1
|
Han T, Sharma P, Khetrapal N, Wang H. Cyclically conjugated porphyrin trimers linked through benzo[4,5]imidazo[2,1- a]isoindole bridges. Chem Commun (Camb) 2024; 60:10696-10699. [PMID: 39239691 DOI: 10.1039/d4cc03102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cyclically conjugated porphyrin trimers were prepared via a concise synthetic method. Zn-Trimer-1 displayed strong exciton coupling, suggesting the presence of effective electronic interactions. UV-Vis absorption and fluorescence spectra obtained through titration studies on the donor-acceptor adduct (Zn-Trimer-1-C60Im) indicate the occurrence of excited state photo-events.
Collapse
Affiliation(s)
- Ting Han
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA.
| | - Prabha Sharma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA.
| | - Navneet Khetrapal
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA.
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
2
|
Katsumi S, Kugai Y, Louis M, Morimoto T, Yamada M, Maisonneuve S, Goto C, Métivier R, Kawai T, Allain C. C 3-Symmetric Luminescent Diketone with Amido-Linkage as a Polymorphic Fluorescence Emitter. Chemistry 2024; 30:e202304278. [PMID: 38372462 DOI: 10.1002/chem.202304278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The study introduces a novel C3-symmetric β-diketone compound, BTA-D3, and its monomeric counterpart, D, with a focus on their synthetic procedure, photophysical properties and aggregation behavior. Both compounds exhibit characteristic absorption and weak fluorescence in solution, with BTA-D3 displaying higher absorption coefficients due to its larger number of diketone units. Density Functional Theory (DFT) calculations suggest increased co-planarity of diketone groups in BTA-D3. A significant finding is the Aggregation-Induced Emission (AIE) property of BTA-D3, as its fluorescence intensity increases dramatically when exposed to specific solvent ratios. The AIE behavior is attributed to intermolecular excitonic interaction between BTA-D3 molecules in self-organized aggregates. We also studied fluorescence anisotropy of BTA-D3 and D. Despite its larger size, BTA-D3 showed reduced anisotropy values because of efficient intramolecular energy migration among three diketone units. Furthermore, BTA-D3 demonstrates unique polymorphism, yielding different emission colors and structures depending on the solvent used. A unique approach is presented for promoting the growth of self-organized aggregate structures via solvent evaporation, leading to distinct fluorescence properties. This research contributes to the understanding of C3-symmetric structural molecules and provides insights into strategies for controlling molecular alignment to achieve diverse fluorescence coloration in molecular materials.
Collapse
Affiliation(s)
- Shiho Katsumi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Yusuke Kugai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Marine Louis
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Tsumoru Morimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Mihoko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Stéphane Maisonneuve
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Chigusa Goto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Rémi Métivier
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Tsuyoshi Kawai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, NAIST, Takayama 8916-5, 630-0192, Ikoma, Nara, Japan
| | - Clémence Allain
- Université Paris-Saclay ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Aoki K, Matsuzawa T, Suetsugu K, Hara M, Nagano S, Nagao Y. Influence of Humidity on Layer-by-Layer Growth and Structure in Coordination Networks. Inorg Chem 2024; 63:6674-6682. [PMID: 38560782 DOI: 10.1021/acs.inorgchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-organic frameworks (MOFs) are promising materials because of their high designability of pores and functionalities. Especially, MOF thin films and their properties have been investigated toward applications in nanodevices. Typically, MOF thin films are fabricated by using a bottom-up method such as layer-by-layer (LbL) growth in air. Because the water molecules can coordinate and be replaced with organic linkers during synthesis, humidity conditions will be expected to influence the LbL growth processes. In this study, we fabricated MOF thin films composed of Zn2+, tetrakis-(4-carboxyphenyl)-porphyrin (TCPP), and 4,4'-bipyridyl (bpy) at 10 and 40% relative humidity (RH) conditions. Then, we investigated the humidity effects on chemical compositions of TCPP and bpy, periodic structure, orientation, and surface morphology. At high RH, coordination replacement of water with the organic linkers becomes more competitive than that at low RH, resulting in a different TCPP/bpy composition ratio between the two RH conditions. Also, more frequent coordination replacements of water with the organic linkers at high RH led to the formation of phases other than that observed at low RH, loss of growth orientation, and rough surface. The findings clarified the importance of controlling the RH condition during LbL growth to obtain the desired coordination networks.
Collapse
Affiliation(s)
- Kentaro Aoki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Toshitaka Matsuzawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kota Suetsugu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
4
|
Wega J, Zhang KF, Lacour J, Vauthey E. Controlling Symmetry-Breaking Charge Separation in Pyrene Bichromophores. J Phys Chem Lett 2024:2834-2840. [PMID: 38442038 DOI: 10.1021/acs.jpclett.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
So far, symmetry-breaking charge separation (SB-CS) has been observed with a limited number of chromophores and is usually inhibited by the formation of an excimer. , We show here that thanks to of fine-tuning of the interchromophore coupling via structural control, SB-CS can be operative with pyrene, despite its high propensity to form an excimer. This is realized with a bichromophoric system consisting of two pyrenes attached to a crown ether macrocycle, which can bind cations of different sizes. By combining stationary and time-resolved spectroscopy together with molecular dynamics simulations, we demonstrate that the excited-state dynamics can be totally changed depending on the binding cation. Whereas strong coupling leads to rapid excimer formation, too weak coupling results in noninteracting chromophores. However, intermediate coupling, achieved upon binding of Mg2+, allows for SB-CS to be operative.
Collapse
|
5
|
Kuramochi Y, Tanahashi K, Satake A. Synthesis and Photocatalytic CO 2 Reduction of a Cyclic Zinc(II) Porphyrin Trimer with an Encapsulated Rhenium(I) Bipyridine Tricarbonyl Complex. Chemistry 2024; 30:e202303324. [PMID: 38099393 DOI: 10.1002/chem.202303324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/30/2023]
Abstract
We previously reported a cyclic Zn(II) porphyrin trimer in which three Zn porphyrins are alternately bridged by three 2,2'-bipyridine (bpy) moieties, enabling the encapsulation of metal complexes within the nanopore formed by the Zn porphyrins. In this study, we introduced a [Re(CO)3 Br] fragment into one of the bpy moieties of the cyclic trimer to form the catalytic Re(4,4'-R2 -bpy)(CO)3 Br center (R=methyl ester). The ester groups (R) play an important role in the synthesis of the cyclic structure. However, it was observed that these ester groups significantly deactivated the photocatalytic CO2 reduction reaction. Therefore, we converted the ester groups with a suitable reducing reagent into hydroxymethyl groups, followed by acetylation to form acetoxymethyl groups. This modification remarkably enhanced the photocatalytic activity of the cyclic trimer=Re complex system for CO2 reduction. Moreover, in the modified system, the presence of the Re complex induced room-temperature phosphorescence of the Zn porphyrin. The phosphorescence was significantly quenched by 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole, indicating that efficient electron transfer mediated by the excited triplet state of the Zn porphyrin occurs during the photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Kotaro Tanahashi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| |
Collapse
|
6
|
Waly SMA, Benniston AC, Harriman A. Deducing the conformational space for an octa-proline helix. Chem Sci 2024; 15:1657-1671. [PMID: 38303943 PMCID: PMC10829019 DOI: 10.1039/d3sc05287g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
A molecular dyad, PY-P8-PER, comprising a proline octamer sandwiched between pyrene and perylene terminals has been synthesized in order to address the dynamics of electronic energy transfer (EET) along the oligo-proline chain. A simple pyrene-based control compound equipped with a bis-proline attachment serves as a reference for spectroscopic studies. The N-H NMR signal at the terminal pyrene allows distinction between cis and trans amides and, although the crystal structure for the control has the trans conformation, temperature-dependent NMR studies provide clear evidence for trans/cis isomerisation in D6-DMSO. Polar solvents tend to stabilise the trans structure for the pyrene amide group, even for longer oligo-proline units. Circular dichroism shows that the proline spacer for PY-P8-PER exists mainly in the all-trans geometry in methanol. Preferential excitation of the pyrene chromophore is possible at wavelengths in the 320-350 nm range and, for the dyad, is followed by efficacious EET to the perylene emitter. The probability for intramolecular EET, obtained from analysis of steady-state spectroscopic data, is ca. 80-90% in solvents of disparate polarity. Comparison with the Förster critical distance suggests the terminals are ca. 18 Å apart. Time-resolved fluorescence spectroscopy, in conjunction with DFT calculations, indicates the dyad exists as a handful of conformers displaying a narrow range of EET rates. Optimisation of a distributive model allows accurate simulation of the EET dynamics in terms of reasonable structures based on isomerisation of certain amide groups.
Collapse
Affiliation(s)
- Sara M A Waly
- Molecular Photonics Laboratory, Bedson Building, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Andrew C Benniston
- Molecular Photonics Laboratory, Bedson Building, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, Bedson Building, School of Natural and Environmental Sciences, Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
7
|
Shah SJ, Pandit YA, Garribba E, Ishida M, Rath SP. Stable Dication Diradicals of Triply Fused Metallo Chlorin-Porphyrin Heterodimers: Impact of the Bridge on the Control of Spin Coupling to Reactivity. Chemistry 2023; 29:e202301963. [PMID: 37602834 DOI: 10.1002/chem.202301963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
We report an unexpected rearrangement, controlled by the nature of the bridge, leading to the formation of novel, remarkably stable triply fused dinickel(II)/dicopper(II) chlorin-porphyrin dication diradical heterodimers in excellent yields. Here, a dipyrromethene bridge gets completely fused between two porphyrin macrocycles with two new C-C and one C-N bonds. The two macrocycles exhibit extensive π-conjugation through the bridge, which results in an antiferromagnetic coupling between the two π-cation radicals. In addition, the macrocyclic distortion also favours a rare intramolecular ferromagnetic interaction between the CuII and π-cation radical spins to form a triplet state. The structural and electronic perturbation in the unconjugated dication diradical possibly enables the bridging pyrrolic nitrogen to undergo a nucleophilic attack at the nearby β-carbon of the porphyrin π-cation radical with a computed free energy barrier of >20 kcal mol-1 which was supplied in the form of reflux condition to initiate such a rearrangement process. UV-vis, EPR and ESI-MS spectroscopies were used to monitor the rearrangement process in situ in order to identify the key reactive intermediates leading to such an unusual transformation.
Collapse
Affiliation(s)
- Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
8
|
Chen Q, Thompson AL, Christensen KE, Horton PN, Coles SJ, Anderson HL. β,β-Directly Linked Porphyrin Rings: Synthesis, Photophysical Properties, and Fullerene Binding. J Am Chem Soc 2023; 145:11859-11865. [PMID: 37201942 DOI: 10.1021/jacs.3c03549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented β,β-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet-vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA -0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M-1 for C70 and (2.2 ± 0.1) × 104 M-1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Peter N Horton
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
9
|
Majewski MA, Stawski W, Van Raden JM, Clarke M, Hart J, O'Shea JN, Saywell A, Anderson HL. Covalent Template-Directed Synthesis of a Spoked 18-Porphyrin Nanoring. Angew Chem Int Ed Engl 2023; 62:e202302114. [PMID: 36877745 PMCID: PMC10947019 DOI: 10.1002/anie.202302114] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/07/2023]
Abstract
Rings of porphyrins mimic natural light-harvesting chlorophyll arrays and offer insights into electronic delocalization, providing a motivation for creating larger nanorings with closely spaced porphyrin units. Here, we demonstrate the first synthesis of a macrocycle consisting entirely of 5,15-linked porphyrins. This porphyrin octadecamer was constructed using a covalent six-armed template, made by cobalt-catalyzed cyclotrimerization of an H-shaped tolan with porphyrin trimer ends. The porphyrins around the circumference of the nanoring were linked together by intramolecular oxidative meso-meso coupling and partial β-β fusion, to give a nanoring consisting of six edge-fused zinc(II) porphyrin dimer units and six un-fused nickel(II) porphyrins. STM imaging on a gold surface confirms the size and shape of the spoked 18-porphyrin nanoring (calculated diameter: 4.7 nm).
Collapse
Affiliation(s)
- Marcin A. Majewski
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
- Current address: Faculty of ChemistryUniversity of Wrocławul. F. Joliot-Curie 1450-383WrocławPoland
| | - Wojciech Stawski
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Jeff M. Van Raden
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| | - Michael Clarke
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jack Hart
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - James N. O'Shea
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Alex Saywell
- School of Physics & AstronomyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Harry L. Anderson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
| |
Collapse
|
10
|
Chen XM, Chen X, Hou XF, Zhang S, Chen D, Li Q. Self-assembled supramolecular artificial light-harvesting nanosystems: construction, modulation, and applications. NANOSCALE ADVANCES 2023; 5:1830-1852. [PMID: 36998669 PMCID: PMC10044677 DOI: 10.1039/d2na00934j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Artificial light-harvesting systems, an elegant way to capture, transfer and utilize solar energy, have attracted great attention in recent years. As the primary step of natural photosynthesis, the principle of light-harvesting systems has been intensively investigated, which is further employed for artificial construction of such systems. Supramolecular self-assembly is one of the feasible methods for building artificial light-harvesting systems, which also offers an advantageous pathway for improving light-harvesting efficiency. Many artificial light-harvesting systems based on supramolecular self-assembly have been successfully constructed at the nanoscale with extremely high donor/acceptor ratios, energy transfer efficiency and the antenna effect, which manifests that self-assembled supramolecular nanosystems are indeed a viable way for constructing efficient light-harvesting systems. Non-covalent interactions of supramolecular self-assembly provide diverse approaches to improve the efficiency of artificial light-harvesting systems. In this review, we summarize the recent advances in artificial light-harvesting systems based on self-assembled supramolecular nanosystems. The construction, modulation, and applications of self-assembled supramolecular light-harvesting systems are presented, and the corresponding mechanisms, research prospects and challenges are also briefly highlighted and discussed.
Collapse
Affiliation(s)
- Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University Kent OH 44242 USA
| |
Collapse
|
11
|
Arshadi S, Abdolahzadeh F, Vessally E. Butadiyne-linked porphyrin nanoring as a highly selective O 2 gas sensor: A fast response hybrid sensor. J Mol Graph Model 2023; 119:108371. [PMID: 36502605 DOI: 10.1016/j.jmgm.2022.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/20/2022]
Abstract
The butadiyne-linked six-metalloporphyrin nanoring (Mg6-P6) and it's complex with a hexapyridyl template, Mg6-P6·T6 have a great potential for employment in future nanoelectronic applications such as a nanosensor for small gas molecules. The goal of this study is to scrutinize and improvement of the CO, N2, and O2 gas sensing capacity of Mg6-P6 and Mg6-P6·T6 using DFT calculations at CAM-B3LYP/6-31G (d,p) level of theory. The geometrical structures, binding energies, band gaps, the density of states (DOS), adsorption energies, HOMO and LUMO energies, Fermi level energies (EFL), NBO, FMO and TD-DFT spectrum were calculated to predict gas adsorption properties of Mg6-P6 and Mg6-P6·T6 systems. Based on the calculated adsorption energies and remarkable decrease in the Eg, it is expected that the Mg6-P6 and Mg6-P6·T6 are sensitive to O2 molecule. Surprisingly, the Mg6-P6-O2 and specially the Mg6-P6.T6-O2 record promising values of recovery times for different attempt frequencies. Therefore, the results open a way for the development of a new and selective O2 nanosensor in the presence of CO and N2 gas molecules.
Collapse
Affiliation(s)
- Sattar Arshadi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran.
| | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| |
Collapse
|
12
|
Harmandar K, Giray G, Önal E, Sengul IF, Özdemir S, Atilla D. New AB 3-type porphyrins with piperidine and morpholine motifs; synthesis and photo-physicochemical and biological properties. Dalton Trans 2023; 52:2672-2683. [PMID: 36745464 DOI: 10.1039/d2dt03738f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this study, new unsymmetrical meso-tetraaryl AB3-type porphyrins 1 and 2 were successfully synthesized by the reaction of p-bromobenzaldehyde and p-hydroxybenzaldehyde with pyrrole in propionic acid. AB3-type porphyrin building blocks with hydroxyl functionality (1 and 2) were further used to generate both covalently linked metal free and Zn(II) porphyrins 3-6 having piperidine and morpholine heterocyclic units. These novel compounds were characterized by using 1H NMR, 13C NMR, FT-IR and MALDI-TOF spectrophotometry. The photophysical and photochemical properties of compounds 1-6 were investigated by employing UV-vis absorption and fluorescence emission spectroscopy in tetrahydrofuran (THF). From the view of biological properties, the antioxidant capacities of porphyrins were determined by using DPPH radical scavenging activity and 2 was determined as the most potent porphyrin analog with a value of 98.42% at 200 mg L-1. All the targeted compounds displayed significant DNA nuclease activity. In addition, the antimicrobial potential of compounds 1-6 was also investigated by a micro-dilution process and 2 was found to be the most effective candidate against the tested microbial strains. The newly synthesized porphyrins also showed 100% microbial cell viability inhibition against E. coli at all examined concentrations. In terms of biofilm inhibition activity, the best results for the maximum photodynamic antimicrobial biofilm inhibition of S. aureus and P. aeruginosa were obtained by compound 2 with the values of 99.75% and 93.39%, respectively.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Gülay Giray
- Department of Veterinary Medicine, Ihsangazi Technical Science Vocational School, Ihsangazi, Kastamonu, Turkey
| | - Emel Önal
- Doğuş University, Faculty of Engineering, Ümraniye, 34775, Istanbul, Turkey
| | - Ibrahim F Sengul
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Devrim Atilla
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
13
|
Shukaev AV, Ermakova EV, Fang Y, Kadish KM, Nefedov SE, Tafeenko VA, Michalak J, Bessmertnykh-Lemeune A. Synthesis and Self-Assembly of β-Octa[(4-Diethoxyphosphoryl)phenyl]porphyrins. Inorg Chem 2023; 62:3431-3444. [PMID: 36752761 DOI: 10.1021/acs.inorgchem.2c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The β-substituted porphyrinoids commonly used to form functional assembled systems in nature yet are still scarcely used in material chemistry probably due to the laborious synthesis of these compounds. In this work, β-octa[(4-diethoxyphosphoryl)phenyl]porphyrin (2HOPPP) and its metal (Zn(II), Cd(II), Cu(II), and Ni(II)) complexes were prepared in good yields. These highly soluble chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence), electrochemical, and spectroelectrochemical methods. Attachment of the electron-deficient residue (ArP(O)(OEt)2) to the porphyrin macrocycle leads to easier reductions and harder oxidations of the macrocycle for all complexes studied as compared to corresponding meso-tetra[4-(diethoxyphosphoryl)phenyl]porphyrin derivatives reported previously. We demonstrated that the strong electron-deficient character of the MOPPP porphyrins results principally from the increase in the number of electron-withdrawing groups at the periphery of the tetrapyrrolic macrocycle. Electron-deficient porphyrins are highly required in supramolecular and material chemistry in part due to their ability to form supramolecular assemblies via the coordination of axial ligands to the central metal atom. According to single-crystal X-ray data, ZnOPPP forms in the crystalline phase dimers in which each of the two tetrapyrrolic macrocycles is connected through an unusual combination of hydrogen bonding of two phosphoryl groups and the water molecules axially coordinated to the zinc atom of the partner molecule. The involvement of water molecules in porphyrin binding allows for an increase of distance between two porphyrin mean N4 planes, up to 4.478 Å. The offset of phosphoryl groups attached to the macrocycle through a 1,4-phenylene spacer withdraws the whole porphyrin macrocycle of one molecule from spatial overlap with the macrocycle of a partner molecule and increases the Zn-Zn distance up to 10.372 Å. This still unknown type of porphyrin dimers allows one to get deeper insights into the organization of naturally occurring tetrapyrrolic macrocycles. ZnOPPP also forms a labile dimeric complex in 5.3 × 10-7-5.8 × 10-5 M chloroform solutions. In contrast, other complexes prepared in this work exist as monomeric species under these experimental conditions. The self-association constant of ZnOPPP has been determined by electronic absorption spectroscopy.
Collapse
Affiliation(s)
- Anton V Shukaev
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Sergey E Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Victor A Tafeenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Julien Michalak
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France.,Laboratoire de Chimie, UMR 5182, CNRS, ENS de Lyon, 46 allée d'Italie, Lyon 69364, France
| |
Collapse
|
14
|
Chen S, Feng S, Markvoort AJ, Zhang C, Zhou E, Liang W, Zhang HJ, Jiang YB, Lin J. Unequal Perylene Diimide Twins in a Quadruple Assembly. Angew Chem Int Ed Engl 2023; 62:e202300786. [PMID: 36792541 DOI: 10.1002/anie.202300786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.
Collapse
Affiliation(s)
- Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Albert J Markvoort
- Computational Biology Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (The, Netherlands
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Enyang Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
15
|
Nakamura S, Sakai H, Fuki M, Ooie R, Ishiwari F, Saeki A, Tkachenko NV, Kobori Y, Hasobe T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton Transport in Linear Tetracene Oligomers. Angew Chem Int Ed Engl 2023; 62:e202217704. [PMID: 36578175 DOI: 10.1002/anie.202217704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).
Collapse
Affiliation(s)
- Shunta Nakamura
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Rikuto Ooie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Nikolai V Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
16
|
He H, Lee S, Liu N, Zhang X, Wang Y, Lynch VM, Kim D, Sessler JL, Ke XS. Cyclic Carbaporphyrin Arrays. J Am Chem Soc 2023; 145:3047-3054. [PMID: 36693015 DOI: 10.1021/jacs.2c11788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two cyclic carbaporphyrin arrays (trimer 6 and tetramer 7) were synthesized from a dibrominated carbaporphyrin precursor (5) via a one-pot Yamamoto-type coupling. Single-crystal X-ray diffraction analyses revealed that 6 and 7 contain three and four covalently linked carbaporphyrin (formally dicarbacorrole) units, respectively. Trimer 6 adopts a roughly planar conformation and tetramer 7 adopts an up-and-down zig-zag conformation. Both 6 and 7 contain a [n]cyclo-meta-phenylene ([n]CMP) core, namely, [6]- and [8]CMP for 6 and 7, respectively. Transient absorption (TA) anisotropy and pump-power-dependent excited-state decay studies provided evidence for excitation energy transfer (EET) within both trimer 6 and tetramer 7. The exciton energy hopping (EEH) times were estimated to be 18 and 35 ps for 6 and 7, respectively, as inferred from pump-power-dependent TA measurements. Since the center-to-center distances between adjacent carbaporphyrin units are similar in 6 and 7, the different EEH times are attributed to differences in the orientation of the transition dipoles in these two congeneric arrays. The orientation factor κ2, the key parameter defining the Förster resonance energy transfer efficiency, was calculated to be 2.15 and 1.03 for 6 and 7, respectively, a finding that supports the shorter excitation energy hopping time seen in the case of trimer 6. To our knowledge, this is the first time that covalently linked cyclic carbaporphyrin arrays were synthesized using a single carbaporphyrin as the starting point and that EET between carbaporphyrin subunits constrained within a well-defined polycyclic framework has been correlated with structural differences.
Collapse
Affiliation(s)
- Haodan He
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Seokwon Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Ningchao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaotong Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuying Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xian-Sheng Ke
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Jing H, Magdaong NCM, Diers JR, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Investigation of a bacteriochlorin-containing pentad array for panchromatic light-harvesting and charge separation. Phys Chem Chem Phys 2023; 25:1781-1798. [PMID: 36597966 DOI: 10.1039/d2cp05400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new pentad array designed to exhibit panchromatic absorption and charge separation has been synthesized and characterized. The array is composed of a triad panchromatic absorber (a bis(perylene-monoimide)-porphyrin) to which are appended an electron acceptor (perylene-diimide) and an electron donor/hole acceptor (bacteriochlorin) in a crossbar arrangement. The motivation for incorporation of the bacteriochlorin versus a free-base or zinc chlorin utilized in prior constructs was to facilitate hole transfer to this terminal unit and thereby achieve a higher yield of charge separation across the array. The intense S0 → S1 (Qy) band of the bacteriochlorin also enhances absorption in the near-infrared spectral region. Due to synthetic constraints, a phenylethyne linker was used to join the bacteriochlorin to the core porphyrin of the panchromatic triad rather than the diphenylethyne linker employed for the prior chlorin-containing pentads. Static and time-resolved photophysical studies reveal enhanced excited-state quenching for the pentad in benzonitrile and dimethyl sulfoxide compared to the prior chlorin-containing analogues. Success was only partial, however, as a long-lived charge separated state was not observed despite the improved energetics for the final ground-state hole/electron-shift reaction. The apparent reason is more facile competing charge-recombination due to the shorter bacteriochlorin - porphyrin linker that increases electronic coupling for this process. The studies highlight design criteria for balancing panchromatic absorption and long-lived charge separation in molecular architectures for solar-energy conversion.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA.
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
18
|
Stawski W, Van Raden JM, Patrick CW, Horton PN, Coles SJ, Anderson HL. Strained Porphyrin Tape-Cycloparaphenylene Hybrid Nanorings. Org Lett 2023; 25:378-383. [PMID: 36626241 PMCID: PMC9872170 DOI: 10.1021/acs.orglett.2c04089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
V-Shaped porphyrin dimers, with masked p-phenylene bridges, undergo efficient oxidative coupling to form meso-meso linked cyclic porphyrin oligomers. Reductive aromatization unmasks the p-phenylenes, increasing the strain. Oxidation then fuses the porphyrin dimers, providing a nanoring with curved walls. The strain in this macrocycle bends the p-phenylene and fused porphyrin dimer units (radii of curvature of 11.4 and 19.0 Å, respectively), but it does not significantly alter the electronic structure of the fused porphyrins.
Collapse
Affiliation(s)
- Wojciech Stawski
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jeff M. Van Raden
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Connor W. Patrick
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Harry L. Anderson
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.,
| |
Collapse
|
19
|
Ma X, Lai Y, Wang Y, Tang J, Ren T, Geng Y, Gao Y, Zhang J, Qiao B. Construction of Light‐Harvesting Systems Based on a Fluorescent Probe that Self‐Assembles in the Presence of Zn
2+. ChemistrySelect 2022. [DOI: 10.1002/slct.202204015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xinxian Ma
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yingshan Lai
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Jiahong Tang
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Tianqi Ren
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yutao Geng
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yang Gao
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Jiali Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Bo Qiao
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
20
|
Gotfredsen H, Deng JR, Van Raden JM, Righetto M, Hergenhahn J, Clarke M, Bellamy-Carter A, Hart J, O'Shea J, Claridge TDW, Duarte F, Saywell A, Herz LM, Anderson HL. Bending a photonic wire into a ring. Nat Chem 2022; 14:1436-1442. [PMID: 36253501 DOI: 10.1038/s41557-022-01032-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/27/2022] [Indexed: 01/04/2023]
Abstract
Natural light-harvesting systems absorb sunlight and transfer its energy to the reaction centre, where it is used for photosynthesis. Synthetic chromophore arrays provide useful models for understanding energy migration in these systems. Research has focused on mimicking rings of chlorophyll molecules found in purple bacteria, known as 'light-harvesting system 2'. Linear meso-meso linked porphyrin chains mediate rapid energy migration, but until now it has not been possible to bend them into rings. Here we show that oligo-pyridyl templates can be used to bend these rod-like photonic wires to create covalent nanorings that consist of 24 porphyrin units and a single butadiyne link. Their elliptical conformations have been probed by scanning tunnelling microscopy. This system exhibits two excited state energy transfer processes: one from a bound template to the peripheral porphyrins and one, in the template-free ring, from the exciton-coupled porphyrin array to the π-conjugated butadiyne-linked porphyrin dimer segment.
Collapse
Affiliation(s)
- Henrik Gotfredsen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jie-Ren Deng
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jeff M Van Raden
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Marcello Righetto
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK
| | - Janko Hergenhahn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Michael Clarke
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | | | - Jack Hart
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - James O'Shea
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Fernanda Duarte
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Alex Saywell
- School of Physics & Astronomy, University of Nottingham, Nottingham, UK.
| | - Laura M Herz
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, UK.
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK.
| |
Collapse
|
21
|
Wang Y, Xu J, Wang R, Liu H, Yu S, Xing LB. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121402. [PMID: 35636137 DOI: 10.1016/j.saa.2022.121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
In the present work, artificial light-harvesting systems with a fluorescence resonance energy transfer (FRET) process were successfully obtained in the aqueous solution. We designed and synthesized an amphiphilic pyrene derivative with two 4-vinylpyridium arms (Pmvb), which can interact with cucurbit[8]uril (CB[8]) to form supramolecular polymer through host-guest interactions in aqueous solution. The formation of supramolecular polymers results in a significant enhancement of fluorescence, which makes Pmvb-CB[8] an ideal energy donor to construct artificial light-harvesting systems in the aqueous solution. Subsequently, two different fluorescence dyes Rhodamine B (RhB) and Sulforhodamine 101 (SR101) were introduced as energy acceptors into the solution of Pmvb-CB[8] respectively, to fabricate two different artificial light-harvesting systems. The obtained artificial light-harvesting systems can achieve an efficient energy transfer process from Pmvb-CB[8] to RhB or SR101 with high energy transfer efficiency.
Collapse
Affiliation(s)
- Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Juan Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Rongzhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
22
|
Wang Y, Han N, Li XL, Wang RZ, Xing LB. Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45734-45741. [PMID: 36166320 DOI: 10.1021/acsami.2c14168] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient artificial light-harvesting system with a two-step sequential energy transfer was fabricated in the aqueous solution based on the host-guest interactions between cyano-substituted p-phenylenevinylene derivative (PPTA) and a water-soluble pillar[5]arene (WP5). PPTA-WP5 complex could self-assemble into nanoparticles, and two fluorescent dyes eosin Y (EY) and Nile Red (NIR) are employed as acceptors to realize sequential energy transfer. The PPTA-WP5-EY-NIR system could achieve efficient two-step sequential energy transfer process from PPTA-WP5 to EY and then to NIR (67% for the first step and 66% for the second step). Moreover, to make full use of the harvested energy, the hydrophobic microenvironment in the assembled nanoparticles is used to promote the aerobic cross-dehydrogenative coupling (CDC) reaction in aqueous medium with 88% yield after 12 h of irradiation. To our knowledge, this is the first example of artificial LHS with two-step energy transfer used to catalyze the CDC reaction in aqueous medium. This work directly mimics the function of photosynthesis in nature of converting solar energy into chemical energy in aqueous solution.
Collapse
Affiliation(s)
- Ying Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Xing-Long Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Rong-Zhou Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
23
|
Ma X, Wang Y, Lai Y, Ren T, Tang J, Gao Y, Geng Y, Zhang J, Yue J. Assembly of Artificial Light‐Harvesting Systems Based on Supramolecular Self‐Assembly Metallogels. ChemistrySelect 2022. [DOI: 10.1002/slct.202202402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinxian Ma
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yingshan Lai
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Tianqi Ren
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Jiahong Tang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yang Gao
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yutao Geng
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Jiali Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Jinlong Yue
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
24
|
Roy A, Diers JR, Niedzwiedzki DM, Meares A, Yu Z, Bhagavathy GV, Satraitis A, Kirmaier C, Ptaszek M, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions. J Phys Chem A 2022; 126:5107-5125. [PMID: 35901315 DOI: 10.1021/acs.jpca.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
25
|
Kojima N, Kato M, Sunada Y. Discrete palladium clusters that consist of two mutually bisecting perpendicular planes. Chem Sci 2022; 13:7610-7615. [PMID: 35872831 PMCID: PMC9241975 DOI: 10.1039/d2sc02302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
The construction of novel molecules with unprecedented alignments of the constituent elements has revolutionized the field of functional materials. The arrangement of two or more planar subunits in a mutually perpendicular fashion is a frequently encountered approach to produce novel functional materials. Previous examples of such materials can be categorized into two well-investigated families: spiro-conjugated and dumbbell-shaped structures, wherein the two planes are aligned orthogonally via a single atom or an axis, respectively. This article describes a third family: reaction of [Pd(CNtBu)2]3 with Sn3Me8 or Ge6Me12 afforded a Pd7Sn4 cluster and a Pd8Ge6 cluster that consist of two mutually bisecting perpendicular planes. In the Pd7Sn4 cluster, the two equivalent Pd5Sn2 planes share three palladium atoms that include a dihedral angle of 85.6°. The construction of Pd7Sn4 and Pd8Ge6 clusters that consist of two mutually bisecting perpendicular planes was accomplished by the reaction of [Pd(CNtBu)2]3 with Me3Sn–SnMe2–SnMe3 or Ge6Me12.![]()
Collapse
Affiliation(s)
- Naoya Kojima
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Misaki Kato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yusuke Sunada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan .,Institute of Industrial Science, The University of Tokyo 4-6-1, Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
26
|
Sanfui S, Usman M, Sarkar S, Pramanik S, Garribba E, Rath SP. Highly Oxidized Cobalt Porphyrin Dimer: Control of Spin Coupling via a Bridge. Inorg Chem 2022; 61:8419-8430. [PMID: 35613476 DOI: 10.1021/acs.inorgchem.1c03807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt porphyrin dimer is constructed in which two Co(II)porphyrins are connected covalently through a redox-active diethylpyrrole moiety via a flexible but "nonconjugated" methylene bridge. Upon oxidation with even a mild oxidant such as iodine, each cobalt(II) center and porphyrin ring undergo 1e- oxidation, leading to the formation of a 4e--oxidized cobalt(III)porphyrin dication diradical complex. Other oxidants such as Cl2 and Br2 also produce similar results. To stabilize such highly oxidized dication diradicals, the "nonconjugated" methylene spacer undergoes a facile and spontaneous oxidation to form a methine group with a drastic structural change, thereby making the bridge fully π-conjugated and enabling through-bond communication. This results in a strong spin coupling between two π-cation radicals which stabilizes the singlet state. The experimental observations are also strongly supported by extensive density functional theory calculations. The present study highlights the crucial role played by the nature of the bridge in the long-range electronic communication.
Collapse
Affiliation(s)
- Sarnali Sanfui
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Subhadip Pramanik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
27
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
28
|
Takada T, Shimobaki N, Naruo M, Nakamura M, Yamana K. Photoresponsive porphyrin‐DNA complexes constructed through intercalation‐like binding. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadao Takada
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry 2167 Shosha 671-2280 Himeji, Hyogo JAPAN
| | - Nao Shimobaki
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Moe Naruo
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Mitsunobu Nakamura
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Kazushige Yamana
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| |
Collapse
|
29
|
Fathalla M. Porphyrin-Bodipy light harvesting [3]rotaxane. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Phenylene-linked tetrapyrrole arrays containing free base and diverse metal chelate forms – Versatile synthetic architectures for catalysis and artificial photosynthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Pandit YA, Shah SJ, Usman M, Sarkar S, Garribba E, Rath SP. Long-Range Intramolecular Spin Coupling through a Redox-Active Bridge upon Stepwise Oxidations: Control and Effect of Metal Ions. Inorg Chem 2022; 61:5270-5282. [PMID: 35323011 DOI: 10.1021/acs.inorgchem.1c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dinickel(II) and dicopper(II) porphyrin dimers have been constructed in which two metalloporphyrin units are widely separated by a long unconjugated dipyrrole bridge. Two macrocycles are aligned somewhat orthogonally to each other, while oxidation of the bridge generates a fully π-conjugated butterfly-like structure, which, in turn, upon stepwise oxidations by stronger oxidants result in the formation of the corresponding one- and two-electron-oxidized species exhibiting unusual long-range charge/radical delocalization to produce intense absorptions in the near-infrared (NIR) region and electron paramagnetic resonance (EPR) signals of a triplet state due to interaction between the unpaired spins on the Cu(II) ions. Although the two metal centers have a large physical separation through the bridge (more than 16 Å), they share electrons efficiently between them, behaving as a single unit rather than two independent centers. Detailed UV-vis-NIR, electrospray ionization mass spectrometry, IR, variable-temperature magnetic study, and EPR spectroscopic investigations along with X-ray structure determination of unconjugated, conjugated, and one electron-oxidized complexes have been exploited to demonstrate the long-range electronic communication through the bridge. The experimental observations are also supported by density functional theory (DFT) and time-dependent DFT calculations. The present study highlights the crucial roles played by a redox-active bridge and metal in controlling the long-range electronic communication.
Collapse
Affiliation(s)
- Younis Ahmad Pandit
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, Sassari I-07100, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
32
|
Hexabenzocoronene functionalized with antiaromatic S- and Se-core-modified porphyrins (isophlorins): comparison with the dyad with regular porphyrin. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The important and perspective molecular building blocks composed of hexaphenylbenzenes (HPBs) or their oxidized derivatives, hexa-peri-hexabenzocoronenes (HBCs), and metalloporphyrins have recently received significant attention of the researchers. In this study, motivated by recent findings, we have addressed the modifications of structures and properties of HBC-porphyrin compounds by using instead of aromatic porphyrins antiaromatic 20π isophlorin derivatives of thiophene or selenophene. We have reported the first comparative computational investigation of the following systems: (i) HBC with one non-metallated aromatic porphyrin, P(N4H2), unit, HBC-P(N4H2), (ii) HBC with one S-core-modified antiaromatic porphyrin (S-isophlorin), PS4, unit, HBC-PS4, and (iii) HBC with one Se-core-modified antiaromatic porphyrin (Se-isophlorin), PSe4, unit, HBC-PSe4. The study has been done employing the B3LYP/6-31G* approach (in the gas phase and in the implicit solvents, benzene and dichloromethane), and comparison with the B3LYP/6-31G** and B3LYP/6-311G* approaches was performed, where relevant. The effects of the core-modified antiaromatic isophlorins on the structures, electronic, and other properties, potentially including reactivity, of the whole building block HBC-isophlorin have been shown to be quite pronounced and to be noticeably stronger than the effects of the original aromatic non-metallated porphyrin. Thus, we have demonstrated theoretically that the complete porphyrin core-modification with other elements, this time with S and Se leading to the formation of the antiaromatic isophlorins, should be considered as a promising way for modifying and tuning structures, electronic properties and reactivity of the hexabenzocoronene-porphyrin(s) building blocks.
Collapse
|
33
|
Sahoo S, Jana M, Rath H. Tailor-made aromatic porphyrinoids with NIR absorption. Chem Commun (Camb) 2022; 58:1834-1859. [PMID: 35028653 DOI: 10.1039/d1cc06336g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highlight of this article is the recent progress in the state-of-the-art synthetic design and isolation of artificial porphyrinoids by swapping pyrrole component(s) with diverse functionalized pyrrolic(heterocyclic)/carbacycle building block(s) to compare the impact on the electronic absorption spectra and aromaticity of the incorporated isomeric/expanded porphyrinoids. Attention has been directed towards five distinct criteria of utilizing functionalized pyrrolic(heterocyclic)/aromatic hydrocarbons as synthons for NIR absorbing aromatic isomeric (N-confusion)/expanded porphyrinoids (with five/six heterocycles): (i) fused or annelated pyrrole (heterocycle), (ii) functionalized bi-pyrrole/bi-thiophene/bi-furan building blocks, (iii) azulene based carbacycle building block, (iv) vinylogous aromatic carbacycle/heterocycle(s) building block and (v) N-confused pyrrole ring(s), and N-confused fused pyrrole ring(s) leading to π-extension. These hybrid porphyrinoids are ideal candidates for basic research into macrocyclic aromaticity and for many potential applications owing to NIR absorption.
Collapse
Affiliation(s)
- Sumit Sahoo
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A/2B Raja S. C Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.
| | - Manik Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A/2B Raja S. C Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.
| | - Harapriya Rath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A/2B Raja S. C Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
34
|
Ueda M, Kimura M, Miyagawa S, Naito M, Takaya H, Tokunaga Y. Four- and two-armed hetero porphyrin dimers: their specific recognition and self-sorting behaviours. Org Biomol Chem 2022; 20:387-395. [PMID: 34908079 DOI: 10.1039/d1ob01694f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study we self-assembled the four-armed porphyrin hetero dimer capsule Cap4, stabilized through amidinium-carboxylate salt bridges, in CH2Cl2 and CHCl3. The dimer capsule Cap4 was kinetically and thermodynamically more stable than the corresponding two-armed dimer Cap2. The number of arms strongly influenced their recognition behaviour; guests possessing small aromatic faces (e.g., 1,3,5-trinitrobenzene) preferred residing in the cavity of the two-armed capsule Cap2, rather than in Cap4, both thermodynamically and kinetically; in contrast, large aromatic guests (e.g., 9,10-dibromoanthracene) were encapsulated predominantly by Cap4 because of favourable entropic effects. The number of arms enabled self-sorting behaviour of the dimer formation; complexation studies using an equimolar mixture of the four porphyrin constituents of the two capsules revealed the quantitative formation of the corresponding dimers Cap2 and Cap4. Furthermore, we examined the specific molecular recognition of Cap2 and Cap4; NMR experiments of mixtures of Cap2 and Cap4 in the presence of favourable guests for Cap2 and Cap4 revealed that these guest molecules were encapsulated selectively by their preferred hosts.
Collapse
Affiliation(s)
- Masahiro Ueda
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Masaki Kimura
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| | - Hikaru Takaya
- International Research Centre for Elements Science, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan.,Institute for Molecular Science, National Institute of Natural Science, Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.
| |
Collapse
|
35
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor–Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Bold
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Holzapfel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
36
|
Bold K, Stolte M, Shoyama K, Holzapfel M, Schmiedel A, Lambert C, Würthner F. Macrocyclic Donor-Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angew Chem Int Ed Engl 2022; 61:e202113598. [PMID: 34669254 PMCID: PMC9299635 DOI: 10.1002/anie.202113598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 12/03/2022]
Abstract
Two macrocyclic architectures comprising oligothiophene strands that connect the imide positions of a perylene bisimide (PBI) dye have been synthesized via a platinum-mediated cross-coupling strategy. The crystal structure of the double bridged PBI reveals all syn-arranged thiophene units that completely enclose the planar PBI chromophore via a 12-membered macrocycle. The target structures were characterized by steady-state UV/Vis absorption, fluorescence and transient absorption spectroscopy, as well as cyclic and differential pulse voltammetry. Both donor-acceptor dyads show ultrafast Förster Resonance Energy Transfer and photoinduced electron transfer, thereby leading to extremely low fluorescence quantum yields even in the lowest polarity cyclohexane solvent.
Collapse
Affiliation(s)
- Kevin Bold
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Stolte
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Kazutaka Shoyama
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Marco Holzapfel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Alexander Schmiedel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
37
|
Sangam S, Jindal S, Agarwal A, Banerjee BD, Prasad P, Mukherjee M. Graphene quantum dots-porphyrins/phthalocyanines multifunctional hybrid systems: from interfacial dialogue to applications. Biomater Sci 2022; 10:1647-1679. [DOI: 10.1039/d2bm00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered well-ordered hybrid nanomaterials are at a symbolically pivotal point, just ahead of a long-anticipated human race transformation. Incorporating newer carbon nanomaterials like graphene quantum dots (GQDs) with tetrapyrrolic porphyrins...
Collapse
|
38
|
Huijun Z, Jianbin L. Syntheses and Properties of Heteroatom-Doped Conjugated Nanohoops. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Ma X, Yue J, Qiao B, Wang Y, Gao Y, Ren T, Tang J, Feng E, Li Z, Han X. Novel fluorescent self-assembling material with gel properties: ion recognition and energy transfer. Polym Chem 2022. [DOI: 10.1039/d2py00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fabrication strategy for preparing fluorescent nanomaterials has been proposed based on supramolecular self-assembly complexes and energy transfer. Here a dual acylhydrazone-functionalized molecule (DAF) was designed and synthesized by...
Collapse
|
40
|
Si Y, Qu N, Yang G. Exploring the photophysical properties of unusual π-conjugated porphyrin nanohoops. NEW J CHEM 2022. [DOI: 10.1039/d2nj01394k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structures, UV-vis/CD spectra and the second-order NLO properties of eight π-conjugated nanohoops, which are composed of two porphyrins linked by terphenyl bridges, were investigated by employing DFT/TDDFT methods.
Collapse
Affiliation(s)
- Yanling Si
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, China
| | - Nan Qu
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun 130118, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
41
|
Jiajaroen S, Dungkaew W, Kielar F, Sukwattanasinitt M, Chainok K. Synthesis, Structures, and Properties of a Series of Isostructural Lanthanide‐Thiopheneacrylate Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Suwadee Jiajaroen
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA) Faculty of Science and Technology Thammasat University Pathum Thani 12121 Thailand
- Department of Chemistry Faculty of Science and Technology Thammasat University Pathum Thani 12121 Thailand
| | - Winya Dungkaew
- Department of Chemistry Faculty of Science Mahasarakham University Mahasarakham 44150 Thailand
| | - Filip Kielar
- Department of Chemistry Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| | | | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA) Faculty of Science and Technology Thammasat University Pathum Thani 12121 Thailand
| |
Collapse
|
42
|
Olaya AJ, Riva JS, Baster D, Silva WO, Pichard F, Girault HH. Visible-Light-Driven Water Oxidation on Self-Assembled Metal-Free Organic@Carbon Junctions at Neutral pH. JACS AU 2021; 1:2294-2302. [PMID: 34977899 PMCID: PMC8715488 DOI: 10.1021/jacsau.1c00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 06/14/2023]
Abstract
Sustainable water oxidation requires low-cost, stable, and efficient redox couples, photosensitizers, and catalysts. Here, we introduce the in situ self-assembly of metal-atom-free organic-based semiconductive structures on the surface of carbon supports. The resulting TTF/TTF•+@carbon junction (TTF = tetrathiafulvalene) acts as an all-in-one highly stable redox-shuttle/photosensitizer/molecular-catalyst triad for the visible-light-driven water oxidation reaction (WOR) at neutral pH, eliminating the need for metallic or organometallic catalysts and sacrificial electron acceptors. A water/butyronitrile emulsion was used to physically separate the photoproducts of the WOR, H+ and TTF, allowing the extraction and subsequent reduction of protons in water, and the in situ electrochemical oxidation of TTF to TTF•+ on carbon in butyronitrile by constant anode potential electrolysis. During 100 h, no decomposition of TTF was observed and O2 was generated from the emulsion while H2 was constantly produced in the aqueous phase. This work opens new perspectives for a new generation of metal-atom-free, low-cost, redox-driven water-splitting strategies.
Collapse
Affiliation(s)
- Astrid J. Olaya
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais Wallis, École Polytechnique Fédérale
de Lausanne, CH-1951 Sion, Switzerland
| | - Julieta S. Riva
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais Wallis, École Polytechnique Fédérale
de Lausanne, CH-1951 Sion, Switzerland
- Consejo
Nacional de Investigaciones Científicas y Técnicas,
CONICET, Facultad de Matemática, Astronomía, Física
y Computación, Universidad Nacional
de Córdoba, Medina Allende s/n, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Dominika Baster
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais Wallis, École Polytechnique Fédérale
de Lausanne, CH-1951 Sion, Switzerland
| | - Wanderson O. Silva
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais Wallis, École Polytechnique Fédérale
de Lausanne, CH-1951 Sion, Switzerland
| | - François Pichard
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais Wallis, École Polytechnique Fédérale
de Lausanne, CH-1951 Sion, Switzerland
| | - Hubert H. Girault
- Laboratory
of Physical and Analytical Electrochemistry, EPFL Valais Wallis, École Polytechnique Fédérale
de Lausanne, CH-1951 Sion, Switzerland
| |
Collapse
|
43
|
Poyac L, Rose C, Wahiduzzaman M, Lebrun A, Cazals G, Devillers CH, Yot PG, Clément S, Richeter S. Synthesis, Characterization, and Encapsulation Properties of Rigid and Flexible Porphyrin Cages Assembled from N-Heterocyclic Carbene-Metal Bonds. Inorg Chem 2021; 60:19009-19021. [PMID: 34878781 DOI: 10.1021/acs.inorgchem.1c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four porphyrins equipped with imidazolium rings on the para positions of their meso aryl groups were prepared and used as tetrakis(N-heterocyclic carbene) (NHC) precursors for the synthesis of porphyrin cages assembled from eight NHC-M bonds (M = Ag+ or Au+). The conformation of the obtained porphyrin cages in solution and their encapsulation properties strongly depend on the structure of the spacer -(CH2)n- (n = 0 or 1) between meso aryl groups and peripheral NHC ligands. In the absence of methylene groups (n = 0), porphyrin cages are rather rigid and the short porphyrin-porphyrin distance prevents the encapsulation of guest molecules like 1,4-diazabicyclo[2.2.2]octane (DABCO). By contrast, the presence of methylene functions (n = 1) between meso aryl groups and peripheral NHCs offers additional flexibility to the system, allowing the inner space between the two porphyrins to expand enough to encapsulate guest molecules like water molecules or DABCO. The peripheral NHC-wingtip groups also play a significant role in the encapsulation properties of the porphyrin cages.
Collapse
Affiliation(s)
- Ludivine Poyac
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Clémence Rose
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | | | | | | - Charles H Devillers
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, 9 avenue Alain Savary, Dijon 21078, France
| | - Pascal G Yot
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | | | | |
Collapse
|
44
|
Nakabayashi K, Kishimoto K, Kobayashi K. Doubly Cavitand‐Capped Zn‐Porphyrin Capsule with Simultaneous Encapsulation of Guest and Ligand, and Its Application to Doubly Cavitand‐Capped Double‐Decker Zn‐Porphyrin Capsule. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kakeru Nakabayashi
- Department of Optoelectronics and Nanostructure Science Graduate School of Science and Technology Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
| | - Kazuki Kishimoto
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
| | - Kenji Kobayashi
- Department of Optoelectronics and Nanostructure Science Graduate School of Science and Technology Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
- Department of Chemistry Faculty of Science Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
- Research Institute of Green Science and Technology Shizuoka University 836 Ohya 422-8529 Suruga-ku Shizuoka Japan
| |
Collapse
|
45
|
Rani K, Sengupta S. Multi-stimuli programmable FRET based RGB absorbing antennae towards ratiometric temperature, pH and multiple metal ion sensing. Chem Sci 2021; 12:15533-15542. [PMID: 35003582 PMCID: PMC8654024 DOI: 10.1039/d1sc05112a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
A red-green-blue (RGB) multichromophoric antenna 1 consisting of energy donors naphthalimides and perylenediimides and a central aza-BODIPY energy acceptor along with two subchromophoric red-blue (RB 6) and green-blue (GB 12) antennae was designed that showed efficient cascade Förster resonance energy transfer (FRET). RGB antenna 1 showed pronounced temperature-dependent emission behaviour where emission intensities in green and red channels could be tuned in opposite directions by temperature giving rise to unique ratiometric sensing with a temperature sensitivity of 0.4% °C. RGB antenna 1 showed reversible absorption modulation selectively in the blue region (RGB ↔ RG) upon acid/base addition giving rise to pH sensing behaviour. Furthermore, RGB antenna 1 was utilized to selectively sense metal ions such as Co2+ and Fe3+ through a FRET turn-off mechanism induced by a redox process at the aza-BODIPY site that resulted in the selective spectral modulation of the red band (i.e., RGB → GB). Model antenna RB 6 showed white light emission with chromaticity coordinates (0.32, 0.33) on acid addition. Antennae 1, 6 and 12 also exhibited solution state electrochromic switching characterized by distinct colour changes upon changing the potential. Finally, antennae 1, 6 and 12 served as reversible fluorescent inks in PMMA/antenna blends whereby the emission colours could be switched or tuned using different stimuli such as acid vapour, temperature and metal ions.
Collapse
Affiliation(s)
- Kavita Rani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab-140306 India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab-140306 India
| |
Collapse
|
46
|
Poddutoori PK, Bayard BJ, Holzer N, Seetharaman S, Zarrabi N, Weidner N, Karr PA, D'Souza F. Rational Design and Synthesis of OEP and TPP Centered Phosphorus(V) Porphyrin-Naphthalene Conjugates: Triplet Formation via Rapid Charge Recombination. Inorg Chem 2021; 60:17952-17965. [PMID: 34797977 DOI: 10.1021/acs.inorgchem.1c02531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six new "axial-bonding" type "phosphorus(V) porphyrin-naphthalene" conjugates have been prepared consisting of octaethylporphyrinatophosphorus(V) (POEP+)/tetraphenylporphyrinatophosphorus(V) (PTPP+) and naphthalene (NP). The distance between the porphyrin and NP was systematically varied using polyether bridges. The unique structural topology of the octaethylporphyrinatophosphorus(V) (POEP+) and tetraphenylporphyrinatophosphorus(V) (PTPP+) enabled construction of mono- and disubstituted phosphorus(V) porphyrin-naphthalene conjugates, respectively. The steady-state and transient spectral properties were investigated as a function of redox properties, distance, and molecular topology. Strong electronic interactions between the phosphorus(V) porphyrin and NP in directly bound conjugates were observed. The established energy diagrams predicted reductive electron transfer involving singlet excited phosphorus(V) porphyrin and NP to generate high-energy (∼1.83-2.11 eV) charge-separated states (POEP/PTPP)•-(NP)•+. Femtosecond transient absorption spectral studies revealed rapid deactivation of singlet excited phosphorus(V) porphyrin due to charge separation wherein the estimated forward rate constants were in the range of 109-1010 s-1 and were dependent on the distance between the NP and porphyrins units, as well as the redox potentials of the type of the phosphorus(V) porphyrin. Additionally, due to high exothermicity and low-lying triplet states, the charge recombination process was found to be rapid, leading to populating the triplet states of phosphorus(V) porphyrins.
Collapse
Affiliation(s)
- Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Brandon J Bayard
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Noah Holzer
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Nathan Weidner
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
47
|
Gungor SA, Tumer M, Tumer F, Kose M, Gungor O, Purtas S. Water soluble porphyrin‐Schiff base ligands and their metal complexes: Synthesis, photophysical, electrochemical, and chemosensor properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seyit Ali Gungor
- Chemistry Department, Faculty of Science and Letters Kahramanmaras Sutcu Imam University Kahramanmaraş Turkey
| | - Mehmet Tumer
- Chemistry Department, Faculty of Science and Letters Kahramanmaras Sutcu Imam University Kahramanmaraş Turkey
| | - Ferhan Tumer
- Chemistry Department, Faculty of Science and Letters Kahramanmaras Sutcu Imam University Kahramanmaraş Turkey
| | - Muhammet Kose
- Chemistry Department, Faculty of Science and Letters Kahramanmaras Sutcu Imam University Kahramanmaraş Turkey
| | - Ozge Gungor
- Chemistry Department, Faculty of Science and Letters Kahramanmaras Sutcu Imam University Kahramanmaraş Turkey
| | - Savas Purtas
- Chemistry Department, Faculty of Science and Letters Kahramanmaras Sutcu Imam University Kahramanmaraş Turkey
| |
Collapse
|
48
|
Zhu Z, Zhang X, Guo X, Wu Q, Li Z, Yu C, Hao E, Jiao L, Zhao J. Orthogonally aligned cyclic BODIPY arrays with long-lived triplet excited states as efficient heavy-atom-free photosensitizers. Chem Sci 2021; 12:14944-14951. [PMID: 34820111 PMCID: PMC8597848 DOI: 10.1039/d1sc04893g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2 -˙ under light irradiation.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
49
|
Ren D, Xia HL, Zhou K, Wu S, Liu XY, Wang X, Li J. Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:25048-25054. [PMID: 34535955 DOI: 10.1002/anie.202110531] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/13/2023]
Abstract
While limited choice of emissive organic linkers with systematic emission tunability presents a great challenge to investigate energy transfer (ET) over the whole visible light range with designable directions, luminescent metal-organic frameworks (LMOFs) may serve as an ideal platform for such study due to their tunable structure and composition. Herein, five Zr6 cluster-based LMOFs, HIAM-400X (X=0, 1, 2, 3, 4) are prepared using 2,1,3-benzothiadiazole and its derivative-based tetratopic carboxylic acids as organic linkers. The accessible unsaturated metal sites confer HIAM-400X as a pristine scaffold for linker installation. Six full-color emissive 2,1,3-benzothiadiazole and its derivative-based dicarboxylic acids (L) were successfully installed into HIAM-400X matrix to form HIAM-400X-L, in which the ET can be facilely tuned by controlling its direction, either from the inserted linkers to pristine MOFs or from the pristine MOFs to inserted linkers, and over the whole range of visible light. The combination of the pristine MOFs and the second linkers via linker installation creates a powerful two-dimensional space in tuning the emission via ET in LMOFs.
Collapse
Affiliation(s)
- Daming Ren
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Shenjie Wu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado, 80217-3364, USA
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
50
|
Kariyottu Kuniyil MJ, Padmanaban R. Anti‐Stokes Fluorescence and Nonlinear Optical Properties of the Functionalized Phenoxazine‐based Dye: A computational study. ChemistrySelect 2021. [DOI: 10.1002/slct.202103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammed Jeneesh Kariyottu Kuniyil
- Department of Chemistry School of Physical Chemical and Applied Sciences Pondicherry University, R. V. Nagar Kalapet, Puducherry 605 014 India
| | - Ramanathan Padmanaban
- Department of Chemistry School of Physical Chemical and Applied Sciences Pondicherry University, R. V. Nagar Kalapet, Puducherry 605 014 India
| |
Collapse
|