1
|
Lee LM, Tirukoti ND, Subramani B, Goren E, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. A Reactive and Specific Sensor for Activity-Based 19F-MRI Sensing of Zn 2. ACS Sens 2024. [PMID: 39445901 DOI: 10.1021/acssensors.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The rapid fluctuations of metal ion levels in biological systems are faster than the time needed to map fluorinated sensors designed for the 19F-MRI of cations. An attractive modular solution might come from the activity-based sensing approach. Here, we propose a highly reactive but still ultimately specific synthetic fluorinated sensor for 19F-MRI mapping of labile Zn2+. The sensor comprises a dipicolylamine scaffold for Zn2+ recognition conjugated to a fluorophenyl acetate entity. Upon binding to Zn2+, the synthetic sensor is readily hydrolyzed, and the frequency of its 19F-functional group in 19F-NMR is shifted by 12 ppm, allowing the display of the Zn2+ distribution as an artificial MRI-colored map highlighting its specificity compared to other metal ions. The irreversible Zn2+-induced hydrolysis results in a "turn-on" 19F-MRI, potentially detecting the cation even upon a transient elevation of its levels. We envision that additional metal-ion sensors can be developed based on the principles demonstrated in this work, expanding the molecular toolbox currently used for 19F-MRI.
Collapse
Affiliation(s)
- Lucia M Lee
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Balamurugan Subramani
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elad Goren
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Alhaidari LM, Spain SG. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers (Basel) 2023; 15:polym15071778. [PMID: 37050392 PMCID: PMC10097235 DOI: 10.3390/polym15071778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
To monitor the release of fluorinated drugs from polymeric carriers, a novel 19F MRI enzyme-responsive contrast agent was developed and tested. This contrast agent was prepared by conjugation of 5-fluorouracil (5-FU) to hyperbranched poly(N,N-dimethylacrylamide) (HB-PDMA) via an enzyme-degradable peptide linker. Due to the different molecular sizes, the release of 5-FU from the 5-FU polymer conjugate resulted in a sufficiently substantial difference in spin-spin T2 19F NMR/MRI relaxation time that enabled differentiating between attached and released drug states. The 5-FU polymer conjugate exhibited a broad signal and short T2 relaxation time under 19F NMR analysis. Incubation with the enzyme induced the release of 5-FU, accompanied by an extension of T2 relaxation times and an enhancement in the 19F MRI signal. This approach is promising for application in the convenient monitoring of 5-FU drug release and can be used to monitor the release of other fluorinated drugs.
Collapse
Affiliation(s)
- Laila M. Alhaidari
- Department of Chemistry, Faculty of Science, University of Majmaah, Majmaah 11952, Saudi Arabia
| | - Sebastian G. Spain
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
3
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
4
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Hu J, Wu Q, Cheng K, Xie Y, Li C, Li Z. A 19F NMR probe for the detection of β-galactosidase: simple structure with low molecular weight of 274.2, "turn-on" signal without the background, and good performance applicable in cancer cell line. J Mater Chem B 2017; 5:4673-4678. [PMID: 32264309 DOI: 10.1039/c7tb00616k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the efficient cleavage reaction of the C-O ether bond triggered by β-gal selectively, FB-βGal, with good water-solubility, low toxicity, high specificity, excellent water-solubility and high biocompatibility, was prepared, which could report the presence of trace β-gal quickly and conveniently by a significant change in the 19F NMR spectra without any background noise. The successful application of FB-βGal for the detection of β-gal in living Escherichia coli, HeLa cells and OVCAR-3 cells quantitatively makes it a promising candidate for practical application in related fields.
Collapse
Affiliation(s)
- Jie Hu
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | |
Collapse
|
6
|
Diamagnetic Imaging Agents with a Modular Chemical Design for Quantitative Detection of β-Galactosidase and β-Glucuronidase Activities with CatalyCEST MRI. Bioconjug Chem 2016; 27:2549-2557. [PMID: 27657647 PMCID: PMC6013409 DOI: 10.1021/acs.bioconjchem.6b00482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging agents for the noninvasive in vivo detection of enzyme activity in preclinical and clinical settings could have fundamental implications in the field of drug discovery. Furthermore, a new class of targeted prodrug treatments takes advantage of high enzyme activity to tailor therapy and improve treatment outcomes. Herein, we report the design and synthesis of new magnetic resonance imaging (MRI) agents that quantitatively detect β-galactosidase and β-glucuronidase activities by measuring changes in chemical exchange saturation transfer (CEST). Based on a modular approach, we incorporated the enzymes' respective substrates to a salicylate moiety with a chromogenic spacer via a carbamate linkage. This furnished highly selective diamagnetic CEST agents that detected and quantified enzyme activities of glycoside hydrolase enzymes. Michaelis-Menten enzyme kinetics studies were performed by monitoring catalyCEST MRI signals, which were validated with UV-vis assays.
Collapse
|
7
|
|
8
|
Pandith A, Kumar A, Kim HS. 9-N-Alkylaminomethylanthracene probes for selective fluorescence sensing of pentafluorophenol. RSC Adv 2015. [DOI: 10.1039/c5ra15900h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
9-N-Alkylaminomethylanthracenes (1 and 2) were synthesised for halophenol sensing, and their selectivity and sensitivity towards pentafluorophenol (PFP) in ethanol were investigated.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Applied Chemistry
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Ashwani Kumar
- Department of Applied Chemistry
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| | - Hong-Seok Kim
- Department of Applied Chemistry
- School of Applied Chemical Engineering
- Kyungpook National University
- Daegu 702-701
- Republic of Korea
| |
Collapse
|
9
|
Vande Velde G, Himmelreich U, Neeman M. Reporter gene approaches for mapping cell fate decisions by MRI: promises and pitfalls. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:424-31. [PMID: 24375898 DOI: 10.1002/cmmi.1590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/29/2013] [Indexed: 12/15/2022]
Abstract
The central dogma of molecular biology, namely the process by which information encoded in the DNA serves as the template for transcriptional activation of specific mRNA resulting in temporal and spatial control of the translation of specific proteins, stands at the basis of normal and pathological cellular processes. Serving as the primary mechanism linking genotype to phenotype, it is clearly of significant interest for in vivo imaging. While classically, imaging revolutionized the ability to phenotype the anatomical and physiological impact of induction of changes in gene expression, the preceding molecular events remained invisible. Reporter gene-based imaging techniques provide a window for in vivo visualization of such transcriptional activation events. In addition to the widespread use of fluorescent and bioluminescent reporter genes and development of a number of reporter genes for positron emission tomography (PET) imaging, there has been significant progress in the development of reporter genes for MRI. With the development of strategies for cellular based therapies, such imaging tools could become central components for personalized patient monitoring.
Collapse
Affiliation(s)
- Greetje Vande Velde
- Biomedical MRI, KU Leuven, O&N I Herestraat 49 - box 505, 3000, Leuven, Belgium
| | | | | |
Collapse
|
10
|
Novel S-Gal(®) analogs as (1)H MRI reporters for in vivo detection of β-galactosidase. Magn Reson Imaging 2013; 31:1006-11. [PMID: 23602729 DOI: 10.1016/j.mri.2013.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/27/2013] [Accepted: 03/08/2013] [Indexed: 12/16/2022]
Abstract
The quantitative assessment of gene expression and related enzyme activity in vivo could be important for the characterization of gene altering diseases and therapy. The development of imaging techniques, based on specific reporter molecules may enable routine non-invasive assessment of enzyme activity and gene expression in vivo. We recently reported the use of commercially available S-Gal(®) as a β-galactosidase reporter for (1)H MRI, and the synthesis of several S-Gal(®) analogs with enhanced response to β-galactosidase activity. We have now compared these analogs in vitro and have identified the optimal analog, C3-GD, based on strong T1 and T2 response to enzyme presence (ΔR1 and ΔR2~1.8 times S-Gal(®)). Moreover, application is demonstrated in vivo in human breast tumor xenografts. MRI studies in MCF7-lacZ tumors implanted subcutaneously in athymic nude mice (n=6), showed significant reduction in T1 and T2 values (each~13%) 2h after intra-tumoral injection of C3-GD, whereas the MCF7 (wild type) tumors showed slight increase. Thus, C3-GD successfully detects β-galactosidase activity in vivo and shows promise as a lacZ gene (1)H MR reporter molecule.
Collapse
|
11
|
Yu JX, Hallac RR, Chiguru S, Mason RP. New frontiers and developing applications in 19F NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 70:25-49. [PMID: 23540575 PMCID: PMC3613763 DOI: 10.1016/j.pnmrs.2012.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/23/2012] [Indexed: 05/06/2023]
Affiliation(s)
- Jian-Xin Yu
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Rami R. Hallac
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Srinivas Chiguru
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Ralph P. Mason
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
12
|
Keliris A, Mamedov I, Hagberg GE, Logothetis NK, Scheffler K, Engelmann J. A smart (19) F and (1) H MRI probe with self-immolative linker as a versatile tool for detection of enzymes. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 7:478-83. [PMID: 22821882 DOI: 10.1002/cmmi.1470] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Here we report on a dual-modal (19) F and (1) H MRI paramagnetic probe with a self-immolative linker, Gd-DOMF-Gal. The enzymatic conversion of this probe by β-galactosidase resulted in a simultaneous turning on of the fluorine signal and changed ability of the Gd(3+) complex to modulate the (1) H MR signal intensity of the surrounding water molecules. A versatile imaging platform for monitoring a variety of enzymes by (19) F and (1) H MRI using this molecular design is proposed.
Collapse
Affiliation(s)
- Aneta Keliris
- Department for High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Yu JX, Kodibagkar VD, Liu L, Zhang Z, Liu L, Magnusson J, Liu Y. 19F-MRS/1H-MRI dual-function probe for detection of β-galactosidase activity. Chem Sci 2013. [DOI: 10.1039/c3sc21099e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Yu JX, Cui W, Bourke VA, Mason RP. 6-Trifluoromethylpyridoxine: novel (19)F NMR pH indicator for in vivo detection. J Med Chem 2012; 55:6814-21. [PMID: 22775397 PMCID: PMC3430128 DOI: 10.1021/jm300520q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
pH plays an important role in tumor proliferation, angiogenesis, metabolic control, and the efficacy of cytotoxic therapy, and accurate noninvasive assessment of tumor pH promises to provide insight into developmental processes and prognostic information. In this paper, we report the design, synthesis, and characterization of two novel pH indicators 6-trifluoromethylpyridoxine 8 and α(4),α(5)-di-O-[3'-O-(β-d-glucopyranosyl)propyl]-6-trifluoromethylpyridoxine 17 and demonstrate 8 as an extracellular (19)F NMR pH probe to assess pH(e) of various tumors in vivo.
Collapse
Affiliation(s)
- Jian-Xin Yu
- Advanced Radiological Sciences, Department of Radiology, The University of Texas Southwestern Medical Center at Dallas , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States.
| | | | | | | |
Collapse
|
15
|
Yu JX, Gulaka PK, Liu L, Kodibagkar VD, Mason RP. Novel Fe 3+-Based 1H MRI β-Galactosidase Reporter Molecules**. Chempluschem 2012; 77:370-378. [PMID: 23807909 PMCID: PMC3691858 DOI: 10.1002/cplu.201100072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 01/21/2023]
Abstract
There is increasing interest in the development of reporter agents to reveal enzyme activity in vivo using small animal imaging. We have previously demonstrated the feasibility of detecting lacZ gene activity using the commercially available 3,4-cyclohexenoesculetin-β-D-galactopyranoside (S-Gal™) as a 1H MRI reporter. Specifically, β-galactosidase (β-gal) releases the aglycone, which forms an MR contrast-inducing paramagnetic precipitate in the presence of Fe3+. Contrast was primarily T2-weighted signal loss, but T1 effects were also observed. Since T1-contrast generally provides signal enhancement as opposed to loss, it appeared attractive to explore whether analogues could be generated with enhanced characteristics. We now report the design and successful synthesis of novel analogues together with characterization of 1H MRI contrast based on both T1 and T2 response to β-gal activity in vitro for the lead agent.
Collapse
Affiliation(s)
- Jian-Xin Yu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA
| | - Praveen K. Gulaka
- Joint Program in Biomedical Engineering, The University of Texas at Arlington and The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA
| | - Vikram D. Kodibagkar
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA
| |
Collapse
|
16
|
Lee SW, Lee SH, Biswal S. Magnetic resonance reporter gene imaging. Theranostics 2012; 2:403-12. [PMID: 22539936 PMCID: PMC3337732 DOI: 10.7150/thno.3634] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/09/2012] [Indexed: 11/05/2022] Open
Abstract
Molecular imaging has undergone an explosive advancement in recent years, due to the tremendous research efforts made to understand and visualize biological processes. Molecular imaging by definition assesses cellular and molecular processes in living subjects, with the targets of following metabolic, genomic, and proteomic events. Furthermore, reporter gene imaging plays a central role in this field. Many different approaches have been used to visualize genetic events in living subjects, such as, optical, radionuclide, and magnetic resonance imaging. Compared with the other techniques, magnetic resonance (MR)-based reporter gene imaging has not occupied center stage, despite its superior three-dimensional depictions of anatomical details. In this article, the authors review the principles and applications of various types of MR reporter gene imaging technologies and discuss their advantages and disadvantages.
Collapse
|
17
|
Yu JX, Kodibagkar VD, Hallac RR, Liu L, Mason RP. Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase. Bioconjug Chem 2012; 23:596-603. [PMID: 22352428 DOI: 10.1021/bc200647q] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased emphasis on personalized medicine and novel therapies requires the development of noninvasive strategies for assessing biochemistry in vivo. The detection of enzyme activity and gene expression in vivo is potentially important for the characterization of diseases and gene therapy. Magnetic resonance imaging (MRI) is a particularly promising tool, since it is noninvasive and has no associated radioactivity, yet penetrates deep tissue. We now demonstrate a novel class of dual (1)H/(19)F nuclear magnetic resonance (NMR) lacZ gene reporter molecule to specifically reveal enzyme activity in human tumor xenografts growing in mice. We report the design, synthesis, and characterization of six novel molecules and evaluation of the most effective reporter in mice in vivo. Substrates show a single (19)F NMR signal and exposure to β-galactosidase induces a large (19)F NMR chemical shift response. In the presence of ferric ions, the liberated aglycone generates intense proton MRI T(2) contrast. The dual modality approach allows both the detection of substrate and the imaging of product enhancing the confidence in enzyme detection.
Collapse
Affiliation(s)
- Jian-Xin Yu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
18
|
Construction of a 19F-lectin biosensor for glycoprotein imaging by using affinity-guided DMAP chemistry. Bioorg Med Chem Lett 2011; 21:4393-6. [PMID: 21737264 DOI: 10.1016/j.bmcl.2011.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
In this study, assisted by affinity-guided DMAP strategy, we developed a novel (19)F-modified lectin as a biosensor for specific detection and imaging of glycoproteins. Exploited the large chemical shift anisotropy property of (19)F nuclei, glycoproteins detected by our (19)F-biosensor are signatured by broadened peaks in (19)F NMR, hence enabled the distinction between glycoproteins and small molecule saccharides. Such signal on/off switching was also applied to glycoprotein imaging by (19)F MRI.
Collapse
|
19
|
Liu L, Mason RP. Imaging beta-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate. PLoS One 2010; 5:e12024. [PMID: 20700459 PMCID: PMC2917367 DOI: 10.1371/journal.pone.0012024] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/29/2010] [Indexed: 01/04/2023] Open
Abstract
Background Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme β-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of β-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto-Light PlusTM. Methodology and Principal Findings B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for β-gal detection, and we have adapted it for in vivo application. Typically, 100 µl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture. Conclusion and Significance Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cui W, Liu L, Kodibagkar VD, Mason RP. S-Gal, a novel 1H MRI reporter for beta-galactosidase. Magn Reson Med 2010; 64:65-71. [PMID: 20572145 PMCID: PMC2924164 DOI: 10.1002/mrm.22400] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/20/2010] [Indexed: 01/03/2023]
Abstract
Reporter genes and associated enzyme activity are becoming increasingly significant for research in vivo. The lacZ gene and beta-galactosidase (beta-gal) expression have long been exploited as reporters of biologic manipulation at the molecular level, and a noninvasive detection strategy based on proton MRI is particularly attractive. 3,4-Cyclohexenoesculetin beta-D-galactopyranoside (S-Gal) is a commercial histologic stain, which forms a black precipitate in the presence of beta-gal and ferric ions, suggesting potential detectability by MRI. Generation of the precipitate is now shown to cause strong T(2)* relaxation, revealing beta-gal activity. A series of tests with the enzyme in vitro and with tumor cells shows that this approach can be used as an assay for beta-gal activity. Proof of principle is shown in human breast tumor xenografts in mice. Upon direct injection of a mixture of 3,4-cyclohexenoesculetin beta-D-galactopyranoside and ferric ammonium citrate, intense contrast was observed immediately in MCF7-lacZ tumors, but not in wild-type tumors. 3,4-Cyclohexenoesculetin beta-D-galactopyranoside activation in combination with ferric ions introduces a novel approach for assaying enzyme activity by MRI in vivo.
Collapse
Affiliation(s)
- Weina Cui
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9058, USA
| | | | | | | |
Collapse
|
21
|
Chalmers K, Deâ
Luca E, Hogg NH, Kenwright A, Kuprov I, Parker D, Botta M, Wilson JI, Blamire A. Design Principles and Theory of Paramagnetic Fluorine-Labelled Lanthanide Complexes as Probes for19F Magnetic Resonance: A Proof-of-Concept Study. Chemistry 2010; 16:134-48. [DOI: 10.1002/chem.200902300] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Yu JX, Kodibagkar VD, Liu L, Mason RP. A 19F-NMR approach using reporter molecule pairs to assess beta-galactosidase in human xenograft tumors in vivo. NMR IN BIOMEDICINE 2008; 21:704-12. [PMID: 18288788 PMCID: PMC3044929 DOI: 10.1002/nbm.1244] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gene therapy has emerged as a promising strategy for treatment of various diseases. However, widespread implementation is hampered by difficulties in assessing the success of transfection in the target tissue and the longevity of gene expression. Thus, there is increasing interest in the development of non-invasive in vivo reporter techniques to assay gene expression. We recently demonstrated the ability to detect beta-galactosidase activity in stably transfected human prostate tumor xenografts in mice in vivo using 19F NMR. We now extend the studies to human MCF7 breast cancer cells growing as xenografts in nude mice. Moreover, by using two spectrally resolved reporters (o-fluoro-p-nitrophenyl-beta-D-galactopyranoside and an isomer), two tumors could be interrogated simultaneously revealing lacZ transgene activity in a stably transfected tumor versus no activity in a wild-type tumor. Most significantly, hydrolytic activity observed by 19F NMR corresponded to differential activity in lacZ-expressing tumors.
Collapse
Affiliation(s)
- Jian-Xin Yu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9058, USA
| | | | | | | |
Collapse
|
23
|
Cui J, Liu A, Zhi J, Zhu Z, Guan Y, Wan X, Zhou Q. Synthesis and Chiroptical Properties of Vinyl Polymers Containing Laterally Attached 4,4′′-Digalactosyloxy-p-terphenyl Side Groups. Macromolecules 2008. [DOI: 10.1021/ma800673t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiaxi Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Anhua Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junge Zhi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qifeng Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Celen S, Deroose C, de Groot T, Chitneni SK, Gijsbers R, Debyser Z, Mortelmans L, Verbruggen A, Bormans G. Synthesis and evaluation of 18F- and 11C-labeled phenyl-galactopyranosides as potential probes for in vivo visualization of LacZ gene expression using positron emission tomography. Bioconjug Chem 2008; 19:441-9. [PMID: 18179161 DOI: 10.1021/bc700216d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3-Hydroxy-2-nitrophenyl 2,3,4,6-tetra-O-acetyl-beta-D-galactopyranoside, a derivative of the chromogenic beta-galactosidase (beta-gal) substrate o-nitrophenyl beta-D-galactopyranoside (ONPG) was synthesized using a Koenigs-Knorr glycosylation reaction. It was alkylated with 2-[(18)F]fluoroethyl triflate or [(11)C]methyl triflate, followed by deacetylation of the sugar hydroxyl groups to obtain radiolabeled 3-(2'-[(18)F]fluoroethoxy)-2-nitrophenyl beta-D-galactopyranoside ([(18)F]-2c) and 3-[(11)C]methoxy-2-nitrophenyl beta- d-galactopyranoside ([(11)C]-3c), which were evaluated as potential reporter probes for in vivo visualization of LacZ gene expression with positron emission tomography (PET). In vitro, [(18)F]- 2c and [(11)C]-3c were good substrates of beta-gal and showed, respectively, a 7.5- and 2.5-fold higher uptake into beta-gal expressing cells (LacZ cells) compared to control cells. However, reversed-phase HPLC analysis of the LacZ cell lysate and supernatant showed that labeled 3-(2'-[(18)F]fluoroethoxy)-2-nitrophenol, the hydrolysis product formed by beta-gal-mediated cleavage of [(18)F]-2c, substantially leaked out of the cells, which would lead to loss of PET signal. In a microPET study of [(18)F]-2c in a mouse with a beta-gal expressing tumor, high retention was observed in liver and kidneys, but only negligible accumulation was seen in the tumor. As a general conclusion, it can be stated that the synthesized PET tracers [ (18)F]-2c and [(11)C]-3c are not suitable for use as LacZ reporter probes. Further structural modifications to improve the diffusion over the tumor cell membrane and to increase retention in beta-gal expressing cells may lead to more favorable in vivo imaging probes.
Collapse
Affiliation(s)
- Sofie Celen
- Laboratory for Radiopharmacy, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu L, Kodibagkar VD, Yu JX, Mason RP. 19
F‐NMR detection of
lacZ
gene expression
via
the enzymic hydrolysis of 2‐fluoro‐4‐nitrophenyl β‐D‐galactopyranoside
in vivo
in PC3 prostate tumor xenografts in the mouse
1. FASEB J 2007; 21:2014-9. [PMID: 17351127 DOI: 10.1096/fj.06-7366lsf] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene therapy shows promise for treating prostate cancer and has been evaluated in several clinical trials. A major challenge that remains is to establish a method for verifying transgene activity in situ. The lacZ gene encoding beta-galactosidase historically has been the most popular reporter gene for molecular biology. We have designed a 19F NMR approach to reveal lacZ gene expression by assessing beta-galactosidase (beta-gal) activity in vivo. The substrate 2-fluoro-4-nitrophenyl beta-D-galactopyranoside (OFPNPG) is readily hydrolyzed by beta-gal with a corresponding decrease in the 19F-NMR signal from OFPNPG and the appearance of a new signal shifted 4-6 ppm upfield from the aglycone 2-fluoro-4-nitrophenol (OFPNP). We report proof of principle in cultures of PC3 prostate cancer cells using 19F NMR spectroscopy and 19F chemical shift imaging. More importantly, we demonstrate for the first time the ability to differentiate wild-type and lacZ-expressing prostate tumor xenografts in mice using this approach.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-9058, USA
| | | | | | | |
Collapse
|
26
|
Kodibagkar VD, Yu J, Liu L, Hetherington HP, Mason RP. Imaging β-galactosidase activity using 19F chemical shift imaging of LacZ gene-reporter molecule 2-fluoro-4-nitrophenol-β-d-galactopyranoside. Magn Reson Imaging 2006; 24:959-62. [PMID: 16916713 DOI: 10.1016/j.mri.2006.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 04/08/2006] [Indexed: 11/29/2022]
Abstract
2-Fluoro-4-nitrophenol-beta-D-galactopyranoside (OFPNPG) belongs to a novel class of NMR active molecules (fluoroaryl-beta-D-galactopyranosides), which are highly responsive to the action of beta-galactosidase (beta-gal). OFPNPG has a single 19F peak (-55 ppm relative to aqueous sodium trifluoroacetate). Upon cleavage by beta-gal, the pH sensitive aglycone 2-fluoro-4-nitrophenol (OFPNP) is observed at a chemical shift of -59 to -61 ppm. The chemical shift response is sufficient to observe beta-gal activity using chemical shift imaging (CSI). 19F CSI studies of enzyme activity and lacZ gene expression in 9L-glioma and MCF7 breast cancer cells are presented, providing further evidence for the utility of OFPNPG as a gene-reporter molecule for future in vivo studies.
Collapse
Affiliation(s)
- Vikram D Kodibagkar
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9058, USA
| | | | | | | | | |
Collapse
|
27
|
Yu J, Mason RP. Synthesis and characterization of novel lacZ gene reporter molecules: detection of beta-galactosidase activity by 19F nuclear magnetic resonance of polyglycosylated fluorinated vitamin B6. J Med Chem 2006; 49:1991-9. [PMID: 16539386 PMCID: PMC2597532 DOI: 10.1021/jm051049o] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene therapy has emerged as a promising strategy for treatment of various diseases. However, widespread implementation is hampered by difficulties in assessing the success of transfection, in particular, the spatial extent of expression in the target tissue and the longevity of expression. Thus, the development of noninvasive reporter techniques based on appropriate molecules and imaging modalities may help to assay gene expression. We have previously demonstrated the ability to detect beta-galactosidase (beta-gal) activity on the basis of 19F NMR chemical shift associated with release of fluorophenyl aglycons from galactopyranoside conjugates. Use of fluoropyridoxol as the aglycon provides a potential less toxic alternative and we now report the design, synthesis, and structural analysis of a series of novel polyglycosylated fluorinated vitamin B6 derivatives as 19F NMR-sensitive aglycons for detection of lacZ gene expression. In particular, we report the activity of 3,alpha4,alpha5-tri-O-(beta-D-galactopyranosyl)-6-fluoropyridoxol 4, 3-O-(beta-D-galactopyranosyl)-alpha4,alpha5-di-O-(beta-D-glucopyranosyl)-6-fluoropyridoxol 12, and 3-O-(beta-D-galactopyranosyl)-alpha4,alpha5-di-O-(alpha-D-mannopyranosyl)-6-fluoropyridoxol 13. Compounds 4, 12, and 13 all show promising characteristics including highly sensitive 19F NMR response to beta-gal activity (Deltadelta=9.0 approximately 9.4 ppm), minimal toxicity for substrate or aglycon, and good water solubility. However, the differential glycosylation of 12 and 13 appears more advantageous for assessing lacZ gene expression in vivo.
Collapse
Affiliation(s)
| | - Ralph P. Mason
- * Author for correspondence. Ralph P. Mason, Ph.D., CSci., CChem., Department of Radiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA, Tel: (214)-648-8926, Fax: (214)-648-4538, E-mail:
| |
Collapse
|
28
|
|
29
|
Matei V, Feng F, Pauley S, Beisel K, Nichols M, Fritzsch B. Near-infrared laser illumination transforms the fluorescence absorbing X-Gal reaction product BCI into a transparent, yet brightly fluorescent substance. Brain Res Bull 2005; 70:33-43. [PMID: 16750480 PMCID: PMC3904734 DOI: 10.1016/j.brainresbull.2005.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/22/2022]
Abstract
The beta-galactosidase protein generated by the bacterial LacZ gene is widely used to map gene expression patterns. The ease of its use is only rivaled by green fluorescent protein, which can be used in combination with various other procedures such as immunocytochemistry, flow cytometry, or tract tracing. The beta-galactosidase enzymatic reaction potentially provides a more sensitive assay of gene expression than green fluorescent protein. However, the virtual impermeability and tendency to absorb light over a wide range limit the use of the most frequently used beta-galactosidase substrate, X-Gal, in combination with other fluorescent labeling procedures. Here, we provide details on a simple photoactivation procedure that transforms the light-absorbing X-Gal product, 5-bromo-4-chloro-3-indolyl (BCI) precipitate, into an intensely fluorescent product excited by 488 and 633 nm light. Photoactivation is achieved through exposure to 730 nm near-infrared light emitted from a femtosecond titanium-doped Sapphire laser. Photoactivation of BCI occurs in tissue sections suspended in buffered saline, glycerol, or even embedded in epoxy resin. A protocol for the use of BCI photoactivation is here provided. Importantly, the BCI photoactivated product is photoswitchable, displaying bistable photochromism. This permits the use of the fluorescent product in a variety of co-localization studies in conjunction with other imaging modalities. As with other bistable and photoswitchable products, the BCI reaction product shows concentration quenching at high density and can be degraded by continuous exposure to intense 730 nm illumination. Therefore, care must be taken in developing imaging strategies. Our findings have implications for the use of X-Gal in gene and protein detection and provide a novel substrate for high density digital information storage.
Collapse
Affiliation(s)
- V.A. Matei
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | - F. Feng
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | - S. Pauley
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | - K. Beisel
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | - M.G. Nichols
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
- Creighton University, Department of Physics, Omaha, NE 68178, USA
| | - B. Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, NE 68178, USA
- Corresponding author. Tel.: +1 402 280 2915; fax: +1 402 280 5556. (B. Fritzsch)
| |
Collapse
|
30
|
Yu J, Liu L, Kodibagkar VD, Cui W, Mason RP. Synthesis and evaluation of novel enhanced gene reporter molecules: detection of beta-galactosidase activity using 19F NMR of trifluoromethylated aryl beta-D-galactopyranosides. Bioorg Med Chem 2005; 14:326-33. [PMID: 16185878 DOI: 10.1016/j.bmc.2005.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/04/2005] [Accepted: 08/05/2005] [Indexed: 11/22/2022]
Abstract
Gene therapy has emerged as a promising strategy for treatment of various diseases, but there is a pressing need for the development of non-invasive reporter techniques based on appropriate molecules and imaging modalities to assay gene expression. We now report the design, synthesis, and evaluation of novel enhanced reporter molecules, which reveal lacZ gene expression: trifluoromethylated aryl beta-D-galactopyranosides. A series of five molecular structures were screened in solution and with stably transfected lacZ expressing human MCF7 breast cancer cells in vitro. p-Trifluoromethyl-o-nitrophenyl beta-D-galactopyranoside (PCF(3)ONPG) was found to exhibit valuable properties including a single (19)F NMR signal, stability in aqueous solution and with wild type cells, but a chemical shift response to enzyme cleavage (Deltadelta=1.14 ppm) in breast cancer cells transfected to stably express lacZ.
Collapse
Affiliation(s)
- Jianxin Yu
- Department of Radiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | | | | | | |
Collapse
|