iridium catalysts exhibited superior cell protecting abilities and longer-lasting effects (up to 6 d) than conventional RASP scavengers, which failed to be effective beyond 24 h. Our biological assays indicate that treatment with the Ir compounds led to reduction in reactive oxygen species and aldehyde levels while partially preserving the native mitochondrial membrane potential and NAD+/NADH ratio in 1-methyl-4-phenylpyridinium-inhibited cells. Our work is the first to demonstrate catalytic nonenzymatic detoxification of RASP in living systems.
Collapse
Affiliation(s)
- Rahul D. Jana
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas, 77204, United States
| | - Hieu D. Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas, 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas, 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas, 77204, United States
| | - Loi H. Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., Houston, Texas, 77204, United States
| |
Collapse
|
2
|
Zheng H, Ou J, Han H, Lu Q, Shen Y. SS-31@Fer-1 Alleviates ferroptosis in hypoxia/reoxygenation cardiomyocytes via mitochondrial targeting. Biomed Pharmacother 2025; 183:117832. [PMID: 39848110 DOI: 10.1016/j.biopha.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
PURPOSE Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury. METHODS SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects. Cytotoxicity was evaluated using a cell counting kit-8 (CCK-8) assay, with lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) levels measured. Mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were assessed using Mito-SOX and JC-1 fluorescent dyes, respectively. Lipid peroxidation products, malondialdehyde (MDA) and glutathione (GSH), were quantified. Mitochondrial structure, mt-cytochrome b (mt-Cytb), and mt-ATP synthase membrane subunit 6 (mt-ATP6) were analyzed. Additionally, iron homeostasis and ferroptosis markers were evaluated. RESULTS SS-31@Fer-1 significantly improved H/R-induced cardiomyocyte viability and reduced LDH and CK-MB levels. Compared to the Fer-1 group, SS-31@Fer-1 reduced GSH and increased MDA levels, enhancing mitochondrial integrity and function. Notably, it increased mitochondrial ROS and decreased MMP, indicating a mitigation of H/R-induced cardiomyocyte cytotoxicity. Furthermore, SS-31@Fer-1 maintained cellular iron homeostasis, as evidenced by increased expression of FTH, FTMT, FPN, and ABCB8. Elevated levels of GPX4 and Nrf2 were observed, while ACSL4 and PTGS2 levels were reduced in the SS-31@Fer-1 group. CONCLUSIONS SS-31@Fer-1 effectively suppressed ferroptosis in H/R-induced cardiomyocytes by maintaining cellular iron homeostasis, improving mitochondrial function, and inhibiting oxidative stress. These findings provide novel insights and opportunities for alleviating myocardial I/R injury.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No.87, Dingjiaqiao, Gulou District, Nanjing 210009, China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinbo Ou
- Departments of Cardiology, Fudan University Zhongshan Hospital, Qingpu Branch, 1158 Park East Road, Shanghai 60518120, China
| | - Hui Han
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qizheng Lu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu district, Guangzhou 510317, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
3
|
Knutson SD, Pan CR, Bisballe N, Bloomer BJ, Raftopolous P, Saridakis I, MacMillan DWC. Parallel Proteomic and Transcriptomic Microenvironment Mapping (μMap) of Nuclear Condensates in Living Cells. J Am Chem Soc 2025; 147:488-497. [PMID: 39707993 DOI: 10.1021/jacs.4c11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures. Photoproximity labeling has emerged as a powerful tool for mapping these interaction networks, yet maximizing catalyst localization and reducing toxicity remains challenging in live cell applications. Here, we disclose a new intracellular photocatalyst with minimal cytotoxicity and off-target binding, and we utilize this catalyst for HaloTag-based microenvironment-mapping (μMap) to spatially catalog subnuclear condensates in living cells. We also specifically develop a novel RNA-focused workflow (μMap-seq) to enable parallel transcriptomic and proteomic profiling of these structures. After validating the accuracy of our approach, we generate a spatial map across the nucleolus, nuclear lamina, Cajal bodies, paraspeckles, and PML bodies. These results provide potential new insights into RNA metabolism and gene regulation while significantly expanding the μMap platform for improved live-cell proximity labeling in biological systems.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Chenmengxiao Roderick Pan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Niels Bisballe
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon J Bloomer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Raftopolous
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Iakovos Saridakis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Favret JM, Dzyuba SV. Synthetic Approaches Toward Phosphorus-Containing BODIPY and Squaraine Dyes: Enhancing Versatility of Small-Molecule Fluorophores. Molecules 2024; 30:116. [PMID: 39795173 PMCID: PMC11721786 DOI: 10.3390/molecules30010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization. These modifications often influence key spectroscopic properties and molecular functionality by expanding their utility in bioimaging, sensing, photosensitization, and theranostic applications. By leveraging the tunable nature of phosphorus-containing moieties, these dyes hold immense promise for addressing current challenges in spectroscopy, imaging, and material designs while unlocking new opportunities for advanced functional systems in chemistry, biology, and medicine.
Collapse
Affiliation(s)
| | - Sergei V. Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
5
|
Yadav R, SanuKhan R, Kalita N, Mendiratta S, Sivaramakrishnan S, Murugan S, Samanta A. Molecular Imaging of Nitric Oxide Surrogates with Organelle-Specific Fluorescent Probes. Chem Asian J 2024:e202401237. [PMID: 39629512 DOI: 10.1002/asia.202401237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Indexed: 12/13/2024]
Abstract
Nitric oxide is an important signalling molecule responsible for maintaining body's homeostasis. Any dysregulation in NO can lead to many pathological conditions like atherosclerosis, cancers, neurodegenerative disorders, hypertension and inflammation. Several, sensing technologies are used for sensing NO. Among these, fluorescent imaging is considered to be one of the most efficient. Till date, approximately 123 fluorescent probes are reported related to nitric oxide (NO) sensing fluorescent probes for the sensitive, selective, and real-time detection of NO at both the cellular and subcellular levels. In the past five years, around 41 fluorescent probes and four review articles have been published, specifically focusing on the detection of nitric oxide. Despite considerable advancements in this area, no systematic review has summarized various organelle-targeting NO-sensing fluorescent probes. Herein, we summarized last five years from 2019 to 2024 along with the key pioneering research in this field covering divergent roles of NO across various cellular organelles. We have included 41 probes by classifying into different organelle targeting sections. We strongly believe this review will provide an advanced summary of NO specific fluorescent probes and their applications for monitoring the progression of diseases in in vitro to in vivo models such as drosophila, zebrafish, mouse models.
Collapse
Affiliation(s)
- Rashmi Yadav
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Rafique SanuKhan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Nripankar Kalita
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sana Mendiratta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreya Sivaramakrishnan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Shreekanth Murugan
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence (SNIoE), Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India
| |
Collapse
|
6
|
Zhuang J, Pan Q, Zhou C, Cai Z, Li N, Zhao N. The cyano positional isomerism strategy for constructing mitochondria-targeted AIEgens with type I reactive oxygen species generation capability. J Mater Chem B 2024; 12:11359-11367. [PMID: 39405092 DOI: 10.1039/d4tb01847h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
In this work, a series of cationic luminogens (designated as PSMP isomers) were developed based on the cyano positional isomerism strategy. The isomerism of the cyano substituent on the molecular skeleton can finely regulate the optical behaviour, the type of photoinduced reactive oxygen species (ROS), and mitochondria-targeted capability of isomers. Interestingly, PSMP-4, with the cyano group installed at an appropriate location, exhibits a special aggregation-induced emission effect and potent O2˙- generation efficacy through the type I photochemistry pathway. Notably, PSMP-4 can accumulate in mitochondria with high specificity. Taking advantage of its excellent photostability, PSMP-4 realizes in situ mitochondria imaging in a washing-free manner and sensitive response to the change of mitochondrial membrane potential. The integration of comprehensive photophysical properties and mitochondrial specificity enable PSMP-4 to successfully trigger the death of cancer cells through an efficient type I photodynamic therapy process both in vitro and in multicellular tumor spheroid models.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Quan Pan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Chunli Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Ziying Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| |
Collapse
|
7
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
9
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
10
|
Che T, Yang X, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. Mitochondria-Regulated Information Processing Nanosystem Promoting Immune Cell Communication for Liver Fibrosis Regression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400413. [PMID: 38721946 DOI: 10.1002/smll.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Indexed: 10/04/2024]
Abstract
Liver fibrosis is a coordinated response to tissue injury that is mediated by immune cell interactions. A mitochondria-regulated information-processing (MIP) nanosystem that promotes immune cell communication and interactions to inhibit liver fibrosis is designed. The MIP nanosystem mimics the alkaline amino acid domain of mitochondrial precursor proteins, providing precise targeting of the mitochondria. The MIP nanosystem is driven by light to modulate the mitochondria of hepatic stellate cells, resulting in the release of mitochondrial DNA into the fibrotic microenvironment, as detected by macrophages. By activating the STING signaling pathway, the developed nanosystem-induced macrophage phenotype switches to a reparative subtype (Ly6Clow) and downstream immunostimulatory transcriptional activity, fully restoring the fibrotic liver to its normal tissue state. The MIP nanosystem serves as an advanced information transfer system, allowing precise regulation of trained immunity, and offers a promising approach for effective liver fibrosis immunotherapy with the potential for clinical translation.
Collapse
Affiliation(s)
- Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
11
|
Suárez-Rozas C, Jara JA, Cortés G, Rojas D, Araya-Valdés G, Molina-Berrios A, González-Herrera F, Fuentes-Retamal S, Aránguiz-Urroz P, Campodónico PR, Maya JD, Vivar R, Catalán M. Antimigratory Effect of Lipophilic Cations Derived from Gallic and Gentisic Acid and Synergistic Effect with 5-Fluorouracil on Metastatic Colorectal Cancer Cells: A New Synthesis Route. Cancers (Basel) 2024; 16:2980. [PMID: 39272835 PMCID: PMC11393949 DOI: 10.3390/cancers16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Gonzalo Cortés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Diego Rojas
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Gabriel Araya-Valdés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Alfredo Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Sebastián Fuentes-Retamal
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Pablo Aránguiz-Urroz
- School of Health Science, Universidad de Viña del Mar, Viña del Mar 2580022, Chile
| | - Paola Rossana Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan Diego Maya
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Raúl Vivar
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Mabel Catalán
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| |
Collapse
|
12
|
Sun X, He Q, Gao Q, Gu L, Miao Y. Smart RNA Sequencing Reveals the Toxicological Effects of Diisobutyl Phthalate (DiBP) in Porcine Oocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39140966 DOI: 10.1021/acs.est.4c05462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Diisobutyl phthalate (DiBP) is commonly used in the plastics industry, and recent studies have shown that environmental exposure and accumulation in the food chain caused inflammation in some organs. However, the underlying mechanisms by which DiBP affects oocyte quality have not yet been fully defined. We used immunostaining and fluorescence to evaluate the effects of DiBP exposure and demonstrated that it impaired the morphology of matured porcine oocytes through generation of cytoplasmic fragmentation, accompanied by the perturbed dynamics of the spindle and actin cytoskeleton, misdistributed endoplasmic reticulum, as well as partial exocytosis of cortical granules and ovastacin. Moreover, analysis of Smart RNA-seq found that DiBP-induced aberrant oocyte maturation could be induced by abnormal mitochondrial function and apoptosis. Importantly, we discovered that supplementation with pyrroloquinoline quinone (PQQ) significantly attenuated the meiotic abnormalities induced by DiBP exposure through the modulation of reactive oxygen species levels. Our findings demonstrated that DiBP exposure adversely affects oocyte meiotic maturation and that PQQ supplementation was an effective strategy to protect oocyte quality against DiBP exposure.
Collapse
Affiliation(s)
- Xiaofan Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinyuan He
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
14
|
Peng ZQ, Guan XH, Yu ZP, Wu J, Han XH, Li MH, Qu XH, Chen ZP, Han XJ, Wang XY. Human amniotic mesenchymal stem cells-derived conditioned medium and exosomes alleviate oxidative stress-induced retinal degeneration by activating PI3K/Akt/FoxO3 pathway. Exp Eye Res 2024; 244:109919. [PMID: 38729254 DOI: 10.1016/j.exer.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.
Collapse
Affiliation(s)
- Zhe-Qing Peng
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, PR China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Ming-Hui Li
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Zhi-Ping Chen
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
15
|
Tang Y, Wu J, Sun X, Tan S, Li W, Yin S, Liu L, Chen Y, Liu Y, Tan Q, Jiang Y, Yang W, Huang W, Weng C, Wu Q, Lu Y, Yuan H, Xiao Q, Chen AF, Xu Q, Billiar TR, Cai J. Cardiolipin oxidized by ROS from complex II acts as a target of gasdermin D to drive mitochondrial pore and heart dysfunction in endotoxemia. Cell Rep 2024; 43:114237. [PMID: 38753484 DOI: 10.1016/j.celrep.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.
Collapse
Affiliation(s)
- Yan Tang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Junru Wu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xuejing Sun
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shasha Tan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, the Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Siyu Yin
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lun Liu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Chen
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Liu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qian Tan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Youxiang Jiang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenjing Yang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Huang
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyan Weng
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qing Wu
- Center for High-Performance Computing, Central South University, Changsha 410000, China
| | - Yao Lu
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hong Yuan
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts, and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Alex F Chen
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Cardiology, Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jingjing Cai
- Clinical Research Center, Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
16
|
Pei H, Qu J, Chen JM, Zhang YL, Zhang M, Zhao GJ, Lu ZQ. The effects of antioxidant supplementation on short-term mortality in sepsis patients. Heliyon 2024; 10:e29156. [PMID: 38644822 PMCID: PMC11033118 DOI: 10.1016/j.heliyon.2024.e29156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background The occurrence and development of sepsis are related to the excessive production of oxygen free radicals and the weakened natural clearance mechanism. Further dependable evidence is required to clarify the effectiveness of antioxidant therapy, especially its impact on short-term mortality. Objectives The purpose of this systematic review and meta-analysis was to evaluate the effect of common antioxidant therapy on short-term mortality in patients with sepsis. Methods According to PRISMA guidelines, a systematic literature search on antioxidants in adults sepsis patients was performed on PubMed/Medline, Embase, and the Cochrane Library from the establishment of the database to November 2023. Antioxidant supplements can be a single-drug or multi-drug combination: HAT (hydrocortisone, ascorbic acid, and thiamine), ascorbic acid, thiamine, N-acetylcysteine and selenium. The primary outcome was the effect of antioxidant treatment on short-term mortality, which included 28-day mortality, in-hospital mortality, intensive care unit mortality, and 30-day mortality. Subgroup analyses of short-term mortality were used to reduce statistical heterogeneity and publication bias. Results Sixty studies of 130,986 sepsis patients fulfilled the predefined criteria and were quantified and meta-analyzed. Antioxidant therapy reduces the risk of short-term death in sepsis patients by multivariate meta-analysis of current data, including a reduction of in-hospital mortality (OR = 0.81, 95% CI 0.67 to 0.99; P = 0.040) and 28-day mortality (OR = 0.81, 95% CI 0.69 to 0.95]; P = 0.008). Particularly in subgroup analyses, ascorbic acid treatment can reduce in-hospital mortality (OR = 0.66, 95% CI 0.90 to 0.98; P = 0.006) and 28-day mortality (OR = 0.43, 95% CI 0.24 to 0.75; P = 0.003). However, the meta-analysis of RCTs found that antioxidant therapy drugs, especially ascorbic acid, did substantially reduce short-term mortality(OR = 0.78, 95% CI 0.62 to 0.98; P = 0.030; OR = 0.57, 95% CI 0.36 to 0.91; P = 0.020). Conclusions According to current data of RCTs, antioxidant therapy, especially ascorbic acid, has a trend of improving short-term mortality in patients with sepsis, but the evidence remains to be further demonstrated.
Collapse
Affiliation(s)
- Hui Pei
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jie Qu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian-Ming Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao-Lu Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Min Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang-Ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| |
Collapse
|
17
|
Wang S, Gai L, Chen Y, Ji X, Lu H, Guo Z. Mitochondria-targeted BODIPY dyes for small molecule recognition, bio-imaging and photodynamic therapy. Chem Soc Rev 2024; 53:3976-4019. [PMID: 38450547 DOI: 10.1039/d3cs00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.
Collapse
Affiliation(s)
- Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Hu W, Kong X, Cui Y, Wang H, Gao J, Wang X, Chen S, Li X, Li S, Che F, Wan Q. Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:2033-2048. [PMID: 37843800 DOI: 10.1007/s12035-023-03687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, 27 East Jiefang Road, Linyi, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China.
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao High-tech Industrial Development District, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
19
|
Fang W, Yin B, Fang Z, Tian M, Ke L, Ma X, Di Q. Heat stroke-induced cerebral cortex nerve injury by mitochondrial dysfunction: A comprehensive multi-omics profiling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170869. [PMID: 38342446 DOI: 10.1016/j.scitotenv.2024.170869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
In recent years, global warming has led to frequent instances of extremely high temperatures during summer, arousing significant concern about the adverse effects of high temperature. Among these, heat stroke is the most serious, which has detrimental effects on the all organs of human body, especially on brain. However, the comprehensive pathogenesis leading to brain damage remains unclear. In this study, we constructed a mouse model of heat stroke and conducted multi-omics profiling to identify relevant pathogenesis induced by heat stroke. The mice were placed in a constant temperature chamber at 42 °C with a humidity of 50 %, and the criteria for success in modeling were that the rectal temperature reached 42 °C and that the mice were trembling. Then the mice were immediately taken out for further experiments. Firstly, we conducted cFos protein localization and identified the cerebral cortex, especially the anterior cingulate cortex as the region exhibiting the most pronounced damage. Secondly, we performed metabolomics, transcriptomics, and proteomics analysis on cerebral cortex. This multi-omics investigation unveiled noteworthy alterations in proteins and metabolites within pathways associated with neurotransmitter systems, heatstroke-induced mitochondrial dysfunction, encompassing histidine and pentose phosphate metabolic pathways, as well as oxidative stress. In addition, the cerebral cortex exhibited pronounced Reactive Oxygen Species (ROS) production, alongside significant downregulation of the mitochondrial outer membrane protein Tomm40 and mitochondrial permeability transition pore, implicating cerebral cortex mitochondrial dysfunction as the primary instigator of neural impairment. This study marks a significant milestone as the first to employ multi-omics analysis in exploring the molecular mechanisms underlying heat stroke-induced damage in cerebral cortex neurons. It comprehensively identifies all potentially impacted pathways by heat stroke, laying a solid foundation for ensuing research endeavors. Consequently, this study introduces a fresh angle to clinical approaches in heatstroke prevention and treatment, as well as establishes an innovative groundwork for shaping future-forward environmental policies.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Mengyi Tian
- School of Medicine, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Ma
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Guiraud M, Ali LMA, Gabrieli-Magot E, Lichon L, Daurat M, Egron D, Gary-Bobo M, Peyrottes S. Probing the Use of Triphenyl Phosphonium Cation for Mitochondrial Nucleoside Delivery. ACS Med Chem Lett 2024; 15:418-422. [PMID: 38505859 PMCID: PMC10945795 DOI: 10.1021/acsmedchemlett.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Herein, we report the design, the synthesis, and the study of novel triphenyl phosphonium-based nucleoside conjugates. 2'-Deoxycytidine was chosen as nucleosidic cargo, as it allows the introduction of fluorescein on the exocyclic amine of the nucleobase and grafting of the vector was envisaged through the formation of a biolabile ester bond with the hydroxyl function at the 5'-position. Compound 3 was identified as a potential nucleoside prodrug, showing ability to be internalized efficiently into cells and to be co-localized with mitochondria.
Collapse
Affiliation(s)
- Mathis Guiraud
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Lamiaa M. A. Ali
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
- Department
of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | - Emma Gabrieli-Magot
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Laure Lichon
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | | | - David Egron
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Magali Gary-Bobo
- Team
Glyco & Nanovectors for Therapeutic Targeting, IBMM, Pole Balard
Recherche, University of Montpellier, CNRS,
ENSCM, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team
Nucleosides & Phosphorylated Effectors, IBMM, Pole Balard Recherche, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
21
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
22
|
Wu W, Luo Z, Shen D, Lan T, Xiao Z, Liu M, Hu L, Sun T, Wang Y, Zhang JN, Zhang C, Wang P, Lu Y, Yang F, Li Q. IL-10 protects against OPC ferroptosis by regulating lipid reactive oxygen species levels post stroke. Redox Biol 2024; 69:102982. [PMID: 38070317 PMCID: PMC10755589 DOI: 10.1016/j.redox.2023.102982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
Accumulation of reactive oxygen species (ROS), especially on lipids, induces massive cell death in neurons and oligodendrocyte progenitor cells (OPCs) and causes severe neurologic deficits post stroke. While small compounds, such as deferoxamine, lipostatin-1, and ferrostatin-1, have been shown to be effective in reducing lipid ROS, the mechanisms by which endogenously protective molecules act against lipid ROS accumulation and subsequent cell death are still unclear, especially in OPCs, which are critical for maintaining white matter integrity and improving long-term outcomes after stroke. Here, using mouse primary OPC cultures, we demonstrate that interleukin-10 (IL-10), a cytokine playing roles in reducing neuroinflammation and promoting hematoma clearance, significantly reduced hemorrhage-induced lipid ROS accumulation and subsequent ferroptosis in OPCs. Mechanistically, IL-10 activated the IL-10R/STAT3 signaling pathway and upregulated the DLK1/AMPK/ACC axis. Subsequently, IL-10 reprogrammed lipid metabolism and reduced lipid ROS accumulation. In addition, in an autologous blood injection intracerebral hemorrhagic stroke (ICH) mouse model, deficiency of the endogenous Il-10, specific knocking out Il10r or Dlk1 in OPCs, or administration of ACC inhibitor was associated with increased OPC cell death, demyelination, axonal sprouting, and the cognitive deficits during the chronic phase of ICH and vice versa. These data suggest that IL-10 protects against OPC loss and white matter injury by reducing lipid ROS, supporting further development of potential clinical applications to benefit patients with stroke and related disorders.
Collapse
Affiliation(s)
- Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tingting Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
23
|
Singh D. A sojourn on mitochondria targeted drug delivery systems for cancer: Strategies, clinical and future prospects. Mitochondrion 2024; 74:101826. [PMID: 38092248 DOI: 10.1016/j.mito.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Mitochondria, often referred to as the powerhouses of the cell, have emerged as promising targets for cancer therapy due to their pivotal roles in cell survival, apoptosis, and energy metabolism. This sojourn emphasizes the significance of mitochondria-targeted drug delivery systems in cancer therapeutics. The unique characteristics of cancer cell mitochondria, such as altered membrane potential and distinct lipid composition, offer an avenue for selective drug targeting. Several strategies have been explored to exploit these features, including the use of lipophilic cations, mitochondria-penetrating peptides, and nanocarriers tailored for mitochondrial delivery. Mitochondria-targeted drug delivery systems have demonstrated enhanced therapeutic efficacy and reduced systemic toxicity in preclinical models. Some of these systems have made a successful transition to clinical trials, illustrating their potential in real-world oncology settings. However, there remain challenges like intracellular barriers, potential off-target effects, and the complexity of tumor heterogeneity that must be addressed to fully harness the potential of mitochondria-targeted drug delivery systems. As research progresses, it is anticipated that innovative approaches and technologies will be developed to improve the specificity and efficacy of mitochondrial targeting, paving the way for more effective and safer cancer treatments in the future. This review serves as a comprehensive guide to the current state of mitochondria-targeted drug delivery systems for cancer, highlighting key strategies, clinical progress, and prospective avenues for future research.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India.
| |
Collapse
|
24
|
Iqbal M, Lewis SL, Padhye S, Jinwal UK. Updates on Aβ Processing by Hsp90, BRICHOS, and Newly Reported Distinctive Chaperones. Biomolecules 2023; 14:16. [PMID: 38254616 PMCID: PMC10812967 DOI: 10.3390/biom14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is an extremely devastating neurodegenerative disease, and there is no cure for it. AD is specified as the misfolding and aggregation of amyloid-β protein (Aβ) and abnormalities in hyperphosphorylated tau protein. Current approaches to treat Alzheimer's disease have had some success in slowing down the disease's progression. However, attempts to find a cure have been largely unsuccessful, most likely due to the complexity associated with AD pathogenesis. Hence, a shift in focus to better understand the molecular mechanism of Aβ processing and to consider alternative options such as chaperone proteins seems promising. Chaperone proteins act as molecular caretakers to facilitate cellular homeostasis under standard conditions. Chaperone proteins like heat shock proteins (Hsps) serve a pivotal role in correctly folding amyloid peptides, inhibiting mitochondrial dysfunction, and peptide aggregation. For instance, Hsp90 plays a significant role in maintaining cellular homeostasis through its protein folding mechanisms. In this review, we analyze the most recent studies from 2020 to 2023 and provide updates on Aβ regulation by Hsp90, BRICHOS domain chaperone, and distinctive newly reported chaperones.
Collapse
Affiliation(s)
| | | | | | - Umesh Kumar Jinwal
- Department of Pharmaceutical Sciences, USF-Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.I.)
| |
Collapse
|
25
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2171026. [PMID: 36803484 PMCID: PMC9946335 DOI: 10.1080/14756366.2023.2171026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China,Hong Cui Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China,CONTACT Xiaoting Li Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
26
|
Tang J, Liu J, Zheng Q, Yao R, Wang M. Neuroprotective Bioorthogonal Catalysis in Mitochondria Using Protein-Integrated Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202312784. [PMID: 37817650 DOI: 10.1002/anie.202312784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Mitochondria-targeted bioorthogonal catalysis holds promise for controlling cell function precisely, yet achieving selective and efficient chemical reactions within organelles is challenging. In this study, we introduce a new strategy using protein-integrated hydrogen-bonded organic frameworks (HOFs) to enable synergistic bioorthogonal chemical catalysis and enzymatic catalysis within mitochondria. Utilizing catalytically active tris(4,4'-dicarboxylicacid-2,2'-bipyridyl) ruthenium(II) to self-assemble with [1,1'-biphenyl]-4,4'-biscarboximidamide, we synthesized nanoscale RuB-HOFs that exhibit high photocatalytic reduction activity. Notably, RuB-HOFs efficiently enter cells and preferentially localize to mitochondria, where they facilitate bioorthogonal photoreduction reactions. Moreover, we show that RuB-HOFs encapsulating catalase can produce hydrogen sulfide (H2 S) in mitochondria through photocatalytic reduction of pro-H2 S and degrade hydrogen peroxide through enzymatic catalysis simultaneously, offering a significant neuroprotective effect against oxidative stress. Our findings not only introduce a versatile chemical toolset for mitochondria-targeted bioorthogonal catalysis for prodrug activation but also pave the way for potential therapeutic applications in treating diseases related to cellular oxidative stress.
Collapse
Affiliation(s)
- Jiakang Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
27
|
Li X, Tan Y, Liu B, Guo H, Zhou Y, Yuan J, Wang F. Mitochondrial Lipid Metabolism Genes as Diagnostic and Prognostic Indicators in Hepatocellular Carcinoma. Curr Genomics 2023; 24:110-127. [PMID: 37994323 PMCID: PMC10662382 DOI: 10.2174/1389202924666230914110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 11/24/2023] Open
Abstract
Background Due to the heterogeneity of Hepatocellular carcinoma (HCC), there is an urgent need for reliable diagnosis and prognosis. Mitochondria-mediated abnormal lipid metabolism affects the occurrence and progression of HCC. Objective This study aims to investigate the potential of mitochondrial lipid metabolism (MTLM) genes as diagnostic and independent prognostic biomarkers for HCC. Methods MTLM genes were screened from the Gene Expression Omnibus (GEO) and Gene Set Enrichment Analysis (GSEA) databases, followed by an evaluation of their diagnostic values in both The Cancer Genome Atlas Program (TCGA) and the Affiliated Cancer Hospital of Guangxi Medical University (GXMU) cohort. The TCGA dataset was utilized to construct a gene signature and investigate the prognostic significance, immune infiltration, and copy number alterations. The validity of the prognostic signature was confirmed through GEO, International Cancer Genome Consortium (ICGC), and GXMU cohorts. Results The diagnostic receiver operating characteristic (ROC) curve revealed that eight MTLM genes have excellent diagnostic of HCC. A prognostic signature comprising 5 MTLM genes with robust predictive value was constructed using the lasso regression algorithm based on TCGA data. The results of the Stepwise regression model showed that the combination of signature and routine clinical parameters had a higher area under the curve (AUC) compared to a single risk score. Further, a nomogram was constructed to predict the survival probability of HCC, and the calibration curves demonstrated a perfect predictive ability. Finally, the risk score also unveiled the different immune and mutation statuses between the two different risk groups. Conclusion MTLT-related genes may serve as diagnostic and prognostic biomarkers for HCC as well as novel therapeutic targets, which may be beneficial for facilitating further understanding the molecular pathogenesis and providing potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Ying Tan
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Bihan Liu
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Houtian Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yongjian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jianhui Yuan
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Feng Wang
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Vukolova MN, Yen LY, Khmyz MI, Sobolevsky AI, Yelshanskaya MV. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors. Front Cell Dev Biol 2023; 11:1252953. [PMID: 38033869 PMCID: PMC10683763 DOI: 10.3389/fcell.2023.1252953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.
Collapse
Affiliation(s)
- Marina N Vukolova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University, New York, NY, United States
| | - Margarita I Khmyz
- N. V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
29
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
30
|
Fang H, Li Y, Yang X, Chen Y, Guo Z, He W. Recent advances in Zn 2+ imaging: From organelles to in vivo applications. Curr Opin Chem Biol 2023; 76:102378. [PMID: 37633062 DOI: 10.1016/j.cbpa.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Zn2+ is involved in various physiological and pathological processes in living systems. Monitoring the dynamic spatiotemporal changes of Zn2+ levels in organelles, cells, and in vivo is of great importance for the investigation of the physiological and pathological functions of Zn2+. However, this task is quite challenging since Zn2+ in living systems is present at low concentrations and undergoes rapid dynamic changes. In this review, we summarize the design and application of fluorescent probes for Zn2+ imaging in organelles, cells, and live organisms reported over the past two years. We aim to provide inspiration for the design of novel Zn2+ probes for multi-level monitoring and deepen the understanding of Zn2+ biology.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yaheng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiuzhi Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China.
| |
Collapse
|
31
|
Cheng L, Zhai H, Du J, Zhang G, Shi G. Lobetyolin inhibits cell proliferation and induces cell apoptosis by downregulating ASCT2 in gastric cancer. Cytotechnology 2023; 75:435-448. [PMID: 37655270 PMCID: PMC10465467 DOI: 10.1007/s10616-023-00588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease and is the fifth most common cancer worldwide. Lobetyolin, as a bioactive ingredient extracted from Codonopsis pilosula (Franch.) Nannf., has been reported to exert anti-tumor effects in several cancer types. This study was aimed to investigate the role of lobetyolin in GC and the associated mechanism. MKN-45 and MKN-28 cells were incubated with concentrations of lobetyolin for 24 h. The viability and survival of GC cells were evaluated by performing MTT assay. Glutamine uptake, Adenosine Triphosphate, reactive oxygen species (ROS), and glutathione levels were measured by corresponding kits. Apoptosis and mitochondrial membrane potential of GC cells were determined by flow cytometry. Alanine, serine, cysteine-preferring transporter 2 (ASCT2) and the AKT/GSK3β/c-Myc pathway protein levels were examined by western blotting. Xenograft model and immunohistochemical staining were used to evaluate the pharmacological effects of lobetyolin in mice in vivo. We found that lobetyolin treatment suppressed the proliferative capacity of both MKN-45 and MKN-28 cells in a concentration-dependent manner. Lobetyolin reduced the uptake of glutamine and downregulated the expression levels of ASCT2 in GC cells and xenograft tumors. Lobetyolin effectively restrained the growth of tumors in vivo. In addition, lobetyolin induced the accumulation of ROS to attenuate mitochondria-mediated apoptosis via downregulation of ASCT2 expression. Lobetyolin promoted the phosphorylation of c-Myc and suppressed the phosphorylation of GSK3β and AKT in both MKN-45 and MKN-28 cells. The level of total Nrf2 protein was reduced after lobetyolin treatment. Overall, lobetyolin exerts anti-cancer effects by repressing cell proliferation and inducing cell apoptosis via downregulation of ASCT2 in GC.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Gastroenterology, The Central Hospital of Qianjiang, Yangtze University, Qianjiang, 433100 China
| | - Haoqing Zhai
- Department of Oncology, The Central Hospital of Qianjiang, Yangtze University, Qianjiang, 433100 China
| | - Juan Du
- Department of Internal Medicine, Hubei University Hospital, Wuhan, 430062 China
| | - Gang Zhang
- Department of Digestive 2, Wuhan Sixth Hospital, Wuhan, 430015 China
| | - Gan Shi
- Department of Gastroenterology, Wuhan Xinzhou District People’s Hospital, No.61, Xinzhou Street, Zhucheng Street, Xinzhou District, Wuhan, 430400 China
| |
Collapse
|
32
|
Liu X, Wang Y, Zhou G, Zhang W. An Anthracene Carboxamide-Based Fluorescent Probe for Rapid and Sensitive Detection of Mitochondrial Hypochlorite in Living Cells. BIOSENSORS 2023; 13:883. [PMID: 37754117 PMCID: PMC10526414 DOI: 10.3390/bios13090883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Mitochondrial hypochlorite (ClO-) plays important and often contradictory roles in maintaining the redox balance of mitochondria. Abnormal ClO- levels can induce mitochondrial inactivation and further cause cell apoptosis. Herein, we have developed an anthracene carboxyimide-based fluorescent probe mito-ACS for imaging mitochondrial ClO- in living cells. This probe exhibits some distinctive features as excellent resistance to photobleaching, high selectivity and sensitivity, as well as good water solubility. Mito-ACS showed a noticeable fluorescence response toward ClO- with a fast response (within 6 s) and a low detection limit (23 nM). Moreover, the introduction of triphenylphosphonium makes the probe soluble in water and selectively localizes to mitochondria. Furthermore, mito-ACS was successfully applied to image mitochondria ClO- in living cells with low toxicity. Remarkably. the less used fluorophore anthracene carboxyimide exhibiting excellent photostability and desirable optical properties provides a promising application prospect in biological systems.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China;
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Yali Wang
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Guangshuai Zhou
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China;
| |
Collapse
|
33
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
34
|
Wang D, Li B, Wang S, Hao Y, Wang H, Sun W, Cao J, Zhou X, Zheng B. Engineered inhaled nanocatalytic therapy for ischemic cerebrovascular disease by inducing autophagy of abnormal mitochondria. NPJ Regen Med 2023; 8:44. [PMID: 37567914 PMCID: PMC10421937 DOI: 10.1038/s41536-023-00315-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondrial dysfunction and subsequent accumulation of reactive oxygen species (ROS) are key contributors to the pathology of ischemic cerebrovascular disease. Therefore, elimination of ROS and damaged mitochondria is crucial for the effective treatment of this disease. For this purpose, we designed an inhalation nanotherapeutic agent, P/D@Mn/Co3O4, to treat ischemic cerebrovascular disease. Mn/Co3O4 effectively removed excess ROS from cells, reduced acute cellular oxidative stress, and protected neural cells from apoptosis. Furthermore, it depleted the H+ surrounding mitochondria and depolarized the mitochondrial membrane potential, inducing mitophagy and eliminating abnormal mitochondria, thereby avoiding the continuous overproduction of ROS by eliminating the source of ROS regeneration. On intranasal administration, Mn/Co3O4 encapsulated by platelet membranes and 2,3-(dioxy propyl)-trimethylammonium chloride can bypass the blood-brain barrier, enter the brain through the trigeminal and olfactory pathways, and target inflammatory regions to remove ROS and damaged mitochondria from the lesion area. In rat models of stroke and vascular dementia, P/D@Mn/Co3O4 effectively inhibited the symptoms of acute and chronic cerebral ischemia by scavenging ROS and damaged mitochondria in the affected area. Our findings indicate that the nanotherapeutic agent developed in this study can be used for the effective treatment of ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Deping Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Shuchao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Yingjian Hao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Wei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
35
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
36
|
Huang X, He Y, Zhang M, Lu Z, Zhang T, Wang B. GPP-TSAIII nanocomposite hydrogel-based photothermal ablation facilitates melanoma therapy. Expert Opin Drug Deliv 2023; 20:1277-1295. [PMID: 37039332 DOI: 10.1080/17425247.2023.2200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Photothermal therapy (PTT) is a promising cancer treatment, but its application is limited by low photoconversion efficiency. In this study, we aimed to develop a novel graphene oxide (GO)-based nanocomposite hydrogel to improve the bioavailability of timosaponin AIII (TSAIII) while maximizing PTT efficacy and enhancing the antitumor effect. METHODS GO was modified via physical cross-linking with polyvinyl alcohol. The pore structure of the gel was adjusted by repeated freeze-thawing and the addition of polyethylene glycol 2000 to obtain a nanocomposite hydrogel (GPP). The GPP loaded with TSAIII constituted a GPP-TSAIII drug delivery system, and its efficacy was evaluated by in vitro cytotoxicity, apoptosis, migration, and uptake analyses, and in vivo antitumor studies. RESULTS The encapsulation rate of GPP-TSAIII was 66.36 ± 3.97%, with slower in vitro release and higher tumor cell uptake (6.4-fold) compared to TSAIII. GPP-TSAIII in combination with PTT showed better bioavailability and antitumor effects in vivo than did TSAIII, with a 1.9-fold higher tumor suppression rate than the TSAIII group. CONCLUSIONS GPP is a potential vehicle for delivery of TSAIII-like poor water-soluble anticancer drugs. The innovative PTT co-delivery system may serve as a safe and effective melanoma treatment platform for further anticancer translational purposes.
Collapse
Affiliation(s)
- Xing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Long hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Li X, Zhang T, Diao X, Li Y, Su Y, Yang J, Shang Z, Liu S, Zhou J, Li G, Chi H. Mitochondria-Targeted Fluorescent Nanoparticles with Large Stokes Shift for Long-Term BioImaging. Molecules 2023; 28:molecules28093962. [PMID: 37175369 PMCID: PMC10179964 DOI: 10.3390/molecules28093962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria (MITO) play a significant role in various physiological processes and are a key organelle associated with different human diseases including cancer, diabetes mellitus, atherosclerosis, Alzheimer's disease, etc. Thus, detecting the activity of MITO in real time is becoming more and more important. Herein, a novel class of amphiphilic aggregation-induced emission (AIE) active probe fluorescence (AC-QC nanoparticles) based on a quinoxalinone scaffold was developed for imaging MITO. AC-QC nanoparticles possess an excellent ability to monitor MITO in real-time. This probe demonstrated the following advantages: (1) lower cytotoxicity; (2) superior photostability; and (3) good performance in long-term imaging in vitro. Each result of these indicates that self-assembled AC-QC nanoparticles can be used as effective and promising MITO-targeted fluorescent probes.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Tao Zhang
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Xuebo Diao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150081, China
| | - Yu Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zibo Shang
- Faculty of Science, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Shuai Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
| | - Jia Zhou
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guolin Li
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi 154000, China
- Department of Stomatology, Shanghai Eighth Peoples Hospital, 8 Caobao Road, Shanghai 200000, China
| | - Huirong Chi
- Department of Stomatology, Shanghai Eighth Peoples Hospital, 8 Caobao Road, Shanghai 200000, China
| |
Collapse
|
38
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
39
|
Xin N, Gao D, Su B, Zhou T, Zhu Y, Wu C, Wei D, Sun J, Fan H. Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sens 2023; 8:1161-1172. [PMID: 36795996 DOI: 10.1021/acssensors.2c02451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria play significant roles in maintaining a stable internal environment for cell metabolism. Hence, real-time monitoring of the dynamics of mitochondria is essential for further understanding mitochondria-related diseases. Fluorescent probes provide powerful tools for visualizing dynamic processes. However, most mitochondria-targeted probes are derived from organic molecules with poor photostability, making long-term dynamic monitoring challenging. Herein, we design a novel mitochondria-targeted probe based on carbon dots with high performance for long-term tracking. Considering that the targeting ability of CDs is related to surface functional groups, which are generally determined by the reaction precursors, we successfully constructed mitochondria-targeted O-CDs with emission at 565 nm through solvothermal treatment of m-diethylaminophenol. The O-CDs are bright with a high quantum yield of 12.61%, high mitochondria-targeting ability, and good stability. The O-CDs possess a high quantum yield (12.61%), specific mitochondria-targeting ability, and outstanding optical stability. Owing to the abundant hydroxyl and ammonium cations on the surface, O-CDs showed obvious accumulation in mitochondria with a high colocalization coefficient of up to 0.90 and remained steady even after fixation. Besides, O-CDs showed outstanding compatibility and photostability under various interruptions or long-time irradiation. Therefore, O-CDs are preferable for the long-term tracking of dynamic mitochondrial behavior in live cells. We first observed the mitochondrial fission and fusion behaviors in HeLa cells, and then, the size, morphology, and distribution of mitochondria in physiological or pathological conditions were clearly recorded. More importantly, we observed different dynamics interactions between mitochondria and lipid droplets during the apoptosis and mitophagy processes. This study provides a potential tool for exploring interactions between mitochondria and other organelles, further promoting the research on mitochondria-related diseases.
Collapse
Affiliation(s)
- Nini Xin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dong Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Borui Su
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ting Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuda Zhu
- Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
40
|
Liu X, Cao S, Gao Y, Luo S, Zhu Y, Wang L. Subcellular localization of DNA nanodevices and their applications. Chem Commun (Camb) 2023; 59:3957-3967. [PMID: 36883516 DOI: 10.1039/d2cc06017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The application of nanodevices based on DNA self-assembly in the field of cell biology has made significant progress in the past decade. In this study, the development of DNA nanotechnology is briefly reviewed. The subcellular localization of DNA nanodevices, and their new progress and applications in the fields of biological detection, subcellular and organ pathology, biological imaging, and other fields are reviewed. The future of subcellular localization and biological applications of DNA nanodevices is also discussed.
Collapse
Affiliation(s)
- Xia Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Gao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
A Triphenylphosphonium-Functionalized Delivery System for an ATM Kinase Inhibitor That Ameliorates Doxorubicin Resistance in Breast Carcinoma Mammospheres. Cancers (Basel) 2023; 15:cancers15051474. [PMID: 36900267 PMCID: PMC10000448 DOI: 10.3390/cancers15051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.
Collapse
|
42
|
Chen X, Jiang D, Jiang C, Yao C. A novel near-infrared ratiometric fluorescent probe targeting lysosomes for imaging HOCl in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121966. [PMID: 36252305 DOI: 10.1016/j.saa.2022.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Hypochlorous acid (HOCl), as an important biological reactive oxygen species (ROS), plays an important role in microbial immune defense and inflammatory response. Abnormal levels of HOCl in lysosomes can cause lysosomal membrane rupture and release of various hydrolases, leading to a variety of diseases, including cancer. In order to better monitor the level of HOCl in lysosomes, phenothiazine was chosen as fluorophore to construct a NIR fluorescent probe PMM with intramolecular change transfer process (ICT). PMM is a colorimetric and ratiometric fluorescent probe, which has high sensitivity with a low detection limit (20 nM), high selectivity and anti-interference. PMM has good stability in the weakly acidic environment of pH 4.0-5.5. PPM has good localization ability for lysosomes and has been successfully used for fluorescence imaging of exogenous and endogenous HOCl in HepG2 cells. Moreover, nude mouse imaging also demonstrated that PMM could be used to detect HOCl in vivo.
Collapse
Affiliation(s)
- Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Detao Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Chen Jiang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
43
|
Nguyen Cao TG, Truong Hoang Q, Hong EJ, Kang SJ, Kang JH, Ravichandran V, Kang HC, Ko YT, Rhee WJ, Shim MS. Mitochondria-targeting sonosensitizer-loaded extracellular vesicles for chemo-sonodynamic therapy. J Control Release 2023; 354:651-663. [PMID: 36682729 DOI: 10.1016/j.jconrel.2023.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as an effective therapeutic modality as it employs ultrasound (US) to eradicate deep-seated tumors noninvasively. However, the therapeutic efficacy of SDT in clinical settings remains limited owing to the low aqueous stability and poor pharmacokinetic properties of sonosensitizers. In this study, extracellular vesicles (EVs), which have low systemic toxicity, were used as clinically available nanocarriers to effectively transfer a sonosensitizer to cancer cells. Chlorin e6 (Ce6), a sonosensitizer, was conjugated to a mitochondria-targeting triphenylphosphonium (TPP) moiety and loaded into EVs to enhance the efficacy of SDT, because mitochondria are critical subcellular organelles that regulate cell survival and death. Additionally, piperlongumine (PL), a pro-oxidant and cancer-specific chemotherapeutic agent, was co-encapsulated into EVs to achieve efficient and selective anticancer activity. The EVs substantially amplified the cellular internalization of TPP-conjugated Ce6 (TPP-Ce6), resulting in the enhanced generation of intracellular reactive oxygen species (ROS) in MCF-7 human breast cancer cells upon US exposure. Importantly, EVs encapsulating TPP-Ce6 effectively destroyed the mitochondria under irradiation with US, leading to efficient anticancer activity. The co-encapsulation of pro-oxidant PL into EVs significantly enhanced the SDT efficacy in MCF-7 cells through the excessive generation of ROS. Moreover, the EV co-encapsulating TPP-Ce6 and PL [EV(TPP-Ce6/PL)] exhibited cancer-specific cell death owing to the cancer-selective apoptosis triggered by PL. In vivo study using MCF-7 tumor-xenograft mice revealed that EV(TPP-Ce6/PL) effectively accumulated in tumors after intravenous injection. Notably, treatment with EV(TPP-Ce6/PL) and US inhibited tumor growth significantly without causing systemic toxicity. This study demonstrated the feasibility of using EV(TPP-Ce6/PL) for biocompatible and cancer-specific chemo-SDT.
Collapse
Affiliation(s)
- Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Quan Truong Hoang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Eun Ji Hong
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Vasanthan Ravichandran
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
44
|
Zhong M, He J, Zhang B, Liu Q, Fang J. Mitochondria-targeted iridium-based photosensitizers enhancing photodynamic therapy effect by disturbing cellular redox balance. Free Radic Biol Med 2023; 195:121-131. [PMID: 36581057 DOI: 10.1016/j.freeradbiomed.2022.12.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive, light-activated treatment approach that has been broadly employed in cancer. Cyclometallic iridium (Ш) complexes are candidates for ideal photosensitizers due to their unique photophysical and photochemical features, such as high quantum yield, large Stokes shift, strong resistance to photobleaching, and high cellular permeability. We evaluated a panel of iridium complexes and identified PC9 as a powerful photosensitizer to kill cancer cells. PC9 shows an 8-fold increase of cytotoxicity to HeLa cells under light irradiation. Further investigation discloses that PC9 has a strong mitochondrial-targeting ability and can inhibit the antioxidant enzyme thioredoxin reductase, which contributes to improving PDT efficacy. Our data indicate that iridium complexes are efficient photosensitizers with distinct physicochemical properties and cellular actions, and deserve further development as promising agents for PDT.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jian He
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; Sichuan Key Laboratory of Medical Imaging, School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qiang Liu
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Jianguo Fang
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
45
|
Song Y, Cheng Y, Lan T, Bai Z, Liu Y, Bi Z, Alu A, Cheng D, Wei Y, Wei X. ERK inhibitor: A candidate enhancing therapeutic effects of conventional chemo-radiotherapy in esophageal squamous cell carcinoma. Cancer Lett 2023; 554:216012. [PMID: 36470544 DOI: 10.1016/j.canlet.2022.216012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
For patients with esophageal squamous cell carcinoma (ESCC), standard therapeutic methods (cisplatin and radiotherapy) have been found to be ineffective and severely toxic. Targeted therapy emerges as a promising solution for this dilemma. It has been reported that targeted therapies are applied alone or in combination with standard conventional therapies for the treatment of a variety of cancers. To the best of our knowledge, in patients with ESCC, the combinational methods containing standard therapy and ERK-targeted therapy have yet to be explored. To analyze the prognostic role of p-ERK in ESCC patients, the Kaplan-Meier analysis and Cox regression model were used. To assess the effects of ERK-targeted therapy (GDC0994) on ESCC cells, in vitro studies including CCK-8 assay, colony formation assay, and scratch wound healing assay were conducted. In addition, the changes in cell cycle distribution and apoptosis were analyzed by flow cytometry. Besides, to assess the efficacy of different therapies in vivo, the xenograft tumor models were established by subcutaneously inoculating tumor cells into the flank/leg of mice. In patients with ESCC, a strong correlation between the high expression level of p-ERK and the poor prognosis (p < 0.01, Log-Rank test) has been identified. By analyzing the results from CCK-8 and scratch wound healing assays, we demonstrated that the ERK inhibitor repressed the viability and migration of ESCC cells. In addition, following the treatment of GDC0994, the volumes of xenograft tumors significantly decreased (p < 0.001, one-way ANOVA). Furthermore, blocking the mitogen-activated protein kinase (MAPK/ERK) pathway enhanced the therapeutic efficacy of both cisplatin and radiotherapy (p < 0.05). These findings imply the role of p-ERK in the prognosis of ESCC patients and the therapeutic value of ERK inhibitors in ESCC.
Collapse
Affiliation(s)
- Yanlin Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Diou Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
46
|
Mitochondria-Targeted Triphenylphosphonium-Hydroxytyrosol Prevents Lipotoxicity-Induced Endothelial Injury by Enhancing Mitochondrial Function and Redox Balance via Promoting FoxO1 and Nrf2 Nuclear Translocation and Suppressing Inflammation via Inhibiting p38/NF-кB Pathway. Antioxidants (Basel) 2023; 12:antiox12010175. [PMID: 36671037 PMCID: PMC9854738 DOI: 10.3390/antiox12010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Hyperlipidemia results in endothelial dysfunction, which is intimately associated with disturbed mitochondrial homeostasis, and is a real risk factor for cardiovascular diseases (CVDs). Triphenylphosphonium (TPP+)-HT, constructed by linking a mitochondrial-targeting moiety TPP+ to hydroxytyrosol (HT), enters the cell and accumulates in mitochondria and is thus an important candidate drug for preventing hyperlipidemia-induced endothelial injury. In the present study, we found that TPP-HT has a better anti-inflammatory effect than HT. In vivo, TPP-HT significantly prevented hyperlipidemia-induced adverse changes in the serological lipid panel, as well as endothelial and mitochondrial dysfunction of the thoracic aorta. Similarly, in vitro, TPP-HT exhibited similar protective effects in palmitate (PA)-induced endothelial dysfunction, particularly enhanced expression of the mitochondrial ETC complex II, recovered FoxO1 expression in PA-injured human aorta endothelial cells (HAECs) and promoted FoxO1 nuclear translocation. We further demonstrated that FoxO1 plays a pivotal role in regulating ATP production in the presence of TPP-HT by using the siFoxO1 knockdown technique. Simultaneously, TPP-HT enhanced Nrf2 nuclear translocation, consistent with the in vivo findings of immunofluorescence, and the antioxidant effect of TPP-HT was almost entirely blocked by siNrf2. Concomitantly, TPP-HT’s anti-inflammatory effects in the current study were primarily mediated via the p38 MAPK/NF-κB signaling pathway in addition to the FoxO1 and Nrf2 pathways. In brief, our findings suggest that mitochondria-targeted TPP-HT prevents lipotoxicity induced endothelial dysfunction by enhancing mitochondrial function and redox balance by promoting FoxO1 and Nrf2 nuclear translocation.
Collapse
|
47
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
48
|
Deng T, Lin FC, Zink JI, Yu Q. Regulation of Bacterial Behavior by Light and Magnetism Mediated by Mesoporous Silica-Coated MnFe 2O 4@CoFe 2O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56007-56017. [PMID: 36509713 DOI: 10.1021/acsami.2c12589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Unicellular bacterial cells exhibit diverse population behaviors (i.e., aggregation, dispersion, directed assembly, biofilm formation, etc.) to facilitate communication and cooperation. Suitable bacterial behaviors are required for efficient nutrient uptake, cell recycling, and stress response for environmental and industrial application of bacterial populations. However, it remains a great challenge to artificially control bacterial behaviors because of complicated genetic and biochemical mechanisms. In this study, we designed facile mesoporous silica nanoparticle (MSN)-based assemblies to intelligently regulate bacterial behaviors with the help of light and magnetic field. This system was composed of magnetic MSNs, i.e., MnFe2O4@CoFe2O4@MSN modified by photoactive spiropyran (SP), and the chitosan-based polymers ChiPSP, i.e., chitosan grafted by triphenylphosphine and SP. The assembly strongly bound bacterial cells, inducing reversible bacterial aggregation by visible-light irradiation and dark. Moreover, the formed bacterial aggregates could be further governed by a directed magnetic field (DMF) to form microfibers and by an alternating magnetic field (AMF) to form biofilms. This study realized stimulus-triggered regulation of bacterial behaviors by MSNs and implied the great power of chemical strategies in intelligent control of diverse biological processes for environmental and industrial applications.
Collapse
Affiliation(s)
- Tian Deng
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fang-Chu Lin
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Liu NK, Deng LX, Wang M, Lu QB, Wang C, Wu X, Wu W, Wang Y, Qu W, Han Q, Xia Y, Ravenscraft B, Li JL, You SW, Wipf P, Han X, Xu XM. Restoring mitochondrial cardiolipin homeostasis reduces cell death and promotes recovery after spinal cord injury. Cell Death Dis 2022; 13:1058. [PMID: 36539405 PMCID: PMC9768173 DOI: 10.1038/s41419-022-05369-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Alterations in phospholipids have long been associated with spinal cord injury (SCI). However, their specific roles and signaling cascades in mediating cell death and tissue repair remain unclear. Here we investigated whether alterations of cardiolipin (CL), a family of mitochondrion-specific phospholipids, play a crucial role in mitochondrial dysfunction and neuronal death following SCI. Lipidomic analysis was used to determine the profile of CL alteration in the adult rat spinal cord following a moderate contusive SCI at the 10th thoracic (T10) level. Cellular, molecular, and genetic assessments were performed to determine whether CL alterations mediate mitochondrial dysfunction and neuronal death after SCI, and, if so, whether reversing CL alteration leads to neuroprotection after SCI. Using lipidomic analysis, we uncovered CL alterations at an early stage of SCI. Over 50 distinct CL species were identified, of which 50% showed significantly decreased abundance after SCI. The decreased CL species contained mainly polyunsaturated fatty acids that are highly susceptible to peroxidation. In parallel, 4-HNE, a lipid peroxidation marker, significantly increased after SCI. We found that mitochondrial oxidative stress not only induced CL oxidation, but also resulted in CL loss by activating cPLA2 to hydrolyze CL. CL alterations induced mitochondrial dysfunction and neuronal death. Remarkably, pharmacologic inhibition of CL alterations with XJB-5-131, a novel mitochondria-targeted electron and reactive oxygen species scavenger, reduced cell death, tissue damage and ameliorated motor deficits after SCI in adult rats. These findings suggest that CL alteration could be a novel mechanism that mediates injury-induced neuronal death, and a potential therapeutic target for ameliorating secondary SCI.
Collapse
Affiliation(s)
- Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Miao Wang
- Frontage Laboratories, Exton, PA, 19341, USA
| | - Qing-Bo Lu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chunyan Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baylen Ravenscraft
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Si-Wei You
- Institute of Neuroscience, The Fourth Military Medical University, Xi'an, P. R. China
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xianlin Han
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
50
|
Chen J, Zhu L, Li B, Xiao M, Chen W, Feng X, Zhuo X, Li Y, Wan Y, Deng S. Sorting and Screening of Quaternary Ammonium Lipoids for Membrane-Binding Assays Based on Electrochemiluminescent Cocrystalline Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15316-15326. [PMID: 36441978 DOI: 10.1021/acs.langmuir.2c02542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Being synthetic supplements to natural lipids, lipoids now play an increasingly significant role in nanopore sequencing, olfactory sensing, and nanoimpact electrochemistry. Yet, systematic comparisons to sort and screen qualified lipoids are lacking for specific scenario applications. Here, taking the merits of electrochemiluminescence (ECL) in probing biointerfacial events, a new metric was proposed for the evaluation of substrate candidacy in the pool of hyamine bromides (ABs), that are used to cohere with electron-rich porphyrins for deep eutectics-like ECL matrices. Using a state-of-the-art framework emitter, the cocrystalline nanosheet of C70 and zinc meso-tetraphenylporphine (ZnTPP) via simple liquid-liquid interfacial deposition, 6 out of 20 ABs were inspected and identified as not only amenable filmogens but excitonic sensitizers in key terms of ECL strength as well as voltammetric characteristics. Among them, the methyltrioctyl (MTOAB) headgroup stood out; while the ECL activity at ZnTPP-C70@MTOAB was proven to be dictated by ionophoresis across multilamellar lipoidal layers. Thus, target-induced membrane deformation would let coreactant scavengers in to quench ECL, which enabled assays on two less visited bioprocesses regarding (1) the lipid solubility of ipratropium bromide, an aerosol medication for rhinitis treatment; and (2) the resorption of selenosugar as the central metabolite of Se-proteins on kidney glomerular basement barrier. Both resulted in nice membrane-binding measurements with comparable dissociation constants to reported microfluidic ELISA methods. By and large, though still being rudimentary, such parametrization of ECL-able biofilm would set up a basic ECL toolbox for archiving and resourcing multilipoidal even lipid-lipoid combos to handle the realistic (sub)cytomembrane processes in the future.
Collapse
Affiliation(s)
- Jialiang Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xuyu Feng
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiyong Zhuo
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Wan
- Department of Instruments Science and Technology, School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shengyuan Deng
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|