1
|
Ma W, Fu X, Zhao T, Qi Y, Zhang S, Zhao Y. Development and applications of lipid hydrophilic headgroups for nucleic acid therapy. Biotechnol Adv 2024; 74:108395. [PMID: 38906496 DOI: 10.1016/j.biotechadv.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Nucleic acid therapy is currently the most promising method for treating tumors and genetic diseases and for preventing infectious diseases. However, the biggest obstacle to this therapy is delivery of the nucleic acids to the target site, which requires overcoming problems such as capture by the immune system, the need to penetrate biofilms, and degradation of nucleic acid performance. Designing suitable delivery vectors is key to solving these problems. Lipids-which consist of a hydrophilic headgroup, a linker, and a hydrophobic tail-are crucial components for the construction of vectors. The headgroup is particularly important because it affects the drug encapsulation rate, the vector cytotoxicity, and the transfection efficiency. Herein, we focus on various headgroup structures (tertiary amines, quaternary ammonium salts, peptides, piperazines, dendrimers, and several others), and we summarize and classify important lipid-based carriers that have been developed in recent years. We also discuss applications of cationic lipids with various headgroups for delivery of nucleic acid drugs, and we analyze how headgroup structure affects transport efficiency and carrier toxicity. Finally, we briefly describe the challenges of developing novel lipid carriers, as well as their prospects.
Collapse
Affiliation(s)
- Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- Key Laboratory of Intelligent Biofabrication of Ministry of Education, School of Bioengineering, Dalian University of Technology, Dalian 116023, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
2
|
Liu J, Xiao B, Yang Y, Jiang Y, Wang R, Wei Q, Pan Y, Chen Y, Wang H, Fan J, Li R, Xu H, Piao Y, Xiang J, Shao S, Zhou Z, Shen Y, Sun W, Tang J. Low-Dose Mildronate-Derived Lipidoids for Efficient mRNA Vaccine Delivery with Minimal Inflammation Side Effects. ACS NANO 2024; 18:23289-23300. [PMID: 39151414 DOI: 10.1021/acsnano.4c06160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
mRNA vaccines have been revolutionizing disease prevention and treatment. However, their further application is hindered by inflammatory side effects, primarily caused by delivery systems such as lipid nanoparticles (LNPs). In response to this issue, we prepared cationic lipids (mLPs) derived from mildronate, a small-molecule drug, and subsequently developed the LNP (mLNP-69) comprising a low dose of mLP. Compared with the LNP (sLNP) based on SM-102, a commercially available ionizable lipid, mLNP-69 ensures effective mRNA delivery while significantly reducing local inflammation. In preclinical prophylactic and therapeutic B16-OVA melanoma models, mLNP-69 demonstrated successful mRNA cancer vaccine delivery in vivo, effectively preventing tumor occurrence or impeding tumor progression. The results suggest that the cationic lipids derived from mildronate, which exhibit efficient delivery capabilities and minimal inflammatory side effects, hold great promise for clinical application.
Collapse
Affiliation(s)
- Jiwei Liu
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Bing Xiao
- Institute of Pharmaceutics, Zhejiang Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yongle Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | - Rui Wang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qi Wei
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yixuan Pan
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Yuping Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Huimin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Jiaqi Fan
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ruoshui Li
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Haoran Xu
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiajia Xiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, P. R. China
| |
Collapse
|
3
|
Ravula V, Muripiti V, Kumar A, Wang LF, Kumar Vemula P, Patri SV. DOTAP Modified Formulations of Aminoacid Based Cationic Liposomes for Improved Gene Delivery and Cell Viability. ChemMedChem 2024:e202400324. [PMID: 39108039 DOI: 10.1002/cmdc.202400324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Indexed: 10/22/2024]
Abstract
The liposomal systems proved remarkably useful for the delivery of genetic materials but enhancing their efficacy remains a significant challenge. While structural alterations could result in the discovery of more effective transfecting lipids, improving the efficacy of widely used lipid carriers is also crucial in order to compete with viral vectors for gene delivery. Herein, we developed formulations of commercially available lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with synthetic amino acid based cationic lipids. Two cationic lipids were synthesized using amino acids, with either cystine (CTT) or arginine (AT) in the head group. These lipids were used to formulate co-liposomal structures with different lipid compositions. The liposomal formulations were broadly categorised into two types: amino acid-based liposomes without DOTAP (CTTD and ATD) and those with DOTAP (DtATD and DtCTTD). Optimized lipid-DNA complexes of DOTAP-incorporated formulations (DtATD and DtCTTD) exhibited enhanced efficacy in transfection compared to formulations lacking DOTAP as well as commercial formulations such as DOTAP:DOPE. Notably, DtCTTD displayed superior transfection capabilities in prostate cancer (PC3) and lung cancer (A549) cell lines when compared to the widely used commercial transfection reagent, Lipofectamine. Collectively, the findings from this study suggest that DOTAP-incorporated formulations derived from amino acid-based liposomes, hold promise as effective tools for improving transfection efficacy with reduced toxicity, offering potential advancements in gene delivery applications.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Venkanna Muripiti
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
- Department of Education, Central University of Kerala, Kasarasod, 671320, Kerala, India
| | - Akash Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No.100 Tzyou 1st Road, Kaohsiung, 80708, Taiwan
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Srilakshmi V Patri
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
| |
Collapse
|
4
|
Wu S, Lin L, Shi L, Liu S. An overview of lipid constituents in lipid nanoparticle mRNA delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1978. [PMID: 38965928 DOI: 10.1002/wnan.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA's inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
7
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Wang Y, Jiang J, Ding Z, Zhang T, Shi Y, Huang X, Shen X. Design, synthesis, and in vitro gene transfer efficacy of novel ionizable cholesterol derivatives. J Liposome Res 2024:1-13. [PMID: 38563474 DOI: 10.1080/08982104.2024.2333755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
ABSTACTThe medicinal properties of genetic drugs are highly dependent on the design of delivery systems. Ionizable cationic lipids are considered core materials in delivery systems. However, there has not yet been a widespread consensus on the relationship between the wide diversity of lipid structure design and gene delivery efficiency. The aims of the research work were to synthesize ionizable cholesterol derivatives (iChol-lipids) and to evaluate their potential applications as gene delivery vector. A series of iChol-lipids with different head groups were synthesized with carbamate bond spacer. The chemical structures were characterized by 1H NMR, MS, melting range, and pKa. The interactions between iChol-lipids and MALAT1-siRNA were studied by molecular dynamics simulations and compared with market available DC-Chol, which revealed that hydrogen bonds, salt-bridge, and electrostatic interaction were probably involved. The self-assemble behaviors of these lipids were intensively investigated and evaluated by dynamic laser scattering in the presence of different helper lipids and PEGylated lipids. Their plasmid binding ability, transfection efficiency, hemolytic toxicity, and cytotoxicity were fully studied. IZ-Chol-LNPs was proved to be highly potential to effectively complex with DNA, and endosome escape mechanisms mediated by proton sponge effect was verified by pH-sensitive fluorescence probe BCFL.
Collapse
Affiliation(s)
- Yajing Wang
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Jiahui Jiang
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Ziwei Ding
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Tao Zhang
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Yingying Shi
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Xianfeng Huang
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Xiaozhong Shen
- Guangdong Food and Drug Vocational College, Guangzhou, PR China
| |
Collapse
|
9
|
Mondal P, Roy S, Dey J, Dasgupta SB. Impact of Linker Groups on Self-Assembly, Gene Transfection, Antibacterial Activity, and In Vitro Cytotoxicity of Cationic Bolaamphiphiles. ACS APPLIED BIO MATERIALS 2024; 7:1703-1712. [PMID: 38433388 DOI: 10.1021/acsabm.3c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Cationic bolaamphiphiles have gained significant attention in various research fields, including materials science, drug delivery, and gene therapy, due to their unique properties and potential applications. The objective of the current research is to develop more effective cationic bolaamphiphiles. Thus, we have designed and synthesized two cationic bolaamphiphiles (-(CH2)12(2,3-dihydroxy-N,N-dimethyl-N-(3-ureidopropyl)propan-1-aminium chloride))2 (C12(DDUPPAC)2)) and (-(CH2)12(N-(3-(carbamoyloxy)propyl)-2,3-dihydroxy-N,N-dimethylpropan-1-aminium chloride)2 (C12(CPDDPAC)2) containing urea and urethane linkages, respectively. We have investigated their self-assembly properties in water using several techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy. Their biological applications, e.g., in vitro gene transfection, antibacterial activity, and cytotoxicity, were studied. Both bolaamphiphiles were observed to produce aggregates larger than spherical micelles above a relatively low critical aggregation concentration (cac). The calorimetric experiments suggested the thermodynamically favorable spontaneous aggregation of both bolaforms in water. The results of interaction studies led to the conclusion that C12(CPDDPAC)2 binds DNA with a greater affinity than C12(DDUPPAC)2. Also, C12(CPDDPAC)2 is found to act as a more efficient gene transfection vector than C12(DDUPPAC)2 in 264.7 cell lines. The in vitro cytotoxicity assay using MTT, however, revealed that neither of the bolaamphiphiles was toxic, even at higher quantities. Additionally, both bolaforms show beneficial antibacterial activity.
Collapse
Affiliation(s)
- Pabitra Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sadhana Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
11
|
Pan X, Huang P, Ali SS, Renslo B, Hutchinson TE, Erwin N, Greenberg Z, Ding Z, Li Y, Warnecke A, Fernandez NE, Staecker H, He M. CRISPR-Cas9 Engineered Extracellular Vesicles for the Treatment of Dominant Progressive Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557853. [PMID: 38168224 PMCID: PMC10760051 DOI: 10.1101/2023.09.14.557853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clinical translation of gene therapy has been challenging, due to limitations in current delivery vehicles such as traditional viral vectors. Herein, we report the use of gRNA:Cas9 ribonucleoprotein (RNP) complexes engineered extracellular vesicles (EVs) for in vivo gene therapy. By leveraging a novel high-throughput microfluidic droplet-based electroporation system (μDES), we achieved 10-fold enhancement of loading efficiency and more than 1000-fold increase in processing throughput on loading RNP complexes into EVs (RNP-EVs), compared with conventional bulk electroporation. The flow-through droplets serve as enormous bioreactors for offering millisecond pulsed, low-voltage electroporation in a continuous-flow and scalable manner, which minimizes the Joule heating influence and surface alteration to retain natural EV stability and integrity. In the Shaker-1 mouse model of dominant progressive hearing loss, we demonstrated the effective delivery of RNP-EVs into inner ear hair cells, with a clear reduction of Myo7ash1 mRNA expression compared to RNP-loaded lipid-like nanoparticles (RNP-LNPs), leading to significant hearing recovery measured by auditory brainstem responses (ABR).
Collapse
Affiliation(s)
- Xiaoshu Pan
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Peixin Huang
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Samantha S. Ali
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Bryan Renslo
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Tarun E Hutchinson
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Nina Erwin
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Zachary Greenberg
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Zuo Ding
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, 32610, United States
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
| | - Natalia E. Fernandez
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, Kansas 66160, United States
| | - Mei He
- College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
He Y, Barlag M, Plantinga JA, Molema G, Kamps JAAM. MC3/SAINT-O-Somes, a novel liposomal delivery system for efficient and safe delivery of siRNA into endothelial cells. J Liposome Res 2023; 33:328-337. [PMID: 36920318 DOI: 10.1080/08982104.2023.2187821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Increased understanding of chronic inflammatory diseases and the role of endothelial cell (EC) activation herein, have urged interest in sophisticated strategies to therapeutically intervene in activated EC to treat these diseases. Liposome-mediated delivery of therapeutic siRNA in inflammation-activated EC is such a strategy. In this study, we describe the design and characterisation of two liposomal siRNA delivery systems formulated with the cationic MC3 lipid or MC3/SAINT mixed lipids, referred to as MC3-O-Somes (MOS) and MC3/SAINT-O-Somes (MSS). The two formulations showed comparable physicochemical properties, except for better siRNA encapsulation efficiency in the MSS formulation. Antibody-mediated VCAM-1 targeting (AbVCAM-1) increased the association of the targeted MOS and MSS with activated EC, although the targeted MOS showed a significantly higher VCAM-1 specific association than the targeted MSS. AbVCAM-1 MSS containing RelA siRNA achieved significant downregulation of RelA expression, while AbVCAM-1 MOS containing RelA siRNA did not downregulate RelA expression in activated EC. Additionally, AbVCAM-1 MSS containing RelA siRNA showed low cytotoxicity in EC and at the same time prohibited endothelial inflammatory activation by reducing expression of cell adhesion molecules. The AbVCAM-1 MSS formulation is a novel siRNA delivery system based on a combination of the cationic lipids MC3 and SAINT, that shows good physicochemical characteristics, enhanced endothelial cell association, improved transfection activity, low toxicity and significant anti-inflammatory effect, thereby complying with the requirements for future in vivo investigations.
Collapse
Affiliation(s)
- Yutong He
- Department of Pathology & Medical Biology, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mees Barlag
- Department of Pathology & Medical Biology, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josée A Plantinga
- Department of Pathology & Medical Biology, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology & Medical Biology, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology & Medical Biology, Laboratory for Endothelial Biomedicine & Vascular Drug Targeting Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Kojima C, Sawada M, Nakase I, Matsumoto A. Gene Delivery into T-Cells Using Ternary Complexes of DNA, Lipofectamine, and Carboxy-Terminal Phenylalanine-Modified Dendrimers. Macromol Biosci 2023; 23:e2300139. [PMID: 37285588 DOI: 10.1002/mabi.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Indexed: 06/09/2023]
Abstract
T-cells play critical roles in various immune reactions, and genetically engineered T-cells have attracted attention for the treatment of cancer and autoimmune diseases. Previously, it is shown that a polyamidoamine dendrimer of generation 4 (G4), modified with 1,2-cyclohexanedicarboxylic anhydride (CHex) and phenylalanine (Phe) (G4-CHex-Phe), is useful for delivery into T-cells and their subsets. In this study, an efficient non-viral gene delivery system is constructed using this dendrimer. Ternary complexes are prepared using different ratios of plasmid DNA, Lipofectamine, and G4-CHex-Phe. A carboxy-terminal dendrimer lacking Phe (G3.5) is used for comparison. These complexes are characterized using agarose gel electrophoresis, dynamic light scattering, and ζpotential measurements. In Jurkat cells, the ternary complex with G4-CHex-Phe at a P/COOH ratio of 1/5 shows higher transfection activity than other complexes, such as binary and ternary complexes with G3.5, without any significant cytotoxicity. The transfection efficiency of the G4-CHex-Phe ternary complexes decreases considerably in the presence of free G4-CHex-Phe and upon altering the complex preparation method. These results suggest that G4-CHex-Phe promotes the cellular internalization of the complexes, which is useful for gene delivery into T-cells.
Collapse
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Mei Sawada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
15
|
Pengnam S, Opanasopit P, Rojanarata T, Yingyongnarongkul BE, Thongbamrer C, Plianwong S. Dual-Targeted Therapy in HER2-Overexpressing Breast Cancer with Trastuzumab and Novel Cholesterol-Based Nioplexes Silencing Mcl-1. Pharmaceutics 2023; 15:2424. [PMID: 37896184 PMCID: PMC10610066 DOI: 10.3390/pharmaceutics15102424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The challenge in HER2-overexpressing breast cancer therapy lies in creating an effective target therapy to overcome treatment resistance. Monoclonal antibodies and target gene silencing by siRNA are two potential strategies that have been widely developed for treating HER2-positive breast cancer. The siRNA delivery system is a crucial factor that influences siRNA therapy's success. In this study, lipid-based nanoparticles (cationic niosomes) composed of different cholesterol-based cationic lipids were formulated and characterized for delivering siRNA into HER2-overexpressing breast cancer cells. Niosomes containing a trimethylammonium headgroup showed the highest siRNA delivery efficiency with low toxicity. The myeloid cell leukemia-1 (Mcl-1) siRNA nioplex treatment significantly decreased mRNA expression and breast cancer cell growth. Dual-targeted therapy, consisting of treatment with an Mcl-1 siRNA nioplex and trastuzumab (TZ) solution, noticeably promoted cell-growth inhibition and apoptosis. The synergistic effect of dual therapy was also demonstrated by computer modeling software (CompuSyn version 1.0). These findings suggest that the developed cationic niosomes were effective nanocarriers for siRNA delivery in breast cancer cells. Furthermore, the Mcl-1 nioplex/TZ dual treatment establishes a synergistic outcome that may have the potential to treat HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.P.); (P.O.); (T.R.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.P.); (P.O.); (T.R.)
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (S.P.); (P.O.); (T.R.)
| | - Boon-ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; (B.-e.Y.); (C.T.)
| | - Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand; (B.-e.Y.); (C.T.)
| | - Samarwadee Plianwong
- Pharmaceutical Innovations of Natural Products Unit (PhInNat), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
16
|
Mondal P, Dey J, Roy S, Bose Dasgupta S. Self-Assembly, In Vitro Gene Transfection, and Antimicrobial Activity of Biodegradable Cationic Bolaamphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37454394 DOI: 10.1021/acs.langmuir.3c00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bolaamphiphiles or bolaforms have drawn particular interest in drug and gene delivery, and studies of bolaforms have been growing continuously. Bolaforms, due to their unique structure, exhibit specific self-assembly behavior in water. The present work aims to develop biodegradable cationic bolaforms with a better gene transfection ability. In this work, a novel cationic bolaform (Bola-1) with head groups bearing hydroxyl (OH) functionality was designed and synthesized to investigate self-assembly and gene transfection efficiency. The self-assembly behavior of Bola-1 in water was compared with that of the hydrochloride salt (Bola-2) of its precursor molecule to investigate the effect of the -OH functionality on their solution properties. Several techniques, including surface tension, electrical conductivity, fluorescence probe, calorimetry, dynamic light scattering, and atomic force microscopy, were employed for the physicochemical characterization of Bola-1 and Bola-2. Despite the presence of polar urea groups in the spacer chain, both bolaforms were found to form spherical or elongated micelles above a relatively low critical aggregation concentration (CAC). The presence of the OH group was found to significantly affect the CAC value. The results of calorimetric measurements suggested a thermodynamically favorable aggregate formation in salt-free water. Despite stronger binding efficiency with calf thymus DNA, in vitro gene transfection studies performed using adherent cell Hek 293 suggested that both Bola-1 and Bola-2 have gene transfection efficiency comparable to that of turbofectamine standard. Both bolaforms were found to exhibit significant in vitro cytotoxicity at higher concentrations. Also, the bolaforms showed beneficial antibacterial activity at higher concentrations.
Collapse
Affiliation(s)
- Pabitra Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sadhana Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
17
|
Gretskaya N, Akimov M, Andreev D, Zalygin A, Belitskaya E, Zinchenko G, Fomina-Ageeva E, Mikhalyov I, Vodovozova E, Bezuglov V. Multicomponent Lipid Nanoparticles for RNA Transfection. Pharmaceutics 2023; 15:pharmaceutics15041289. [PMID: 37111773 PMCID: PMC10141487 DOI: 10.3390/pharmaceutics15041289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the wide variety of available cationic lipid platforms for the delivery of nucleic acids into cells, the optimization of their composition has not lost its relevance. The purpose of this work was to develop multi-component cationic lipid nanoparticles (LNPs) with or without a hydrophobic core from natural lipids in order to evaluate the efficiency of LNPs with the widely used cationic lipoid DOTAP (1,2-dioleoyloxy-3-[trimethylammonium]-propane) and the previously unstudied oleoylcholine (Ol-Ch), as well as the ability of LNPs containing GM3 gangliosides to transfect cells with mRNA and siRNA. LNPs containing cationic lipids, phospholipids and cholesterol, and surfactants were prepared according to a three-stage procedure. The average size of the resulting LNPs was 176 nm (PDI 0.18). LNPs with DOTAP mesylate were more effective than those with Ol-Ch. Core LNPs demonstrated low transfection activity compared with bilayer LNPs. The type of phospholipid in LNPs was significant for the transfection of MDA-MB-231 and SW 620 cancer cells but not HEK 293T cells. LNPs with GM3 gangliosides were the most efficient for the delivery of mRNA to MDA-MB-231 cells and siRNA to SW620 cells. Thus, we developed a new lipid platform for the efficient delivery of RNA of various sizes to mammalian cells.
Collapse
Affiliation(s)
- Nataliya Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Mikhail Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anton Zalygin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Translational Medicine, National Research Nuclear University, Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - Ekaterina Belitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Translational Medicine, National Research Nuclear University, Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - Galina Zinchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Fomina-Ageeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Vladimir Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
18
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
19
|
Mihailescu M, Worcester DL, Carroll CL, Chamberlin AR, White SH. DOTAP: Structure, hydration, and the counterion effect. Biophys J 2023; 122:1086-1093. [PMID: 36703558 PMCID: PMC10111261 DOI: 10.1016/j.bpj.2023.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) is one of the original synthetic cationic lipids used for the liposomal transfection of oligonucleotides in gene therapy. The key structural element of DOTAP is its quaternary ammonium headgroup that is responsible for interactions with both nucleic acids and target cell membranes. Because these interactions are fundamental to the design of a major class of transfection lipids, it is important to understand the structure of DOTAP and how it interacts with halide counterions. Here, we use x-ray and neutron diffraction techniques to examine the structure of DOTAP and how chloride (Cl-) and iodide (I-) counterions alter the hydration properties of the DOTAP headgroup. A problem of particular interest is the poor solubility of DOTAP/I- in water solutions. Our results show that the poor solubility results from very tight binding of the I- counterion to the headgroup and the consequent expulsion of water. The structural principles we report here are important for assessing the suitability of DOTAP and its quaternary ammonium derivatives for transfection.
Collapse
Affiliation(s)
- Mihaela Mihailescu
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland.
| | - David L Worcester
- Biology Division, University of Missouri, Columbia, Missouri; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland; Department of Physiology and Biophysics, University of California at Irvine, Irvine, California
| | | | - A Richard Chamberlin
- Department of Chemistry, University of California at Irvine, Irvine, California; Department of Pharmaceutical Sciences, University of California at Irvine, Irvine, California
| | - Stephen H White
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland; Department of Physiology and Biophysics, University of California at Irvine, Irvine, California
| |
Collapse
|
20
|
Thongbamrer C, Teerakantrakorn P, Nongpong U, Apiratikul N, Roobsoong W, Kunkeaw N, Nguitragool W, Sattabongkot J, Yingyongnarongkul BE. In vitro transfection efficiencies of T-shaped spermine-based cationic lipids with identical and nonidentical tails under high serum conditions. Org Biomol Chem 2023; 21:1967-1979. [PMID: 36762533 DOI: 10.1039/d2ob02129c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T-shaped spermine-based cationic lipids with identical and nonidentical hydrophobic tails having variable carbon lengths (from C10 to C18) were designed and synthesized. These lipids were characterized, and their structure-activity relationships were determined for DNA binding and transfection ability of these compounds when formulated as cationic liposomes. These liposomes were then applied as non-viral vectors to transfect HEK293T, HeLa, PC3, H460, HepG2, and Calu'3 cell lines with plasmid DNA encoding the green fluorescent protein. ST9, ST12 and ST13 with nonidentical tails could deliver DNA into HEK293T cells up to 60% under serum-free conditions. The lipid ST15 bearing nonidentical tails was found to be a potent gene transfer agent under 40% serum conditions in HEK293T and HeLa cells. Besides their low cytotoxicity, these lipoplexes also exhibited greater transfection efficiency than the commercially available transfection agent, Lipofectamine 3000.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand
| | - Purichaya Teerakantrakorn
- Bodindecha (Sing Singhaseni) School, 40 Ramkhamhaeng 43/1, Plabpla Wangthonglang, Bangkok, 10310 Thailand.
| | - Ussanee Nongpong
- Bodindecha (Sing Singhaseni) School, 40 Ramkhamhaeng 43/1, Plabpla Wangthonglang, Bangkok, 10310 Thailand.
| | - Nuttapon Apiratikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand
| |
Collapse
|
21
|
Yuan YR, Liu Q, Wang D, Deng YD, Du TT, Yi WJ, Yang ST. GSH-Activatable Aggregation-Induced Emission Cationic Lipid for Efficient Gene Delivery. Molecules 2023; 28:molecules28041645. [PMID: 36838634 PMCID: PMC9963561 DOI: 10.3390/molecules28041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The key to gene therapy is the design of biocompatible and efficient delivery systems. In this work, a glutathione (GSH)-activated aggregation-induced-emission (AIE) cationic amphiphilic lipid, termed QM-SS-KK, was prepared for nonviral gene delivery. QM-SS-KK was composed of a hydrophilic biocompatible lysine tripeptide headgroup, a GSH-triggered disulfide linkage, and a hydrophobic AIE fluorophore QM-OH (QM: quinoline-malononitrile) tail. The peptide moiety could not only efficiently compact DNA but also well modulate the dispersion properties of QM-SS-KK, leading to the fluorescence-off state before GSH treatment. The cleavage of disulfide in QM-SS-KK by GSH generated AIE signals in situ with a tracking ability. The liposomes consisted of QM-SS-KK, and 1,2-dioleoylphosphatidylethanolamine (DOPE) (QM-SS-KK/DOPE) delivered plasmid DNAs (pDNAs) into cells with high efficiency. In particular, QM-SS-KK/DOPE had an enhanced transfection efficiency (TE) in the presence of 10% serum, which was two times higher than that of the commercial transfection agent PEI25K. These results highlighted the great potential of peptide and QM-based fluorescence AIE lipids for gene delivery applications.
Collapse
Affiliation(s)
- Yue-Rui Yuan
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Deyu Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yu-Dan Deng
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Ting-Ting Du
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Wen-Jing Yi
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.-J.Y.); (S.-T.Y.); Tel.: +86-8552-2315 (W.-J.Y.); +86-85570-9707 (S.-T.Y.)
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (W.-J.Y.); (S.-T.Y.); Tel.: +86-8552-2315 (W.-J.Y.); +86-85570-9707 (S.-T.Y.)
| |
Collapse
|
22
|
Fopase R, Panda C, Rajendran AP, Uludag H, Pandey LM. Potential of siRNA in COVID-19 therapy: Emphasis on in silico design and nanoparticles based delivery. Front Bioeng Biotechnol 2023; 11:1112755. [PMID: 36814718 PMCID: PMC9939533 DOI: 10.3389/fbioe.2023.1112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Rushikesh Fopase
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Chinmaya Panda
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Amarnath P. Rajendran
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludag
- Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lalit M. Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
23
|
Sui S, Wang H, Song J, Tai W. Development of a spermine lipid for transient antibody expression. Bioorg Med Chem 2023; 78:117114. [PMID: 36563514 DOI: 10.1016/j.bmc.2022.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Transient expression is the only way to quickly obtain a small scale of antibodies for biomedical research and therapeutic evaluation. The agents for transfecting the suspension cells, e.g. PEI or commercial agents, either lack efficiency or excessively expensive. Herein, a novel spermine-based lipid was developed and fabricated into a cationic liposome for antibody expression. This new transfection agent, designated as sperminoliposome, is feasible, cheap, and highly effective to produce antibodies. Compared to PEI, a 3 times higher yield of antibody was obtained by sperminoliposome during the transient expression of cetuximab in suspension 293F cells. Characterizations confirmed that the expressed antibody is fully functional and eligible for further research. Our study provides an effective tool for the rapid production of antibodies economically and feasibly.
Collapse
Affiliation(s)
- Shaowei Sui
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hao Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Jiajie Song
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
24
|
Gao Y, Liu X, Chen N, Yang X, Tang F. Recent Advance of Liposome Nanoparticles for Nucleic Acid Therapy. Pharmaceutics 2023; 15:178. [PMID: 36678807 PMCID: PMC9864445 DOI: 10.3390/pharmaceutics15010178] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Gene therapy, as an emerging therapeutic approach, has shown remarkable advantages in the treatment of some major diseases. With the deepening of genomics research, people have gradually realized that the emergence and development of many diseases are related to genetic abnormalities. Therefore, nucleic acid drugs are gradually becoming a new boon in the treatment of diseases (especially tumors and genetic diseases). It is conservatively estimated that the global market of nucleic acid drugs will exceed $20 billion by 2025. They are simple in design, mature in synthesis, and have good biocompatibility. However, the shortcomings of nucleic acid, such as poor stability, low bioavailability, and poor targeting, greatly limit the clinical application of nucleic acid. Liposome nanoparticles can wrap nucleic acid drugs in internal cavities, increase the stability of nucleic acid and prolong blood circulation time, thus improving the transfection efficiency. This review focuses on the recent advances and potential applications of liposome nanoparticles modified with nucleic acid drugs (DNA, RNA, and ASO) and different chemical molecules (peptides, polymers, dendrimers, fluorescent molecules, magnetic nanoparticles, and receptor targeting molecules). The ability of liposome nanoparticles to deliver nucleic acid drugs is also discussed in detail. We hope that this review will help researchers design safer and more efficient liposome nanoparticles, and accelerate the application of nucleic acid drugs in gene therapy.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Na Chen
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xiaochun Yang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
25
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
26
|
Wang J, Wang D, Du TT, Yi WJ, Liu Q. Reducible amino acid based cationic lipids with a naphthalimide moiety as non-viral gene vehicles. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221145850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three basic amino acid–based cationic lipids bearing a fluorescent naphthalimide moiety and a reducible disulfide linkage are synthesized and applied as non-viral gene vehicles. Their DNA interactions are investigated by agarose-gel retardant and ethidium bromide replacement assays. The sizes and zeta potentials of the liposome/DNA complexes are measured by dynamic light scattering. The cytotoxicities of the liposome/DNA complexes are examined using HeLa and 7702 cell lines by MTT assays. The glutathione-responsive DNA release process is studied through time-dependent fluorescence assays. Luciferase gene expression showed the transfection efficiency of the liposome is dramatically increased in the presence of 10% serum. Confocal laser scanning microscopy studies corroborated that the liposome/DNA complexes are successfully uptaken into HeLa cells. These results demonstrate the promising use of amino acids and naphthalimide-containing lipids for safe and efficient gene delivery.
Collapse
Affiliation(s)
- Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, P.R. China
| | - Deyu Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| | - Ting-Ting Du
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| | - Wen-Jing Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| | - Qiang Liu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, P.R. China
| |
Collapse
|
27
|
Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JPY, Chiang HL, Sun CP, Lee IJ, Li WS, Hsieh HP, Tao MH, Wu HC. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci 2022; 29:68. [PMID: 36096815 PMCID: PMC9465653 DOI: 10.1186/s12929-022-00852-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Monika Kumari
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Mu-Chun Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jhih-Liang Huang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Fu-Fei Hsu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiao-Ling Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Jung Lee
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Pang Hsieh
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan.
| |
Collapse
|
28
|
Zou Y, Zhen Y, Zhao Y, Chen H, Wang R, Wang W, Ma P, Zhi D, Ju B, Zhang S. pH-sensitive, tail-modified, ester-linked ionizable cationic lipids for gene delivery. BIOMATERIALS ADVANCES 2022; 139:212984. [PMID: 35882140 DOI: 10.1016/j.bioadv.2022.212984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Ionizable cationic lipids have great potential for gene delivery, yet the effect of the molecular structure of such lipids on gene delivery efficiency is an ongoing research challenge. To better understand corresponding structure-function activity relationships, we synthesized four ester-linked, pH-responsive, ionizable cationic lipids. The screened DEDM4 lipid, containing 2-ethylenedimethylamine in the headgroup and a branched-chain tail, exhibited a high delivery efficacy of plasmid DNA and siRNA in A549 cells, which was comparable with that of the commercial reagent lipofectamine 3000 (lipo3000). Moreover, because of its pKa value of 6.35 and pH-sensitivity under acidic conditions, DEDM4 could carry sufficient positive charge in the acidic environment of endosomes and interact with the endosome lumen, leading to destruction of the endomembrane and subsequent release of siRNA into the cytoplasm with endosomal escape. Furthermore, we used DEDM4 to deliver IGF-1R siRNA to induce cancer cell apoptosis, thereby leading to great tumor inhibition. More importantly, it also showed very low toxicity in vivo. These structure-activity data for DEDM4 demonstrate potential clinical applications of DEDM4-mediated gene delivery for cancer.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
29
|
Toma I, Porfire AS, Tefas LR, Berindan-Neagoe I, Tomuță I. A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA. Pharmaceutics 2022; 14:1482. [PMID: 35890377 PMCID: PMC9322860 DOI: 10.3390/pharmaceutics14071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is the leading cause of death worldwide. Tumors consist of heterogeneous cell populations that have different biological properties. While conventional cancer therapy such as chemotherapy, radiotherapy, and surgery does not target cancer cells specifically, gene therapy is attracting increasing attention as an alternative capable of overcoming these limitations. With the advent of gene therapy, there is increasing interest in developing non-viral vectors for genetic material delivery in cancer therapy. Nanosystems, both organic and inorganic, are the most common non-viral vectors used in gene therapy. The most used organic vectors are polymeric and lipid-based delivery systems. These nanostructures are designed to bind and protect the genetic material, leading to high efficiency, prolonged gene expression, and low toxicity. Quality by Design (QbD) is a step-by-step approach that investigates all the factors that may affect the quality of the final product, leading to efficient pharmaceutical development. This paper aims to provide a new perspective regarding the use of the QbD approach for improving the quality of non-viral vectors for genetic material delivery and their application in cancer therapy.
Collapse
Affiliation(s)
- Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.T.); (L.R.T.); (I.T.)
| |
Collapse
|
30
|
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7:71. [PMID: 35764661 PMCID: PMC9239993 DOI: 10.1038/s41541-022-00485-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The mRNA vaccine platform has offered the greatest potential in fighting the COVID-19 pandemic owing to rapid development, effectiveness, and scalability to meet the global demand. There are many other mRNA vaccines currently being developed against different emerging viral diseases. As with the current COVID-19 vaccines, these mRNA-based vaccine candidates are being developed for parenteral administration via injections. However, most of the emerging viruses colonize the mucosal surfaces prior to systemic infection making it very crucial to target mucosal immunity. Although parenterally administered vaccines would induce a robust systemic immunity, they often provoke a weak mucosal immunity which may not be effective in preventing mucosal infection. In contrast, mucosal administration potentially offers the dual benefit of inducing potent mucosal and systemic immunity which would be more effective in offering protection against mucosal viral infection. There are however many challenges posed by the mucosal environment which impede successful mucosal vaccination. The development of an effective delivery system remains a major challenge to the successful exploitation of mucosal mRNA vaccination. Nonetheless, a number of delivery vehicles have been experimentally harnessed with different degrees of success in the mucosal delivery of mRNA vaccines. In this review, we provide a comprehensive overview of mRNA vaccines and summarise their application in the fight against emerging viral diseases with particular emphasis on COVID-19 mRNA platforms. Furthermore, we discuss the prospects and challenges of mucosal administration of mRNA-based vaccines, and we explore the existing experimental studies on mucosal mRNA vaccine delivery.
Collapse
Affiliation(s)
- Sodiq A. Hameed
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Stephane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Giann Kerwin Y. Dellosa
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Dolores Jaraquemada
- grid.7080.f0000 0001 2296 0625Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain
| | - Muhammad Bashir Bello
- grid.412771.60000 0001 2150 5428Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, 2346 Sokoto, Nigeria
| |
Collapse
|
31
|
Wu S, Liu M, Hu X, He C, Zhao C, Xiang S, Zeng Y. Evaluation of pentaerythritol-based and trimethylolpropane-based cationic lipidic materials for gene delivery. Bioorg Med Chem Lett 2022; 62:128635. [PMID: 35202809 DOI: 10.1016/j.bmcl.2022.128635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
The chemical and physical structure of cationic liposomes pays an important effect on their gene transfection efficiency. Investigation on the structure-function relationship of cationic liposomes will guide the design of novel cationic liposomes with high transfection efficiency and biosafety. In this paper, two novel series of lipids based on the backbone of pentaerythritol and trimethylolpropane were discovered, and their gene transfection efficiencies were assayed in vitro. The four lipids 8c, 9c, 14b, and 15b, exhibited much better transfection efficiency in the HEK293 cell lines compared with Lipo2000, lipid 9c also showed good transfection efficiency in the SW480 cell lines. And the structure-efficiency relationship revealed that a hydroxyethyl polar head group boosted transfer potency in trimethylolpropane-type lipids, but reduced in pentaerythritol-type lipids.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Meiyan Liu
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Chengxi He
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China
| | - Chunyan Zhao
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | - Youlin Zeng
- Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, PR China; Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
32
|
Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210081. [PMID: 37323878 PMCID: PMC10190933 DOI: 10.1002/exp.20210081] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Emerging clustered regularly interspaced short palindromic repeat/associated protein (CRISPR/Cas) genome editing technology shows great potential in gene therapy. However, proteins and nucleic acids suffer from enzymatic degradation in the physiological environment and low permeability into cells. Exploiting carriers to protect the CRISPR system from degradation, enhance its targeting of specific tissues and cells, and reduce its immunogenicity is essential to stimulate its clinical applications. Here, the authors review the state-of-the-art CRISPR delivery systems and their applications, and describe strategies to improve the safety and efficacy of CRISPR mediated genome editing, categorized by three types of cargo formats, that is, Cas: single-guide RNA ribonucleoprotein, Cas mRNA and single-guide RNA, and Cas plasmid expressing CRISPR/Cas systems. The authors hope this review will help develop safe and efficient nanomaterial-based carriers for CRISPR tools.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Xiaoguang Shi
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Bo Yuan
- School of MedicineNankai UniversityTianjinChina
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
| | - Na Yu
- Translational Medicine CenterKey Laboratory of Molecular Target & Clinical PharmacologySchool of Pharmaceutical Sciences and The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of EducationDalian Minzu UniversityDalianChina
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
- Clinical College of OphthalmologyTianjin Medical UniversityTianjinChina
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| |
Collapse
|
33
|
Rapaka H, Manturthi S, Arjunan P, Venkatesan V, Thangavel S, Marepally S, Patri SV. Influence of Hydrophobicity in the Hydrophilic Region of Cationic Lipids on Enhancing Nucleic Acid Delivery and Gene Editing. ACS APPLIED BIO MATERIALS 2022; 5:1489-1500. [PMID: 35297601 DOI: 10.1021/acsabm.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular delivery of biomolecules using non-viral vectors critically depends on the vectors' ability to allow the escape and release of the contents from the endosomes. Prior findings demonstrated that aromatic/hydrophobic group-containing amino acids such as phenylalanine (F) and tryptophan (W) destabilize cellular membranes by forming pores in the lipid bilayer. Taking cues from these findings, we have developed four α-tocopherol-based cationic amphiphiles by varying the aromatic/hydrophobic amino acids such as glycine (G), proline (P), phenylalanine (F), and tryptophan (W) as head groups and triazole in the linker region to study their impact on endosomal escape for the enhanced transfection efficacy. The lipids tocopherol-triazole-phenylalanine (TTF) and tocopherol-triazole-tryptophan (TTW) exhibited similar potential to commercial transfecting reagents, Lipofectamine (LF) 3000 and Lipofectamine Messenger Max (LFMM), respectively, in transfecting plasmid DNA and messenger RNA in multiple cultured cell lines. The TTW liposome was also found to be effective in delivering Cas9 mRNA and demonstrated equal efficiency of gene editing AAVS1 locus compared to LFMM in CHO, Neuro-2a, and EA.HY926 cell lines. In this current investigation, it is shown that the synthesized cationic lipids with aromatic hydrophobic R group-containing amino acids are safe, economic, and actually more efficient in nucleic acid delivery and genome-editing applications. These findings can be further explored in the genome-editing approach for treating genetic disorders.
Collapse
Affiliation(s)
- Hithavani Rapaka
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Shireesha Manturthi
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Porkizhi Arjunan
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | | | | | - Srujan Marepally
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | - Srilakshmi V Patri
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
34
|
Structure-activity relationships of pH-responsive and ionizable lipids for gene delivery. Int J Pharm 2022; 617:121596. [PMID: 35181463 DOI: 10.1016/j.ijpharm.2022.121596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Ionizable lipids are the leading vectors for gene therapy. Understanding the effects of molecular structure on efficient gene delivery is one of the most important challenges for maximizing the utility of such lipid vectors. We synthesized an array of pH-responsive and ionizable lipids to investigate the relationship between lipid structure and activity. The optimized lipid (EDM) has double tertiary amines in the headgroup and an ester linker. EDM exhibited efficient DNA and siRNA delivery to, and gene silencing of, A549 cells. EDM has a pKa value of 6.67, which enabled it to quickly escape from the endosome after entering the cell; the ester linkages rapidly degraded and enabled gene release into the cytoplasm. EDM also delivered IGF-1R siRNA to inhibit tumor growth and induce cancer cell apoptosis by efficient inhibition of IGF-1R expression in mice. Our study on the structure-activity relationships of ionizable lipids will facilitate clinical applications.
Collapse
|
35
|
Lin G, Huang J, Zhang M, Chen S, Zhang M. Chitosan-Crosslinked Low Molecular Weight PEI-Conjugated Iron Oxide Nanoparticle for Safe and Effective DNA Delivery to Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:584. [PMID: 35214917 PMCID: PMC8876741 DOI: 10.3390/nano12040584] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer has attracted tremendous research interest in treatment development as one of the major threats to public health. The use of non-viral carriers for therapeutic DNA delivery has shown promise in treating various cancer types, including breast cancer, due to their high DNA loading capacity, high cell transfection efficiency, and design versatility. However, cytotoxicity and large sizes of non-viral DNA carriers often raise safety concerns and hinder their applications in the clinic. Here we report the development of a novel nanoparticle formulation (termed NP-Chi-xPEI) that can safely and effectively deliver DNA into breast cancer cells for successful transfection. The nanoparticle is composed of an iron oxide core coated with low molecular weight (800 Da) polyethyleneimine crosslinked with chitosan via biodegradable disulfide bonds. The NP-Chi-xPEI can condense DNA into a small nanoparticle with the overall size of less than 100 nm and offer full DNA protection. Its biodegradable coating of small-molecular weight xPEI and mildly positive surface charge confer extra biocompatibility. NP-Chi-xPEI-mediated DNA delivery was shown to achieve high transfection efficiency across multiple breast cancer cell lines with significantly lower cytotoxicity as compared to the commercial transfection agent Lipofectamine 3000. With demonstrated favorable physicochemical properties and functionality, NP-Chi-xPEI may serve as a reliable vehicle to deliver DNA to breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA; (G.L.); (J.H.); (M.Z.); (S.C.)
| |
Collapse
|
36
|
Malina J, Kostrhunova H, Novohradsky V, Scott P, Brabec V. Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles. Nucleic Acids Res 2022; 50:674-683. [PMID: 35018455 PMCID: PMC8789045 DOI: 10.1093/nar/gkab1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 01/31/2023] Open
Abstract
The design of efficient and safe gene delivery vehicles remains a major challenge for the application of gene therapy. Of the many reported gene delivery systems, metal complexes with high affinity for nucleic acids are emerging as an attractive option. We have discovered that certain metallohelices-optically pure, self-assembling triple-stranded arrays of fully encapsulated Fe-act as nonviral DNA delivery vectors capable of mediating efficient gene transfection. They induce formation of globular DNA particles which protect the DNA from degradation by various restriction endonucleases, are of suitable size and electrostatic potential for efficient membrane transport and are successfully processed by cells. The activity is highly structure-dependent-compact and shorter metallohelix enantiomers are far less efficient than less compact and longer enantiomers.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| | - Peter Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61265, Czech Republic
| |
Collapse
|
37
|
Álvarez-Benedicto E, Farbiak L, Márquez Ramírez M, Wang X, Johnson LT, Mian O, Guerrero ED, Siegwart DJ. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci 2022; 10:549-559. [PMID: 34904974 PMCID: PMC9113778 DOI: 10.1039/d1bm01454d] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipid nanoparticles (LNPs) have been established as an essential platform for nucleic acid delivery. Efforts have led to the development of vaccines that protect against SARS-CoV-2 infection using LNPs to deliver messenger RNA (mRNA) coding for the viral spike protein. Out of the four essential components that comprise LNPs, phospholipids represent an underappreciated opportunity for fundamental and translational study. We investigated this avenue by systematically modulating the identity of the phospholipid in LNPs with the goal of identifying specific moieties that directly enhance or hinder delivery efficacy. Results indicate that phospholipid chemistry can enhance mRNA delivery by increasing membrane fusion and enhancing endosomal escape. Phospholipids containing phosphoethanolamine (PE) head groups likely increase endosomal escape due to their fusogenic properties. Additionally, it was found that zwitterionic phospholipids mainly aided liver delivery, whereas negatively charged phospholipids changed the tropism of the LNPs from liver to spleen. These results demonstrate that the choice of phospholipid plays a role intracellularly by enhancing endosomal escape, while also driving organ tropism in vivo. These findings were then applied to Selective Organ Targeting (SORT) LNPs to manipulate and control spleen-specific delivery. Overall, selection of the phospholipid in LNPs provides an important handle to design and optimize LNPs for improved mRNA delivery and more effective therapeutics.
Collapse
Affiliation(s)
- Ester Álvarez-Benedicto
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Lukas Farbiak
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Martha Márquez Ramírez
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Xu Wang
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Lindsay T Johnson
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Osamah Mian
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Erick D Guerrero
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
38
|
Lovell JF. Vaccine Strategies: A Virtual Issue. Bioconjug Chem 2022; 33:261-262. [PMID: 35040312 DOI: 10.1021/acs.bioconjchem.2c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Maiti B, Kumar K, Datta S, Bhattacharya S. Physical-Chemical Characterization of Bilayer Membranes Derived from (±) α-Tocopherol-Based Gemini Lipids and Their Interaction with Phosphatidylcholine Bilayers and Lipoplex Formation with Plasmid DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:36-49. [PMID: 34955028 DOI: 10.1021/acs.langmuir.1c01039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane formation and aggregation properties of two series of (±) α-tocopherol-based cationic gemini lipids without and with hydroxyl functionalities at the headgroup region (TnS n = 3, 4, 5, 6, 8, and 12; THnS n = 4, 5, 6, 8, and 12) with varying polymethylene spacer lengths were investigated extensively while comparing with the corresponding properties of the monomeric counterparts (TM and THM). Liposomal suspensions of each cationic lipid were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurements, and small-angle X-ray diffraction studies. The length of the spacer and the presence of hydroxyl functionalities at the headgroup region strongly contribute to the aggregation behavior of these gemini lipids in water. The interaction of each tocopherol lipid with a model phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)-derived vesicles, was thoroughly examined by differential scanning calorimetry (DSC) and 1,6-diphenyl-1,3,5-hexatriene (DPH)-doped fluorescence anisotropy measurements. The binding efficiency of the cationic tocopherol liposomes with plasmid DNA (pDNA) was followed by an ethidium bromide (EB) exclusion assay and zeta potential measurements, whereas negatively charged micellar sodium dodecyl sulfate (SDS)-mediated release of the pDNA from various preformed pDNA-liposomal complexes (lipoplex) was studied by an ethidium bromide (EB) reintercalation assay. The structural transformation of pDNA upon complexation with liposome was characterized using circular dichroism (CD) spectroscopic measurements. Gemini lipid-pDNA interactions depend on both the presence of hydroxyl functionalities at the headgroups and the length of the spacer chain between the headgroups. Succinctly, we performed a detailed physical-chemical characterization of the membranes formed from cationic monomeric and gemini lipids bearing tocopherol as their hydrophobic backbone and describe the role of inserting the -OH group at the headgroup of such lipids.
Collapse
Affiliation(s)
- Bappa Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subhasis Datta
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
40
|
Thongbamrer C, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. Serum Compatible Spermine-based Cationic Lipids with Non-identical Hydrocarbon Tails Mediate High Transfection Efficiency. Chembiochem 2022; 23:e202100672. [PMID: 35001486 DOI: 10.1002/cbic.202100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Indexed: 11/09/2022]
Abstract
Cationic lipids are widely used as non-viral synthetic vectors for gene delivery as a safer alternative to viral vectors. In this work, a library of L-shaped spermine-based cationic lipids with identical and non-identical hydrophobic chains having variable carbon length (from C10 to C18) was designed and synthesized. These lipids were characterized and the structure-activity relationships of these compounds were determined for DNA binding and transfection ability when formulated as cationic liposomes. The liposomes were then used successfully for the transfection of HEK293T, HeLa, PC3, H460, HepG2, SH-SY5Y and Calu'3 cell lines. The transfection efficiency of lipids with non-identical hydrocarbon chains was greater than the identical analog. These reagents exhibited superior efficiency to the commercial reagent, Lipofectamine3000, under both serum-free and 10-40% serum conditions in HEK293T, HeLa and H460 cell lines. The lipids were also not toxic to the tested cells. The results suggested that L-shaped spermine-based cationic lipids with non-identical hydrocarbon tails could serve as an efficient and safe non-viral vector gene carrier for further in vivo studies.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Ramkhamhaeng University, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), THAILAND
| | | | | | - Praneet Opanasopit
- Silpakorn University, Pharmaceutical Development of Green Innovations Group (PDGIG), THAILAND
| | - Boon-Ek Yingyongnarongkul
- Ramkhamhaeng University, Department of Chemistry and Center of Excellene for Innovation in Chemistry (PERCH-CIC), Ramkhamhaeng Road, Huamark Bangkapi, 10240, Bangkok, THAILAND
| |
Collapse
|
41
|
Ravula V, Muripiti V, Manthurthi S, Patri SV. α‐Tocopherol‐Conjugated, Open Chain Sugar‐Mimicking Cationic Lipids: Design, Synthesis and In–Vitro Gene Transfection Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Venkatesh Ravula
- National Institute of Technology Warangal Telangana 506004 India
| | | | | | | |
Collapse
|
42
|
Wang MZ, Xu Y, Xie JF, Jiang ZH, Peng LH. Ginsenoside as a new stabilizer enhances the transfection efficiency and biocompatibility of cationic liposome. Biomater Sci 2021; 9:8373-8385. [PMID: 34787604 DOI: 10.1039/d1bm01353j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleic acid drugs have emerged as important therapeutics but their clinical application has been greatly limited by their large molecular weight, high polarity, negative charge and short half-life. Cationic liposomes (CLs) have gained wide attention as non-viral vectors for nucleic acid delivery. However, the absolute transfection efficiency of CLs can still be enhanced while their cytotoxicity should be decreased simultaneously. Ginsenosides, obtained from natural plants, possess a similar steroid structure to cholesterol and might be an alternative to cholesterol for acting as a membrane stabilizer of CLs. Herein, seven kinds of ginsenoside-based compounds were utilized to prepare CLs (GCLs) and their efficacy in siRNA delivery was investigated. The particle sizes of the GCLs were 90-300 nm and the siRNA delivery efficiencies were in the range of 23.6%-78.4%. Rg5-based CLs (Rg5-CLs) exhibited the highest transfection efficiency of 81% and the lowest toxicity, with 82% cell viability obtained even at high concentrations. Ginsenosides are shown as promising biomaterials as membrane stabilizers of CLs. Rg5-CLs have been demonstrated as efficient non-viral vectors with high transfection efficiency and good biocompatibility for gene delivery, possessing great potential for gene therapy.
Collapse
Affiliation(s)
- Mao-Ze Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Jia-Feng Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Zhi-Hong Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| |
Collapse
|
43
|
Maiti B, Bhattacharya S. Liposomal nanoparticles based on steroids and isoprenoids for nonviral gene delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1759. [PMID: 34729941 DOI: 10.1002/wnan.1759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Natural lipid molecules are an essential part of life as they constitute the membrane of cells and organelle. In most of these cases, the hydrophobicity of natural lipids is contributed by alkyl chains. Although natural lipids with a nonfatty acid hydrophobic backbone are quite rare, steroids and isoprenoids have been strong candidates as part of a lipid. Over the years, these natural molecules (steroid and isoprenoids) have been used to make either lipid-based nanoparticle or functionalize in such a way that it could form nano assembly alone for therapeutic delivery. Here we mainly focus on the synthetic functionalized version of these natural molecules which forms cationic liposomal nanoparticles (LipoNPs). These cationic LipoNPs were further used to deliver various negatively charged genetic materials in the form of pDNA, siRNA, mRNA (nucleic acids), and so on. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Bappa Maiti
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India
| | - Santanu Bhattacharya
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
44
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
45
|
Sainz-Ramos M, Villate-Beitia I, Gallego I, AL Qtaish N, Menéndez M, Lagartera L, Grijalvo S, Eritja R, Puras G, Pedraz JL. Correlation between Biophysical Properties of Niosomes Elaborated with Chloroquine and Different Tensioactives and Their Transfection Efficiency. Pharmaceutics 2021; 13:pharmaceutics13111787. [PMID: 34834203 PMCID: PMC8623750 DOI: 10.3390/pharmaceutics13111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/22/2023] Open
Abstract
Lipid nanocarriers, such as niosomes, are considered attractive candidates for non-viral gene delivery due to their suitable biocompatibility and high versatility. In this work, we studied the influence of incorporating chloroquine in niosomes biophysical performance, as well as the effect of non-ionic surfactant composition and protocol of incorporation in their biophysical performance. An exhaustive comparative evaluation of three niosome formulations differing in these parameters was performed, which included the analysis of their thermal stability, rheological behavior, mean particle size, dispersity, zeta potential, morphology, membrane packing capacity, affinity to bind DNA, ability to release and protect the genetic material, buffering capacity and ability to escape from artificially synthesized lysosomes. Finally, in vitro biological studies were, also, performed in order to determine the compatibility of the formulations with biological systems, their transfection efficiency and transgene expression. Results revealed that the incorporation of chloroquine in niosome formulations improved their biophysical properties and the transfection efficiency, while the substitution of one of the non-ionic surfactants and the phase of addition resulted in less biophysical variations. Of note, the present work provides several biophysical parameters and characterization strategies that could be used as gold standard for gene therapy nanosystems evaluation.
Collapse
Affiliation(s)
- Myriam Sainz-Ramos
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.S.-R.); (I.V.-B.); (I.G.); (N.A.Q.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.S.-R.); (I.V.-B.); (I.G.); (N.A.Q.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.S.-R.); (I.V.-B.); (I.G.); (N.A.Q.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
| | - Nuseibah AL Qtaish
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.S.-R.); (I.V.-B.); (I.G.); (N.A.Q.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
| | - Margarita Menéndez
- Rocasolano Physical Chemistry Institute, Superior Council of Scientific Investigations (IQFR-CSIC), Calle Serrano 119, 28006 Madrid, Spain;
- Biomedical Research Networking Centre in Respiratory Diseases (CIBERES), Av. Monforte de Lemos 3–5, 28029 Madrid, Spain
| | - Laura Lagartera
- Institute of Medicinal Chemistry (IQM-CSIC), Calle Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Santiago Grijalvo
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Calle Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ramón Eritja
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Calle Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gustavo Puras
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.S.-R.); (I.V.-B.); (I.G.); (N.A.Q.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (G.P.); (J.L.P.); Tel.: +34-945014539 (G.P.); +34-945013091 (J.L.P.)
| | - José Luis Pedraz
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.S.-R.); (I.V.-B.); (I.G.); (N.A.Q.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av. Monforte de Lemos 3–5, 28029 Madrid, Spain; (S.G.); (R.E.)
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (G.P.); (J.L.P.); Tel.: +34-945014539 (G.P.); +34-945013091 (J.L.P.)
| |
Collapse
|
46
|
Mikheev AA, Shmendel EV, Nazarov GV, Maslov MA. Influence of Liposome Composition on Plasmid DNA Delivery to Eukaryotic Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Miele D, Xia X, Catenacci L, Sorrenti M, Rossi S, Sandri G, Ferrari F, Rossi JJ, Bonferoni MC. Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics 2021; 13:1716. [PMID: 34684009 PMCID: PMC8539707 DOI: 10.3390/pharmaceutics13101716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these drawbacks and ensure efficient delivery to target cells, viral and non-viral vectors are the two main approaches currently employed. Viral vectors are one of the major vehicles in gene therapy; however, the potent immunogenicity and the insertional mutagenesis is a potential issue for the patient. Non-viral vectors, such as polymeric nanocarriers, provide a safer and more efficient delivery of RNA-interfering molecules. The aim of this work is to employ PLGA core nanoparticles shell-coated with chitosan oleate as siRNA carriers. An siRNA targeted on HIV-1, directed against the viral Tat/Rev transcripts was employed as a model. The ionic interaction between the oligonucleotide's moieties, negatively charged, and the positive surface charges of the chitosan shell was exploited to associate siRNA and nanoparticles. Non-covalent bonds can protect siRNA from nuclease degradation and guarantee a good cell internalization and a fast release of the siRNA into the cytosolic portion, allowing its easy activation.
Collapse
Affiliation(s)
- Dalila Miele
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1218 Fifth Avenue, Duarte, CA 91010, USA;
| | - Laura Catenacci
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Milena Sorrenti
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Silvia Rossi
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Giuseppina Sandri
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - Franca Ferrari
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1218 Fifth Avenue, Duarte, CA 91010, USA;
| | - Maria Cristina Bonferoni
- Department Drug Sciences, University of Pavia, Vle Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (M.S.); (S.R.); (G.S.); (F.F.)
| |
Collapse
|
48
|
Pengnam S, Plianwong S, Yingyongnarongkul BE, Patrojanasophon P, Opanasopit P. Delivery of small interfering RNAs by nanovesicles for cancer therapy. Drug Metab Pharmacokinet 2021; 42:100425. [PMID: 34954489 DOI: 10.1016/j.dmpk.2021.100425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Small interfering ribonucleic acids (siRNAs) are originally recognized as an intermediate of the RNA interference (RNAi) pathway. They can inhibit or silence various cellular pathways by knocking down specific messenger RNA molecules. In cancer cells, siRNAs can suppress the expression of several multidrug-resistant genes, leading to the increased deposition of chemotherapeutic drugs at the tumor site. siRNA therapy can be used to selectively increase apoptosis of cancer cells or activate an immune response to the cancer. However, delivering siRNAs to the targeted location is the main limitation in achieving safe and effective delivery of siRNAs. This review highlights some representative examples of nonviral delivery systems, especially nanovesicles such as exosomes, liposomes, and niosomes. Nanovesicles can improve the delivery of siRNAs by increasing their intracellular delivery, and they have demonstrated excellent potential for cancer therapy. This review focuses on recent discoveries of siRNA targets for cancer therapy and the use of siRNAs to successfully silence these targets. In addition, this review summarizes the recent progress in designing nanovesicles (liposomes or niosomes) for siRNA delivery to cancer cells and the effects of a combination of anticancer drugs and siRNA therapy in cancer therapy.
Collapse
Affiliation(s)
- Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | | | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
49
|
Ravula V, Lo YL, Wang LF, Patri SV. Gemini Lipopeptide Bearing an Ultrashort Peptide for Enhanced Transfection Efficiency and Cancer-Cell-Specific Cytotoxicity. ACS OMEGA 2021; 6:22955-22968. [PMID: 34514266 PMCID: PMC8427783 DOI: 10.1021/acsomega.1c03620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Cationic gemini lipopeptides are a relatively new class of amphiphilic compounds to be used for gene delivery. Through the possibility of incorporating short peptides with cell-penetrating functionalities, these lipopeptides may be advantageous over traditional cationic lipids. Herein, we report the design, synthesis, and application of a novel cationic gemini lipopeptide for gene delivery. An ultrashort peptide, containing four amino acids, arginine-cysteine-cysteine-arginine, serves as a cationic head group, and two α-tocopherol moieties act as hydrophobic anchoring groups. The new lipopeptide (ATTA) is incorporated into the conventional liposomes, containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE), at different molar ratios. The formulated liposomes are characterized and screened for better transfection efficiency. Transfection activity in multiple human cell lines from cancerous and noncancerous origins indicates that the inclusion of an optimal ratio of ATTA in the liposomes substantially enhances the transfection efficiency, superior to that of a traditional liposome, DOTAP-DOPE. Cytotoxicity of ATTA-containing formulations against multiple cell lines indicates potentially distinct activity between cancer and noncancer cell lines. Furthermore, lipoplexes of the ATTA-containing formulations with anticancer therapeutic gene, plasmid encoding tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL), induce obviously more cytotoxicity than conventional formulations. The results indicate that arginine-rich cationic lipopeptide appears to be a promising ingredient in gene delivery vector formulations to enhance transfection efficiency and cell-selective cytotoxicity.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lun Lo
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Li-Fang Wang
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
- Department
of Medical Research, Kaohsiung Medical University
Hospital, Kaohsiung 80708, Taiwan
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology, Warangal 506004, India
| |
Collapse
|
50
|
Key considerations in formulation development for gene therapy products. Drug Discov Today 2021; 27:292-303. [PMID: 34500102 DOI: 10.1016/j.drudis.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/13/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Gene therapy emerged as an important area of research and led to the success of multiple product approvals in the clinic. The number of clinical trials for this class of therapeutics is expected to grow over the next decade. Gene therapy products are complex and heterogeneous, employ different types of vectors and are susceptible to degradation. The product development process for commercially viable gene-based pharmaceuticals remains challenging. In this review, challenges, stability, and drug product formulation development strategies using viral or non-viral vectors, as well as accelerated regulatory approval pathways for gene therapy products are discussed.
Collapse
|