1
|
Bağda E, Kızılyar Y, İnci ÖG, Ghaffarlou M, Barsbay M. One-pot modification of oleate-capped UCNPs with AS1411 G-quadruplex DNA in a fully aqueous medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Bakowski K, Vogel S. Evolution of complexity in non-viral oligonucleotide delivery systems: from gymnotic delivery through bioconjugates to biomimetic nanoparticles. RNA Biol 2022; 19:1256-1275. [PMID: 36411594 PMCID: PMC9683052 DOI: 10.1080/15476286.2022.2147278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
From the early days of research on RNA biology and biochemistry, there was an interest to utilize this knowledge and RNA itself for therapeutic applications. Today, we have a series of oligonucleotide therapeutics on the market and many more in clinical trials. These drugs - exploit different chemistries of oligonucleotides, such as modified DNAs and RNAs, peptide nucleic acids (PNAs) or phosphorodiamidate morpholino oligomers (PMOs), and different mechanisms of action, such as RNA interference (RNAi), targeted RNA degradation, splicing modulation, gene expression and modification. Despite major successes e.g. mRNA vaccines developed against SARS-CoV-2 to control COVID-19 pandemic, development of therapies for other diseases is still limited by inefficient delivery of oligonucleotides to specific tissues and organs and often prohibitive costs for the final drug. This is even more critical when targeting multifactorial disorders and patient-specific biological variations. In this review, we will present the evolution of complexity of oligonucleotide delivery methods with focus on increasing complexity of formulations from gymnotic delivery to bioconjugates and to lipid nanoparticles in respect to developments that will enable application of therapeutic oligonucleotides as drugs in personalized therapies.
Collapse
Affiliation(s)
- Kamil Bakowski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark,CONTACT Stefan Vogel Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230Odense, Denmark
| |
Collapse
|
3
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
4
|
Clua A, Fàbrega C, García-Chica J, Grijalvo S, Eritja R. Parallel G-quadruplex Structures Increase Cellular Uptake and Cytotoxicity of 5-Fluoro-2'-deoxyuridine Oligomers in 5-Fluorouracil Resistant Cells. Molecules 2021; 26:molecules26061741. [PMID: 33804620 PMCID: PMC8003610 DOI: 10.3390/molecules26061741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2′-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5’-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.
Collapse
Affiliation(s)
- Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Jesús García-Chica
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-006-145
| |
Collapse
|
5
|
Virgilio A, Esposito V, Tassinari M, Nadai M, Richter SN, Galeone A. Novel monomolecular derivatives of the anti-HIV-1 G-quadruplex-forming Hotoda's aptamer containing inversion of polarity sites. Eur J Med Chem 2020; 208:112786. [PMID: 32911256 DOI: 10.1016/j.ejmech.2020.112786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Here we report on the design, preparation and investigation of four analogues of the anti-HIV G-quadruplex-forming Hotoda's aptamer, based on an unprecedented linear topology. In these derivatives, four TGGGAGT tracts have been joined together by exploiting 3'-3' and 5'-5' inversion of polarity sites formed by canonical phosphodiester bonds or a glycerol-based linker. Circular dichroism data suggest that all oligodeoxynucleotides fold in monomolecular G-quadruplex structures characterized by a parallel strand orientation and three side loops connecting 3'- or 5'-ends. The derivative bearing two lipophilic groups, namely HT353LGly, inhibited virus entry into the host cell, with anti-HIV-1 activity in the low nanomolar range; the other derivatives, albeit sharing the same base sequence and similar topology, were inactive. These results highlight that monomolecular Hotoda's aptamers with inversion of polarity sites represent a successful alternative strategy that merges the easiness of synthesis with the maintenance of remarkable activity. They also indicate that two lipophilic groups are necessary and sufficient for biological activity. Our data will inspire the design of further simplified derivatives with improved biophysical and antiviral properties.
Collapse
Affiliation(s)
- Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy.
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
6
|
Hotoda's Sequence and Anti-HIV Activity: Where Are We Now? Molecules 2019; 24:molecules24071417. [PMID: 30974914 PMCID: PMC6479790 DOI: 10.3390/molecules24071417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/24/2023] Open
Abstract
The pharmacological relevance of ODNs forming G-quadruplexes as anti-HIV agents has been extensively reported in the literature over the last few years. Recent detailed studies have elucidated the peculiar arrangement adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. In this review, we have reported the history of a strong anti-HIV agent: the 6-mer d(TGGGAG) sequence, commonly called "Hotoda's sequence". In particular, all findings reported on this sequence and its modified sequences have been discussed considering the following research phases: (i) discovery of the first 5'-modified active d(TGGGAG) sequences; (ii) synthesis of a variety of end-modified d(TGGGAG) sequences; (iii) biophysical and NMR investigations of natural and modified Hotoda's sequences; (iv); kinetic studies on the most active 5'-modified d(TGGGAG) sequences; and (v) extensive anti-HIV screening of G-quadruplexes formed by d(TGGGAG) sequences. This review aims to clarify all results obtained over the years on Hotoda's sequence, revealing its potentiality as a strong anti-HIV agent (EC50 = 14 nM).
Collapse
|
7
|
Nici F, Oliviero G, Falanga AP, D'Errico S, Marzano M, Musumeci D, Montesarchio D, Noppen S, Pannecouque C, Piccialli G, Borbone N. Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides. Org Biomol Chem 2019. [PMID: 29543291 DOI: 10.1039/c7ob02346d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By combining the ability of short G-rich oligodeoxyribonucleotides (ODNs) containing the sequence 5'CGGA3' to form higher order G-quadruplex (G4) complexes with the tetra-end-linked (TEL) concept to produce aptamers targeting the HIV envelope glycoprotein 120 (gp120), three new TEL-ODNs (1-3) having the sequence 5'CGGAGG3' were synthesized with the aim of studying the effect of G4 dimerization on their anti-HIV activity. Furthermore, in order to investigate the effect of the groups at the 5' position, the 5' ends of 1-3 were left uncapped (1) or capped with either the lipophilic dimethoxytrityl (DMT) (2) or the hydrophilic glucosyl-4-phosphate (3) moieties. The here reported results demonstrate that only the DMT-substituted TEL-ODN 2 is effective in protecting human MT-4 cell cultures from HIV infection (76% max protection), notwithstanding all the three new aptamers proved to be capable of forming stable higher order dimeric G4s when annealed in K+-containing buffer, thus suggesting that the recognition of a hydrophobic pocket on the target glycoprotein by the aptamers represents a main structural feature for triggering their anti-HIV activity.
Collapse
Affiliation(s)
- F Nici
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - G Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli, Italy
| | - A P Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - S D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - M Marzano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - D Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - D Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - S Noppen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - C Pannecouque
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - G Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - N Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
8
|
Tang Y, Han Z, Ren H, Guo J, Chong H, Tian Y, Liu K, Xu L. A novel multivalent DNA helix-based inhibitor showed enhanced anti-HIV-1 fusion activity. Eur J Pharm Sci 2018; 125:244-253. [PMID: 30292749 DOI: 10.1016/j.ejps.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 11/27/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates, but further research is required to enhance their efficiency. The trimeric structure of the HIV-1 envelope glycoprotein provides a structural basis for multivalent drug design. In this work, a "multi-domain" strategy was adopted for design of an oligodeoxynucleotide with assembly, linkage, and activity domains. Built on the self-assembly of higher-order nucleic acid structure, a novel category of multivalent DNA helix-based HIV-1 fusion inhibitor could be easily obtained by a simple annealing course in solution buffer, with no other chemical synthesis for multivalent connection. An optimized multivalent molecule, M4, showed significantly higher anti-HIV-1 fusion activity than did corresponding monovalent inhibitors. Examination of the underlying mechanism indicated that M4 could interact with HIV-1 glycoproteins gp120 and gp41, thereby inhibiting 6HB formation in the fusion course. M4 also showed anti-RDDP and anti-RNase H activity of reverse transcriptase. Besides, these assembled molecules showed improved in vitro metabolic stability in liver homogenate, kidney homogenate, and rat plasma. Moreover, little acute toxicity was observed. Our findings aid in the structural design and understanding of the mechanisms of DNA helix-based HIV-1 inhibitors. This study also provides a general strategy based on a new structural paradigm for the design of other multivalent nucleic acid drugs.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Hongqian Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, , Institute of Materia Medica, , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huihui Chong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping road, Beijing 100850, China.
| |
Collapse
|
9
|
Tang Y, Han Z, Guo J, Tian Y, Liu K, Xu L. Synthesis, biophysical characterization, and anti-HIV-1 fusion activity of DNA helix-based inhibitors with a p-benzyloxyphenyl substituent at the 5'-nucleobase site. Bioorg Med Chem Lett 2018; 28:1842-1845. [PMID: 29680665 DOI: 10.1016/j.bmcl.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022]
Abstract
DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates. Introduction of hydrophobic groups to a nucleobase provides an opportunity to design inhibitors with novel structures and mechanisms of action. In this work, two novel nucleoside analogues (1 and 2) were synthesized and incorporated into four DNA duplex- and quadruplex-based inhibitors. All the molecules showed anti-HIV-1 fusion activity. The effect of the p-benzyloxyphenyl group and the attached linker on the helix formation and thermal stability were fully compared and discussed. Surface plasmon resonance analysis further indicated that inhibitors with the same DNA helix may still have variable reaction targets, mainly attributed to the different hydrophobic modifications.
Collapse
Affiliation(s)
- Yongjia Tang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zeye Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Jiamei Guo
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
10
|
Vengut-Climent E, Peñalver P, Lucas R, Gómez-Pinto I, Aviñó A, Muro-Pastor AM, Galbis E, de Paz MV, Fonseca Guerra C, Bickelhaupt FM, Eritja R, González C, Morales JC. Glucose-nucleobase pairs within DNA: impact of hydrophobicity, alternative linking unit and DNA polymerase nucleotide insertion studies. Chem Sci 2018; 9:3544-3554. [PMID: 29780486 PMCID: PMC5934746 DOI: 10.1039/c7sc04850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/04/2018] [Indexed: 11/21/2022] Open
Abstract
Glucose-nucleobase pairs were designed, synthesized and incorporated into duplex DNA. Their stability, structure and polymerase replication was investigated.
Recently, we studied glucose-nucleobase pairs, a binding motif found in aminoglycoside–RNA recognition. DNA duplexes with glucose as a nucleobase were able to hybridize and were selective for purines. They were less stable than natural DNA but still fit well on regular B-DNA. These results opened up the possible use of glucose as a non-aromatic DNA base mimic. Here, we have studied the incorporation and thermal stability of glucose with different types of anchoring units and alternative apolar sugar-nucleobase pairs. When we explored butanetriol instead of glycerol as a wider anchoring unit, we did not gain duplex thermal stability. This result confirmed the necessity of a more conformationally restricted linker to increase the overall duplex stability. Permethylated glucose-nucleobase pairs showed similar stability to glucoside-nucleobase pairs but no selectivity for a specific nucleobase, possibly due to the absence of hydrogen bonds between them. The three-dimensional structure of the duplex solved by NMR located both, the hydrophobic permethylated glucose and the nucleobase, inside the DNA helix as in the case of glucose-nucleobase pairs. Quantum chemical calculations on glucose-nucleobase pairs indicate that the attachment of the sugar to the DNA skeleton through the OH1 or OH4 positions yields the highest binding energies. Moreover, glucose was very selective for guanine when attached through OH1 or OH4 to the DNA. Finally, we examined DNA polymerase insertion of nucleotides in front of the saccharide unit. KF– polymerase from E. coli inserted A and G opposite glc and 6dglc with low efficiency but notable selectivity. It is even capable of extending the new pair although its efficiency depended on the DNA sequence. In contrast, Bst 2.0, SIII and BIOTAQ™ DNA polymerases seem to display a loop-out mechanism possibly due to the flexible glycerol linker used instead of deoxyribose.
Collapse
Affiliation(s)
- Empar Vengut-Climent
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra , CSIC , PTS Granada , Avda. del Conocimiento, 17, 18016 Armilla , Granada , Spain .
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra , CSIC , PTS Granada , Avda. del Conocimiento, 17, 18016 Armilla , Granada , Spain .
| | - Ricardo Lucas
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra , CSIC , PTS Granada , Avda. del Conocimiento, 17, 18016 Armilla , Granada , Spain . .,Departamento de Química Orgánica y Farmacéutica , Facultad de Farmacia , Universidad de Sevilla , C/Prof. García González 2 , 41012-Sevilla , Spain
| | - Irene Gómez-Pinto
- Instituto de Química Física 'Rocasolano' , CSIC , C/. Serrano 119 , 28006 Madrid , Spain
| | - Anna Aviñó
- Instituto de Química Avanzada de Cataluña (IQAC) , CSIC , CIBER - BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine , Jordi Girona 18-26 , E-08034 Barcelona , Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis , CSIC - Universidad de Sevilla , Américo Vespucio 49 , 41092 , Sevilla , Spain
| | - Elsa Galbis
- Departamento de Química Orgánica y Farmacéutica , Facultad de Farmacia , Universidad de Sevilla , C/Prof. García González 2 , 41012-Sevilla , Spain
| | - M Violante de Paz
- Departamento de Química Orgánica y Farmacéutica , Facultad de Farmacia , Universidad de Sevilla , C/Prof. García González 2 , 41012-Sevilla , Spain
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry , Amsterdam Center for Multiscale Modeling , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands.,Leiden Institute of Chemistry , Leiden University , PO Box 9502 , 2300 RA Leiden , The Netherlands
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry , Amsterdam Center for Multiscale Modeling , Vrije Universiteit Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands.,Institute of Molecules and Materials (IMM) , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , The Netherlands
| | - Ramón Eritja
- Instituto de Química Avanzada de Cataluña (IQAC) , CSIC , CIBER - BBN Networking Centre on Bioengineering, Biomaterials and Nanomedicine , Jordi Girona 18-26 , E-08034 Barcelona , Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano' , CSIC , C/. Serrano 119 , 28006 Madrid , Spain
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology , Instituto de Parasitología y Biomedicina López Neyra , CSIC , PTS Granada , Avda. del Conocimiento, 17, 18016 Armilla , Granada , Spain .
| |
Collapse
|
11
|
Matsuura K. Construction of Functional Biomaterials by Biomolecular Self-Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170133] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552
| |
Collapse
|
12
|
D'Urso A, Randazzo R, Rizzo V, Gangemi CMA, Romanucci V, Zarrelli A, Tomaselli G, Milardi D, Borbone N, Purrello R, Piccialli G, Di Fabio G, Oliviero G. Stabilization vs. destabilization of G-quadruplex superstructures: the role of the porphyrin derivative having spermine arms. Phys Chem Chem Phys 2017. [PMID: 28650039 DOI: 10.1039/c7cp02816d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of the porphyrin derivative H2TCPPSpm4, having spermine pendants in the four meso positions, with the G-quadruplex (GQ) structure formed by the DNA aptamer TGGGAG has been investigated by means of UV, electronic circular dichroism and PAGE studies. The results reported here demonstrate that the porphyrin derivative is capable of stabilizing or destabilizing the higher-ordered structures of parallel GQs, depending on the method used to reach their relative stoichiometry (titration vs. single addition). Noteworthily, when two equivalents of H2TCPPSpm4 were mixed directly with one equivalent of the (TGGGAG)4 GQ to reach a 2 : 1 H2TCPPSpm4 : GQ ratio T1/2 higher than 80 °C was also observed confirming the presence of higher-ordered GQ structures.
Collapse
Affiliation(s)
- A D'Urso
- Department of Chemical Science, University of Catania, V.le A Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Prokofjeva M, Tsvetkov V, Basmanov D, Varizhuk A, Lagarkova M, Smirnov I, Prusakov K, Klinov D, Prassolov V, Pozmogova G, Mikhailov SN. Anti-HIV Activities of Intramolecular G4 and Non-G4 Oligonucleotides. Nucleic Acid Ther 2016; 27:56-66. [PMID: 27763826 DOI: 10.1089/nat.2016.0624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New natural and chemically modified DNA aptamers that inhibit HIV-1 activity at submicromolar concentrations (presumably via preventing viral entry into target cells) are reported. The new DNA aptamers were developed based on known intramolecular G-quadruplexes (G4s) that were functionally unrelated to HIV inhibition [the thrombin-binding aptamer and the fragment of the human oncogene promoter (Bcl2)]. The majority of previously described DNA inhibitors of HIV infection adopt intermolecular structures, and thus their folding variability represents an obvious disadvantage. Intramolecular architectures refold correctly after denaturation and are generally easier to handle. However, whether the G4 topology or other factors account for the anti-HIV activity of our aptamers is unknown. The impact of chemical modification (thiophosphoryl internucleotide linkages) on aptamer activity is discussed. The exact secondary structures of the active compounds and further elucidation of their mechanisms of action hopefully will be the subjects of future studies.
Collapse
Affiliation(s)
- Maria Prokofjeva
- 1 Engelhardt Institute of Molecular Biology RAS , Moscow, Russia
| | - Vladimir Tsvetkov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia .,3 Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences , Moscow, Russia
| | - Dmitry Basmanov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Anna Varizhuk
- 1 Engelhardt Institute of Molecular Biology RAS , Moscow, Russia .,2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Maria Lagarkova
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Igor Smirnov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Kirill Prusakov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | - Dmitry Klinov
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia .,4 Moscow Institute of Physics and Technology (State University) , Moscow Region, Russia
| | | | - Galina Pozmogova
- 2 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency , Moscow, Russia
| | | |
Collapse
|
14
|
Xu L, Zhang T, Xu X, Chong H, Lai W, Jiang X, Wang C, He Y, Liu K. DNA Triplex-Based Complexes Display Anti-HIV-1-Cell Fusion Activity. Nucleic Acid Ther 2016; 25:219-25. [PMID: 26192705 DOI: 10.1089/nat.2015.0535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA triplexes with hydrophobic modifications were designed and evaluated for their activity as inhibitors of the cell fusion of human immunodeficiency virus type 1 (HIV-1). Triplex inhibitors displayed low micromolar activities in the cell-cell fusion assay and nanomolar activities in the anti-HIV-1 pseudovirus test. Helix structure and the presence of sufficient numbers of hydrophobic regions were essential for the antifusion activity. Results from native polyacrylamide gel electrophoresis and a fluorescent resonance energy transfer-based inhibitory assay indicated that these triplexes may interact with the primary pocket at the glycoprotein 41 (gp41) N-heptad repeat, thereby inhibiting formation of the HIV-1 gp41 6-helical bundle. Triplex-based complexes may represent a novel category of HIV-1 inhibitors in anti-HIV-1 drug discovery.
Collapse
Affiliation(s)
- Liang Xu
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Tao Zhang
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Xiaoyu Xu
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Huihui Chong
- 2 Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Wenqing Lai
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Xifeng Jiang
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Chao Wang
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| | - Yuxian He
- 2 Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Keliang Liu
- 1 State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology , Beijing, China
| |
Collapse
|
15
|
Romanucci V, Marchand A, Mendoza O, D’Alonzo D, Zarrelli A, Gabelica V, Di Fabio G. Kinetic ESI-MS Studies of Potent Anti-HIV Aptamers Based on the G-Quadruplex Forming Sequence d(TGGGAG). ACS Med Chem Lett 2016; 7:256-60. [PMID: 26985311 DOI: 10.1021/acsmedchemlett.5b00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022] Open
Abstract
To investigate what properties make tetramolecular G-quadruplex ODNs good anti-HIV aptamers, we studied the stoichiometry and the self-assembly kinetics of the highly active 5'-end modified G-quadruplexes based on the d(TGGGAG) sequence. Our results demonstrate that the 5'-end conjugation does not necessarily increase the folding rate of the G-quadruplex; indeed, it ascribes anti-HIV activity. Unexpectedly, the G4-folding kinetics of the inactive G4 is similar to that of the 5'-end modified sequences. ESI-MS studies also revealed the formation of higher order G4 structures identified as octameric complexes along with tetramolecular G-quadruplexes.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Adrien Marchand
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Oscar Mendoza
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Armando Zarrelli
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| | - Valérie Gabelica
- IECB,
ARNA Laboratory, University of Bordeaux, 33600 Pessac, France
- Inserm,
U869, ARNA Laboratory, Institut National de la Santé et de la Recherche Médicale, 33000 Bordeaux, France
| | - Giovanni Di Fabio
- Department
of Chemical Sciences, University of Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
16
|
Grijalvo S, Alagia A, Gargallo R, Eritja R. Cellular uptake studies of antisense oligonucleotides using G-quadruplex-nanostructures. The effect of cationic residue on the biophysical and biological properties. RSC Adv 2016. [DOI: 10.1039/c6ra15336d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cellular uptake studies of G-quadruplex constructs having the Tetrahymena telomeric repeat sequence d(TGGGGT) modified with amino and guanidinium residues at the 3′-termini and an antisense oligonucleotide at 5′-termini were studied.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
| | - Adele Alagia
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
| | - Raimundo Gargallo
- University of Barcelona
- Department of Chemical Engineering and Analytical Chemistry
- E-08028 Barcelona
- Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- E-08034 Barcelona
- Spain
- Networking Centre on Bioengineering
- Biomaterials and Nanomedicine (CIBER-BBN)
| |
Collapse
|
17
|
Musumeci D, Riccardi C, Montesarchio D. G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents. Molecules 2015; 20:17511-32. [PMID: 26402662 PMCID: PMC6332060 DOI: 10.3390/molecules200917511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural compactness and chemo-enzymatic and thermodynamic stability. A number of G-quadruplex-forming oligonucleotides having relevant in vitro anti-HIV activity have been discovered in the last two decades through either SELEX or rational design approaches. Improved aptamers have been obtained by chemical modifications of natural oligonucleotides, as terminal conjugations with large hydrophobic groups, replacement of phosphodiester linkages with phosphorothioate bonds or other surrogates, insertion of base-modified monomers, etc. In turn, detailed structural studies have elucidated the peculiar architectures adopted by many G-quadruplex-based aptamers and provided insight into their mechanism of action. An overview of the state-of-the-art knowledge of the relevance of putative G-quadruplex forming sequences within the viral genome and of the most studied G-quadruplex-forming aptamers, selectively targeting HIV proteins, is here presented.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia 21, Napoli I-80126, Italy.
| |
Collapse
|
18
|
Musumeci D, Irace C, Santamaria R, Milano D, Tecilla P, Montesarchio D. Guanine-based amphiphiles: synthesis, ion transport properties and biological activity. Bioorg Med Chem 2015; 23:1149-56. [DOI: 10.1016/j.bmc.2014.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
|
19
|
Davis KJ, Richardson C, Beck JL, Knowles BM, Guédin A, Mergny JL, Willis AC, Ralph SF. Synthesis and characterisation of nickel Schiff base complexes containing the meso-1,2-diphenylethylenediamine moiety: selective interactions with a tetramolecular DNA quadruplex. Dalton Trans 2015; 44:3136-50. [DOI: 10.1039/c4dt02926g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two nickel(ii) Schiff base complexes exhibit binding selectivity for a tetramolecular DNA quadruplex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony C. Willis
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | | |
Collapse
|
20
|
Doluca O, Withers JM, Loo TS, Edwards PJB, González C, Filichev VV. Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Org Biomol Chem 2015; 13:3742-8. [DOI: 10.1039/c4ob02499k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our results demonstrate the expanded capabilities of G-quadruplex DNAs for directed chromophore arrangements and show new perspectives in the design of G-quadruplexes governed by non-guanine moieties.
Collapse
Affiliation(s)
- Osman Doluca
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Jamie M. Withers
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Trevor S. Loo
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | - Patrick J. B. Edwards
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| | | | - Vyacheslav V. Filichev
- College of Sciences
- Institute of Fundamental Sciences
- Massey University
- 4442 Palmerston North
- New Zealand
| |
Collapse
|
21
|
Romanucci V, Gaglione M, Messere A, Potenza N, Zarrelli A, Noppen S, Liekens S, Balzarini J, Di Fabio G. Hairpin oligonucleotides forming G-quadruplexes: new aptamers with anti-HIV activity. Eur J Med Chem 2014; 89:51-8. [PMID: 25462225 DOI: 10.1016/j.ejmech.2014.10.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/20/2014] [Accepted: 10/12/2014] [Indexed: 12/31/2022]
Abstract
We describe the facile syntheses of new modified oligonucleotides based on d(TG3AG) that form bimolecular G-quadruplexes and possess a HEG loop as an inversion of polarity site 3'-3' or 5'-5' and aromatic residues conjugated to the 5'-end through phosphodiester bonds. The conjugated hairpin G-quadruplexes exhibited parallel orientation, high thermal stability, elevated resistance in human serum and high or moderate anti-HIV-1 activity with low cytotoxicity. Further, these molecules showed significant binding to HIV envelope glycoproteins gp120, gp41 and HSA, as revealed by SPR assays. As a result, these conjugated hairpins represent the first active anti-HIV-1 bimolecular G-quadruplexes based on the d(TG3AG) sequence.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy
| | - Maria Gaglione
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy
| | - Sam Noppen
- Rega Institute for Medical Research, KU Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium
| | - Sandra Liekens
- Rega Institute for Medical Research, KU Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
22
|
Romanucci V, Milardi D, Campagna T, Gaglione M, Messere A, D'Urso A, Crisafi E, La Rosa C, Zarrelli A, Balzarini J, Di Fabio G. Synthesis, biophysical characterization and anti-HIV activity of d(TG3AG) Quadruplexes bearing hydrophobic tails at the 5'-end. Bioorg Med Chem 2014; 22:960-6. [PMID: 24433967 DOI: 10.1016/j.bmc.2013.12.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/24/2023]
Abstract
Novel conjugated G-quadruplex-forming d(TG3AG) oligonucleotides, linked to hydrophobic groups through phosphodiester bonds at 5'-end, have been synthesized as potential anti-HIV aptamers, via a fully automated, online phosphoramidite-based solid-phase strategy. Conjugated quadruplexes showed pronounced anti-HIV activity with some preference for HIV-1, with inhibitory activity invariably in the low micromolar range. The CD and DSC monitored thermal denaturation studies on the resulting quadruplexes, indicated the insertion of lipophilic residue at the 5'-end, conferring always improved stability to the quadruplex complex (20<ΔTm<40°C). The data suggest no direct functional relationship between the thermal stability and anti-HIV activity of the folded conjugated G-quartets. It would appear that the nature of the residue at 5' end of the d(TG3AG) quadruplexes plays an important role in the thermodynamic stabilization but a minor influence on the anti-HIV activity. Moreover, a detailed CD and DSC analyses indicate a monophasic behaviour for sequences I and V, while for ODNs (II-IV) clearly show that these quadruplex structures deviate from simple two-state melting, supporting the hypothesis that intermediate states along the dissociation pathway may exist.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini-Catania, Consiglio Nazionale delle Ricerche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Tiziana Campagna
- Istituto di Biostrutture e Bioimmagini-Catania, Consiglio Nazionale delle Ricerche, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maria Gaglione
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università̀ di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Emanuela Crisafi
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli 'Federico II', Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
23
|
D'Atri V, Borbone N, Amato J, Gabelica V, D'Errico S, Piccialli G, Mayol L, Oliviero G. DNA-based nanostructures: The effect of the base sequence on octamer formation from d(XGGYGGT) tetramolecular G-quadruplexes. Biochimie 2013; 99:119-28. [PMID: 24316277 DOI: 10.1016/j.biochi.2013.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/22/2013] [Indexed: 11/28/2022]
Abstract
In a previous work we have demonstrated that the DNA sequence CGGTGGT folds into a higher order G-quadruplex structure (2Q), obtained by the 5'-5' stacking of two unusual G(:C):G(:C):G(:C):G(:C) planar octads belonging to two identical tetra-stranded parallel quadruplexes, when annealed in the presence of ammonium or potassium ions. In the present paper, we discuss the role played by the title nucleosides X and Y (where X and Y stand for A, C, G, or T) on the formation and stability of 2Q structures formed by the XGGYGGT oligodeoxynucleotides. We found that the above mentioned dimerization pathway is not peculiar to the CGGTGGT sequence, but is possible for all the remaining CGGYGGT sequences (with Y = A, C, or G). Furthermore, we have found that the TGGAGGT sequence, despite the absence of the 5'-ending C, is also capable of forming a 2Q-like higher order quadruplex by using a slightly different dimerization interface, as characterized by NMR spectroscopy. To the best of our knowledge, this is the first characterization of a quadruplex multimer formed by an oligodeoxynucleotide presenting a thymine at its 5'-end. Examples of such structures were observed previously only in crystals and in the presence of non-physiological cations. Our results expand the repertoire of DNA quadruplex nanostructures of chosen length and add further complexity to the structural polymorphism of G-rich DNA sequences.
Collapse
Affiliation(s)
- Valentina D'Atri
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Jussara Amato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA Laboratory, F-33600 Pessac, France; INSERM, U869, ARNA laboratory, F-33000 Bordeaux, France
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
24
|
Temme JS, Drzyzga MG, MacPherson IS, Krauss IJ. Directed evolution of 2G12-targeted nonamannose glycoclusters by SELMA. Chemistry 2013; 19:17291-5. [PMID: 24227340 DOI: 10.1002/chem.201303848] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- J Sebastian Temme
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454 (USA)
| | | | | | | |
Collapse
|
25
|
De Tito S, Morvan F, Meyer A, Vasseur JJ, Cummaro A, Petraccone L, Pagano B, Novellino E, Randazzo A, Giancola C, Montesarchio D. Fluorescence enhancement upon G-quadruplex folding: synthesis, structure, and biophysical characterization of a dansyl/cyclodextrin-tagged thrombin binding aptamer. Bioconjug Chem 2013; 24:1917-27. [PMID: 24094251 DOI: 10.1021/bc400352s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel fluorescent thrombin binding aptamer (TBA), conjugated with the environmentally sensitive dansyl probe at the 3'-end and a β-cyclodextrin residue at the 5'-end, has been efficiently synthesized exploiting Cu(I)-catalyzed azide-alkyne cycloaddition procedures. Its conformation and stability in solution have been studied by an integrated approach, combining in-depth NMR, CD, fluorescence, and DSC studies. ITC measurements have allowed us to analyze in detail its interaction with human thrombin. All the collected data show that this bis-conjugated aptamer fully retains its G-quadruplex formation ability and thrombin recognition properties, with the terminal appendages only marginally interfering with the conformational behavior of TBA. Folding of this modified aptamer into the chairlike, antiparallel G-quadruplex structure, promoted by K(+) and/or thrombin binding, typical of TBA, is associated with a net fluorescence enhancement, due to encapsulation of dansyl, attached at the 3'-end, into the apolar cavity of the β-cyclodextrin at the 5'-end. Overall, the structural characterization of this novel, bis-conjugated TBA fully demonstrates its potential as a diagnostic tool for thrombin recognition, also providing a useful basis for the design of suitable aptamer-based devices for theranostic applications, allowing simultaneously both detection and inhibition or modulation of the thrombin activity.
Collapse
Affiliation(s)
- Stefano De Tito
- Department of Pharmacy, University of Naples Federico II , via D. Montesano 49, I-80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
DNA duplexes with hydrophobic modifications inhibit fusion between HIV-1 and cell membranes. Antimicrob Agents Chemother 2013; 57:4963-70. [PMID: 23896466 DOI: 10.1128/aac.00758-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers.
Collapse
|
27
|
Doluca O, Withers JM, Filichev VV. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 2013; 113:3044-83. [PMID: 23391174 DOI: 10.1021/cr300225q] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Osman Doluca
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
28
|
Gómez-Pinto I, Vengut-Climent E, Lucas R, Aviñó A, Eritja R, González C, Morales JC. Carbohydrate-DNA interactions at G-quadruplexes: folding and stability changes by attaching sugars at the 5'-end. Chemistry 2013; 19:1920-7. [PMID: 23315826 DOI: 10.1002/chem.201203902] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/07/2022]
Abstract
Quadruplex DNA structures are attracting an enormous interest in many areas of chemistry, ranging from chemical biology, supramolecular chemistry to nanoscience. We have prepared carbohydrate-DNA conjugates containing the oligonucleotide sequences of G-quadruplexes (thrombin binding aptamer (TBA) and human telomere (TEL)), measured their thermal stability and studied their structure in solution by using NMR and molecular dynamics. The solution structure of a fucose-TBA conjugate shows stacking interactions between the carbohydrate and the DNA G-tetrad in addition to hydrogen bonding and hydrophobic contacts. We have also shown that attaching carbohydrates at the 5'-end of a quadruplex telomeric sequence can alter its folding topology. These results suggest the possibility of modulating the folding of the G-quadruplex by linking carbohydrates and have clear implications in molecular recognition and the design of new G-quadruplex ligands.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Spinelli N, Defrancq E, Morvan F. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications. Chem Soc Rev 2012; 42:4557-73. [PMID: 23254681 DOI: 10.1039/c2cs35406c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.
Collapse
Affiliation(s)
- Nicolas Spinelli
- Département de Chimie Moléculaire UMR 5250, CNRS Université Joseph Fourier, BP 53-38041, Grenoble cedex 9, France
| | | | | |
Collapse
|
30
|
Musumeci D, Montesarchio D. Synthesis of a cholesteryl-HEG phosphoramidite derivative and its application to lipid-conjugates of the anti-HIV 5'TGGGAG³' Hotoda's sequence. Molecules 2012; 17:12378-92. [PMID: 23090019 PMCID: PMC6268758 DOI: 10.3390/molecules171012378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
A novel phosphoramidite derivative of cholesterol, with an ether-linked hexaethylene glycol (HEG) spacer arm, has been obtained through simple and reproducible solid phase modified oligonucleotide synthesis manipulations. This building block and the known phosphoramidite derivative of 3b-(2-hydroxyethoxy)cholesterol have been exploited in standard oligonucleotide synthesis protocols for the preparation of 5'- conjugates of the G-quadruplex-forming ⁵'TGGGAG³' oligomer, known as the Hotoda's sequence, to produce new potential anti-HIV agents.
Collapse
Affiliation(s)
| | - Daniela Montesarchio
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cintia 21, I-80126, Napoli, Italy
| |
Collapse
|
31
|
Cosconati S, Rizzo A, Trotta R, Pagano B, Iachettini S, De Tito S, Lauri I, Fotticchia I, Giustiniano M, Marinelli L, Giancola C, Novellino E, Biroccio A, Randazzo A. Shooting for selective druglike G-quadruplex binders: evidence for telomeric DNA damage and tumor cell death. J Med Chem 2012; 55:9785-92. [PMID: 23057850 DOI: 10.1021/jm301019w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeting of DNA secondary structures, such as G-quadruplexes, is now considered an appealing opportunity for drug intervention in anticancer therapy. So far, efforts made in the discovery of chemotypes able to target G-quadruplexes mainly succeeded in the identification of a number of polyaromatic compounds featuring end-stacking binding properties. Against this general trend, we were persuaded that the G-quadruplex grooves can recognize molecular entities with better drug-like and selectivity properties. From this idea, a set of small molecules was identified and the structural features responsible for G-quadruplex recognition were delineated. These compounds were demonstrated to have enhanced affinity and selectivity for the G-quadruplex over the duplex structure. Their ability to induce selective DNA damage at telomeric level and to induction of apoptosis and senescence on tumor cells is herein experimentally proven.
Collapse
Affiliation(s)
- Sandro Cosconati
- Dipartimento di Scienze Ambientali, Seconda Università di Napoli , 81100 Caserta, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. Pharmacol Ther 2012; 136:202-15. [PMID: 22850531 DOI: 10.1016/j.pharmthera.2012.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
Abstract
Nucleic acid-based aptamers can be selected from combinatorial libraries of synthetic oligonucleotides to bind, with affinity and specificity similar to antibodies, a wide range of biomedically relevant targets. Compared to protein therapeutics, aptamers exhibit significant advantages in terms of size, non-immunogenicity and wide synthetic accessibility. Various chemical modifications have been introduced in the natural oligonucleotide backbone of aptamers in order to increase their half-life, as well as their pharmacological properties. Very effective alternative approaches, devised in order to improve both the aptamer activity and stability, were based on the design of polyvalent aptamers, able to establish multivalent interactions with the target: thus, multiple copies of an aptamer can be assembled on the same molecular- or nanomaterial-based scaffold. In the present review, the thrombin binding aptamers (TBAs) are analyzed as a model system to study multiple-aptamer constructs aimed at improving their anticoagulation activity in terms of binding to the target and stability to enzymatic degradation. Indeed - even if the large number of chemically modified TBAs investigated in the last 20 years has led to encouraging results - a significant progress has been obtained only recently with bivalent or engineered dendritic TBA aptamers, or assemblies of TBAs on nanoparticles and DNA nanostructures. Furthermore, the modulation of the aptamers activity by means of tailored drug-active reversal agents, especially in the field of anticoagulant aptamers, as well as the reversibility of the TBA activity through the use of antidotes, such as porphyrins, complementary oligonucleotides or of external stimuli, are discussed.
Collapse
|
33
|
Schlegel MK, Hütter J, Eriksson M, Lepenies B, Seeberger PH. Defined presentation of carbohydrates on a duplex DNA scaffold. Chembiochem 2011; 12:2791-800. [PMID: 22052782 DOI: 10.1002/cbic.201100511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Indexed: 01/15/2023]
Abstract
A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.
Collapse
Affiliation(s)
- Mark K Schlegel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
34
|
Chen W, Xu L, Cai L, Zheng B, Wang K, He J, Liu K. d(TGGGAG) with 5′-nucleobase-attached large hydrophobic groups as potent inhibitors for HIV-1 envelop proteins mediated cell–cell fusion. Bioorg Med Chem Lett 2011; 21:5762-4. [DOI: 10.1016/j.bmcl.2011.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/18/2011] [Accepted: 08/02/2011] [Indexed: 11/24/2022]
|
35
|
Pedersen EB, Nielsen JT, Nielsen C, Filichev VV. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids. Nucleic Acids Res 2011; 39:2470-81. [PMID: 21062811 PMCID: PMC3064782 DOI: 10.1093/nar/gkq1133] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 01/23/2023] Open
Abstract
Two G-quadruplex forming sequences, 5'-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming oligonucleotides (QFOs) and the effect of LNA monomers in the context of biologically active QFOs. In addition, recent literature reports and our own studies on the gel retardation of the phosphodiester analogue of T30177 led to the conclusion that this sequence forms a parallel, dimeric G-quadruplex. Introduction of the 5'-phosphate inhibits dimerisation of this G-quadruplex as a result of negative charge-charge repulsion. Contrary to that, we found that attachment of the 5'-O-DMT-group produced a more active 17-mer sequence that showed signs of aggregation-forming multimeric G-quadruplex species in solution. Many of the antiviral QFOs in the present study formed more thermally stable G-quadruplexes and also high-order G-quadruplex structures which might be responsible for the increased antiviral activity observed.
Collapse
Affiliation(s)
- Erik B. Pedersen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense, Department of Virology, Retrovirus Laboratory, State Serum Institute, 2300 Copenhagen, Denmark and Institute of Fundamental Sciences, Massey University, Palmerston North, Private Bag 11-222, New Zealand
| | - Jakob T. Nielsen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense, Department of Virology, Retrovirus Laboratory, State Serum Institute, 2300 Copenhagen, Denmark and Institute of Fundamental Sciences, Massey University, Palmerston North, Private Bag 11-222, New Zealand
| | - Claus Nielsen
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense, Department of Virology, Retrovirus Laboratory, State Serum Institute, 2300 Copenhagen, Denmark and Institute of Fundamental Sciences, Massey University, Palmerston North, Private Bag 11-222, New Zealand
| | - Vyacheslav V. Filichev
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, 5230 Odense, Department of Virology, Retrovirus Laboratory, State Serum Institute, 2300 Copenhagen, Denmark and Institute of Fundamental Sciences, Massey University, Palmerston North, Private Bag 11-222, New Zealand
| |
Collapse
|
36
|
Pourceau G, Meyer A, Chevolot Y, Souteyrand E, Vasseur JJ, Morvan F. Oligonucleotide carbohydrate-centered galactosyl cluster conjugates synthesized by click and phosphoramidite chemistries. Bioconjug Chem 2011; 21:1520-9. [PMID: 20715856 DOI: 10.1021/bc1001888] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oligonucleotide glycoconjugates with a mannose or galactose core bearing four galactose residues introduced by phosphoramidite chemistry and copper catalyzed azide alkyne 1,3-dipolar cycloaddition (click chemistry) have been synthesized. A first click reaction allowed the introduction on a solid support of a mannose core on which four pentynyl linkers were introduced using a phosphoramidite derivative. After the elongation of the oligonucleotide, a second click reaction performed either on solid support or in solution allowed the introduction of four galactose azide derivatives. Repeating the phosphoramidite and click chemistries afforded an oligonucleotide glycoconjugate dendrimer bearing 16 galactoses on its periphery.
Collapse
Affiliation(s)
- Gwladys Pourceau
- Institut des Biomolecules Max Mousseron, UMR 5247 CNRS, Universite Montpellier 1, Place Eugene Bataillon, Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
37
|
Rodríguez-Pérez T, Fernández S, Sanghvi YS, Detorio M, Schinazi RF, Gotor V, Ferrero M. Chemoenzymatic syntheses and anti-HIV-1 activity of glucose-nucleoside conjugates as prodrugs. Bioconjug Chem 2010; 21:2239-49. [PMID: 21077659 DOI: 10.1021/bc1002168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphodiester linked conjugates of various nucleosides such as d4U, d4T, IdUrd, ddI, ddA, virazole, ara-A, and ara-C containing a glucosyl moiety have been described. These compounds were designed to act as prodrugs, where the corresponding 5'-monophosphates may be generated intracellularly. The synthesis of the glycoconjugates was achieved in good yields by condensation of a glucosyl phosphoramidite 7 with nucleosides in the presence of an activating agent. It was demonstrated that the glucose conjugates improve the water solubility of the nucleoside analogues, for example, up to 31-fold for the ara-A conjugate compared to that of ara-A alone. The new conjugates were tested for their anti-HIV-1 activity in human lymphocytes. These derivatives offer a convenient design for potential prodrug candidates with the possibility of improving the physicochemical properties and therapeutic activity of nucleoside analogues.
Collapse
Affiliation(s)
- Tatiana Rodríguez-Pérez
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Tran PLT, Virgilio A, Esposito V, Citarella G, Mergny JL, Galeone A. Effects of 8-methylguanine on structure, stability and kinetics of formation of tetramolecular quadruplexes. Biochimie 2010; 93:399-408. [PMID: 21034790 DOI: 10.1016/j.biochi.2010.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Tetramolecular G-quadruplexes result from the association of four guanine-rich strands. Modification of the backbone strand or the guanine bases of the oligonucleotide may improve stability or introduce new functionalities. In this regard, the 8 position of a guanosine is particularly suitable for introduction of modifications since as it is positioned in the groove of the quadruplex structure. Modifications at this position should not interfere with structural assembly as would changes at Watson-Crick and Hoogsteen sites. In this study, we investigated the effect of an 8-methyl-2'-deoxyguanosine residue (M) on the structure and stability of tetramolecular parallel G-quadruplexes. In some cases, the presence of this residue resulted in the formation of unusual quadruplex structures containing all-syn tetrads. Furthermore, the modified nucleoside M at the 5'-end of the sequence accelerated quadruplex formation by 15-fold or more relative to the unmodified oligonucleotide, which makes this nucleobase an attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.
Collapse
Affiliation(s)
- Phong Lan Thao Tran
- INSERM U869, European Institute of Chemistry and Biology, Bordeaux University, 2 rue Robert Escarpit, Pessac, France
| | | | | | | | | | | |
Collapse
|
39
|
Rosu F, Gabelica V, Poncelet H, De Pauw E. Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res 2010; 38:5217-25. [PMID: 20400500 PMCID: PMC2926595 DOI: 10.1093/nar/gkq208] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Electrospray mass spectrometry was used to investigate the mechanism of tetramolecular G-quadruplex formation by the DNA oligonucleotide dTG5T, in ammonium acetate. The intermediates and products were separated according to their mass (number of strands and inner cations) and quantified. The study of the temporal evolution of each species allows us to propose the following formation mechanism. (i) Monomers, dimers and trimers are present at equilibrium already in the absence of ammonium acetate. (ii) The addition of cations promotes the formation of tetramers and pentamers that incorporate ammonium ions and therefore presumably have stacked guanine quartets in their structure. (iii) The pentamers eventually disappear and tetramers become predominant. However, these tetramers do not have their four strands perfectly aligned to give five G-quartets: the structures contain one ammonium ion too few, and ion mobility spectrometry shows that their conformation is more extended. (iv) At 4°C, the rearrangement of the kinetically trapped tetramers with presumably slipped strand(s) into the perfect G-quadruplex structure is extremely slow (not complete after 4 months). We also show that the addition of methanol to the monomer solution significantly accelerates the cation-induced G-quadruplex assembly.
Collapse
Affiliation(s)
- Frédéric Rosu
- Department of Chemistry B6c, University of Liège, Liège, Belgium.
| | | | | | | |
Collapse
|
40
|
Efficient Grignard-type addition of sugar alkynes via C–H activation to imines using Cu–Ru catalyst under microwave conditions. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Lönnberg H. Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug Chem 2009; 20:1065-94. [PMID: 19175328 DOI: 10.1021/bc800406a] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Olignucleotide-based drugs show promise as a novel form of chemotherapy. Among the hurdles that have to be overcome on the way of applicable nucleic acid therapeutics, inefficient cellular uptake and subsequent release from endosomes to cytoplasm appear to be the most severe ones. Covalent conjugation of oligonucleotides to molecules that expectedly facilitate the internalization, targets the conjugate to a specific cell-type or improves the parmacokinetics offers a possible way to combat against these shortcomings. Since workable chemistry is a prerequisite for biological studies, development of efficient and reproducible methods for preparation of various types of oligonucleotide conjugates has become a subject of considerable importance. The present review summarizes the advances made in the solid-supported synthesis of oligonucleotide conjugates aimed at facilitating the delivery and targeting of nucleic acid drugs.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|