1
|
Bezverkhniaia E, Kanellopoulos P, Rosenström U, Tolmachev V, Orlova A. Influence of Molecular Design on the Tumor Targeting and Biodistribution of PSMA-Binding Tracers Labeled with Technetium-99m. Int J Mol Sci 2024; 25:3615. [PMID: 38612427 PMCID: PMC11011439 DOI: 10.3390/ijms25073615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.
Collapse
Affiliation(s)
- Ekaterina Bezverkhniaia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden;
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (U.R.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
2
|
Bezverkhniaia E, Kanellopoulos P, Abouzayed A, Larkina M, Oroujeni M, Vorobyeva A, Rosenström U, Tolmachev V, Orlova A. Preclinical Evaluation of a Novel High-Affinity Radioligand [ 99mTc]Tc-BQ0413 Targeting Prostate-Specific Membrane Antigen (PSMA). Int J Mol Sci 2023; 24:17391. [PMID: 38139219 PMCID: PMC10743726 DOI: 10.3390/ijms242417391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Radionuclide imaging using radiolabeled inhibitors of prostate-specific membrane antigen (PSMA) can be used for the staging of prostate cancer. Previously, we optimized the Glu-urea-Lys binding moiety using a linker structure containing 2-napththyl-L-alanine and L-tyrosine. We have now designed a molecule that contains mercaptoacetyl-triglutamate chelator for labeling with Tc-99m (designated as BQ0413). The purpose of this study was to evaluate the imaging properties of [99mTc]Tc-BQ0413. PSMA-transfected PC3-pip cells were used to evaluate the specificity and affinity of [99mTc]Tc-BQ0413 binding in vitro. PC3-pip tumor-bearing BALB/C nu/nu mice were used as an in vivo model. [99mTc]Tc-BQ0413 bound specifically to PC3-pip cells with an affinity of 33 ± 15 pM. In tumor-bearing mice, the tumor uptake of [99mTc]Tc-BQ0413 (38 ± 6 %IA/g in PC3-pip 3 h after the injection of 40 pmol) was dependent on PSMA expression (3 ± 2 %IA/g and 0.9 ± 0.3 %IA/g in PSMA-negative PC-3 and SKOV-3 tumors, respectively). We show that both unlabeled BQ0413 and the commonly used binder PSMA-11 enable the blocking of [99mTc]Tc-BQ0413 uptake in normal PSMA-expressing tissues without blocking the uptake in tumors. This resulted in an appreciable increase in tumor-to-organ ratios. At the same injected mass (5 nmol), the use of BQ0413 was more efficient in suppressing renal uptake than the use of PSMA-11. In conclusion, [99mTc]Tc-BQ0413 is a promising probe for the visualization of PSMA-positive lesions using single-photon emission computed tomography (SPECT).
Collapse
Affiliation(s)
- Ekaterina Bezverkhniaia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (A.A.); (U.R.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634009 Tomsk, Russia;
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, 634050 Tomsk, Russia
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (A.A.); (U.R.)
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (A.A.); (U.R.)
| | - Mariia Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634009 Tomsk, Russia;
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, 634050 Tomsk, Russia
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (M.O.); (A.V.); (V.T.)
- Affibody AB, 171 65 Solna, Sweden
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (M.O.); (A.V.); (V.T.)
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (A.A.); (U.R.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (M.O.); (A.V.); (V.T.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (E.B.); (P.K.); (A.A.); (U.R.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
3
|
Radiosynthesis, optimization and pharmacokinetic study of the 99m Tc-labeled human epidermal growth factor receptor 2 affibody molecule probe 99m Tc-(HE) 3 Z HER2:V2. Nucl Med Commun 2023; 44:244-251. [PMID: 36598155 PMCID: PMC9994805 DOI: 10.1097/mnm.0000000000001660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To prepare a single-photon molecular probe easily labeled with 99m Tc for evaluating the expression status of the human epidermal growth factor receptor 2 (HER2) receptor in ovarian cancer. MATERIALS AND METHODS The HEHEHE tag was added to the amino terminus of the affibody Z HER2:V2 by the method of gene recombinant expression, and a new affibody was synthesized which was easy to be labeled with 99m Tc. The newly prepared affibody was labeled with 99m Tc, and pharmacokinetic studies were carried out. RESULTS A new affibody (HE) 3 Z HER2:V2 was prepared by the method of gene recombination and expression, which is easy to be labeled with 99m Tc. The 99m Tc labeling of the affibody can reach about 95% at 90°C. The pharmacokinetic study has shown that the 99m Tc-labeled molecular probe has a fast clearance time in the blood and little side effect, which may be a promising single-photon emission computed tomography (SPECT) imaging agent. CONCLUSION The affibody (HE) 3 Z HER2:V2 is easy to be labeled with 99m Tc, has a high yield and has a suitable half-life in vivo, which is suitable for the next step in ovarian cancer model imaging research.
Collapse
|
4
|
Liu S, Tong Z, Jiang C, Gao C, Liu B, Mu X, Xu J, Du B, Liu Z, Wang J, Xu J. Ultra-sensitive electrochemiluminescence biosensor for abrin detection based on dual-labeled phage display affibodies and polystyrene nanospheres. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Bostock C, Teal CJ, Dang M, Golinski AW, Hackel BJ, Shoichet MS. Affibody-mediated controlled release of fibroblast growth factor 2. J Control Release 2022; 350:815-828. [PMID: 36087800 DOI: 10.1016/j.jconrel.2022.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Protein therapeutics possess high target affinity and specificity, yet short residence times, which limit their broad utility. To overcome this challenge, we used affinity interactions to modulate protein release from a hydrogel delivery vehicle thereby prolonging therapeutic availability. Specifically, we designed an affibody-modified hyaluronan (HA)-based hydrogel as a delivery platform for fibroblast growth factor 2 (FGF2), a neuroprotective and neuroregenerative factor in the central nervous system (CNS). We identified a highly specific affibody binding partner with moderate affinity for FGF2 using yeast surface display and flow cytometry-based screening. Importantly, we demonstrated controlled release of bioactive FGF2 from the hydrogel by varying the ratio of affibody to protein and showed increased thermal stability of FGF2 in the presence of affibody. This versatile delivery platform will allow the distinct, simultaneous release of multiple proteins based on specific affinity interactions.
Collapse
Affiliation(s)
- Chiara Bostock
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Carter J Teal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Alex W Golinski
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue Southeast, 356 Amundson Hall, Minneapolis, MN 55455, United States
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada; Institute of Biomedical Engineering, 164 College Street, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
6
|
Hu X, Li D, Fu Y, Zheng J, Feng Z, Cai J, Wang P. Advances in the Application of Radionuclide-Labeled HER2 Affibody for the Diagnosis and Treatment of Ovarian Cancer. Front Oncol 2022; 12:917439. [PMID: 35785201 PMCID: PMC9240272 DOI: 10.3389/fonc.2022.917439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a highly expressed tumor marker in epithelial ovarian cancer, and its overexpression is considered to be a potential factor of poor prognosis. Therefore, monitoring the expression of HER2 receptor in tumor tissue provides favorable conditions for accurate localization, diagnosis, targeted therapy, and prognosis evaluation of cancer foci. Affibody has the advantages of high affinity, small molecular weight, and stable biochemical properties. The molecular probes of radionuclide-labeled HER2 affibody have recently shown broad application prospects in the diagnosis and treatment of ovarian cancer; the aim is to introduce radionuclides into the cancer foci, display systemic lesions, and kill tumor cells through the radioactivity of the radionuclides. This process seamlessly integrates the diagnosis and treatment of ovarian cancer. Current research and development of new molecular probes of radionuclide-labeled HER2 affibody should focus on overcoming the deficiencies of non-specific uptake in the kidney, bone marrow, liver, and gastrointestinal tract, and on reducing the background of the image to improve image quality. By modifying the amino acid sequence; changing the hydrophilicity, surface charge, and lipid solubility of the affibody molecule; and using different radionuclides, chelating agents, and labeling conditions to optimize the labeling method of molecular probes, the specific uptake of molecular probes at tumor sites will be improved, while reducing radioactive retention in non-target organs and obtaining the best target/non-target value. These measures will enable the clinical use of radionuclide-labeled HER2 affibody molecular probes as soon as possible, providing a new clinical path for tumor-specific diagnosis, targeted therapy, and efficacy evaluation. The purpose of this review is to describe the application of radionuclide-labeled HER2 affibody in the imaging and treatment of ovarian cancer, including its potential clinical value and dilemmas.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Yujie Fu
- Research and Development Department, Jiangsu Yuanben Biotechnology Co., Ltd., Zunyi, China
| | - Jiashen Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zelong Feng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| |
Collapse
|
7
|
Tolmachev VM, Chernov VI, Deyev SM. Targeted nuclear medicine. Seek and destroy. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Siavoshinia L, Kheirollah A, Zeinali M, Barzegari E, Jamalan M. Combinatorial in silico and in vivo evaluation of immune response elicitation by the affibody Z HER2. Int Immunopharmacol 2021; 101:108368. [PMID: 34857479 DOI: 10.1016/j.intimp.2021.108368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Due to the high affinity for binding to target molecules and also other unique attributes, affibodies have a great potential to be used in immunotherapeutic and diagnostic approaches. However, the possibility of undesirable immune response is still a great concern. In the current study, we investigated the possible antigenicity, allergenicity and cytotoxicity of the HER2-targeting affibody ZHER2. The binding affinity of potential epitopes of the affibody to murine major histocompatibility complex (MHC) molecules was investigated by immunoinformatics tools and docking approaches. The possible interaction of ZHER2 with human leukocyte antigens HLA-DP, HLA-DM, HLA-DQ and HLA-DR was also studied by protein-protein docking. Additionally, the synthesized affibody gene was expressed and the protein was purified for boosted immunization of Balb/c mice. Induced secretion of IFN-γ, IL-2, IL-4 and IL-10, and total serum IgG were assessed in the immunized mice. Furthermore, MTT cell viability test was performed to evaluate the cytotoxicity of ZHER2 in splenocytes of the treated mice. In silico analyses showed the possible induction of the immune response by ZHER2. While the affibody could elicit the secretion of cellular immune cytokines, it could not induce a significant humoral response in the treated mice and did not show any cytotoxic effects on the exposed splenocytes. These findings explain the practicability of ZHER2 for therapeutic and in vivo diagnostic usages, though its ubiquitous application may need more studies.
Collapse
Affiliation(s)
- Leila Siavoshinia
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Science, Medical School, Ahvaz, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
9
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Jeong K, Kong SH, Bae SW, Park CR, Berlth F, Shin JH, Lee YS, Youn H, Koo E, Suh YS, Park DJ, Lee HJ, Yang HK. Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer. J Gastric Cancer 2021; 21:191-202. [PMID: 34234980 PMCID: PMC8255305 DOI: 10.5230/jgc.2021.21.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6–8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2–3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.
Collapse
Affiliation(s)
- Kyoungyun Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Woo Bae
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Cho Rong Park
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Felix Berlth
- Department of General, Visceral and Transplant Surgery, University of Mainz, Mainz, Germany
| | - Jae Hwan Shin
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine Seoul, Korea
| | - Yun-Sang Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine Seoul, Korea
| | - Hyewon Youn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eunhee Koo
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Do Joong Park
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Oroujeni M, Rinne SS, Vorobyeva A, Loftenius A, Feldwisch J, Jonasson P, Chernov V, Orlova A, Frejd FY, Tolmachev V. Preclinical Evaluation of 99mTc-ZHER2:41071, a Second-Generation Affibody-Based HER2-Visualizing Imaging Probe with a Low Renal Uptake. Int J Mol Sci 2021; 22:ijms22052770. [PMID: 33803361 PMCID: PMC7967187 DOI: 10.3390/ijms22052770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Radionuclide imaging of HER2 expression in tumours may enable stratification of patients with breast, ovarian, and gastroesophageal cancers for HER2-targeting therapies. A first-generation HER2-binding affibody molecule [99mTc]Tc-ZHER2:V2 demonstrated favorable imaging properties in preclinical studies. Thereafter, the affibody scaffold has been extensively modified, which increased its melting point, improved storage stability, and increased hydrophilicity of the surface. In this study, a second-generation affibody molecule (designated ZHER2:41071) with a new improved scaffold has been prepared and characterized. HER2-binding, biodistribution, and tumour-targeting properties of [99mTc]Tc-labelled ZHER2:41071 were investigated. These properties were compared with properties of the first-generation affibody molecules, [99mTc]Tc-ZHER2:V2 and [99mTc]Tc-ZHER2:2395. [99mTc]Tc-ZHER2:41071 bound specifically to HER2 expressing cells with an affinity of 58 ± 2 pM. The renal uptake for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 was 25–30 fold lower when compared with [99mTc]Tc-ZHER2:2395. The uptake in tumour and kidney for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 in SKOV-3 xenografts was similar. In conclusion, an extensive re-engineering of the scaffold did not compromise imaging properties of the affibody molecule labelled with 99mTc using a GGGC chelator. The new probe, [99mTc]Tc-ZHER2:41071 provided the best tumour-to-blood ratio compared to HER2-imaging probes for single photon emission computed tomography (SPECT) described in the literature so far. [99mTc]Tc-ZHER2:41071 is a promising candidate for further clinical translation studies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Female
- Humans
- Kidney/diagnostic imaging
- Kidney/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/diagnostic imaging
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Radiopharmaceuticals/chemical synthesis
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Radiopharmaceuticals/pharmacology
- Receptor, ErbB-2/metabolism
- Technetium/chemistry
- Technetium/pharmacokinetics
- Technetium/pharmacology
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | | | | | - Per Jonasson
- Affibody AB, 171 65 Solna, Sweden; (A.L.); (J.F.); (P.J.)
| | - Vladimir Chernov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Correspondence: ; Tel.: +46-073-9922846
| | - Fredrik Y. Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
- Affibody AB, 171 65 Solna, Sweden; (A.L.); (J.F.); (P.J.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (M.O.); (A.V.); (F.Y.F.); (V.T.)
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden;
| |
Collapse
|
12
|
Preclinical Evaluation of 99mTc-Labeled GRPR Antagonists maSSS/SES-PEG 2-RM26 for Imaging of Prostate Cancer. Pharmaceutics 2021; 13:pharmaceutics13020182. [PMID: 33573232 PMCID: PMC7912279 DOI: 10.3390/pharmaceutics13020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Gastrin-releasing peptide receptor (GRPR) is an important target for imaging of prostate cancer. The wide availability of single-photon emission computed tomography/computed tomography (SPECT/CT) and the generator-produced 99mTc can be utilized to facilitate the use of GRPR-targeting radiotracers for diagnostics of prostate cancers. METHODS Synthetically produced mercaptoacetyl-Ser-Ser-Ser (maSSS)-PEG2-RM26 and mercaptoacetyl-Ser-Glu-Ser (maSES)-PEG2-RM26 (RM26 = d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) were radiolabeled with 99mTc and characterized in vitro using PC-3 cells and in vivo, using NMRI or PC-3 tumor bearing mice. SPECT/CT imaging and dosimetry calculations were performed for [99mTc]Tc-maSSS-PEG2-RM26. RESULTS Peptides were radiolabeled with high yields (>98%), demonstrating GRPR specific binding and slow internalization in PC-3 cells. [99mTc]Tc-maSSS-PEG2-RM26 outperformed [99mTc]Tc-maSES-PEG2-RM26 in terms of GRPR affinity, with a lower dissociation constant (61 pM vs 849 pM) and demonstrating higher tumor uptake. [99mTc]Tc-maSSS-PEG2-RM26 had tumor-to-blood, tumor-to-muscle, and tumor-to-bone ratios of 97 ± 56, 188 ± 32, and 177 ± 79, respectively. SPECT/CT images of [99mTc]Tc-maSSS-PEG2-RM26 clearly visualized the GRPR-overexpressing tumors. The dosimetry estimated for [99mTc]Tc-maSSS-PEG2-RM26 showed the highest absorbed dose in the small intestine (1.65 × 10-3 mGy/MBq), and the effective dose is 3.49 × 10-3 mSv/MBq. CONCLUSION The GRPR antagonist maSSS-PEG2-RM26 is a promising GRPR-targeting agent that can be radiolabeled through a single-step with the generator-produced 99mTc and used for imaging of GRPR-expressing prostate cancer.
Collapse
|
13
|
Shipunova VO, Komedchikova EN, Kotelnikova PA, Zelepukin IV, Schulga AA, Proshkina GM, Shramova EI, Kutscher HL, Telegin GB, Kabashin AV, Prasad PN, Deyev SM. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS NANO 2020; 14:12781-12795. [PMID: 32935975 DOI: 10.1021/acsnano.0c03421] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.
Collapse
Affiliation(s)
- Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Elena N Komedchikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
- Department of Medicine, University at Buffalo, 875 Ellicott Street, Buffalo, New York 14203, United States
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite 550, Buffalo, New York 14203, United States
| | - Georgij B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Aix Marseille University, CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France
| | - Paras N Prasad
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
14
|
Barozzi A, Lavoie RA, Day KN, Prodromou R, Menegatti S. Affibody-Binding Ligands. Int J Mol Sci 2020; 21:ijms21113769. [PMID: 32471034 PMCID: PMC7312911 DOI: 10.3390/ijms21113769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023] Open
Abstract
While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody-peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 μM), recovery and purity (64-71% and 86-91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes.
Collapse
Affiliation(s)
- Annalisa Barozzi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - R. Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Kevin N. Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; (A.B.); (R.A.L.); (K.N.D.); (R.P.)
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA
- Correspondence: ; Tel.: +1-919-753-3276
| |
Collapse
|
15
|
Oroujeni M, Abouzayed A, Lundmark F, Mitran B, Orlova A, Tolmachev V, Rosenström U. Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart. Pharmaceutics 2019; 11:pharmaceutics11080380. [PMID: 31382362 PMCID: PMC6724035 DOI: 10.3390/pharmaceutics11080380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized. To test this hypothesis, tyrosine was conjugated via diethylene glycol linker to N-terminus of an antagonistic bombesin analogue RM26 to form Tyr-PEG2-RM26. [111In]In-DOTA-PEG2-RM26 was used as a control with a residualizing label. Tyr-PEG2-RM26 was labelled with 125I with 95% radiochemical purity and retained binding specificity to GRPR. The IC50 values for Tyr-PEG2-RM26 and DOTA-PEG2-RM26 were 1.7 ± 0.3 nM and 3.3 ± 0.5 nM, respectively. The cellular processing of [125I]I-Tyr-PEG2-RM26 by PC-3 cells showed unusually fast internalization. Biodistribution showed that uptake in pancreas and tumour was GRPR-specific for both radioconjugates. Blood clearance of [125I]I-Tyr-PEG2-RM26 was appreciably slower and activity accumulation in all organs was significantly higher than for [111In]In-DOTA-PEG2-RM26. Tumor uptake of [111In]In-DOTA-PEG2-RM26 was significantly higher than for [125I]I-Tyr-PEG2-RM26, resulting in higher tumour-to-organ ratio for [111In]In-DOTA-PEG2-RM26 at studied time points. Incorporation of amino acids with hydrophilic side-chains next to tyrosine might overcome the problems associated with the use of tyrosine as a prosthetic group for radioiodination.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-750 03 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
16
|
Yang Y, Zhao X, Xing Y, Yu T, Zhang J, Wang J. Preclinical evaluation of 99mTc direct labeling Z HER2:V2 for HER2 positive tumors imaging. Oncol Lett 2018; 16:5361-5366. [PMID: 30250607 DOI: 10.3892/ol.2018.9279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/27/2018] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to label ZHER2:V2 with technetium-99m (99mTc) using a simple method and to evaluate its clinical potential as a diagnostic probe for human epidermal growth factor receptor type 2 (HER2)-positive tumors. The ZHER2:V2 (Affibody molecule of ZHER2:2395-C, which is based on the ZHER2:342 binding sequence with C-terminal engineered cysteine) with C-terminal chelating sequence GGGC was designed and labeled with 99mTc. The 99mTc-ZHER2:V2 labeling efficiency was analyzed. The cellular uptake, retention and binding affinity, and the stability of the probe were examined in vitro. 99mTc-ZHER2:V2 biodistribution analysis and imaging were performed in BALB/c nude mice bearing SKOV3 (HER2-overexpression) xenografts. Furthermore, imaging of the probe was performed in MCF-7 (HER2 low-expression) xenografts. The 99mTc-ZHER2:V2 labeling efficiency was identified as 98.99±0.99% (n=6), and was stable in physiological saline and fresh human serum at 37°C in vitro. The cellular uptake peak of SKOV3 cells at 24 h was 6.15±0.18%, the cellular retention ratio of the probe was 48.58±4.52% at 6 h following interrupted incubation, and ~70% of 99mTc-ZHER2:V2 was membrane bound following 24 h. 99mTc-ZHER2:V2 was blocked by excess amounts of unlabeled ZHER2:V2 in SKOV3 cells. 99mTc-ZHER2:V2 exhibited high distribution (10.07% ID/g) in SKOV3 ×enografts at 6 h following injection. The single photon emission computed tomography (SPECT) imaging revealed clear localization of 99mTc-ZHER2:V2 in the SKOV3 ×enografts at 4 h. However, there was low uptake in MCF-7 tumors on the SPECT images. The SKOV3 ×enograft imaging could be blocked by excess amounts unlabelled ZHER2:V2. 99mTc-ZHER2:V2 is an easy and quick labeling method, with high labeling yields, and radiochemical purity. 99mTc-ZHER2:V2 is a promising probe for the diagnosis of HER2-overexpression tumors and the monitoring of therapy response.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University and The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu Xing
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tianying Yu
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
17
|
Jiang P, Wang L, Hou B, Zhu J, Zhou M, Jiang J, Wang L, Chen S, Zhu S, Chen J, Zhang L. A novel HPV16 E7-affitoxin for targeted therapy of HPV16-induced human cervical cancer. Am J Cancer Res 2018; 8:3544-3558. [PMID: 30026865 PMCID: PMC6037027 DOI: 10.7150/thno.24607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer, the second most common cause of cancer death in women worldwide, is significantly associated with infection of high-risk human papillomaviruses (HPVs), especially the most common genotype, HPV 16. To date, there is no established noninvasive therapy to treat cervical cancer. Methods: Here, we report a novel affitoxin that targets HPV16 E7 protein, one of the primary target proteins in molecular targeted therapy for HPV-induced cervical cancer. The affitoxin, ZHPV16E7 affitoxin384 was generated by fusing the modified Pseudomonas Exotoxin A (PE38KDEL) to the HPV16 E7-specific affibody. The expressed and purified ZHPV16E7 affitoxin384 was characterized using numerous methods. SPR assay, indirect immunofluorescence assay, and near-infrared (NIR) optical imaging were respectively performed to assess the targeting ability of ZHPV16E7 affitoxin384 to HPV16 E7 protein both in vitro and in vivo. Cell viability assays and SiHa tumor-bearing nude mice were used to evaluate the efficacy of ZHPV16 E7 affitoxin384 in vitro and in vivo, respectively. Results: Using in vitro methods the SPR assay and indirect immunofluorescence assay showed that ZHPV16E7 affitoxin384 targeted HPV16 E7 with high binding affinity and specificity. Significant reduction of cell viability in HPV16 positive cells was observed in the presence of ZHPV16 E7 affitoxin384. By NIR optical imaging, ZHPV16 E7 affitoxin384 specifically targeted HPV16 positive tumors in vivo. ZHPV16E7 affitoxin384 showed significant in vivo antitumor efficacy in two kinds of tumor-bearing nude mouse models. Conclusions: ZHPV16E7 affitoxin384 is a potent anti-cervical cancer therapeutic agent that could be effective against HPV16 positive tumors in humans.
Collapse
|
18
|
Pruszynski M, Kang CM, Koumarianou E, Vaidyanathan G, Zalutsky MR. d-Amino Acid Peptide Residualizing Agents for Protein Radioiodination: Effect of Aspartate for Glutamate Substitution. Molecules 2018; 23:molecules23051223. [PMID: 29783774 PMCID: PMC6099567 DOI: 10.3390/molecules23051223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
The residualizing prosthetic agent Nε-(3-[*I]iodobenzoyl)-Lys5-Nα-maleimido-Gly1-d-GEEEK ([*I]IB-Mal-d-GEEEK) showed promise for the radioiodination of monoclonal antibodies (mAbs) that bind to internalizing molecular targets. Although enhanced tumor uptake was achieved in these studies, elevated kidney accumulation also was observed, particularly with low-molecular-weight, single-domain antibody fragments (sdAbs). Here, we developed an analogous agent (IB-Mal-d-GDDDK), in which glutamate residues (E) were replaced with aspartates (D) to determine whether this modification could decrease renal uptake. [125I]IB-Mal-d-GDDDK and [131I]IB-Mal-d-GEEEK were synthesized with similar radiochemical yields (60–80%) and coupled to the anti-HER2 sdAb 5F7 at 50–60% efficiency. Paired-label internalization assays in vitro indicated similar levels of intracellular activity residualization in HER2-expressing BT474M1 cells for [125I]IB-Mal-d-GDDDK-5F7 and [131I]IB-Mal-d-GEEEK-5F7. A paired-label biodistribution comparison of the two labeled conjugates was performed in mice with HER2-expressing SKOV-3 xenografts, and the results of this study indicated that renal uptake at 1 h was 127.5 ± 18.7% ID/g and 271.4 ± 66.6% ID/g for [125I]IB-Mal-d-GDDDK-5F7 and [131I]IB-Mal-d-GEEEK-5F7, respectively. The tumor uptake of the two radioconjugates was not significantly different. These results demonstrate that substitution of E with D in the IB-Mal-d-GEEEK construct reduced kidney accumulation of the sdAb. However, renal activity levels need to be reduced further if d-amino acid derived prosthetic agents are to be of practical value for labeling low molecular weight biomolecules such as sdAbs.
Collapse
Affiliation(s)
- Marek Pruszynski
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
- Present address: Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland.
| | - Choong Mo Kang
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
- Present address: Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Eftychia Koumarianou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
- Present address: Laboratory for Translational and Molecular Imaging, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Case BA, Kruziki MA, Johnson SM, Hackel BJ. Engineered Charge Redistribution of Gp2 Proteins through Guided Diversity for Improved PET Imaging of Epidermal Growth Factor Receptor. Bioconjug Chem 2018; 29:1646-1658. [PMID: 29579383 PMCID: PMC6051758 DOI: 10.1021/acs.bioconjchem.8b00144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Gp2 domain is a protein scaffold for synthetic ligand engineering. However, the native protein function results in a heterogeneous distribution of charge on the conserved surface, which may hinder further development and utility. We aim to modulate charge, without diminishing function, which is challenging in small proteins where each mutation is a significant fraction of protein structure. We constructed rationally guided combinatorial libraries with charge-neutralizing or charge-flipping mutations and sorted them, via yeast display and flow cytometry, for stability and target binding. Deep sequencing of functional variants revealed effective mutations both in clone-dependent contexts and broadly across binders to epidermal growth factor receptor (EGFR), insulin receptor, and immunoglobulin G. Functional mutants averaged 4.3 charge neutralizing mutations per domain while maintaining net negative charge. We evolved an EGFR-targeted Gp2 mutant that reduced charge density by 33%, maintained net charge, and improved charge distribution homogeneity while elevating thermal stability ( Tm = 87 ± 1 °C), improving binding specificity, and maintaining affinity ( Kd = 8.8 ± 0.6 nM). This molecule was conjugated with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid for 64Cu chelation and evaluated for physiological distribution in mice with xenografted A431 (EGFRhigh) and MDA-MB-435 (EGFRlow) tumors. Excised tissue gamma counting and positron emission tomography/computed tomography imaging revealed good EGFRhigh tumor signal (4.7 ± 0.5%ID/g) at 2 h post-injection and molecular specificity evidenced by low uptake in EGFRlow tumors (0.6 ± 0.1%ID/g, significantly lower than for non-charge-modified Gp2, p = 0.01). These results provide charge mutations for an improved Gp2 framework, validate an effective approach to charge engineering, and advance performance of physiological EGFR targeting for molecular imaging.
Collapse
Affiliation(s)
- Brett A. Case
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Max A. Kruziki
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Sadie M. Johnson
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| | - Benjamin J. Hackel
- University of Minnesota – Twin Cities, Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, MN 55455
| |
Collapse
|
20
|
Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules. Amino Acids 2018; 50:981-994. [PMID: 29728916 PMCID: PMC6060960 DOI: 10.1007/s00726-018-2571-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of 99mTc, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The 99mTc-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.
Collapse
|
21
|
Tolmachev V, Grönroos TJ, Yim CB, Garousi J, Yue Y, Grimm S, Rajander J, Perols A, Haaparanta-Solin M, Solin O, Ferdani R, Orlova A, Anderson CJ, Karlström AE. Molecular design of radiocopper-labelled Affibody molecules. Sci Rep 2018; 8:6542. [PMID: 29695813 PMCID: PMC5916907 DOI: 10.1038/s41598-018-24785-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The use of long-lived positron emitters 64Cu or 61Cu for labelling of Affibody molecules may improve breast cancer patients’ stratification for HER-targeted therapy. Previous animal studies have shown that the use of triaza chelators for 64Cu labelling of synthetic Affibody molecules is suboptimal. In this study, we tested a hypothesis that the use of cross-bridged chelator, CB-TE2A, in combination with Gly-Glu-Glu-Glu spacer for labelling of Affibody molecules with radiocopper would improve imaging contrast. CB-TE2A was coupled to the N-terminus of synthetic Affibody molecules extended either with a glycine (designation CB-TE2A-G-ZHER2:342) or Gly-Glu-Glu-Glu spacer (CB-TE2A-GEEE-ZHER2:342). Biodistribution and targeting properties of 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-CB-TE2A-GEEE-ZHER2:342 were compared in tumor-bearing mice with the properties of 64Cu-NODAGA-ZHER2:S1, which had the best targeting properties in the previous study. 64Cu-CB-TE2A-GEEE-ZHER2:342 provided appreciably lower uptake in normal tissues and higher tumor-to-organ ratios than 64Cu-CB-TE2A-G-ZHER2:342 and 64Cu-NODAGA-ZHER2:S1. The most pronounced was a several-fold difference in the hepatic uptake. At the optimal time point, 6 h after injection, the tumor uptake of 64Cu-CB-TE2A-GEEE-ZHER2:342 was 16 ± 6%ID/g and tumor-to-blood ratio was 181 ± 52. In conclusion, a combination of the cross-bridged CB-TE2A chelator and Gly-Glu-Glu-Glu spacer is preferable for radiocopper labelling of Affibody molecules and, possibly, other scaffold proteins having high renal re-absorption.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ying Yue
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sebastian Grimm
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Rajander
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Anna Perols
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Merja Haaparanta-Solin
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| | | | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Carolyn J Anderson
- Departments of Medicine, Radiology, Bioengineering and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | | |
Collapse
|
22
|
Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Med Res Rev 2018; 38:1837-1873. [PMID: 29635825 DOI: 10.1002/med.21498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Newly developed protein drugs that target tumor-associated antigens are often modified in order to increase their therapeutic effect, tumor exposure, and safety profile. During the development of protein drugs, molecular imaging is increasingly used to provide additional information on their in vivo behavior. As a result, there are increasing numbers of studies that demonstrate the effect of protein modification on whole body distribution and tumor uptake of protein drugs. However, much still remains unclear about how to interpret obtained biodistribution data correctly. Consequently, there is a need for more insight in the correct way of interpreting preclinical and clinical imaging data. Summarizing the knowledge gained to date may facilitate this interpretation. This review therefore provides an overview of specific protein properties and modifications that can affect biodistribution and tumor uptake of anticancer antibodies, antibody fragments, and nonimmunoglobulin scaffolds. Protein properties that are discussed in this review are molecular size, target interaction, FcRn binding, and charge. Protein modifications that are discussed are radiolabeling, fluorescent labeling drug conjugation, glycosylation, humanization, albumin binding, and polyethylene glycolation.
Collapse
Affiliation(s)
- Frank-Jan Warnders
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos G W Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,PharmacoTherapy, Epidemiology & Economy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Case BA, Kruziki MA, Stern LA, Hackel BJ. Evaluation of affibody charge modification identified by synthetic consensus design in molecular PET imaging of epidermal growth factor receptor. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2018; 3:171-182. [PMID: 31467687 PMCID: PMC6715147 DOI: 10.1039/c7me00095b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor overexpression of epidermal growth factor receptor (EGFR) correlates to therapeutic response in select patient populations. Thus, molecular positron emission tomography (PET) imaging of EGFR could stratify responders versus non-responders. We previously demonstrated effectiveness of a "synthetic consensus" design principle to identify six neutralizing mutations within a 58-amino acid EGFR-targeted affibody domain. Herein, we extend the approach to identify additional neutralized variants that vary net charge from -2 to either -4 or +4 while retaining high affinity (1.6 ± 1.2 nM and 2.5 ± 0.7 nM), specific binding to EGFR, secondary structure, and stability (Tm = 68 °C and 59 °C). We radiolabeled the resultant collection of five charge variants with 64Cu and evaluated PET imaging performance in murine models with subcutaneously xenografted EGFRhigh and EGFRlow tumors. All variants exhibited good EGFRhigh tumor imaging as early as 1 h, with EA35S (+3/-5) achieving 7.7 ± 1.4 %ID/g tumor at 4 h with 1.5 ± 0.3%ID/g EGFRlow tumor, 34 ± 5 tumor:muscle and 12 ± 3 tumor:blood ratios. The positively charged EA62S mutant (+6/-2) exhibited 2.2-3.3-fold higher liver signal than the other variants (p<0.01). The EA68 variant with higher charge density was more stable to human and mouse serum than neutralized variants. In a comparison of radiometal chelators, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) exhibited superior physiological specificity to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). In total, these studies comparatively evaluated a set of EGFR-targeted affibodies varying in net charge and charge density, which revealed functional variations that are useful in engineering an ideal probe for translational studies.
Collapse
Affiliation(s)
- Brett A Case
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Max A Kruziki
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
24
|
Decorated Superparamagnetic Iron Oxide Nanoparticles with Monoclonal Antibody and Diethylene-Triamine-Pentaacetic Acid Labeled with Thechnetium-99m and Galium-68 for Breast Cancer Imaging. Pharm Res 2018; 35:24. [PMID: 29305666 DOI: 10.1007/s11095-017-2320-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE In this study we developed and tested an iron oxide nanoparticle conjugated with DTPA and Trastuzumab, which can efficiently be radiolabeled with 99m-Tc and Ga-68, generating a nanoradiopharmaceutical agent to be used for SPECT and PET imaging. METHODS The production of iron oxide nanoparticle conjugated with DTPA and Trastuzumab was made using phosphorylethanolamine (PEA) surface modification. Both radiolabeling process was made by the direct radiolabeling of the nanoparticles. The in vivo assay was done in female Balb/c nude mice xenografted with breast cancer. Also a planar imaging using the radiolabeled nanoparticle was performed. RESULTS No thrombus and immune response leading to unwanted interaction and incorporation of nanoparticles by endothelium and organs, except filtration by the kidneys, was observed. In fact, more than 80% of 99mTc-DTPA-TZMB@Fe3O4 nanoparticles seems to be cleared by the renal pathway but the implanted tumor whose seems to increase the expression of HER2 receptors enhancing the uptake by all other organs. CONCLUSION However, even in this unfavorable situation the tumor bioconcentrated much larger amounts of the nano-agent than normal tissues giving clear enough contrast for breast cancer imaging for diagnostics purpose by both SPECT and PET technique. Graphical Abstract ᅟ.
Collapse
|
25
|
Mushtaq S, Rho JK, Kang JA, Lee JJ, Kim JY, Nam YR, Yun SJ, Lee GH, Park SH, Lee DE, Kim HS. Radiolabeling and preliminary biodistribution study of 99mTc-labeled antibody-mimetic scaffold protein repebody for initial clearance properties. Bioorg Med Chem Lett 2017; 27:5060-5064. [PMID: 29042166 DOI: 10.1016/j.bmcl.2017.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Antibody-mimetic proteins are intensively being developed for biomedical applications including tumor imaging and therapy. Among them, repebody is a new class of protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine (His6)-tag bearing repebody (rEgH9) was labeled with [99mTc]-tricarbonyl, and biodistribution was performed following intravenous (I.V.) or intraperitoneal (I.P.) injection. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. Biodistribution data indicates radiotracer has a rapid clearance from blood and excreted through the kidneys for intravenous (I.V.) injection, but comparatively slow clearance for an intraperitoneal (I.P.) injection. SPECT-CT images were found to be in agreement with biodistribution data, high activity was found inside kidneys. The observed result for rapid blood clearance and renal excretion of repebody (rEgH9) provide useful information for the further development of therapeutic strategy.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, Korea University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Jong Kook Rho
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Jung Ae Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Joong-Jae Lee
- Department of Biological Sciences, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Young Kim
- Department of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - You Ree Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Seong-Jae Yun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Gyeong Hee Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Sang Hyun Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeonbuk 580-185, Republic of Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advance Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
26
|
De A, Kuppusamy G, Karri VVSR. Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer. Int J Biol Macromol 2017; 107:906-919. [PMID: 28935537 DOI: 10.1016/j.ijbiomac.2017.09.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/29/2022]
Abstract
Breast cancer is one of the leading reasons for the morbidity and mortality of cancer related death globally. The modern therapies are basically the combination of the breast-preserving surgeries or ablation with or without node biopsy or destroying the carcinoma cells adjuvant with chemotherapy, radiotherapy, hormonal or biological therapies depending upon the nature of the receptor of the cancerous cells, nature of the lymph node, as well as the tendency of the recurrence. For decade's carcinoma management suffered by the limitation of imagining, targeting and penetrability problem associated with management and cure of this deadly disease leads to unwanted chemo-toxicity and side effects. Alike other antibody mimetics, affibodies are designed with the combinatorial protein engineering approaches which are small and robust protein scaffolds retaining the favorable folding and stability. Affibody is one of the significantly important tools for imaging and diagnosis of the affinity specific over expressed proteins in the breast cancer management. The review summarizes the various affibody strategies uses in the management of breast cancer.
Collapse
Affiliation(s)
- Anindita De
- JSS College of Pharmacy, Ootacamund, Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | - Gowthamarajan Kuppusamy
- JSS College of Pharmacy, Ootacamund, Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | | |
Collapse
|
27
|
Zhang MZ, Guan YX, Zhong JX, Chen XZ. Preparation and Identification of HER2 Radioactive Ligands and Imaging Study of Breast Cancer-Bearing Nude Mice. Transl Oncol 2017; 10:518-526. [PMID: 28558265 PMCID: PMC5447658 DOI: 10.1016/j.tranon.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE: A micro-molecule peptide TP1623 of 99mTc-human epithelial growth factor receptor 2 (HER2) was prepared and the feasibility of using it as a HER2-positive molecular imaging agent for breast cancer was evaluated. METHODS: TP1623 was chemically synthesized and labeled with 99mTc. The labeling ratio and stability were detected. HER2 expression levels of breast cancer cells (SKBR3 and MDA-MB-231) and cell binding activity were measured. Biodistribution of 99mTC-TP1623 in normal mice was detected. SKBR3/MDA-MB-231-bearing nude mice models with high/low expressions of HER2 were established. Tumor tissues were stained with hematoxylin–eosin (HE) and measured by immunohistochemistry to confirm the formation of tumors and HER2 expression. SPECT imaging was conducted for HER2-overexpressing SKBR3-bearing nude mice. The T/NT ratio was calculated and compared with that of MDA-MB-231-bearing nude mice with low HER2 expression. The competitive inhibition image was used to discuss the specific binding of 99mTc- TP1623 and the tumor. RESULTS: The labeling ratio of 99mTc-TP1623, specific activity, and radiochemical purity (RCP) after 6 h at room temperature were (97.39 ± 0.23)%, (24.61 ± 0.06) TBq/mmol, and (93.25 ± 0.06)%, respectively. HER2 of SKBR3 and MDA-MB-231 cells showed high and low expression levels by immunohistochemistry, respectively. The in vitro receptor assays indicated that specific binding of TP1623 and HER2 was retained. Radioactivity in the brain was always at the lowest level, while the clearance rate of blood and the excretion rate of the kidneys were fast. HE staining showed that tumor cells were observed in SKBR3- and MDA-MB-231-bearing nude mice, with significant heteromorphism and increased mitotic count. The imaging of mice showed that targeted images could be made of 99mTc-TP1623 in high HER2-expressing tumors, while no obvious development was shown in tumors in low HER2-expressing nude mice. No development was visible in tumors in competitive inhibition of imaging, which indicates the combination of 99mTc-TP1623 and tumor was mediated by HER2. CONCLUSION: High labeling ratio and specific activity of 99mTc-TP1623 is successfully prepared; it is a molecular imaging agent for HER2-positive tumors that has potential applicative value.
Collapse
Affiliation(s)
- Meng-Zhi Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yan-Xing Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jin-Xiu Zhong
- Department of Nuclear Medicine, Tumor Hospital of Jiangxi Province, Nanchang, China
| | - Xue-Zhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
28
|
Abstract
In spite of their widespread applications as therapeutic, diagnostic, and detection agents, the limitations of polyclonal and monoclonal antibodies have enthused scientists to plan for next-generation biomedical agents, the so-called antibody mimetics, which offer many advantages compared to traditional antibodies. Antibody mimetics could be designed through protein-directed evolution or fusion of complementarity-determining regions with intervening framework regions. In the recent decade, extensive progress has been made in exploiting human, butterfly (Pieris brassicae), and bacterial systems to design and select mimetics using display technologies. Notably, some of the mimetics have made their way to market. Numerous limitations lie ahead in developing mimetics for different biomedical usage, particularly for which conventional antibodies are ineffective. This chapter presents a brief overview of the current characteristics, construction, and applications of antibody mimetics.
Collapse
|
29
|
Zhang Y, Jiang S, Zhang D, Bai X, Hecht SM, Chen S. DNA–affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun (Camb) 2017; 53:573-576. [DOI: 10.1039/c6cc08495h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA tetrahedron–affibody–drug nanoparticle is a highly efficient tool to deliver doxorubicin (DOX) to HER2 overexpressing cancer cells specifically. It represents a highly efficacious agent for selectively inhibiting cancer cells which overexpress HER2 receptor.
Collapse
Affiliation(s)
- Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University
- Xi'an 710061
- China
- Biodesign Center for BioEnergetics
- Arizona State University
| | - Shuoxing Jiang
- Biodesign Center for BioEnergetics
- Arizona State University
- Tempe 85287
- USA
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xiaoguang Bai
- Biodesign Center for BioEnergetics
- Arizona State University
- Tempe 85287
- USA
| | - Sidney M. Hecht
- Biodesign Center for BioEnergetics
- Arizona State University
- Tempe 85287
- USA
| | - Shengxi Chen
- Biodesign Center for BioEnergetics
- Arizona State University
- Tempe 85287
- USA
| |
Collapse
|
30
|
Garousi J, Lindbo S, Honarvar H, Velletta J, Mitran B, Altai M, Orlova A, Tolmachev V, Hober S. Influence of the N-Terminal Composition on Targeting Properties of Radiometal-Labeled Anti-HER2 Scaffold Protein ADAPT6. Bioconjug Chem 2016; 27:2678-2688. [PMID: 27740752 DOI: 10.1021/acs.bioconjchem.6b00465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radionuclide-imaging-based stratification of patients to targeted therapies makes cancer treatment more personalized and therefore more efficient. Albumin-binding domain derived affinity proteins (ADAPTs) constitute a novel group of imaging probes based on the scaffold of an albumin-binding domain (ABD). To evaluate how different compositions of the N-terminal sequence of ADAPTs influence their biodistribution, a series of human epidermal growth factor receptor type 2 (HER2)-binding ADAPT6 derivatives with different N-terminal sequences were created: GCH6DANS (2), GC(HE)3DANS (3), GCDEAVDANS (4), and GCVDANS(5). These were compared with the parental variant: GCSS(HE)3DEAVDANS (1). All variants were site-specifically conjugated with a maleimido-derivative of a DOTA chelator and labeled with 111In. Binding to HER2-expressing cells in vitro, in vivo biodistribution as well as targeting properties of the new variants were compared with properties of the 111In-labeled parental ADAPT variant 1 (111In-DOTA-1). The composition of the N-terminal sequence had an apparent influence on biodistribution of ADAPT6 in mice. The use of a hexahistidine tag in 111In-DOTA-2 was associated with elevated hepatic uptake compared to the (HE)3-containing counterpart, 111In-DOTA-3. All new variants without a hexahistidine tag demonstrated lower uptake in blood, lung, spleen, and muscle compared to uptake in the parental variant. The best new variants, 111In-DOTA-3 and 111In-DOTA-5, provided tumor uptakes of 14.6 ± 2.4 and 12.5 ± 1.3% ID/g at 4 h after injection, respectively. The tumor uptake of 111In-DOTA-3 was significantly higher than the uptake of the parental 111In-DOTA-1 (9.1 ± 2.0% ID/g). The tumor-to-blood ratios of 395 ± 75 and 419 ± 91 at 4 h after injection were obtained for 111In-DOTA-5 and 111In-DOTA-3, respectively. In conclusion, the N-terminal sequence composition affects the biodistribution and targeting properties of ADAPT-based imaging probes, and its optimization may improve imaging contrast.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Sarah Lindbo
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Hadis Honarvar
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Justin Velletta
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University , SE-75181 Uppsala, Sweden
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University , SE-75181 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75185 Uppsala, Sweden
| | - Sophia Hober
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691 Stockholm, Sweden
| |
Collapse
|
31
|
Kruziki MA, Case BA, Chan JY, Zudock EJ, Woldring DR, Yee D, Hackel BJ. 64Cu-Labeled Gp2 Domain for PET Imaging of Epidermal Growth Factor Receptor. Mol Pharm 2016; 13:3747-3755. [PMID: 27696863 DOI: 10.1021/acs.molpharmaceut.6b00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This purpose of this study is to determine the efficacy of a 45-amino acid Gp2 domain, engineered to bind to epidermal growth factor receptor (EGFR), as a positron emission tomography (PET) probe of EGFR in a xenograft mouse model. The EGFR-targeted Gp2 (Gp2-EGFR) and a nonbinding control were site-specifically labeled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Binding affinity was tested toward human EGFR and mouse EGFR. Biological activity on downstream EGFR signaling was examined in cell culture. DOTA-Gp2 molecules were labeled with 64Cu and intravenously injected (0.6-2.3 MBq) into mice bearing EGFRhigh (n = 7) and EGFRlow (n = 4) xenografted tumors. PET/computed tomography (CT) images were acquired at 45 min, 2 h, and 24 h. Dynamic PET (25 min) was also acquired. Tomography results were verified with gamma counting of resected tissues. Two-tailed t tests with unequal variances provided statistical comparison. DOTA-Gp2-EGFR bound strongly to human (KD = 7 ± 5 nM) and murine (KD = 29 ± 6 nM) EGFR, and nontargeted Gp2 had no detectable binding. Gp2-EGFR did not agonize EGFR nor antagonize EGF-EGFR. 64Cu-Gp2-EGFR tracer effectively localized to EGFRhigh tumors at 45 min (3.2 ± 0.5%ID/g). High specificity was observed with significantly lower uptake in EGFRlow tumors (0.9 ± 0.3%ID/g, p < 0.001), high tumor-to-background ratios (11 ± 6 tumor/muscle, p < 0.001). Nontargeted Gp2 tracer had low uptake in EGFRhigh tumors (0.5 ± 0.3%ID/g, p < 0.001). Similar data was observed at 2 h, and tumor signal was retained at 24 h (2.9 ± 0.3%ID/g). An engineered Gp2 PET imaging probe exhibited low background and target-specific EGFRhigh tumor uptake at 45 min, with tumor signal retained at 24 h postinjection, and compared favorably with published EGFR PET probes for alternative protein scaffolds. These beneficial in vivo characteristics, combined with thermal stability, efficient evolution, and small size of the Gp2 domain validate its use as a future class of molecular imaging agents.
Collapse
Affiliation(s)
- Max A Kruziki
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Brett A Case
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Jie Y Chan
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Elizabeth J Zudock
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Daniel R Woldring
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Douglas Yee
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Sarcinelli MA, Albernaz MDS, Szwed M, Iscaife A, Leite KRM, Junqueira MDS, Bernardes ES, da Silva EO, Tavares MIB, Santos-Oliveira R. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals. Onco Targets Ther 2016; 9:5847-5854. [PMID: 27713638 PMCID: PMC5045224 DOI: 10.2147/ott.s110787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose) administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA)/polyvinyl alcohol (PVA)/montmorillonite (MMT)/trastuzumab nanoparticles labeled with technetium-99m (99mTc) for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200-500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta potential of -14,6 mV. The cytotoxicity results demonstrated that the nanoparticles were capable of reaching breast cancer cells. The biodistribution data demonstrated that the PLA/PVA/MMT/trastuzumab nanoparticles labeled with 99mTc have great renal clearance and also a high uptake by the lesion, as ~45% of the PLA/PVA/MMT/trastuzumab nanoparticles injected were taken up by the lesion. The data support PLA/PVA/MMT/trastuzumab labeled with 99mTc nanoparticles as nanoradiopharmaceuticals for breast cancer imaging.
Collapse
Affiliation(s)
- Michelle Alvares Sarcinelli
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Medical Investigation, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | | | - Marzena Szwed
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Alexandre Iscaife
- Laboratory of Medical Investigation, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | | | - Mara de Souza Junqueira
- Laboratory of Experimental Oncology, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | | | - Emerson Oliveira da Silva
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Ines Bruno Tavares
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Case BA, Hackel BJ. Synthetic and natural consensus design for engineering charge within an affibody targeting epidermal growth factor receptor. Biotechnol Bioeng 2016; 113:1628-38. [PMID: 26724421 PMCID: PMC5200887 DOI: 10.1002/bit.25931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/19/2015] [Accepted: 12/28/2015] [Indexed: 01/10/2023]
Abstract
Protein ligand charge can impact physiological delivery with charge reduction often benefiting performance. Yet neutralizing mutations can be detrimental to protein function. Herein, three approaches are evaluated to introduce charged-to-neutral mutations of three cations and three anions within an affibody engineered to bind epidermal growth factor receptor. These approaches-combinatorial library sorting or consensus design, based on natural homologs or library-sorted mutants-are used to identify mutations with favorable affinity, stability, and recombinant yield. Consensus design, based on 942 affibody homologs, yielded a mutant of modest function (Kd = 11 ±4 nM, Tm = 62°C, and yield = 4.0 ± 0.8 mg/L as compared to 5.3 ± 1.7 nM, 71°C, and 3.5 ± 0.3 mg/L for the parental affibody). Extension of consensus design to 10 additional mutants exhibited varied performance including a substantially improved mutant (Kd = 6.9 ± 1.4 nM, Tm = 71°C, and 12.7 ± 0.9 mg/L yield). Sorting a homolog-based combinatorial library of 7 × 10(5) mutants generated a distribution of mutants with lower stability and yield, but did identify one strongly binding variant (Kd = 1.2 ± 0.3 nM, Tm = 69°C, and 6.0 ± 0.4 mg/L yield). Synthetic consensus design, based on the amino acid distribution in functional library mutants, yielded higher affinities (P = 0.05) with comparable stabilities and yields. The best of four analyzed clones had Kd = 1.7 ± 0.5 nM, Tm = 68°C, and 7.0 ± 0.5 mg/L yield. While all three approaches were effective in creating targeted affibodies with six charged-to-neutral mutations, synthetic consensus design proved to be the most robust. Synthetic consensus design provides a valuable tool for ligand engineering, particularly in the context of charge manipulation. Biotechnol. Bioeng. 2016;113: 1628-1638. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brett A Case
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, 356 Amundson Hall, Minneapolis, Minnesota, 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, 356 Amundson Hall, Minneapolis, Minnesota, 55455.
| |
Collapse
|
34
|
Westerlund K, Honarvar H, Norrström E, Strand J, Mitran B, Orlova A, Eriksson Karlström A, Tolmachev V. Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules. Mol Pharm 2016; 13:1668-78. [PMID: 27010700 DOI: 10.1021/acs.molpharmaceut.6b00089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies. Earlier, we found that hepatic uptake can be reduced by the incorporation of negatively charged purification tags at the N-terminus of Affibody molecules. We hypothesized that liver uptake might similarly be reduced by positioning the chelator at the N-terminus, where the chelator-radionuclide complex will provide negative charges. To test this hypothesis, a second generation synthetic anti-HER2 ZHER2:2891 Affibody molecule was synthesized and labeled with (111)In and (68)Ga using DOTAGA and DOTA chelators. The chelators were manually coupled to the N-terminus of ZHER2:2891 forming an amide bond. Labeling DOTAGA-ZHER2:2891 and DOTA-ZHER2:2891 with (68)Ga and (111)In resulted in stable radioconjugates. The tumor-targeting and biodistribution properties of the (111)In- and (68)Ga-labeled conjugates were compared in SKOV-3 tumor-bearing nude mice at 2 h postinjection. The HER2-specific binding of the radioconjugates was verified both in vitro and in vivo. Using the DOTAGA chelator gave significantly lower radioactivity in liver and blood for both radionuclides. The (111)In-labeled conjugates showed more rapid blood clearance than the (68)Ga-labeled conjugates. The most pronounced influence of the chelators was found when they were labeled with (68)Ga. The DOTAGA chelator gave significantly higher tumor-to-blood (61 ± 6 vs 23 ± 5, p < 0.05) and tumor-to-liver (10.4 ± 0.6 vs 4.5 ± 0.5, p < 0.05) ratios than the DOTA chelator. This study demonstrated that chelators may be used to alter the uptake of Affibody molecules, and most likely other scaffold-based imaging probes, for improvement of imaging contrast.
Collapse
Affiliation(s)
- Kristina Westerlund
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Hadis Honarvar
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Emily Norrström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Joanna Strand
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| | - Bogdan Mitran
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University , 751 05 Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University , 751 05 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm, Sweden
| | - Vladimir Tolmachev
- Institute for Immunology, Genetics and Pathology, Uppsala University , 751 05 Uppsala, Sweden
| |
Collapse
|
35
|
Almaki JH, Nasiri R, Idris A, Majid FAA, Salouti M, Wong TS, Dabagh S, Marvibaigi M, Amini N. Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs-PEG-HER in HER2+ human breast cancer cells. NANOTECHNOLOGY 2016; 27:105601. [PMID: 26861770 DOI: 10.1088/0957-4484/27/10/105601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A stable, biocompatible and exquisite SPIONs-PEG-HER targeting complex was developed. Initially synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were silanized using 3-aminopropyltrimethoxysilane (APS) as the coupling agent in order to allow the covalent bonding of polyethylene glycol (PEG) to the SPIONs to improve the biocompatibility of the SPIONs. SPIONs-PEG were then conjugated with herceptin (HER) to permit the SPIONs-PEG-HER to target the specific receptors expressed over the surface of the HER2+ metastatic breast cancer cells. Each preparation step was physico-chemically analyzed and characterized by a number of analytical methods including AAS, FTIR spectroscopy, XRD, FESEM, TEM, DLS and VSM. The biocompatibility of SPIONs-PEG-HER was evaluated in vitro on HSF-1184 (human skin fibroblast cells), SK-BR-3 (human breast cancer cells, HER+), MDA-MB-231 (human breast cancer cells, HER-) and MDA-MB-468 (human breast cancer cells, HER-) cell lines by performing MTT and trypan blue assays. The hemolysis analysis results of the SPIONs-PEG-HER and SPIONs-PEG did not indicate any sign of lysis while in contact with erythrocytes. Additionally, there were no morphological changes seen in RBCs after incubation with SPIONs-PEG-HER and SPIONs-PEG under a light microscope. The qualitative and quantitative in vitro targeting studies confirmed the high level of SPION-PEG-HER binding to SK-BR-3 (HER2+ metastatic breast cancer cells). Thus, the results reflected that the SPIONs-PEG-HER can be chosen as a favorable biomaterial for biomedical applications, chiefly magnetic hyperthermia, in the future.
Collapse
Affiliation(s)
- Javad Hamzehalipour Almaki
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Esfandiari N, Arzanani MK, Soleimani M, Kohi-Habibi M, Svendsen WE. A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumour Biol 2016; 37:1229-36. [PMID: 26286831 DOI: 10.1007/s13277-015-3867-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022] Open
Abstract
Nanoparticles based on non-pathogenic viruses have opened up a novel sector in nanotechnology. Viral nanoparticles based on plant viruses have clear advantages over any synthetic nanoparticles as they are biocompatible and biodegradable self-assembled and can be produced inexpensively on a large scale. From several such under-development platforms, only a few have been characterized in the target-specific drugs into the cells. Potato virus X is presented as a carrier of the chemotherapeutic drug Herceptin that is currently used as a targeted therapy in (HER2+) breast cancer patients. Here, we used nanoparticles formed from the potato virus X to conjugate the Herceptin (Trastuzumab) monoclonal antibody as a new option in specific targeting of breast cancer. Bioconjugation was performed by EDC/sulfo-N-hydroxysuccinimide (sulfo-NHS) in a two-step protocol. Then, the efficiency of conjugation was investigated by different methods, including sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, ELISA, Zetasizer, and transmission electron microscopy. SDS-PAGE and Western blot analysis confirmed an 82-kDa protein band that resulted from conjugation of potato virus X (PVX) coat protein (27 kDa) to heavy chain of Herceptin (55 kDa). Zeta potential values for conjugated particles, PVX, and HER were -7.05, -21.4, and -1.48, respectively. We investigated the efficiency of PVX-Herceptin to induce SK-OV-3 and SK-BR-3 cells (HER2 positive cell lines) apoptosis. We therefore counted cells and measured apoptosis by flow cytometry assay, then compared with Herceptin alone. Based on our data, we confirmed the conjugation of PVX and Herceptin. This study suggests that the PVX-Herceptin conjugates enable Herceptin to become more potential therapeutic tools.
Collapse
Affiliation(s)
- Neda Esfandiari
- Department of Micro and Nanotechnology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs, Lyngby, Denmark.
- Department of Plant Protection, Faculty of Sciences and Plant Protection, Tehran University, Tehran, Iran.
| | - Mohsen Karimi Arzanani
- Division of Hematology, Department of Medicine, Karolinska Institute, Karolinska University Hospital, SE14186, Stockholm, Sweden
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mina Kohi-Habibi
- Department of Plant Protection, Faculty of Sciences and Plant Protection, Tehran University, Tehran, Iran
| | - Winnie E Svendsen
- Department of Micro and Nanotechnology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
37
|
Zhang J, Zhao X, Wang S, Wang N, Han J, Jia L, Ren X. Monitoring therapeutic response of human ovarian cancer to trastuzumab by SPECT imaging with (99m)Tc-peptide-Z(HER2:342). Nucl Med Biol 2015; 42:541-6. [PMID: 25735223 DOI: 10.1016/j.nucmedbio.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Patients with human epidermal growth factor receptor 2 (HER2)-positive cancer are candidates for treatment with the anti-HER2 antibody trastuzumab. How to systemically assess tumor HER2 expression and identifying appropriate use of anti-HER2 therapies by noninvasive imaging in vivo is an urgent issue. The purpose of this study was to evaluate SPECT imaging of (99m)Tc-Gly-(D)Ala-Gly-Gly-Z(HER2:342) ((99m)Tc-peptide-Z(HER2:342)) for monitoring therapeutic response to trastuzumab in nude mice bearing HER2-positive SKOV-3 xenografts. METHODS Nude mice bearing HER2-positive SKOV-3 xenografts were treated with trastuzumab (treatment group) or saline (control) with ten mice in each group. Mice in trastuzumab-treated group were given trastuzumab intraperiotoneally 4 mg/kg on day 1 and 2 mg/kg on day 8; Mice in control group were given physiological saline on day 1 and 8. Mice body weights and tumour volume were monitored every three days during treatment. In vivo SPECT imaging was performed in mice of the two groups using (99m)Tc-peptide-Z(HER2:342) before treatment, on day 8 and 15 after treatment. Radiolabeled probe uptake in tumours was measured as the ratio of radioactive counts in the tumour to that in the contralateral equivalent region (T/NT). After SPECT imaging on day 15, all the mice were euthanized, biodistribution studies of the SKOV-3 xenografts were carried out to validate the imaging results and HER2 expression of the transplanted tumours was analyzed by immunohistochemistry (IHC). Correlation analysis was performed between T/NT ratios acquired by in vivo SPECT imaging on day 15 and the HER2 level of tumours. In vitro cell binding capacity of (99m)Tc-Z(HER2:342) with SKOV-3 cells in the absence and presence of varying amount of trastuzumab were also conducted in the study. RESULTS Twenty mice body weight in the two groups gradually increased during treatment, but there was no statistical difference (p > 0.05). Though volumes of SKOV-3 xenografts gradually increased in each group during the treatment, the transplanted tumours in trastuzumab-treated group had a slower growth than those in control group (p < 0.05). Compared with the baseline, the results of in vivo imaging showed that radionuclide accumulation in transplanted tumours reduced significantly in trastuzumab-treated group after treatment (p < 0.05), whereas the tumour accumulation in control group increased after treatment. Biodistribution studies demonstrated that the results corresponded well with in vivo imaging data. Immunohistochemical staining confirmed the significant reduction in tumor HER2 level upon trastuzumab treatment, and there was an obviously positive correlation between T/NT ratios and HER2 level of tumours with correlation coefficient rs = 0.919, p < 0.05. There was no significant significance in cell binding ratios between varying amount of trastuzumab and the absence of trastuzumab (p > 0.05). CONCLUSIONS The early response to trastuzumab in mice bearing SKOV-3 xenografts was successfully monitored by SPECT imaging using (99m)Tc-peptide-Z(HER2:342). This approach may be valuable in monitoring the therapeutic response in HER 2-positive tumours under HER2-targeted therapy.
Collapse
Affiliation(s)
- Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China.
| | - Shijie Wang
- Department of Tumor Imaging, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Na Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Lizhuo Jia
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| | - Xiuchun Ren
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, No.12 jiangkang Road, Shijiazhuang 050011, China
| |
Collapse
|
38
|
Sivasubramanian M, Hsia Y, Lo LW. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front Mol Biosci 2014; 1:15. [PMID: 25988156 PMCID: PMC4428449 DOI: 10.3389/fmolb.2014.00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Taiwan
| | - Yu Hsia
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Taiwan ; Institute of Biotechnology, National Tsing Hua University Hsinchu, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Taiwan
| |
Collapse
|
39
|
Altai M, Wållberg H, Honarvar H, Strand J, Orlova A, Varasteh Z, Sandström M, Löfblom J, Larsson E, Strand SE, Lubberink M, Ståhl S, Tolmachev V. 188Re-ZHER2:V2, a Promising Affibody-Based Targeting Agent Against HER2-Expressing Tumors: Preclinical Assessment. J Nucl Med 2014; 55:1842-8. [DOI: 10.2967/jnumed.114.140194] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
40
|
Baloch AR, Baloch AW, Sutton BJ, Zhang X. Antibody mimetics: promising complementary agents to animal-sourced antibodies. Crit Rev Biotechnol 2014; 36:268-75. [PMID: 25264572 DOI: 10.3109/07388551.2014.958431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite their wide use as therapeutic, diagnostic and detection agents, the limitations of polyclonal and monoclonal antibodies have inspired scientists to design the next generation biomedical agents, so-called antibody mimetics that offer many advantages over conventional antibodies. Antibody mimetics can be constructed by protein-directed evolution or fusion of complementarity-determining regions through intervening framework regions. Substantial progress in exploiting human, butterfly (Pieris brassicae) and bacterial systems to design and select mimetics using display technologies has been made in the past 10 years, and one of these mimetics [Kalbitor® (Dyax)] has made its way to market. Many challenges lie ahead to develop mimetics for various biomedical applications, especially those for which conventional antibodies are ineffective, and this review describes the current characteristics, construction and applications of antibody mimetics compared to animal-sourced antibodies. The possible limitations of mimetics and future perspectives are also discussed.
Collapse
Affiliation(s)
- Abdul Rasheed Baloch
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Abdul Wahid Baloch
- b Department of Plant Breeding and Genetics , Sindh Agriculture University , Tandojam , Pakistan , and
| | - Brian J Sutton
- c Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | - Xiaoying Zhang
- a College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
41
|
Altai M, Honarvar H, Wållberg H, Strand J, Varasteh Z, Rosestedt M, Orlova A, Dunås F, Sandström M, Löfblom J, Tolmachev V, Ståhl S. Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re. Eur J Med Chem 2014; 87:519-28. [PMID: 25282673 DOI: 10.1016/j.ejmech.2014.09.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
Abstract
Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
Collapse
Affiliation(s)
- Mohamed Altai
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Wållberg
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden; Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Strand
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Zohreh Varasteh
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Rosestedt
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | - John Löfblom
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Stefan Ståhl
- KTH Royal Institute of Technology, School of Biotechnology, Division of Protein Technology, Stockholm, Sweden
| |
Collapse
|
42
|
Wållberg H, Ståhl S. Design and evaluation of radiolabeled tracers for tumor imaging. Biotechnol Appl Biochem 2014; 60:365-83. [PMID: 24033592 DOI: 10.1002/bab.1111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/20/2013] [Indexed: 12/22/2022]
Abstract
The growing understanding of tumor biology and the identification of tumor-specific genetic and molecular alterations, such as the overexpression of membrane receptors and other proteins, allows for personalization of patient management using targeted therapies. However, this puts stringent demands on the diagnostic tools used to identify patients who are likely to respond to a particular treatment. Radionuclide molecular imaging is a promising noninvasive method to visualize and characterize the expression of such targets. A number of different proteins, from full-length antibodies and their derivatives to small scaffold proteins and peptide receptor-ligands, have been applied to molecular imaging, each demonstrating strengths and weaknesses. Here, we discuss the concept of molecular targeting and, in particular, molecular imaging of cancer-associated targets. Additionally, we describe important biotechnological considerations and desired features when designing and developing tracers for radionuclide molecular imaging.
Collapse
Affiliation(s)
- Helena Wållberg
- Division of Molecular Biotechnology, School of Biotechnology, AlbaNova University Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
43
|
HER2/neu: an increasingly important therapeutic target. Part 1: basic biology & therapeutic armamentarium. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.14.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Wang RE, Zhang Y, Tian L, Cai W, Cai J. Antibody-based imaging of HER-2: moving into the clinic. Curr Mol Med 2014; 13:1523-37. [PMID: 24206138 DOI: 10.2174/1566524013666131111120951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/17/2012] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Abstract
Human epidermal growth factor receptor-2 (HER-2) mediates a number of important cellular activities, and is up-regulated in a diverse set of cancer cell lines, especially breast cancer. Accordingly, HER-2 has been regarded as a common drug target in cancer therapy. Antibodies can serve as ideal candidates for targeted tumor imaging and drug delivery, due to their inherent affinity and specificity. Advanced by the development of a wide variety of imaging techniques, antibody-based imaging of HER-2 can allow for early detection and localization of tumors, as well as monitoring of drug delivery and tissue's response to drug treatment. In this review article, antibody-based imaging of HER-2 are summarized and discussed, with an emphasis on the involved imaging methods.
Collapse
Affiliation(s)
- R E Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
45
|
Goldstein R, Sosabowski J, Vigor K, Chester K, Meyer T. Developments in single photon emission computed tomography and PET-based HER2 molecular imaging for breast cancer. Expert Rev Anticancer Ther 2014; 13:359-73. [DOI: 10.1586/era.13.11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Rosik D, Thibblin A, Antoni G, Honarvar H, Strand J, Selvaraju RK, Altai M, Orlova A, Eriksson Karlström A, Tolmachev V. Incorporation of a Triglutamyl Spacer Improves the Biodistribution of Synthetic Affibody Molecules Radiofluorinated at the N-Terminus via Oxime Formation with 18F-4-Fluorobenzaldehyde. Bioconjug Chem 2013; 25:82-92. [DOI: 10.1021/bc400343r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel Rosik
- Division
of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alf Thibblin
- PET
Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Gunnar Antoni
- PET
Centre, Uppsala University Hospital, Uppsala, Sweden
- Preclinical
PET Platform, Uppsala University, Uppsala, Sweden
| | - Hadis Honarvar
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Joanna Strand
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Mohamed Altai
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Preclinical
PET Platform, Uppsala University, Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Division
of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vladimir Tolmachev
- Unit
of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Zhang JM, Zhao XM, Wang SJ, Ren XC, Wang N, Han JY, Jia LZ. Evaluation of 99mTc-peptide-ZHER2:342 Affibody® molecule for in vivo molecular imaging. Br J Radiol 2013; 87:20130484. [PMID: 24273251 DOI: 10.1259/bjr.20130484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this study was to develop an improved method for labelling ZHER2:342 with Technetium-99m ((99m)Tc) using Gly-(d) Ala-Gly-Gly as a chelator and to evaluate the feasibility of its use for visualization of HER2 expression in vivo. METHODS The Affibody® molecule ZHER2:342 was synthesized by Fmoc/tBu solid phase synthesis. The chelator, Gly-(d) Ala-Gly-Gly, was introduced by manual synthesis as the N-terminal extensions of ZHER2:342. ZHER2:342 was labelled with (99m)Tc. The labelling efficiency, radiochemical purity and in vitro stability of the labelled molecular probe were analysed by reversed-phase high performance liquid chromatography. Biodistribution and molecular imaging using (99m)Tc-peptide-ZHER2:342 were performed. RESULTS The molecular probe was successfully synthesized and labelled with (99m)Tc with the labelling efficiency of 98.10 ± 1.73% (n=5). The radiolabelled molecular probe remained highly stable in vitro. The molecular imaging showed high uptake in HER2-expressing SKOV-3 xenografts, whereas the MDA-MB-231 xenografts with low HER2 expression were not clearly imaged at any time after the injection of (99m)Tc-peptide-ZHER2:342. The predominant clearance pathway for (99m)Tc-peptide-ZHER2:342 was through the kidneys. Conculsion: (99m)Tc-peptide-ZHER2:342 using Gly-(d) Ala-Gly-Gly as a chelator is a promising tracer agent with favourable biodistribution and imaging properties that may be developed as a radiopharmaceutical for the detection of HER2-positive malignant tumours. ADVANCES IN KNOWLEDGE The (99m)Tc-peptide-ZHER2:342 molecular probe is a promising tracer agent, and the results in this study provide a foundation for future development of protocols for earlier visual detection of cancer in the clinical setting.
Collapse
Affiliation(s)
- J-M Zhang
- Department of Nuclear Medicine, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Stern LA, Case BA, Hackel BJ. Alternative Non-Antibody Protein Scaffolds for Molecular Imaging of Cancer. Curr Opin Chem Eng 2013; 2. [PMID: 24358455 DOI: 10.1016/j.coche.2013.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of improved methods for early detection and characterization of cancer presents a major clinical challenge. One approach that has shown excellent potential in preclinical and clinical evaluation is molecular imaging with small-scaffold, non-antibody based, engineered proteins. These novel diagnostic agents produce high contrast images due to their fast clearance from the bloodstream and healthy tissues, can be evolved to bind a multitude of cancer biomarkers, and are easily functionalized by site-specific bioconjugation methods. Several small protein scaffolds have been verified for in vivo molecular imaging including affibodies and their two-helix variants, knottins, fibronectins, DARPins, and several natural ligands. Further, the biodistribution of these engineered ligands can be optimized through rational mutation of the conserved regions, careful selection and placement of chelator, and modification of molecular size.
Collapse
Affiliation(s)
- Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Brett A Case
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
49
|
Abstract
In an effort to discover a noninvasive method for predicting which cancer patients will benefit from therapy targeting the EGFR and HER2 proteins, a large body of the research has been conducted toward the development of PET and SPECT imaging agents, which selectively target these receptors. We provide a general overview of the advances made toward imaging EGFR and HER2, detailing the investigation of PET and SPECT imaging agents ranging in size from small molecules to monoclonal antibodies.
Collapse
Affiliation(s)
- Emily B Corcoran
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
| | | |
Collapse
|
50
|
Honarvar H, Jokilaakso N, Andersson K, Malmberg J, Rosik D, Orlova A, Karlström AE, Tolmachev V, Järver P. Evaluation of backbone-cyclized HER2-binding 2-helix Affibody molecule for In Vivo molecular imaging. Nucl Med Biol 2013; 40:378-86. [DOI: 10.1016/j.nucmedbio.2012.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/22/2023]
|