1
|
Osterne VJ, Pinto-Junior VR, Oliveira MV, Nascimento KS, Van Damme EJ, Cavada BS. Computational insights into the circular permutation roles on ConA binding and structural stability. Curr Res Struct Biol 2024; 7:100140. [PMID: 38559841 PMCID: PMC10979261 DOI: 10.1016/j.crstbi.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The mechanisms behind Concanavalin A (ConA) circular permutation have been under investigation since 1985. Although a vast amount of information is available about this lectin and its applications, the exact purpose of its processing remains unclear. To shed light on this, this study employed computer simulations to compare the unprocessed ProConA with the mature ConA. This approach aimed to reveal the importance of the post-translational modifications, especially how they affect the lectin stability and carbohydrate-binding properties. To achieve these goals, we conducted 200 ns molecular dynamics simulations and trajectory analyses on the monomeric forms of ProConA and ConA (both unbound and in complex with D-mannose and the GlcNAc2Man9 N-glycan), as well as on their oligomeric forms. Our findings reveal significant stability differences between ProConA and ConA at both the monomeric and tetrameric levels, with ProConA exhibiting consistently lower stability parameters compared to ConA. In terms of carbohydrate binding properties, however, both lectins showed remarkable similarities in their interaction profiles, contact numbers, and binding free energies with D-mannose and the high-mannose N-glycan. Overall, our results suggest that the processing of ProConA significantly enhances the stability of the mature lectin, especially in maintaining the tetrameric oligomer, without substantially affecting its carbohydrate-binding properties.
Collapse
Affiliation(s)
- Vinicius J.S. Osterne
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Vanir R. Pinto-Junior
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
- Department of Physics, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| | - Messias V. Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| | - Kyria S. Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| | - Els J.M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Benildo S. Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Hwang Y, Jeong JH, Lee DH, Lee SJ. Selective interactions of Co 2+-Ca 2+-concanavalin A with high mannose N-glycans. Dalton Trans 2024; 53:428-433. [PMID: 38086668 DOI: 10.1039/d3dt03575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Concanavalin A (ConA) has an intrinsic binding affinity to carbohydrates. Here, we obtained Co2+-Ca2+-ConA (2.83 Å, PDB: 8I7Q) via X-ray crystallography by substituting native ConA (Mn2+-Ca2+); it has binding selectivity for high-mannose N-glycan similar to native ConA. Our findings may thus inform antiviral reagent design.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Heon Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
- Institute of Molecular Biology and Genetics, Jeonbuk National University 54896, Republic of Korea
| |
Collapse
|
3
|
Priegue JM, Louzao I, Gallego I, Montenegro J, Granja JR. 1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Org Chem Front 2022. [DOI: 10.1039/d1qo01349a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide nanotubes deposit on mica surface can be used for the alignment of proteins thank to the use of dynamic covalent bonds that allow the incorporation of appropriate ligands on nanotube surface.
Collapse
Affiliation(s)
- Juan M. Priegue
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Iria Louzao
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Iván Gallego
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Javier Montenegro
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials, (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
5
|
Yadav S, Naresh K, Jayaraman N. "Surface Density of Ligands Controls In-Plane and Aggregative Modes of Multivalent Glycovesicle-Lectin Recognitions". Chembiochem 2021; 22:3075-3081. [PMID: 34375491 DOI: 10.1002/cbic.202100321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Indexed: 11/09/2022]
Abstract
Glycovesicles are ideal tools to delineate finer mechanisms of the interactions at the biological cell membranes. Multivalency forms the basis which, in turn, should surpass more than one mechanism in order to maintain multiple roles that the ligand-lectin interactions encounter. Ligand densities hold a prime control to attenuate the interactions. In the present study, mannose trisaccharide interacting with a cognate receptor, namely, Con A, is assessed at the vesicle surfaces. A synthetic (1→3)(1→6)-branched mannose trisaccharide is tethered with a diacetylene monomer and glycovesicles of varying sugar densities are prepared. The polydiacetylene vesicles are prepared by maintaining uniform lipid concentrations. The interactions of the glycovesicles with the lectin are probed through dynamic light scattering and UV-Vis spectroscopy techniques. Binding efficacies are assessed by surface plasmon resonance technique. Aggregative and in-plane modes of interactions follow a ligand density-dependant manner at the vesicle surface. Vesicles with sparsely populated ligands engage lectin in an aggregative mode (trans-), leading to a cross-linked complex formation. Whereas glycovesicles imbedded with dense ligands engage lectin interaction in an in-plane mode intramolecularly (cis-). Sub-nanomolar dissociation constants govern the intramolecular interaction occurring within the plane of the vesicle, relatively more efficacious than the aggregative intermolecular interactions.
Collapse
Affiliation(s)
- Shivender Yadav
- Indian Institute of Science, Department of Organic Chemistry, INDIA
| | - Kottari Naresh
- Indian Institute of Science, Department of Organic Chemistry, INDIA
| | - Narayanaswamy Jayaraman
- Indian Institute of Science, Department of Organic Chemistry, Sir C.V. Raman Avenue, 560 012, Bangalore, INDIA
| |
Collapse
|
6
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Cavada BS, Osterne VJS, Lossio CF, Pinto-Junior VR, Oliveira MV, Silva MTL, Leal RB, Nascimento KS. One century of ConA and 40 years of ConBr research: A structural review. Int J Biol Macromol 2019; 134:901-911. [DOI: 10.1016/j.ijbiomac.2019.05.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/30/2023]
|
8
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS. ConA-Like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. Int J Mol Sci 2018; 20:ijms20010030. [PMID: 30577614 PMCID: PMC6337138 DOI: 10.3390/ijms20010030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Lectins are a widely studied group of proteins capable of specific and reversible binding to carbohydrates. Undoubtedly, the best characterized are those extracted from plants of the Leguminosae family. Inside this group of proteins, those from the Diocleinae subtribe have attracted attention, in particular Concanavalin A (ConA), the best-studied lectin of the group. Diocleinae lectins, also called ConA-like lectins, present a high similarity of sequence and three-dimensional structure and are known to present inflammatory, vasoactive, antibiotic, immunomodulatory and antitumor activities, among others. This high similarity of lectins inside the ConA-like group makes it possible to use them to study structure/biological activity relationships by the variability of both carbohydrate specificity and biological activities results. It is in this context the following review aims to summarize the most recent data on the biochemical and structural properties, as well as biological activities, of ConA-like lectins and the use of these lectins as models to study structure/biological activity relationships.
Collapse
Affiliation(s)
- Benildo S Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vanir R Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vinicius J S Osterne
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Kyria S Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| |
Collapse
|
9
|
Juanes M, Lostalé-Seijo I, Granja JR, Montenegro J. Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry 2018; 24:10689-10698. [DOI: 10.1002/chem.201800706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
10
|
Yang JS, Qiao J, Kim JY, Zhao L, Qi L, Moon MH. Online Proteolysis and Glycopeptide Enrichment with Thermoresponsive Porous Polymer Membrane Reactors for Nanoflow Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2018; 90:3124-3131. [DOI: 10.1021/acs.analchem.7b04273] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joon Seon Yang
- Department of Chemistry, Yonsei University, 50 Yonsei-Ro, Seoul 03722, South Korea
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jin Yong Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-Ro, Seoul 03722, South Korea
| | - Liping Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- College of Chemistry & Environmental Science, Hebei University, No. 180 Wusidong Road, Baoding 071002, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-Ro, Seoul 03722, South Korea
| |
Collapse
|
11
|
Zhang Y, Wang B, Zhang Y, Zheng Y, Wen X, Bai L, Wu Y. Hyperbranched Glycopolymers of 2-(α-d-Mannopyranose) Ethyl Methacrylate and N,N'-Methylenebisacrylamide: Synthesis, Characterization and Multivalent Recognitions with Concanavalin A. Polymers (Basel) 2018; 10:E171. [PMID: 30966207 PMCID: PMC6415052 DOI: 10.3390/polym10020171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/02/2023] Open
Abstract
A series of novel hyperbranched poly[2-(α-d-mannopyranosyloxy) ethyl methacrylate-co-N,N'-methylenebisacrylamide] (HPManEMA-co-MBA) are synthesized via a reversible addition fragmentation polymerization (RAFT). The dosage ratios of linear and branch units are tuned to obtain different degree of branching (DB) in hyperbranched glycopolymers. The DB values are calculated according to the content of nitrogen, which are facilely determined by elemental analysis. The lectin-binding properties of HPManEMA-co-MBA to concanavalin A (ConA) are examined using a turbidimetric assay. The influence of defined DB value and molecular weight of HPManEMA-co-MBA on the clustering rate is studied. Notably, HPManEMA-co-MBAs display a low cytotoxicity in the MTT assay, thus are potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Yuangong Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Bo Wang
- College of Chemical Engineering and Materials, Handan University, Handan 056005, China.
| | - Ye Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Ying Zheng
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Xin Wen
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Libin Bai
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
- College of Chemical Engineering and Materials, Handan University, Handan 056005, China.
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Kaltner H, Manning JC, García Caballero G, Di Salvo C, Gabba A, Romero-Hernández LL, Knospe C, Wu D, Daly HC, O'Shea DF, Gabius HJ, Murphy PV. Revealing biomedically relevant cell and lectin type-dependent structure–activity profiles for glycoclusters by using tissue sections as an assay platform. RSC Adv 2018; 8:28716-28735. [PMID: 35542469 PMCID: PMC9084366 DOI: 10.1039/c8ra05382k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
The increasing realization of the involvement of lectin-glycan recognition in (patho)physiological processes inspires envisioning therapeutic intervention by high-avidity/specificity blocking reagents. Synthetic glycoclusters are proving to have potential for becoming such inhibitors but the commonly used assays have their drawbacks to predict in vivo efficacy. They do not represent the natural complexity of (i) cell types and (ii) spatial and structural complexity of glycoconjugate representation. Moreover, testing lectins in mixtures, as present in situ, remains a major challenge, giving direction to this work. Using a toolbox with four lectins and six bi- to tetravalent glycoclusters bearing the cognate sugar in a model study, we here document the efficient and versatile application of tissue sections (from murine jejunum as the model) as a platform for routine and systematic glycocluster testing without commonly encountered limitations. The nature of glycocluster structure, especially core and valency, and of protein features, i.e. architecture, fine-specificity and valency, are shown to have an influence, as cell types can differ in response profiles. Proceeding from light microscopy to monitoring by fluorescence microscopy enables grading of glycocluster activity on individual lectins tested in mixtures. This work provides a robust tool for testing glycoclusters prior to considering in vivo experiments. Introducing tissue sections for testing glycocluster activity as inhibitors of lectin binding close to in vivo conditions.![]()
Collapse
|
13
|
Costa RM, Albuquerque WWC, Silva MC, Paula RAD, Melo MS, Oliva ML, Porto ALF. Can γ-radiation modulate hemagglutinating and anticoagulant activities of PpyLL, a lectin from Phthirusa pyrifolia? Int J Biol Macromol 2017; 104:125-136. [DOI: 10.1016/j.ijbiomac.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
14
|
Stine KJ. Application of Porous Materials to Carbohydrate Chemistry and Glycoscience. Adv Carbohydr Chem Biochem 2017; 74:61-136. [PMID: 29173727 DOI: 10.1016/bs.accb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a growing interest in using a range of porous materials to meet research needs in carbohydrate chemistry and glycoscience in general. Among the applications of porous materials reviewed in this chapter, enrichment of glycans from biological samples prior to separation and analysis by mass spectrometry is a major emphasis. Porous materials offer high surface area, adjustable pore sizes, and tunable surface chemistry for interacting with glycans, by boronate affinity, hydrophilic interactions, molecular imprinting, and polar interactions. Among the materials covered in this review are mesoporous silica and related materials, porous graphitic carbon, mesoporous carbon, porous polymers, and nanoporous gold. In some applications, glycans are enzymatically or chemically released from glycoproteins or glycopeptides, and the porous materials have the advantage of size selectivity admitting only the glycans into the pores and excluding proteins. Immobilization of lectins onto porous materials of suitable pore size allows for the use of lectin-carbohydrate interactions in capture or separation of glycoproteins. Porous material surfaces modified with carbohydrates can be used for the selective capture of lectins. Controlled release of therapeutics from porous materials mediated by glycans has been reported, and so has therapeutic targeting using carbohydrate-modified porous particles. Additional applications of porous materials in glycoscience include their use in the supported synthesis of oligosaccharides and in the development of biosensors for glycans.
Collapse
|
15
|
Niu S, Ruotolo BT. Collisional unfolding of multiprotein complexes reveals cooperative stabilization upon ligand binding. Protein Sci 2015; 24:1272-81. [PMID: 25970849 DOI: 10.1002/pro.2699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/13/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022]
Abstract
Cooperative binding mechanisms are a common feature in biology, enabling a diverse range of protein-based molecular machines to regulate activities ranging from oxygen uptake to cellular membrane transport. Much, however, is not known about such cooperative binding mechanisms, including how such events typically add to the overall stability of such protein systems. Measurements of such cooperative stabilization events are challenging, as they require the separation and resolution of individual protein complex bound states within a mixture of potential stoichiometries to individually assess protein stabilities. Here, we report ion mobility-mass spectrometry results for the concanavalin A tetramer bound to a range of polysaccharide ligands. We use collision induced unfolding, a relatively new methodology that functions as a gas-phase analog of calorimetry experiments in solution, to individually assess the stabilities of concanavalin A bound states. By comparing the differences in activation voltage required to unfold different concanavalin A-ligand stoichiometries, we find evidence suggesting a cooperative stabilization of concanavalin A occurs upon binding most carbohydrate ligands. We critically evaluate this observation by assessing a broad range of ligands, evaluating the unfolding properties of multiple protein charge states, and by comparing our gas-phase results with those obtained from calorimetry experiments carried out in solution.
Collapse
Affiliation(s)
- Shuai Niu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
16
|
Fleck C, Memmel E, Fölsing M, Poll B, Hackl T, Seibel J, Maison W. Synthesis and Evaluation of Neoglycoconjugates Based on Adamantyl Scaffolds. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Locke AK, Cummins BM, Abraham A, Coté GL. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay. Anal Chem 2014; 86:9091-7. [PMID: 25133655 PMCID: PMC4165460 DOI: 10.1021/ac501791u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/18/2014] [Indexed: 02/06/2023]
Abstract
Competitive binding assays utilizing concanavalin A (ConA) have the potential to be the basis of improved continuous glucose monitoring devices. However, the efficacy and lifetime of these assays have been limited, in part, by ConA's instability due to its thermal denaturation in the physiological environment (37 °C, pH 7.4, 0.15 M NaCl) and its electrostatic interaction with charged molecules or surfaces. These undesirable interactions change the constitution of the assay and the kinetics of its behavior over time, resulting in an unstable glucose response. In this work, poly(ethylene glycol) (PEG) chains are covalently attached to lysine groups on the surface of ConA (i.e., PEGylation) in an attempt to improve its stability in these environments. Dynamic light scattering measurements indicate that PEGylation significantly improved ConA's thermal stability at 37 °C, remaining stable for at least 30 days. Furthermore, after PEGylation, ConA's binding affinity to the fluorescent competing ligand previously designed for the assay was not significantly affected and remained at ~5.4 × 10(6) M(-1) even after incubation at 37 °C for 30 days. Moreover, PEGylated ConA maintained the ability to track glucose concentrations when implemented within a competitive binding assay system. Finally, PEGylation showed a reduction in electrostatic-induced aggregation of ConA with poly(allylamine), a positively charged polymer, by shielding ConA's charges. These results indicate that PEGylated ConA can overcome the instability issues from thermal denaturation and nonspecific electrostatic binding while maintaining the required sugar-binding characteristics. Therefore, the PEGylation of ConA can overcome major hurdles for ConA-based glucose sensing assays to be used for long-term continuous monitoring applications in vivo.
Collapse
Affiliation(s)
| | | | - Alexander
A. Abraham
- Department of Biomedical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Gerard L. Coté
- Department of Biomedical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Talaga ML, Fan N, Fueri AL, Brown RK, Chabre YM, Bandyopadhyay P, Roy R, Dam TK. Significant Other Half of a Glycoconjugate: Contributions of Scaffolds to Lectin–Glycoconjugate Interactions. Biochemistry 2014; 53:4445-54. [DOI: 10.1021/bi5001307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | - Yoann M. Chabre
- Department
of Chemistry, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | | - René Roy
- Department
of Chemistry, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | |
Collapse
|
19
|
Grainger RK, James DC. CHO cell line specific prediction and control of recombinant monoclonal antibodyN-glycosylation. Biotechnol Bioeng 2013; 110:2970-83. [DOI: 10.1002/bit.24959] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Rhian K. Grainger
- ChELSI Institute, Department of Chemical and Biological Engineering; University of Sheffield; Mappin Street Sheffield S1 3JD UK
| | - David C. James
- ChELSI Institute, Department of Chemical and Biological Engineering; University of Sheffield; Mappin Street Sheffield S1 3JD UK
| |
Collapse
|
20
|
Hassler S, Lemke L, Jung B, Möhlmann T, Krüger F, Schumacher K, Espen L, Martinoia E, Neuhaus HE. Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects, constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:732-44. [PMID: 22788523 DOI: 10.1111/j.1365-313x.2012.05106.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Golgi-located phosphate exporter PHT4;6 has been described as involved in salt tolerance but further analysis on the physiological impact of PHT4;6 remained elusive. Here we show that PHT4;6-GFP is targeted to the trans-Golgi compartment and that loss of function of this carrier protein has a dramatic impact on plant growth and development. Knockout mutants of pht4;6 exhibit a dwarf phenotype that is complemented by the homologous gene from rice (Oryza sativa). Interestingly, pht4;6 mutants show altered characteristics of several Golgi-related functions, such as an altered abundance of certain N-glycosylated proteins, altered composition of cell-wall hemicelluose, and higher sensitivity to the Golgi α-mannosidase and the retrograde transport inhibitors kifunensine and brefeldin A, respectively. Moreover, pht4;6 mutants exhibit a 'mimic disease' phenotype accompanied by constitutively activated pathogen defense mechanisms and increased resistance against the virulent Pseudomonas syringae strain DC3000. Surprisingly, pht4;6 mutants also exhibit phosphate starvation symptoms, as revealed at the morphological and molecular level, although total Pi levels in wild-type and pht4;6 plants are similar. This suggested that subcellular Pi compartmentation was impaired. By use of nuclear magnetic resonance (NMR), increased Pi concentration was detected in acidic compartments of pht4;6 mutants. We propose that impaired Pi efflux from the trans-Golgi lumen results in accumulation of inorganic phosphate in other internal compartments, leading to low cytoplasmic phosphate levels with detrimental effects on plant performance.
Collapse
Affiliation(s)
- Sebastian Hassler
- Plant Physiology, University of Kaiserslautern, Erwin Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khan S, Alam F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine 2012; 7:3245-57. [PMID: 22802686 PMCID: PMC3396389 DOI: 10.2147/ijn.s31219] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article explores the novel gold nanoparticle–enhanced photodynamic therapy of methylene blue against recalcitrant pathogenic Candida albicans biofilm. Physiochemical (X-ray diffraction, ultraviolet-visible absorption, photon cross-correlation, FTIR, and fluorescence spectroscopy) and electron microscopy techniques were used to characterize gold nanoparticles as well as gold nanoparticle–methylene blue conjugate. A 38.2-J/cm2 energy density of 660-nm diode laser was applied for activation of gold nanoparticle–methylene blue conjugate and methylene blue against C. albicans biofilm and cells. Antibiofilm assays, confocal laser scanning, and electron microscopy were used to investigate the effects of the conjugate. Physical characteristics of the gold nanoparticles (21 ± 2.5 nm and 0.2 mg/mL) and methylene blue (20 μg/mL) conjugation were confirmed by physicochemical and electron microscopy techniques. Antibiofilm assays and microscopic studies showed significant reduction of biofilm and adverse effect against Candida cells in the presence of conjugate. Fluorescence spectroscopic study confirmed type I photo toxicity against biofilm. Gold nanoparticle conjugate–mediated photodynamic therapy may be used against nosocomially acquired refractory Candida albicans biofilm.
Collapse
Affiliation(s)
- Shakir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | | | | | | |
Collapse
|
22
|
Tousi F, Hancock WS, Hincapie M. Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:20-32. [PMID: 32938106 DOI: 10.1039/c0ay00413h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several approaches and technologies are currently available to study the glycosylated proteome (glycoproteomics) or the entire repertoire of glycans in a biological system (glycomics). The biological importance of glycosylation has driven the development of novel, sensitive separation and detection methods. New and improved methodologies, such as high throughput array systems and liquid chromatography-mass spectrometry for glycan profiling and sequencing, are emerging and are being applied in clinical research. A major thrust of glycoproteomics and glycomic clinical research is the application of these analytical tools to cancer research and is aimed at the discovery of glycan-based biomarkers for diagnosis of early stage human cancers, monitoring disease progression, measuring response to therapy, and detecting recurrence. The identification of cancer biomarkers requires a multidisciplinary approach and therefore this review discusses the strategies, technologies and methods currently used for N-glycoprotein/glycanbiomarker research.
Collapse
Affiliation(s)
- Fateme Tousi
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Marina Hincapie
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
23
|
El-Hawiet A, Kitova EN, Liu L, Klassen JS. Quantifying labile protein-ligand interactions using electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1893-1899. [PMID: 20801056 DOI: 10.1016/j.jasms.2010.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/19/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
A new electrospray ionization mass spectrometry (ES-MS) approach for quantifying protein-ligand complexes that are prone to in-source (gas-phase) dissociation is described. The method, referred to here as the reference ligand ES-MS method, is based on the direct ES-MS assay and competitive ligand binding. A reference ligand (L(ref)), which binds specifically to the protein (P), at the same binding site as the ligand (L) of interest, with known affinity and forms a stable protein-ligand complex in the gas phase, is added to the solution. The fraction of P bound to L(ref), which is determined directly from the ES mass spectrum, is sensitive to the fraction of P bound to L in solution and enables the affinity of P for L to be determined. A mathematical framework for the implementation of the method in cases where P has one or two specific ligand binding sites is given. Affinities of two carbohydrate-binding proteins, a single chain fragment of a monoclonal antibody and the lectin concanavalin A, for monosaccharide ligands are reported and the results are shown to agree with values obtained using isothermal titration calorimetry.
Collapse
Affiliation(s)
- Amr El-Hawiet
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
24
|
Mazumder P, Mukhopadhyay C. Molecular modeling and NMR studies of benzyl substituted mannosyl trisaccharide binding to two mannose-specific lectins: Allium sativam agglutinin I and Concanavalin A. Biopolymers 2010; 93:952-67. [PMID: 20564057 DOI: 10.1002/bip.21503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction of trimannoside, α-benzyl 3, 6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside, 1 with ASAI (Allium sativam agglutinin I, garlic lectin) was studied to reveal the conformational preferences of this ligand in bound-state and detailed binding mode at atomic level. The binding phenomenon was then compared with another well-known mannose-binding lectin, ConA (Concanavalin A). Structural studies of the ligand in free state were done using NMR spectroscopy and Molecular Dynamics simulations. It is found that the substituted-trimannoside can undergo conformational transitions in solution, with one major and one minor conformation per glycosidic linkage (α 1→3 and α 1→6). On the other hand in the bound-state only one of the two major conformations was significantly populated. The role of phenyl ring in the binding process was explored. An extended binding site was observed for the trimannoside in ASAI utilizing the aromatic substituent, which is not seen in ConA. Binding data from difference absorption spectroscopy supported this fact that the binding of benzyl-substituted ligand is tighter with ASAI than ConA. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 952-967, 2010.
Collapse
Affiliation(s)
- Parichita Mazumder
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
| | | |
Collapse
|
25
|
Harris LG, Schofield WCE, Doores KJ, Davis BG, Badyal JPS. Rewritable glycochips. J Am Chem Soc 2009; 131:7755-61. [PMID: 19438244 DOI: 10.1021/ja901294r] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe microarraying of carbohydrates for protein screening using either disulfide bridge or Schiff base imine immobilization chemistries on plasmachemical deposited functional nanolayers. The commonly observed issue of nonspecific background binding of proteins is overcome by spotting carbohydrates through a protein-resistant overlayer yielding spatially localized interaction with a reactive functional underlayer.
Collapse
Affiliation(s)
- L G Harris
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | | | | | | | | |
Collapse
|
26
|
Yuan Y, Gao X, Guo N, Zhang H, Xie Z, Jin M, Li B, Yu L, Jing N. rSac3, a novel Sac domain phosphoinositide phosphatase, promotes neurite outgrowth in PC12 cells. Cell Res 2008; 17:919-32. [PMID: 17909536 DOI: 10.1038/cr.2007.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sac domain-containing proteins belong to a newly identified family of phosphoinositide phosphatases (the PIPPase family). Despite well-characterized enzymatic activity, the biological functions of this mammalian Sac domain PIPPase family remain largely unknown. We identified a novel Sac domain-containing protein, rat Sac3 (rSac3), which is widely expressed in various tissues and localized to the endoplasmic reticulum, Golgi complex and recycling endosomes. rSac3 displays PIPPase activity with PI(3)P, PI(4)P and PI(3,5)P(2) as substrates in vitro, and a mutation in the catalytic core of the Sac domain abolishes its enzymatic activity. The expression of rSac3 is upregulated during nerve growth factor (NGF)-stimulated PC12 cell neuronal differentiation, and overexpression of this protein promotes neurite outgrowth in PC12 cells. Conversely, inhibition of rSac3 expression by antisense oligonucleotides reduces neurite outgrowth of NGF-stimulated PC12 cells, and the active site mutation of rSac3 eliminates its neurite-outgrowth-promoting activity. These results indicate that rSac3 promotes neurite outgrowth in differentiating neurons through its PIPPase activity, suggesting that Sac domain PIPPase proteins may participate in forward membrane trafficking from the endoplasmic reticulum and Golgi complex to the plasma membrane, and may function as regulators of this crucial process of neuronal cell growth and differentiation.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Laboratory of Molecular Cell Biology and Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ueta RR, Diniz FB. Adsorption of concanavalin A and lentil lectin on platinum electrodes followed by electrochemical impedance spectroscopy: Effect of protein state. Colloids Surf B Biointerfaces 2008; 61:244-9. [PMID: 17913476 DOI: 10.1016/j.colsurfb.2007.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/20/2007] [Accepted: 08/21/2007] [Indexed: 11/19/2022]
Abstract
Adsorption of concanavalin A and lentil lectin on platinum electrode was investigated through electrochemical impedance spectroscopy and cyclic voltammetry. By using ferro/ferricyanide system to probe the electrochemical interface it was possible to model the EIS data with a simple equivalent circuit. The blocking effect for electron transfer reactions observed with these proteins, indicated that they readily adsorb on platinum surface and that the degree of adsorption is related to the state of the proteins. When the proteins are in the presence of divalent cations (Ca(2+) and Mn(2+)) they adsorb less strongly than in their absence. There is also evidence that at least convanavalin A retains its biological activity in the adsorbed state.
Collapse
Affiliation(s)
- Roseli R Ueta
- Laboratório de Eletroquímica - DQF/CCEN-UFPE, Recife, PE, Brazil
| | | |
Collapse
|
28
|
Jaipuri FA, Pohl NL. Toward solution-phase automated iterative synthesis: fluorous-tag assisted solution-phase synthesis of linear and branched mannose oligomers. Org Biomol Chem 2008; 6:2686-91. [DOI: 10.1039/b803451f] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Liu S, Wang K, Du D, Sun Y, He L. Recognition of Glycoprotein Peroxidase via Con A-Carrying Self-Assembly Layer on Gold. Biomacromolecules 2007; 8:2142-8. [PMID: 17569558 DOI: 10.1021/bm070232r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have successfully fabricated a self-assembled layer of concanavalin A (Con A) on a gold surface for recognition of glycoproteins. The type IV Con A is covalently bound to 11-mercaptoundecanoic acid (MUA) on gold with a 2-(5-norbornene-2,3-dicarboximido)-1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU) linkage. The binding interaction between glycoproteins and self-assembled Con A is studied using horseradish peroxidase (HRP) as a model glycoprotein. Voltammetric, electrochemical impedance studies, and photometric activity measurements show the presence of both specific and nonspecific bindings of HRP to the Con A interface. The specific binding is attributed to the Con A-sugar interaction where Con A selectively recognizes the glycosylation sites of HRP. The catalytic current of the HRP-loaded electrode, because of catalytic oxidation of thionine in the presence of hydrogen peroxide (H2O2), is found to be proportional to the HRP concentrations in the incubation solution. A linear correlation coefficient of 0.993 was obtained over a wide HRP concentration range of 12.5 microg/mL to 1 mg/mL. The approach described in this study provides a simple yet selective means to immobilize glycoproteins on a solid support. The specific binding achieved is desirable in biosensor fabrication, glycoprotein separation, recognition, and purification as well as in drug-releasing systems.
Collapse
Affiliation(s)
- Songqin Liu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, PR China.
| | | | | | | | | |
Collapse
|
30
|
Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJV, Verkman AS. Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology 2007; 132:1234-44. [PMID: 17408659 DOI: 10.1053/j.gastro.2007.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 01/11/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are predicted to prevent intestinal fluid secretion in cholera. We previously discovered low- affinity glycine hydrazide (GlyH) CFTR inhibitors that block CFTR at its external pore. The goal of this study was to develop potent CFTR inhibitors that are minimally absorbed and washed out of the intestinal lumen for application as antisecretory agents in cholera. METHODS GlyH analogs (malonic hydrazides, MalH) were chemically conjugated to various lectins ("MalH-lectin") and purified. CFTR inhibition potency was measured by short-circuit current analysis, mechanism of action by patch-clamp, and antidiarrheal efficacy in closed-loop and suckling mouse models. RESULTS By lectin conjugation, we improved CFTR inhibitory potency by approximately 100-fold (to 50 nmol/L) and retarded washout. High-affinity CFTR inhibition was abolished by MalH-lectin heat denaturation, protease digestion, or competition by mannose or unconjugated lectin. Patch-clamp analysis indicated CFTR inhibition by an external pore occlusion mechanism. Fluorescently labeled MalH-lectin remained membrane bound for >6 hours after washout, whereas washout occurred in a few minutes without the lectin. MalH-ConA and MalH-wheat (IC50 50-100 pmol) blocked cholera toxin-induced intestinal fluid secretion in closed intestinal loops in mice and greatly reduced mortality in a suckling mouse model of cholera. CONCLUSIONS The high potency of MalH-lectin conjugates results from "anchoring" the CFTR-blocking MalH to cell surface carbohydrates by the lectin. The high-affinity, slow washout, and external site of action of the MalH-lectin conjugates support their further development as antisecretory drugs for enterotoxin-mediated secretory diarrheas.
Collapse
Affiliation(s)
- N D Sonawane
- Departments of Medicine and Physiology, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
31
|
Choe J, Vandernoot VA, Linhardt RJ, Dordick JS. Resolution of glycoproteins by affinity-based reversed micellar extraction and separation. AIChE J 2006. [DOI: 10.1002/aic.690441121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
|
33
|
Dam TK, Brewer CF. Carbohydrate-lectin cross-linking interactions: structural, thermodynamic, and biological studies. Methods Enzymol 2003; 362:455-86. [PMID: 12968382 DOI: 10.1016/s0076-6879(03)01031-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Tarun K Dam
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
34
|
Dam TK, Brewer CF. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 2002; 102:387-429. [PMID: 11841248 DOI: 10.1021/cr000401x] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Srinivas VR, Reddy GB, Ahmad N, Swaminathan CP, Mitra N, Surolia A. Legume lectin family, the 'natural mutants of the quaternary state', provide insights into the relationship between protein stability and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1527:102-11. [PMID: 11479026 DOI: 10.1016/s0304-4165(01)00153-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legume lectins family of proteins, despite having the same 'jelly roll' tertiary structural fold at monomeric level, exhibit considerable variation in their quaternary structure arising out of small changes in their sequence. Nevertheless, their folding behavior and stability correlates very well with their patterns of assembly into dimers and tetramers. A conservation of their fold during evolution, its wide distribution in many protein families together with the availability of structural information on them make them interesting as proteins to explore the effect of inter- versus intra-subunit interactions in the stability of multimeric proteins. Additionally, as 'natural mutants' of quaternary association, proteins of legume lectin family provide interesting paradigms for studies addressing the effect of subunit oligomerization on the stability, folding and function as well as the evolution of multimeric structures.
Collapse
Affiliation(s)
- V R Srinivas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Sugars, Polysaccharides, and Glycoproteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Brewer CF. Lectin Cross-Linking Interactions with Multivalent Carbohydrates. THE MOLECULAR IMMUNOLOGY OF COMPLEX CARBOHYDRATES —2 2001; 491:17-25. [PMID: 14533787 DOI: 10.1007/978-1-4615-1267-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present findings provide a molecular basis for a new paradigm of specificity in multivalent carbohydrate-lectin interactions, namely the formation of type 2 homogeneous cross-linked lattices between multivalent carbohydrates and lectins. The present x-ray data demonstrate that the cross-linked complexes formed between a series of structurally related divalent carbohydrates and a single tetravalent lectin (SBA) are distinct and due to crystal packing interactions. These results thus provide a molecular basis for the formation of homogeneous type 2 cross-linked complexes between lectins and multivalent carbohydrates and glycoconjugates. These findings are also relevant to the observations that lectin-carbohydrate cross-linking interactions are involved in cellular recognition and signal transduction processes. For example, activated human T-cells undergo apoptosis due to binding and cross-linking of specific glycoprotein receptors by galectin-1 (Pace et al., 1999). Confocal microscopy shows that the galectin cross-linked glycoprotein receptors form homogeneous aggregates from a population of previously dispersed molecules on the surface of the cells. The crystal structures of the four SBA/pentasaccharide complexes thus repesent models for lectin-carbohydrate clustering in vivo.
Collapse
Affiliation(s)
- C F Brewer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10641, USA
| |
Collapse
|
39
|
Pazur JH, Perloff MD, Frymoyer AR, Jensen CJ, Micolochick H, Mastro A. The isolation and properties of the dimeric subunit of concanavalin A. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:353-9. [PMID: 11131142 DOI: 10.1023/a:1026431329188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Concanavalin A (Con A) was dissociated into dimeric and monomeric subunits by incubation at 37 degrees C in acetate buffer of pH 3.8 containing 0.5% sodium dodecyl sulfate. The dimer was isolated in pure form by a density gradient ultracentrifugation method. Several properties of the dimer were determined including the formation of a precipitin with anti-Con A antibodies, the molecular weight, the lack of a binding site for glycogen, the lack of mitogenic activity for spleen lymphocytes, and the lack of inhibition by alpha-methyl D-glucoside. The latter findings differ from results reported by other investigators.
Collapse
Affiliation(s)
- J H Pazur
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802-4500, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rani PG, Bachhawat K, Misquith S, Surolia A. Thermodynamic studies of saccharide binding to artocarpin, a B-cell mitogen, reveals the extended nature of its interaction with mannotriose [3,6-Di-O-(alpha-D-mannopyranosyl)-D-mannose]. J Biol Chem 1999; 274:29694-8. [PMID: 10514441 DOI: 10.1074/jbc.274.42.29694] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermodynamics of binding of various saccharides to artocarpin, from Artocarpus integrifolia seeds, a homotetrameric lectin (M(r) 65, 000) with one binding site per subunit, was determined by isothermal titration calorimetry measurements at 280 and 293 K. The binding enthalpies, DeltaH(b), are the same at both temperatures, and the values range from -10.94 to -47.11 kJ mol(-1). The affinities of artocarpin as obtained from isothermal titration calorimetry are in reasonable agreement with the results obtained by enzyme-linked lectin absorbent essay, which is based on the minimum amount of ligand required to inhibit horseradish peroxidase binding to artocarpin in enzyme-linked lectin absorbent essay (Misquith, S., Rani, P. G., and Surolia, A. (1994) J. Biol. Chem. 269, 30393-30401). The interactions are mainly enthalpically driven and exhibit enthalpy-entropy compensation. The order of binding affinity of artocarpin is as follows: mannotriose>Manalpha3Man>GlcNAc(2)Man(3)>MealphaMan>Man>M analpha6Man> Manalpha2Man>MealphaGlc>Glc, i.e. 7>4>2>1.4>1>0.4>0.3>0.24>0.11. The DeltaH for the interaction of Manalpha3Man, Manalpha6Man, and MealphaMan are similar and 20 kJ mol(-1) lower than that of mannotriose. This indicates that, while Manalpha3Man and Manalpha6Man interact with the lectin exclusively through their nonreducing end monosaccharide with the subsites specific for the alpha1,3 and alpha1,6 arms, the mannotriose interacts with the lectin simultaneously through all three of its mannopyranosyl residues. This study thus underscores the distinction in the recognition of this common oligosaccharide motif in comparison with that displayed by other lectins with related specificity.
Collapse
Affiliation(s)
- P G Rani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
41
|
Bouckaert J, Hamelryck TW, Wyns L, Loris R. The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A. J Biol Chem 1999; 274:29188-95. [PMID: 10506175 DOI: 10.1074/jbc.274.41.29188] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites.
Collapse
Affiliation(s)
- J Bouckaert
- Laboratorium voor Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium.
| | | | | | | |
Collapse
|
42
|
Wang W, Kong F. Highly Regio- and Stereoselective Synthesis of Bioactive Oligosaccharides Using 1,2-O-Ethylidene-α-d-gluco- and -β-d-Mannopyranose as the Acceptors and Acetobromosugars as the Donors via Ortho Ester Intermediates. J Org Chem 1999; 64:5091-5095. [DOI: 10.1021/jo982508e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Wang
- Research Center for Eco-Environmental Sciences, Academia Sinica, P.O. Box 2871, Beijing 100085, China
| | - Fanzuo Kong
- Research Center for Eco-Environmental Sciences, Academia Sinica, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
43
|
Wang W, Kong F. Hochregio- und hochstereoselektive Synthese von mannosehaltigen Oligosacchariden mit Acetylbromzuckern als Donoren und teilweise geschützten Mannosederivaten als Acceptoren über Zuckerorthoester-Zwischenstufen. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990503)111:9<1330::aid-ange1330>3.0.co;2-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Calvete JJ, Thole HH, Raida M, Urbanke C, Romero A, Grangeiro TB, Ramos MV, Almeida da Rocha IM, Guimarães FN, Cavada BS. Molecular characterization and crystallization of Diocleinae lectins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:367-75. [PMID: 10082964 DOI: 10.1016/s0167-4838(99)00020-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular characterization of seven Diocleinae lectins was assessed by sequence analysis, determination of molecular masses by mass spectrometry, and analytical ultracentrifugation equilibrium sedimentation. The lectins show distinct pH-dependent dimer-tetramer equilibria, which we hypothesize are due to small primary structure differences at key positions. Lectins from Dioclea guianensis, Dioclea virgata, and Cratylia floribunda seeds have been crystallized and preliminary X-ray diffraction analyses are reported.
Collapse
Affiliation(s)
- J J Calvete
- Instituto de Biomedicina, C.S.I.C., Jaume Roig 11, 46010, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Saleemuddin M. Bioaffinity based immobilization of enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 64:203-26. [PMID: 9933979 DOI: 10.1007/3-540-49811-7_6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Procedures that utilize the affinities of biomolecules and ligands for the immobilization of enzymes are gaining increasing acceptance in the construction of sensitive enzyme-based analytical devices as well as for other applications. The strong affinity of polyclonal/monoclonal antibodies for specific enzymes and those of lectins for glycoenzymes bearing appropriate oligosaccharides have been generally employed for the purpose. Potential of affinity pairs like cellulose-cellulose binding domain bearing enzymes and immobilized metal ionsurface histidine bearing enzymes has also been recognised. The bioaffinity based immobilization procedures usually yield preparations exhibiting high catalytic activity and improved stability against denaturation. Bioaffinity based immobilizations are usually reversible facilitating the reuse of support matrix, orient the enzymes favourably and offer the possibility of enzyme immobilization directly from partially pure enzyme preparations or even cell lysates. Enzyme lacking innate ability to bind to various affinity supports can be made to bind to them by chemically or genetically linking the enzymes with appropriate polypeptides/domains like the cellulose binding domain, protein A, histidine-rich peptides, single chain antibodies, etc.
Collapse
Affiliation(s)
- M Saleemuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, India.
| |
Collapse
|
46
|
Gelhausen M, Besson F, Chierici S, Lafont D, Boullanger P, Roux B. Lectin recognition of liposomes containing neoglycolipids. Influence of their lipidic anchor and spacer length. Colloids Surf B Biointerfaces 1998. [DOI: 10.1016/s0927-7765(98)00009-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Moothoo DN, Naismith JH. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding. Glycobiology 1998; 8:173-81. [PMID: 9451027 DOI: 10.1093/glycob/8.2.173] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbohydrate recognition by proteins is a key event in many biological processes. Concanavalin A is known to specifically recognize the pentasaccharide core (beta-GlcNAc-(1-->2)-alpha- Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man) of N-linked oligosaccharides with a Ka of 1.41 x 10(6 )M-1. We have determined the structure of concanavalin A bound to beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man to 2.7A. In six of eight subunits there is clear density for all five sugar residues and a well ordered binding site. The pentasaccharide adopts the same conformation in all eight subunits. The binding site is a continuous extended cleft on the surface of the protein. Van der Waals interactions and hydrogen bonds anchor the carbohydrate to the protein. Both GlcNAc residues contact the protein. The GlcNAc on the 1-->6 arm of the pentasaccharide makes particularly extensive contacts and including two hydrogen bonds. The binding site of the 1-->3 arm GlcNAc is much less extensive. Oligosaccharide recognition by Con A occurs through specific protein carbohydrate interactions and does not require recruitment of adventitious water molecules. The beta-GlcNAc-(1-->2)-Man glycosidic linkage PSI torsion angle on the 1-->6 arm is rotated by over 50 degrees from that observed in solution. This rotation is coupled to disruption of interactions at the monosaccharide site. We suggest destabilization of the monosaccharide site and the conformational strain reduces the free energy liberated by additional interactions at the 1-->6 arm GlcNAc site.
Collapse
Affiliation(s)
- D N Moothoo
- Centre for Biomolecular Sciences, The University, St. Andrews, Scotland, United Kingdom
| | | |
Collapse
|
48
|
Pagé D, Roy R. Optimizing lectin-carbohydrate interactions: improved binding of divalent alpha-mannosylated ligands towards Concanavalin A. Glycoconj J 1997; 14:345-56. [PMID: 9147058 DOI: 10.1023/a:1018522712250] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis and binding properties to Jack bean phytohaemagglutinin in (Concanavalin A, Con A) of a new family of divalent alpha-D-mannopyranoside ligands are described. The synthesis of these ligands is based on the coupling of commercially available diamines to p-isothiocyanatophenyl 2,3,4,6 tetra-O-acetyl-alpha-D-mannopyranoside (4). The resulting dimers 6, 15 to 22 and 30 were tested for their relative inhibitory potency by solid-phase enzyme-linked lectin assays (ELLA) using methyl alpha-D-mannopyranoside as standard. Divalent mannosylated ligand 35 bearing a non-aromatic aglycon was also tested for comparison purposes. Concentrations necessary for 50% inhibition (IC50s) of binding of yeast mannan to Jack bean phytohaemagglutinin (Con A) were determined. The inhibitions showed dimers to be approximately 10- to 90-fold more potent than methyl alpha-D-mannopyranoside. Variations in the intra-mannosyl distance proved to be an important factor for optimum binding.
Collapse
Affiliation(s)
- D Pagé
- Department of Chemistry, University of Ottawa, ON, Canada
| | | |
Collapse
|
49
|
Pagé D, Zanini D, Roy R. Macromolecular recognition: effect of multivalency in the inhibition of binding of yeast mannan to concanavalin A and pea lectins by mannosylated dendrimers. Bioorg Med Chem 1996; 4:1949-61. [PMID: 9007279 DOI: 10.1016/s0968-0896(96)00177-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The synthesis and binding properties of a new family of high affinity alpha-D-mannopyranoside ligands are described. The synthesis of the new multivalent ligands is based on the scaffolding of multiantennary branches of L-lysine residues having electrophilic N-chloroacetylated end groups as core structures. An alpha-D-mannopyranoside with p-substituted aryl aglycon ending with a thiol group was prepared and covalently attached to each of the branches of the dendritic structures. The resulting glycodendrimers with 2 (12), 4 (14), 8 (16), and 16 (18) mannoside residues were tested for their relative inhibitory potency by solid-phase enzyme-linked lectin assays (ELLA) using methyl and p-nitrophenyl alpha-D-mannopyranosides as standards. Concentrations necessary for 50% inhibition (IC50s) of binding of yeast mannan to Jack bean phytohemagglutinin (Canavalia ensiformis, concanavalin A) and to pea lectin (Pisum sativum) were determined. Analogous mannosylated copolyacrylamides were also prepared for comparison. The IC50 values were also plotted as a function of dendrimer valencies. The inhibitions showed 16-mer 18 to be approximately 600- and 2000-fold more potent than methyl alpha-D-mannopyranoside, and 66- and 1383-fold more potent than p-nitrophenyl alpha-D-mannopyranosides with Con A and pea lectins, respectively. Even when these numbers are expressed relative to single mannopyranoside residues per dendrimers, the relative potencies against the aromatic mannoside are still 4- and 86-fold better against Con A and pea lectins. These results unequivocally indicate that the optimum inhibitory binding properties of the new mannosylated dendrimers vary with both dendrimers and lectin valencies.
Collapse
Affiliation(s)
- D Pagé
- Department of Chemistry, University of Ottawa, ON, Canada
| | | | | |
Collapse
|
50
|
Synthesis of divalent α-D-mannopyranosylated clusters having enhanced binding affinities towards concanavalin A and pea lectins. Bioorg Med Chem Lett 1996. [DOI: 10.1016/0960-894x(96)00312-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|