1
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
2
|
Ntallis C, Tzoupis H, Tselios T, Chasapis CT, Vlamis-Gardikas A. Distinct or Overlapping Areas of Mitochondrial Thioredoxin 2 May Be Used for Its Covalent and Strong Non-Covalent Interactions with Protein Ligands. Antioxidants (Basel) 2023; 13:15. [PMID: 38275635 PMCID: PMC10812433 DOI: 10.3390/antiox13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
In silico approaches were employed to examine the characteristics of interactions between human mitochondrial thioredoxin 2 (HsTrx2) and its 38 previously identified mitochondrial protein ligands. All interactions appeared driven mainly by electrostatic forces. The statistically significant residues of HsTrx2 for interactions were characterized as "contact hot spots". Since these were identical/adjacent to putative thermodynamic hot spots, an energy network approach identified their neighbors to highlight possible contact interfaces. Three distinct areas for binding emerged: (i) one around the active site for covalent interactions, (ii) another antipodal to the active site for strong non-covalent interactions, and (iii) a third area involved in both kinds of interactions. The contact interfaces of HsTrx2 were projected as respective interfaces for Escherichia coli Trx1 (EcoTrx1), 2, and HsTrx1. Comparison of the interfaces and contact hot spots of HsTrx2 to the contact residues of EcoTx1 and HsTrx1 from existing crystal complexes with protein ligands supported the hypothesis, except for a part of the cleft/groove adjacent to Trp30 preceding the active site. The outcomes of this study raise the possibility for the rational design of selective inhibitors for the interactions of HsTrx2 with specific protein ligands without affecting the entirety of the functions of the Trx system.
Collapse
Affiliation(s)
- Charalampos Ntallis
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (C.N.); (H.T.); (T.T.)
| | - Haralampos Tzoupis
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (C.N.); (H.T.); (T.T.)
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (C.N.); (H.T.); (T.T.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou 48, 11635 Athens, Greece;
| | | |
Collapse
|
3
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
4
|
Fritz-Wolf K, Bathke J, Rahlfs S, Becker K. Crystal structure of plasmoredoxin, a redox-active protein unique for malaria parasites. Curr Res Struct Biol 2022; 4:87-95. [PMID: 35434650 PMCID: PMC9006252 DOI: 10.1016/j.crstbi.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022] Open
Abstract
Plasmoredoxin is a 22 kDa thiol–disulfide oxidoreductase involved in cellular redox regulatory processes and antioxidant defense. The 1.6 Å structure of the protein, solved via X-ray crystallography, adopts a modified thioredoxin fold. The structure reveals that plasmoredoxin, unique for malarial parasites, forms a new subgroup of thioredoxin-like proteins together with tryparedoxin, unique for kinetoplastids. Unlike most members of this superfamily, Plrx does not have a proline residue within the CxxC redox motif. In addition, the Plrx structure has a distinct C-terminal domain. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers, which are also structurally similar to the human thioredoxin dimer, and, as in humans, plasmoredoxin is inactive as a dimer. Monomer–dimer equilibrium depends on the surrounding redox conditions, which could support the parasite in reacting to oxidative challenges. Based on structural considerations, the residues of the dimer interface are likely to interact with target proteins. In contrast to human and Plasmodium falciparum thioredoxin, however, there is a cluster of positively charged residues at the dimer interface of plasmoredoxin. These intersubunit (lysine) residues might allow binding of the protein to cellular membranes or to plasminogen. Malaria parasites lack catalase and glutathione peroxidase and therefore depend on their other glutathione and thioredoxin-dependent redox relays. Plasmoredoxin could be part of a so far unknown electron transfer system that only occurs in these parasites. Since the surface charge of plasmoredoxin differs significantly from other members of the thioredoxin superfamily, its three-dimensional structure can provide a model for designing selective redox-modulatory inhibitors. Two high resolution X-ray structures – confirmed that Plrx belongs to the thioredoxin superfamily. Structure and surface charge differ from the other members of the thioredoxin superfamily. The highest relationship in terms from sequence and structural fold is found with tryparedoxins. Similar to human thioredoxin, plasmoredoxin forms monomers and dimers. Potential as drug target.
Collapse
|
5
|
Wright DE, Panaseiko N, O'Donoghue P. Acetylated Thioredoxin Reductase 1 Resists Oxidative Inactivation. Front Chem 2021; 9:747236. [PMID: 34604175 PMCID: PMC8479162 DOI: 10.3389/fchem.2021.747236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Thioredoxin Reductase 1 (TrxR1) is an enzyme that protects human cells against reactive oxygen species generated during oxidative stress or in response to chemotherapies. Acetylation of TrxR1 is associated with oxidative stress, but the function of TrxR1 acetylation in oxidizing conditions is unknown. Using genetic code expansion, we produced recombinant and site-specifically acetylated variants of TrxR1 that also contain the non-canonical amino acid, selenocysteine, which is essential for TrxR1 activity. We previously showed site-specific acetylation at three different lysine residues increases TrxR1 activity by reducing the levels of linked dimers and low activity TrxR1 tetramers. Here we use enzymological studies to show that acetylated TrxR1 is resistant to both oxidative inactivation and peroxide-induced multimer formation. To compare the effect of programmed acetylation at specific lysine residues to non-specific acetylation, we produced acetylated TrxR1 using aspirin as a model non-enzymatic acetyl donor. Mass spectrometry confirmed aspirin-induced acetylation at multiple lysine residues in TrxR1. In contrast to unmodified TrxR1, the non-specifically acetylated enzyme showed no loss of activity under increasing and strongly oxidating conditions. Our data suggest that both site-specific and general acetylation of TrxR1 regulate the enzyme’s ability to resist oxidative damage.
Collapse
Affiliation(s)
- David E Wright
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nikolaus Panaseiko
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Departments of Biochemistry, The University of Western Ontario, London, ON, Canada.,Departments of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
7
|
E Costa RAP, Granato DC, Trino LD, Yokoo S, Carnielli CM, Kawahara R, Domingues RR, Pauletti BA, Neves LX, Santana AG, Paulo JA, Aragão AZB, Heleno Batista FA, Migliorini Figueira AC, Laurindo FRM, Fernandes D, Hansen HP, Squina F, Gygi SP, Paes Leme AF. ADAM17 cytoplasmic domain modulates Thioredoxin-1 conformation and activity. Redox Biol 2020; 37:101735. [PMID: 33011677 PMCID: PMC7513893 DOI: 10.1016/j.redox.2020.101735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The activity of Thioredoxin-1 (Trx-1) is adjusted by the balance of its monomeric, active and its dimeric, inactive state. The regulation of this balance is not completely understood. We have previously shown that the cytoplasmic domain of the transmembrane protein A Disintegrin And Metalloprotease 17 (ADAM17cyto) binds to Thioredoxin-1 (Trx-1) and the destabilization of this interaction favors the dimeric state of Trx-1. Here, we investigate whether ADAM17 plays a role in the conformation and activation of Trx-1. We found that disrupting the interacting interface with Trx-1 by a site-directed mutagenesis in ADAM17 (ADAM17cytoF730A) caused a decrease of Trx-1 reductive capacity and activity. Moreover, we observed that ADAM17 overexpressing cells favor the monomeric state of Trx-1 while knockdown cells do not. As a result, there is a decrease of cell oxidant levels and ADAM17 sheddase activity and an increase in the reduced cysteine-containing peptides in intracellular proteins in ADAM17cyto overexpressing cells. A mechanistic explanation that ADAM17cyto favors the monomeric, active state of Trx-1 is the formation of a disulfide bond between Cys824 at the C-terminal of ADAM17cyto with the Cys73 of Trx-1, which is involved in the dimerization site of Trx-1. In summary, we propose that ADAM17 is able to modulate Trx-1 conformation affecting its activity and intracellular redox state, bringing up a novel possibility for positive regulation of thiol isomerase activity in the cell by mammalian metalloproteinases.
Collapse
Affiliation(s)
- Rute A P E Costa
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Daniela C Granato
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Luciana D Trino
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Sami Yokoo
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | - Rebeca Kawahara
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Romênia R Domingues
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | | | - Aline G Santana
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Annelize Z B Aragão
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | | | | | - Francisco R M Laurindo
- Instituto Do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Denise Fernandes
- Instituto Do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Hinrich P Hansen
- Department of Internal Medicine I, University Hospital Cologne, CECAD Research Center, Cologne, Germany
| | - Fabio Squina
- Universidade de Sorocaba, Departamento de Processos Tecnológicos e Ambientais, São Paulo, Brazil
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol 2020; 37:101715. [PMID: 32992282 PMCID: PMC7481318 DOI: 10.1016/j.redox.2020.101715] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jinsong Zhang
- Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, PR China
| | - Ramy Saad
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
9
|
Sengupta R, Coppo L, Mishra P, Holmgren A. Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase. J Biol Chem 2019; 294:12708-12716. [PMID: 31266802 DOI: 10.1074/jbc.ra119.008752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/28/2019] [Indexed: 01/09/2023] Open
Abstract
Deoxyribonucleotides are DNA building blocks and are produced de novo by reduction of ribose to deoxyribose. This reduction is catalyzed by ribonucleotide reductase (RNR), a heterodimeric tetramer enzyme in mammalian cells, having one of two free radical-containing subunits called R2 and p53R2. R2 is S-phase specific and used for DNA replication, whereas p53R2 functions in DNA repair and mitochondrial DNA synthesis. The larger RNR subunit, R1, has catalytically active cysteine thiols in its buried active site and a C-terminal swinging arm, with a Cys-Leu-Met-Cys sequence suggested to act as a shuttle dithiol/disulfide for electron transport. After each catalytic cycle the active site contains a disulfide, which has to be reduced for turnover. Thioredoxin (Trx) and glutaredoxin (Grx) systems have been implicated as electron donors for the RNR disulfide reduction via the swinging arm. Using mouse R1-R2 and R1-p53R2 complexes, we found here that the catalytic efficiency of the GSH-Grx system is 4-6 times higher than that of the Trx1 system. For both complexes, the V max values for Grx are strongly depended on GSH concentrations. The GSH disulfide resulting from the Grx reaction was reduced by NADPH and GSH reductase and this enzyme was essential because reaction with GSH alone yielded only little activity. These results indicate that C-terminal shuttle dithiols of mammalian R1 have a crucial catalytic role and that the GSH-Grx system favors the R1-p53R2 enzyme for DNA replication in hypoxic conditions, mitochondrial DNA synthesis, and in DNA repair outside the S-phase.
Collapse
Affiliation(s)
- Rajib Sengupta
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden
| | - Pradeep Mishra
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Division of Biochemistry, Karolinska Institute, Stockholm SE-17177, Sweden
| |
Collapse
|
10
|
Abstract
Thioredoxin reductases are important oxidoreductases that keep the active site disulfide/dithiol motif of thioredoxins reduced using NADPH, thereby supporting many thioredoxin-dependent reductive pathways in cells. Mammalian thioredoxin reductases are selenoproteins that have several additional substrates beyond thioredoxins. This chapter first lists several different assays for measurement of thioredoxin reductase activities, before giving a protocol for a selective evaluation of these activities that can be used in either crude cell lysates as well as with purified enzymes. The same assay can also be easily adopted for the determination of thioredoxin activities.
Collapse
|
11
|
Villa JK, Tran HA, Vipani M, Gianturco S, Bhasin K, Russell BL, Harbron EJ, Young DD. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids. Molecules 2017; 22:molecules22071194. [PMID: 28714902 PMCID: PMC5806519 DOI: 10.3390/molecules22071194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022] Open
Abstract
The ability to modulate protein function through minimal perturbations to amino acid structure represents an ideal mechanism to engineer optimized proteins. Due to the novel spectroscopic properties of green fluorescent protein, it has found widespread application as a reporter protein throughout the fields of biology and chemistry. Using site-specific amino acid mutagenesis, we have incorporated various fluorotyrosine residues directly into the fluorophore of the protein, altering the fluorescence and shifting the pKa of the phenolic proton associated with the fluorophore. Relative to wild type GFP, the fluorescence spectrum of the protein is altered with each additional fluorine atom, and the mutant GFPs have the potential to be employed as pH sensors due to the altered electronic properties of the fluorine atoms.
Collapse
Affiliation(s)
- Jordan K Villa
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Hong-Anh Tran
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Megha Vipani
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Stephanie Gianturco
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Konark Bhasin
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Brent L Russell
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Elizabeth J Harbron
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| | - Douglas D Young
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 231871, USA.
| |
Collapse
|
12
|
Araki K, Ushioda R, Kusano H, Tanaka R, Hatta T, Fukui K, Nagata K, Natsume T. A crosslinker-based identification of redox relay targets. Anal Biochem 2016; 520:22-26. [PMID: 28048978 DOI: 10.1016/j.ab.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 12/30/2016] [Indexed: 12/23/2022]
Abstract
Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan.
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Hidewo Kusano
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Riko Tanaka
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | | | - Kazuhiko Fukui
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-Ku, Kyoto 603-8555, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan; Robotic Biology Institute, Inc., Tokyo 135-0064, Japan
| |
Collapse
|
13
|
van Gisbergen MW, Cebula M, Zhang J, Ottosson-Wadlund A, Dubois L, Lambin P, Tew KD, Townsend DM, Haenen GRMM, Drittij-Reijnders MJ, Saneyoshi H, Araki M, Shishido Y, Ito Y, Arnér ESJ, Abe H, Morgenstern R, Johansson K. Chemical Reactivity Window Determines Prodrug Efficiency toward Glutathione Transferase Overexpressing Cancer Cells. Mol Pharm 2016; 13:2010-25. [PMID: 27093577 DOI: 10.1021/acs.molpharmaceut.6b00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutathione transferases (GSTs) are often overexpressed in tumors and frequently correlated to bad prognosis and resistance against a number of different anticancer drugs. To selectively target these cells and to overcome this resistance we previously have developed prodrugs that are derivatives of existing anticancer drugs (e.g., doxorubicin) incorporating a sulfonamide moiety. When cleaved by GSTs, the prodrug releases the cytostatic moiety predominantly in GST overexpressing cells, thus sparing normal cells with moderate enzyme levels. By modifying the sulfonamide it is possible to control the rate of drug release and specifically target different GSTs. Here we show that the newly synthesized compounds, 4-acetyl-2-nitro-benzenesulfonyl etoposide (ANS-etoposide) and 4-acetyl-2-nitro-benzenesulfonyl doxorubicin (ANS-DOX), function as prodrugs for GSTA1 and MGST1 overexpressing cell lines. ANS-DOX, in particular, showed a desirable cytotoxic profile by inducing toxicity and DNA damage in a GST-dependent manner compared to control cells. Its moderate conversion of 500 nmol/min/mg, as catalyzed by GSTA1, seems hereby essential since the more reactive 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) (14000 nmol/min/mg) did not display a preference for GSTA1 overexpressing cells. DNS-DOX, however, effectively killed GSTP1 (20 nmol/min/mg) and MGST1 (450 nmol/min/mg) overexpressing cells as did the less reactive 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) in a MGST1-dependent manner (1.5 nmol/min/mg) as shown previously. Furthermore, we show that the mechanism of these prodrugs involves a reduction in GSH levels as well as inhibition of the redox regulatory enzyme thioredoxin reductase 1 (TrxR1) by virtue of their electrophilic sulfonamide moiety. TrxR1 is upregulated in many tumors and associated with resistance to chemotherapy and poor patient prognosis. Additionally, the prodrugs potentially acted as a general shuttle system for DOX, by overcoming resistance mechanisms in cells. Here we propose that GST-dependent prodrugs require a conversion rate "window" in order to selectively target GST overexpressing cells, while limiting their effects on normal cells. Prodrugs are furthermore a suitable system to specifically target GSTs and to overcome various drug resistance mechanisms that apply to the parental drug.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden.,Department of Radiation Oncology (MaastRO Lab), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Marcus Cebula
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden
| | - Jie Zhang
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden.,Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Astrid Ottosson-Wadlund
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden
| | - Ludwig Dubois
- Department of Radiation Oncology (MaastRO Lab), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MaastRO Lab), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Kenneth D Tew
- Departments of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Guido R M M Haenen
- Department of Toxicology, NUTRIM-School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Marie-José Drittij-Reijnders
- Department of Toxicology, NUTRIM-School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Center , Universiteitssingel 50/23, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Hisao Saneyoshi
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | - Mika Araki
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | - Yuko Shishido
- Department of Chemistry, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| | - Hiroshi Abe
- Nano Medical Engineering Laboratory, Discovery Research Institute, RIKEN 2-1 , Hirosawa, Wako-Shi, Saitama 351-0198, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ralf Morgenstern
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet , SE 17177 Stockholm, Sweden
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , SE-171 77 Stockholm, Sweden
| |
Collapse
|
14
|
Zhang X, Lu J, Ren X, Du Y, Zheng Y, Ioannou PV, Holmgren A. Oxidation of structural cysteine residues in thioredoxin 1 by aromatic arsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1. Free Radic Biol Med 2015; 89:192-200. [PMID: 26169724 DOI: 10.1016/j.freeradbiomed.2015.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023]
Abstract
Thioredoxin systems, composed of thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH, play important roles in maintaining cellular redox homeostasis and redox signaling. Recently the cytosolic Trx1 system has been shown to be a cellular target of arsenic containing compounds. To elucidate the relationship of the structure of arsenic compounds with their ability of inhibiting TrxR1 and Trx1, and cytotoxicity, we have investigated the reaction of Trx1 system with seven arsenic trithiolates: As(Cys)3, As(GS)3, As(Penicillamine)3, As(Mercaptoethanesulfonate)3, As(Mercaptopurine)3, As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3. The cytotoxicity of these arsenicals was consistent with their ability to inhibit TrxR1 in vitro and in cells. Unlike other arsenicals, As(Mercaptopurine)3 which did not show inhibitory effects on TrxR1 had very weak cytotoxicity, indicating that TrxR1 is a reliable drug target for arsenicals. Moreover, the two aromatic compounds As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 showed stronger cytotoxicity than the others. As(2-mercaptopyridine)3 which selectively oxidized two structural cysteines (Cys62 and Cys69) in Trx1 showed mild improvement in cytotoxicity. As(2-mercaptopyridine N-oxide)3 oxidized all the Cys residues in Trx1, exhibiting the strongest cytotoxicity. Oxidation of Trx1 by As(2-mercaptopyridine)3 and As(2-mercaptopyridine N-oxide)3 affected electron transfer from NADPH and TrxR1 to peroxiredoxin 1 (Prx1), which could result in the reactive oxygen species elevation and trigger cell death process. These results suggest that oxidation of structural cysteine residues in Trx1 by aromatic group in TrxR1-targeting drugs may sensitize tumor cells to cell death, providing a novel approach to regulate cellular redox signaling and also a basis for rational design of new anticancer agents.
Collapse
Affiliation(s)
- Xu Zhang
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Yatao Du
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | - Yujuan Zheng
- Department of Oncology and Pathology, Cancer Centrum Karolinska, Karolinska Institutet, SE 171 76 Stockholm, Sweden.
| | | | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
15
|
Hwang J, Nguyen LT, Jeon YH, Lee CY, Kim MH. Crystal structure of fully oxidized human thioredoxin. Biochem Biophys Res Commun 2015; 467:218-22. [DOI: 10.1016/j.bbrc.2015.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
16
|
Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin. Biochimie 2015; 110:25-35. [PMID: 25576832 DOI: 10.1016/j.biochi.2014.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/29/2014] [Indexed: 11/20/2022]
Abstract
Overnutrition can lead to oxidative stress, but its underlying mechanism remains unclear. In this study, we report that human liver-derived HepG2 cells utilize cytosolic thioredoxin reductase (TrxR1) and thioredoxin (hTrx1) to defend against the high glucose/palmitate-mediated increase in reactive oxygen species. However, enhanced TrxR1/hTrx1 palmitoylation occurs in parallel with a decrease in their activities under the conditions studied here. An autoacylation process appears to be the major mechanism for generating palmitoylated TrxR1/Trx1 in HepG2 cells. A novel feature of this post-translational modification is the covalent inhibition of TrxR1/hTrx1 by palmitoyl-CoA, an activated form of palmitate. The palmitoyl-CoA/TrxR1 reaction is NADPH-dependent and produces palmitoylated TrxR1 at an active site selenocysteine residue. Conversely, S-palmitoylation occurs at the structural Cys62/Cys69/Cys72 residues but not the active site Cys32/Cys35 residues of hTrx1. Palmitoyl-CoA concentration and the period of incubation with TrxR1/hTrx1 are important factors that influence the inhibitory efficacy of palmitoyl-CoA on TrxR1/hTrx1. Thus, an increase in TrxR1/hTrx1 palmitoylation could be a potential consequence of high glucose/palmitate. The time-dependent inactivation of the NADPH-TrxR1-Trx1 system by palmitoyl-CoA occurs in a biphasic manner - a fast phase followed by a slow phase. Kinetic analysis suggests that the fast phase is consistent with a fast and reversible association between TrxR1/hTrx1 and palmitoyl-CoA. The slow phase is correlated with a slow and irreversible inactivation, in which selenolate/thiolate groups nucleophilically attack the α-carbon of bound palmitoyl-CoA, leading to the formation of thioester/selenoester bonds. hTrx1 can enhance rate of fast phase but limits the rate of slow phase when it is present in a preincubation mixture containing NADPH, TrxR1 and palmitoyl-CoA. Therefore, hTrx1 may provide palmitoylation sites or partially protect the TrxR1 active site selenol/thiol group(s) from palmitoylation. Our data suggest that Se/S-palmitoylation acts as an important modulator of TrxR1/hTrx1 activities, representing a novel potential mechanism that underlies overnutrition-induced events.
Collapse
|
17
|
Pader I, Sengupta R, Cebula M, Xu J, Lundberg JO, Holmgren A, Johansson K, Arnér ESJ. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci U S A 2014; 111:6964-9. [PMID: 24778250 PMCID: PMC4024855 DOI: 10.1073/pnas.1317320111] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thioredoxin-related protein of 14 kDa (TRP14, also called TXNDC17 for thioredoxin domain containing 17, or TXNL5 for thioredoxin-like 5) is an evolutionarily well-conserved member of the thioredoxin (Trx)-fold protein family that lacks activity with classical Trx1 substrates. However, we discovered here that human TRP14 has a high enzymatic activity in reduction of l-cystine, where the catalytic efficiency (2,217 min(-1)⋅µM(-1)) coupled to Trx reductase 1 (TrxR1) using NADPH was fivefold higher compared with Trx1 (418 min(-1)⋅µM(-1)). Moreover, the l-cystine reduction with TRP14 was in contrast to that of Trx1 fully maintained in the presence of a protein disulfide substrate of Trx1 such as insulin, suggesting that TRP14 is a more dedicated l-cystine reductase compared with Trx1. We also found that TRP14 is an efficient S-denitrosylase with similar efficiency as Trx1 in catalyzing TrxR1-dependent denitrosylation of S-nitrosylated glutathione or of HEK293 cell-derived S-nitrosoproteins. Consequently, nitrosylated and thereby inactivated caspase 3 or cathepsin B could be reactivated through either Trx1- or TRP14-catalyzed denitrosylation reactions. TRP14 was also, in contrast to Trx1, completely resistant to inactivation by high concentrations of hydrogen peroxide. The oxidoreductase activities of TRP14 thereby complement those of Trx1 and must therefore be considered for the full understanding of enzymatic control of cellular thiols and nitrosothiols.
Collapse
Affiliation(s)
- Irina Pader
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| | - Rajib Sengupta
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| | - Marcus Cebula
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| | - Jianqiang Xu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| | - Katarina Johansson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics and
| |
Collapse
|
18
|
Montano SJ, Lu J, Gustafsson TN, Holmgren A. Activity assays of mammalian thioredoxin and thioredoxin reductase: Fluorescent disulfide substrates, mechanisms, and use with tissue samples. Anal Biochem 2014; 449:139-46. [DOI: 10.1016/j.ab.2013.12.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023]
|
19
|
Huang J, Xu J, Tian L, Zhong L. A thioredoxin reductase and/or thioredoxin system-based mechanism for antioxidant effects of ambroxol. Biochimie 2013; 97:92-103. [PMID: 24103200 DOI: 10.1016/j.biochi.2013.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022]
Abstract
Long-term treatment with ambroxol (ABX), a bronchial expectorant, was found to prevent acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The underlying mechanism remains unclear. To address this, we have investigated the effect of ABX on critical antioxidant proteins thioredoxin (Trx) and thioredoxin reductase (TrxR) that are decreased in patients with AECOPD. Trx, TrxR and NADP(H) form Trx system, which is involved in regulating numerous oxidative stress-related events. In human bronchial epithelial cells, treatment with ABX from 0 to 200 μM gradually increased mRNA and protein levels of TrxR/Trx. At these ABX concentrations, TrxR activity was elevated progressively, whereas Trx activity exhibited a dose-dependent biphasic response, increasing at 50 and 75 μM, but decreasing at ABX over 150 μM. Pre-treatment with 75 μM ABX enhanced the capacity of the cells to eliminate reactive oxygen species, which was largely prevented by knockdown of cytosolic Trx (hTrx1). In a purified system, ABX shortened the initial lag phase during the reduction of insulin disulfide by Trx system. Pre-treatment of NADPH-reduced TrxR with ABX caused a dose- and time-dependent increase in thiolate/selenolate species, i.e. the catalytically active form of TrxR. Kinetic analysis demonstrated that the reduction of H2O2 by TrxR or Trx system were enhanced by 100 or 200 μM ABX. When hTrx1 was mixed with ABX in a molar ratio of 1:1 to 1:100 (which could occur in human plasma), changes in intrinsic Trp fluorescence occurred, and the response of reduced hTrx1 was especially remarkable. These data reveal an ABX-sensing mechanism of TrxR/Trx. We therefore conclude that the antioxidant actions of ABX at physiological concentrations are, at least partially, mediated by TrxR and/or Trx system.
Collapse
Affiliation(s)
- Jin Huang
- College of Life Sciences, University of Chinese Academy of Sciences, YuQuan Road 19(A), 100049 Beijing, China
| | - Jianying Xu
- Department of Respiratory Medicine, Dayi Hospital Affiliated to Shanxi Medical University, Longcheng Street 99, 030032 Taiyuan, China
| | - Lin Tian
- School of Public Health, Capital Medical University, 100069 Beijing, China.
| | - Liangwei Zhong
- College of Life Sciences, University of Chinese Academy of Sciences, YuQuan Road 19(A), 100049 Beijing, China.
| |
Collapse
|
20
|
Zhang J, Chen F, Nakamura T, Fujinaga T, Aoyama A, Hamakawa H, Sakai H, Hoshino Y, Yodoi J, Wada H, Bando T, Nakamura H. Protective effect of thioredoxin perfusion but not inhalation in warm ischemic-reperfused rat lungs. Redox Rep 2013; 14:75-81. [DOI: 10.1179/135100009x392511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
21
|
Protein disulfide isomerase and glutathione are alternative substrates in the one Cys catalytic cycle of glutathione peroxidase 7. Biochim Biophys Acta Gen Subj 2013; 1830:3846-57. [DOI: 10.1016/j.bbagen.2013.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 11/24/2022]
|
22
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
23
|
Liu J, Li F, Rozovsky S. The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro. Biochemistry 2013; 52:3051-61. [PMID: 23566202 DOI: 10.1021/bi4001358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Selenoprotein S (SelS or VIMP) is an intrinsically disordered membrane enzyme that provides protection against reactive oxidative species. SelS is a member of the endoplasmic reticulum-associated protein degradation pathway, but its precise enzymatic function is unknown. Because it contains the rare amino acid selenocysteine, it belongs to the family of selenoproteins, which are typically oxidoreductases. Its exact enzymatic function is key to understanding how the cell regulates the response to oxidative stress and thus influences human health and aging. To identify its enzymatic function, we have isolated the selenocysteine-containing enzyme by relying on the aggregation of forms that do not have this reactive residue. That allows us to establish that SelS is primarily a thioredoxin-dependent reductase. It is capable of reducing hydrogen peroxide but is not an efficient or broad-spectrum peroxidase. Only the selenocysteine-containing enzyme is active. In addition, the reduction potential of SelS was determined to be -234 mV using electrospray ionization mass spectrometry. This value is consistent with SelS being a partner of thioredoxin. On the basis of this information, SelS can directly combat reactive oxygen species but is also likely to participate in a signaling pathway, via a yet unidentified substrate.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
24
|
Szoszkiewicz R. Single-molecule studies of disulfide bond reduction pathways used by human thioredoxin. Biophys Chem 2013; 173-174:31-8. [PMID: 23428047 DOI: 10.1016/j.bpc.2013.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/19/2013] [Accepted: 01/20/2013] [Indexed: 11/27/2022]
Abstract
Disulfide bond reduction pathways used by human thioredoxin (hTrx) are studied at the single molecule level using a recombinant protein (I27SS)8. (I27SS)8 contains eight tandem repeats of identical immunoglobulin-like modules with one disulfide bond in each module. Single (I27SS)8 molecules are stretched at constant force applied by a cantilever in a force-clamp mode of atomic force microscopy (FC-AFM). Disulfide reduction events are accurately detected from stepwise increases in the end-to-end length of (I27SS)8. Earlier FC-AFM studies observed one disulfide reduction pathway used by hTrx and suggested an additional electron tunneling mechanism. Here, a very large set of unbiased FC-AFM data is collected in a range of clamping forces. By analyzing the data using exponential fits and dwell time histograms two disulfide reduction pathways used by hTrx are resolved. Based on previous studies one of these pathways is attributed to force-dependent Michaelis-Menten catalysis. The latter reduction pathway is weakly force-inhibited and occurs sporadically. Bimolecular nucleophilic substitutions (SN2) and electron tunneling (ET) mechanisms are discussed to explain the second pathway. Direct SN2 and ET mechanisms cannot be discounted, but a hypothetical E2-SN2 mechanism involving a hydride reducing a disulfide bond provides an interesting alternative, which needs to be verified in future experiments.
Collapse
Affiliation(s)
- Robert Szoszkiewicz
- Department of Physics, Kansas State University, 307 Cardwell Hall, Manhattan, KS, USA.
| |
Collapse
|
25
|
Kosuri P, Alegre-Cebollada J, Feng J, Kaplan A, Inglés-Prieto A, Badilla CL, Stockwell BR, Sanchez-Ruiz JM, Holmgren A, Fernández JM. Protein folding drives disulfide formation. Cell 2013; 151:794-806. [PMID: 23141538 DOI: 10.1016/j.cell.2012.09.036] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/03/2012] [Accepted: 09/05/2012] [Indexed: 11/25/2022]
Abstract
PDI catalyzes the oxidative folding of disulfide-containing proteins. However, the sequence of reactions leading to a natively folded and oxidized protein remains unknown. Here we demonstrate a technique that enables independent measurements of disulfide formation and protein folding. We find that non-native disulfides are formed early in the folding pathway and can trigger misfolding. In contrast, a PDI domain favors native disulfides by catalyzing oxidation at a late stage of folding. We propose a model for cotranslational oxidative folding wherein PDI acts as a placeholder that is relieved by the pairing of cysteines caused by substrate folding. This general mechanism can explain how PDI catalyzes oxidative folding in a variety of structurally unrelated substrates.
Collapse
Affiliation(s)
- Pallav Kosuri
- Graduate Program in Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | - Jason Feng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anna Kaplan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alvaro Inglés-Prieto
- Facultad de Ciencias, Departamento de Química-Fisica, Universidad de Granada, 18071 Granada, Spain
| | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Química-Fisica, Universidad de Granada, 18071 Granada, Spain
| | - Arne Holmgren
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Ungerstedt J, Du Y, Zhang H, Nair D, Holmgren A. In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic Biol Med 2012; 53:2002-7. [PMID: 23010496 DOI: 10.1016/j.freeradbiomed.2012.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/14/2012] [Accepted: 09/16/2012] [Indexed: 11/27/2022]
Abstract
The cytosolic thioredoxin (Trx1) system is essential for maintaining a reduced intracellular environment, via reduced Trx1 acting as a general protein disulfide reductase. Trx1 is implicated in cell signaling such as proliferation, DNA synthesis, enzyme activation, cell cycle regulation, transcription, gene activation, and prevention of apoptosis. Human Trx1 contains the active-site cysteines, Cys32 and Cys35, and three additional structural cysteines, Cys62, Cys69, and Cys73, that regulate Trx1 structure and activity via a second disulfide formation, S-glutathionylation or S-nitrosylation. The present study uses an electrophoretic redox Western blot method to analyze the oxidation state of Trx1 in vivo separating the protein-changed isoform following alkylation with iodoacetic acid in 8M urea. Treatment with the histone deacetylase inhibitor SAHA increased Trx1 inhibitor thioredoxin interacting protein (Txnip) levels, decreased Trx1 activity, and switched the Trx1 oxidation state toward a more oxidized one, as a result of complex formation with Trx1, and increased reactive oxygen species (ROS). SAHA is currently in clinical trials for cancer treatment, and one possible mechanism for its anticancer effect is via effects on the Trx1 system. Determining the exact oxidation state of human cytosolic Trx1 may be useful in developing and evaluating cancer drugs and antioxidant agents.
Collapse
Affiliation(s)
- J Ungerstedt
- Hematology and Regenerative Medicine Center, Institute for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Giri PK, Jing-Song F, Shanmugam MK, Ding JL, Sethi G, Swaminathan K, Sivaraman J. NMR structure of Carcinoscorpius rotundicauda thioredoxin-related protein 16 and its role in regulating transcription factor NF-κB activity. J Biol Chem 2012; 287:29417-28. [PMID: 22763700 DOI: 10.1074/jbc.m112.379859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxins (Trxs), which play a key role in maintaining a redox environment in the cell, are found in almost all organisms. Trxs act as potential reducing agents of disulfide bonds and contain two vicinal cysteines in a CXXC motif at the active site. Trx is also known to activate the DNA binding activity of NF-κB, an important transcription factor. Previously, Trx-related protein 16 from Carcinoscorpius rotundicauda (Cr-TRP16), a 16-kDa Trx-like protein that contains a WCPPC motif, was reported. Here we present the NMR structure of the reduced form of Cr-TRP16, along with its regulation of NF-κB activity. Unlike other 16-kDa Trx-like proteins, Cr-TRP16 contains an additional Cys residue (Cys-15, at the N terminus), through which it forms a homodimer. Moreover, we have explored the molecular basis of Cr-TRP16-mediated activation of NF-κB and showed that Cr-TRP16 exists as a dimer under physiological conditions, and only the dimeric form binds to NF-κB and enhances its DNA binding activity by directly reducing the cysteines in the DNA-binding motif of NF-κB. The C15S mutant of Cr-TRP16 was unable to dimerize and hence does not bind to NF-κB. Based on our finding and combined with the literature, we propose a model of how Cr-TRP16 is likely to bind to NF-κB. These findings elucidate the molecular mechanism by which NF-κB activation is regulated through Cr-TRP16.
Collapse
Affiliation(s)
- Pankaj Kumar Giri
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
28
|
Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol Appl Pharmacol 2012; 262:341-8. [PMID: 22634334 DOI: 10.1016/j.taap.2012.05.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo.
Collapse
|
29
|
Ben Bacha AG, Mejdoub H. Purification and biochemical characterization of an organic-solvent-tolerant thioredoxin from dromedary pancreas. Protein J 2012; 31:1-7. [PMID: 22081312 DOI: 10.1007/s10930-011-9366-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We purified to homogeneity and characterized a heat stable thioredoxin which catalyzes thiol/disulfide exchange reaction, for the first time from dromedary pancreas. The purification involved heat and acidic treatment (90 °C; pH 2.5), precipitation by ammonium sulphate and ethanol, respectively followed by sequential column chromatography reverse HPLC column, and it resulted in an apparently pure protein after a 217-fold purification with a final yield of 55% of the initial thioredoxin activity. The thioredoxin preparation obtained was homogeneous as judged by polyacrylamide gel electrophoresis and the presence of valine as the only NHt-terminal amino acid. MALDI-TOF mass spectrometry revealed that the protein has a molecular mass of 11,302.9 Da. The first 40 amino-acid residues at the N-terminal extremity of purified DrTrx was determined by automatic Edman degradation and showed a high sequence homology with known Thioredoxin. It contained he tetrapeptide-Cys-Gly-Pro-Cys-, which constitutes the active site of mammalian thioredoxins. DrTrx activity was compatible with the presence of organic solvents and the maximum activity appeared at pH 7.5 using the insulin precipitation assay. Thioredoxin stability in the presence of organic solvents, as well as in acidic and alkaline pHs and at high temperatures makes it a good candidate for its application in pharmaceutical and food industry.
Collapse
Affiliation(s)
- Abir G Ben Bacha
- Biochemistry Department, Science College, King Saud University, P.O. box 22452, Riyadh, 11495, Saudi Arabia.
| | | |
Collapse
|
30
|
Erkhembayar S, Mollbrink A, Eriksson M, Larsen EH, Eriksson LC. Selenium homeostasis and induction of thioredoxin reductase during long term selenite supplementation in the rat. J Trace Elem Med Biol 2011; 25:254-9. [PMID: 22033016 DOI: 10.1016/j.jtemb.2011.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/22/2022]
Abstract
Selenium is a candidate treatment for liver tumour prevention in chronic liver disease. In this study, we have studied selenium uptake, distribution and accumulation in rats provided with water containing tumour-preventive doses of sodium selenite for 10 weeks. Male Fischer 344 rats were given drinking water containing 1 μg/mL or 5 μg/mL sodium selenite. Selenium levels were monitored in serum and liver tissue over the 10-week period, and the kinetics of induction of the redox-active cytosolic selenoenzyme thioredoxin reductase were followed. Selenite exposure via drinking water caused a dose-dependent increase in blood and liver selenium levels, with plateaus at 6 and 8 weeks, respectively. These plateaus were reached at the same level of selenium regardless of dose, and no further accumulation was observed. A selenium-dependent increase in the activity of TrxR1 in parallel with the increase in liver selenium levels was also seen, and the induction of TrxR1 mRNA was seen only during the first three days of treatment, when the levels of selenium in the liver were increasing. Sodium selenite at 1 and 5 μg/mL did not affect body weight or relative liver mass. We concluded that long-term treatment with selenite did not cause accumulation of selenium and that the activity of TrxR1 in the liver rose with the selenium levels. We therefore suggest that sodium selenite at doses up to 5 μg/mL could be used for long-term tumour prevention.
Collapse
Affiliation(s)
- Suvd Erkhembayar
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Fritz-Wolf K, Kehr S, Stumpf M, Rahlfs S, Becker K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun 2011; 2:383. [PMID: 21750537 DOI: 10.1038/ncomms1382] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/08/2011] [Indexed: 11/10/2022] Open
Abstract
Thioredoxin reductase 1 (TrxR1) is a homodimeric flavoprotein crucially involved in the regulation of cellular redox homeostasis, growth, and differentiation. Its importance in various diseases makes TrxR1 a highly interesting drug target. Here we present the first crystal structures of human TrxR1 in complex with its substrate thioredoxin (Trx). The carboxy-terminal redox centre is found about 20 Å apart from the amino-terminal redox centre, with no major conformational changes in TrxR or Trx. Thus, our structure confirms that the enzyme uses a flexible C-terminal arm for electron transport to its substrates, which is stabilized by a guiding bar for controlled transfer. This notion is supported by mutational analyses. Furthermore, essential residues of the interface region were characterized both structurally and functionally. The structure provides templates for future drug design, and contributes to our understanding of redox regulatory processes in mammals.
Collapse
Affiliation(s)
- Karin Fritz-Wolf
- Interdisciplinary Research Centre, Justus Liebig University, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
32
|
Zhang H, Cao D, Cui W, Ji M, Qian X, Zhong L. Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate. Free Radic Biol Med 2010; 49:2010-8. [PMID: 20951799 DOI: 10.1016/j.freeradbiomed.2010.09.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/18/2010] [Accepted: 09/27/2010] [Indexed: 11/23/2022]
Abstract
Thioredoxin (Trx) and thioredoxin reductase (TrxR) function as antioxidant and anti-apoptotic proteins, which are often up-regulated in drug-resistant cancer cells. (-)-epigallocatechin-3-gallate (EGCG) is a naturally occurring antioxidant in green tea, but also exhibits prooxidant and apoptosis-inducing properties. We have previously showed a linkage between EGCG-induced inactivation of TrxR and decreased cell survival, revealing TrxR as a new target of EGCG. However, the molecular events underlying the importance of Trx/TrxR in EGCG-induced cytotoxicity remain unclear. Here, we show that the crosstalk between EGCG and Trx/TrxR occurred in a redox-dependent manner, and EGCG induced inactivation of Trx/TrxR in parallel with increased ROS levels in HeLa cells. Moreover, EGCG displayed great reactivity with Cys/Sec residues that have low pK(a) values. The structure of EGCG suggests that its quinone form would readily react with thiolate and selenolate nucleophiles. Using mass spectrometry, we have demonstrated the formation of EGCG-Trx1 (Cys(32)) and EGCG-TrxR (Cys/Sec) conjugates, confirming that EGCG quinone specifically conjugates with active-site Cys(32) in Trx or C-terminal Cys/Selenocysteine (Sec) couple in TrxR under conditions where Trx/TrxR are reduced. Non-reduced form of Trx/TrxR could escape from EGCG inhibition. These data reveal a potential mechanism for enhancing EGCG-induced cancer cell death by the NADPH-dependent reduction of Trx/TrxR.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Selenius M, Rundlöf AK, Olm E, Fernandes AP, Björnstedt M. Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. Antioxid Redox Signal 2010; 12:867-80. [PMID: 19769465 DOI: 10.1089/ars.2009.2884] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selenium is an essential element that is specifically incorporated as selenocystein into selenoproteins. It is a potent modulator of eukaryotic cell growth with strictly concentration-dependant effects. Lower concentrations are necessary for cell survival and growth, whereas higher concentrations inhibit growth and induce cell death. It is well established that selenium has cancer preventive effects, and several studies also have shown that it has strong anticancer effects with a selective cytotoxicity on malignant drug-resistant cells while only exerting marginal effects on normal and benign cells. This cancer-specific cytotoxicity is likely explained by high affinity selenium uptake dependent on proteins connected to multidrug resistance. One of the most studied selenoproteins in cancer is thioredoxin reductase (TrxR) that has important functions in neoplastic growth and is an important component of the resistant phenotype. Several reports have shown that TrxR is induced in tumor cells and pre-neoplastic cells, and several commonly used drugs interact with the protein. In this review, we summarize the current knowledge of selenium as a potent preventive and tumor selective anticancer drug, and we also discuss the potential of using the expression and modulation of the selenoprotein TrxR in the diagnostics and treatment of cancer.
Collapse
Affiliation(s)
- Markus Selenius
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Eriksson SE, Prast-Nielsen S, Flaberg E, Szekely L, Arnér ESJ. High levels of thioredoxin reductase 1 modulate drug-specific cytotoxic efficacy. Free Radic Biol Med 2009; 47:1661-71. [PMID: 19766715 DOI: 10.1016/j.freeradbiomed.2009.09.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/31/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022]
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1) is currently recognized as a plausible anticancer drug target. Here we analyzed the effects of TrxR1 targeting in the human A549 lung carcinoma cell line, having a very high basal TrxR1 expression. We determined the total cellular TrxR activity to be 271.4 +/- 39.5 nmol min(-1) per milligram of total protein, which by far exceeded the total thioredoxin activity (39.2 +/- 3.5 nmol min(-1) per milligram of total protein). Knocking down TrxR1 by approx 90% using siRNA gave only a slight effect on cell growth, irrespective of concurrent glutathione depletion (> or = 98% decrease), and no increase in cell death or distorted cell cycle phase distributions. This apparent lack of phenotype could probably be explained by Trx functions being maintained by the remaining TrxR1 activity. TrxR1 knockdown nonetheless yielded drug-specific modulation of cytotoxic efficacy in response to various chemotherapeutic agents. No changes in response upon exposure to auranofin or juglone were seen after TrxR1 knockdown, whereas sensitivity to 1-chloro-2,4-dinitrobenzene or menadione became markedly increased. In contrast, a virtually complete resistance to cisplatin using concentrations up to 20 microM appeared upon TrxR1 knockdown. The results suggest that high overexpression of TrxR has an impact not necessarily linked to Trx function that nonetheless modulates drug-specific cytotoxic responses.
Collapse
Affiliation(s)
- Sofi E Eriksson
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
Lu J, Zhong L, Lönn ME, Burk RF, Hill KE, Holmgren A. Penultimate selenocysteine residue replaced by cysteine in thioredoxin reductase from selenium-deficient rat liver. FASEB J 2009; 23:2394-402. [PMID: 19351701 DOI: 10.1096/fj.08-127662] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Selenium is an essential micronutrient for humans and animals, and its deficiency can predispose to the development of pathological conditions. This study evaluates the effect of selenium deficiency on the thioredoxin system, consisting of NADPH, selenoprotein thioredoxin reductase (TrxR), and thioredoxin (Trx); and the glutathione system, including NADPH, glutathione reductase, glutathione, and glutaredoxin coupled with selenoprotein glutathione peroxidase (GPx). We particularly investigate whether inactive truncated TrxR is present under selenium-starvation conditions due to reading of the UGA codon as stop. Feeding rats a selenium-deficient diet resulted in a large decrease in activity of TrxR and GPx in rat liver but not in the levels of Trx1 and Grx1. However, selenium deficiency induced mitochondrial Grx2 10-fold and markedly changed the expression of some flavoproteins that are involved in the cellular folate, glucose, and lipid metabolism. Liver TrxR mRNA was nearly unchanged, but no truncated enzyme was found. Instead, a low-activity form of TrxR with a cysteine substituted for the penultimate selenocysteine in the C-terminal active site was identified in selenium-deficient rat liver. These results show a novel mechanism for decoding the UGA stop codon, inserting cysteine to make a full-length enzyme that may be required for selenium assimilation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Sotirchos IM, Hudson AL, Ellis J, Davey MW. A unique thioredoxin of the parasitic nematode Haemonchus contortus with glutaredoxin activity. Free Radic Biol Med 2009; 46:579-85. [PMID: 19111609 DOI: 10.1016/j.freeradbiomed.2008.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 12/20/2022]
Abstract
The dependency of parasites on the cellular redox systems has led to their investigation as novel drug targets. Defence against oxidative damage is through the thioredoxin and glutathione systems. The classic thioredoxin is identified by the active site Cys-Gly-Pro-Cys (CGPC). Here we describe the identification of a unique thioredoxin in the parasitic nematode, Haemonchus contortus. This thioredoxin-related protein, termed HcTrx5, has an arginine in its active site (Cys-Arg-Ser-Cys; CRSC) that is not found in any other organism. Recombinant HcTrx5 was able to reduce the disulfide bond in insulin, and be regenerated by mammalian thioredoxin reductase with a K(m) 2.19+/-1.5 microM, similar to the classic thioredoxins. However, it was also able to reduce insulin when glutathione and glutathione reductase replaced the thioredoxin reductase. When coupled with H. contortus peroxiredoxin, HcTrx5 was active using either the thioredoxin reductase or the glutathione and glutathione reductase. HcTrx5 is expressed through the life cycle, with highest expression in the adult stage. The unique activity of this thioredoxin makes it a potential drug target for the control of this parasite.
Collapse
Affiliation(s)
- Irene M Sotirchos
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway NSW, Australia
| | | | | | | |
Collapse
|
38
|
Zahedi Avval F, Holmgren A. Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase. J Biol Chem 2009; 284:8233-40. [PMID: 19176520 DOI: 10.1074/jbc.m809338200] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in deoxyribonucleotide synthesis essential for DNA replication and repair. RNR in S phase mammalian cells comprises a weak cytosolic complex of the catalytic R1 protein containing redox active cysteine residues and the R2 protein harboring the tyrosine free radical. Each enzyme turnover generates a disulfide in the active site of R1, which is reduced by C-terminally located shuttle dithiols leaving a disulfide to be reduced. Electrons for reduction come ultimately from NADPH via thioredoxin reductase and thioredoxin (Trx) or glutathione reductase, glutathione, and glutaredoxin (Grx), but the mechanism has not been clarified for mammalian RNR. Using recombinant mouse RNR, we found that Trx1 and Grx1 had similar catalytic efficiency (k(cat)/K(m)). With 4 mm GSH, Grx1 showed a higher affinity (apparent K(m) value, 0.18 microm) compared with Trx1 which displayed a higher apparent k(cat), suggesting its major role in S phase DNA replication. Surprisingly, Grx activity was strongly dependent on GSH concentrations (apparent K(m) value, 3 mm) and a Grx2 C40S mutant was active despite only one cysteine residue in the active site. This demonstrates a GSH-mixed disulfide mechanism for glutaredoxin catalysis in contrast to the dithiol mechanism for thioredoxin. This may be an advantage with the low levels of RNR for DNA repair or in tumor cells with high RNR and no or low Trx expression. Our results demonstrate mechanistic differences between the mammalian and canonical Escherichia coli RNR enzymes, which may offer an explanation for the nonconserved shuttle dithiol sequences in the C terminus of the R1.
Collapse
Affiliation(s)
- Farnaz Zahedi Avval
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | |
Collapse
|
39
|
Kalinina EV, Chernov NN, Saprin AN. Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes. BIOCHEMISTRY (MOSCOW) 2009; 73:1493-510. [DOI: 10.1134/s0006297908130099] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Hellberg V, Wallin I, Eriksson S, Hernlund E, Jerremalm E, Berndtsson M, Eksborg S, Arnér ESJ, Shoshan M, Ehrsson H, Laurell G. Cisplatin and oxaliplatin toxicity: importance of cochlear kinetics as a determinant for ototoxicity. J Natl Cancer Inst 2009; 101:37-47. [PMID: 19116379 PMCID: PMC2639295 DOI: 10.1093/jnci/djn418] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 10/07/2008] [Accepted: 10/20/2008] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Cisplatin is a cornerstone anticancer drug with pronounced ototoxicity, whereas oxaliplatin, a platinum derivative with a different clinical profile, is rarely ototoxic. This difference has not been explained. METHODS In HCT-116 cells, cisplatin (20 microM)-induced apoptosis was reduced by a calcium chelator from 9.9-fold induction (95% confidence interval [CI] = 8.1- to 11.7-fold), to 3.1-fold induction (95% CI = 2.0- to 4.2-fold) and by superoxide scavenging from 9.3-fold (95% CI = 8.8- to 9.8-fold), to 5.1-fold (95% CI = 4.4- to 5.8-fold). A guinea pig model (n = 23) was used to examine pharmacokinetics. Drug concentrations were determined by liquid chromatography with post-column derivatization. The total platinum concentration in cochlear tissue was determined by inductively coupled plasma mass spectrometry. Drug pharmacokinetics was assessed by determining the area under the concentration-time curve (AUC). Statistical tests were two-sided. RESULTS In HCT-116 cells, cisplatin (20 microM)-induced apoptosis was reduced by a calcium chelator from 9.9-fold induction (95% confidence interval [CI] = 8.1- to 11.7-fold to 3.1-fold induction) (95% CI = 2.0- to 4.2-fold) and by superoxide scavenging (from 9.3-fold, 95% CI = 8.8- to 9.8-fold, to 5.1-fold, 95% CI = 4.4- to 5.8-fold). Oxaliplatin (20 microM)-induced apoptosis was unaffected by calcium chelation (from 7.1- to 6.2-fold induction) and by superoxide scavenging (from 5.9- to 5.6-fold induction). In guinea pig cochlea, total platinum concentration (0.12 vs 0.63 microg/kg, respectively, P = .008) and perilymphatic drug concentrations (238 vs 515 microM x minute, respectively, P < .001) were lower after intravenous oxaliplatin treatment (16.6 mg/kg) than after equimolar cisplatin treatment (12.5 mg/kg). However, after a non-ototoxic cisplatin dose (5 mg/kg) or the same oxaliplatin dose (16.6 mg/kg), the AUC for perilymphatic concentrations was similar, indicating that the two drugs have different cochlear pharmacokinetics. CONCLUSION Cisplatin- but not oxaliplatin-induced apoptosis involved superoxide-related pathways. Lower cochlear uptake of oxaliplatin than cisplatin appears to be a major explanation for its lower ototoxicity.
Collapse
Affiliation(s)
- Victoria Hellberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zahedi Avval F, Berndt C, Pramanik A, Holmgren A. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd). Biochem Biophys Res Commun 2009; 379:775-9. [PMID: 19121624 DOI: 10.1016/j.bbrc.2008.12.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 12/21/2022]
Abstract
Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.
Collapse
Affiliation(s)
- Farnaz Zahedi Avval
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
42
|
Inhibition of mammalian thioredoxin reductase by black tea and its constituents: implications for anticancer actions. Biochimie 2008; 91:434-44. [PMID: 19059456 DOI: 10.1016/j.biochi.2008.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/18/2008] [Indexed: 11/20/2022]
Abstract
Black tea is recently reported to have anti-carcinogenic effects through pro-oxidant property, but the underlying mechanisms remain unclear. Mammalian cytosolic thioredoxin reductase (TrxR1) is well -known for its anti-oxidation activity. In this study, we found that black tea extract (BTE) and theaflavins (TFs), the major black tea polyphenols, inhibited the purified TrxR1 with IC(50) 44 microg/ml and 21+/-1 microg/ml, respectively. Kinetics of TFs exhibited a mixed type of competitive and non-competitive inhibition, with K(is) 4+/-1 microg/ml and K(ii) 26+/-5 microg/ml against coenzyme NADPH, and with K(is) 12+/-3 microg/ml and K(ii) 27+/-5 microg/ml against substrate DTNB. In addition, TFs inhibited TrxR1 in a time-dependent manner. In an equilibrium step, a reversible TrxR1-TFs complex (E*I) forms, which is followed by a slow irreversible first-order inactivation step. Rate constant of the inactivation was 0.7 min(-1), and dissociation constant of E*I was 51.9 microg/ml. Treatment of NADPH-reduced TrxR1 with TFs decreased 5-(Iodoacetamido) fluorescein incorporation, a fluorescent thiol-reactive reagent, suggesting that Sec/Cys residue(s) in the active site may be involved in the binding of TFs. The inhibitory capacity of TFs depends on their structure. Among the TFs tested, gallated forms had strong inhibitory effects. The interactions between TFs and TrxR1 were investigated by molecular docking, which revealed important features of the binding mechanism of theaflavins. An inhibitory effect of BTE on viability of HeLa cells was observed with IC(50) 29 microg/ml. At 33 microg/ml of BTE, TrxR1 activity in HeLa cells was decreased by 73% at 22 h after BTE treatment. TFs inhibited cell viability with IC(50) 10+/-4 microg/ml for HeLa cells and with IC(50) 20+/-5 microg/ml for EAhy926 cells. The cell susceptibility to TFs was inversely correlated to cellular levels of TrxR1. The inhibitory actions of TFs on TrxR1 may be an important mechanism of their anti-cancer properties.
Collapse
|
43
|
Tosatto SCE, Bosello V, Fogolari F, Mauri P, Roveri A, Toppo S, Flohé L, Ursini F, Maiorino M. The catalytic site of glutathione peroxidases. Antioxid Redox Signal 2008; 10:1515-26. [PMID: 18500926 DOI: 10.1089/ars.2008.2055] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In GPxs, the redox-active Se or S, is at hydrogen bonding distance from Gln and Trp residues that contribute to catalysis. From sequence homology of >400 sequences and modeling of the DmGPx as a paradigm, Asn136 emerged as a fourth essential component of the active site. Mutational substitution of Asn136 by His, Ala, or Asp results in a dramatic decline of specific activity. Kinetic analysis indicates that k(+1), the rate constant for the oxidation of the enzyme, decreases by two to three orders of magnitude, whereas the reductive steps characterized by k'(+2) are less affected. Accordingly, MS/MS analysis shows that in Asn136 mutants, the peroxidatic Cys45 stays largely reduced also in the presence of a hydroperoxide, whereas in the wild-type enzyme, it is oxidized, forming a disulfide with the resolving Cys. Computational calculation of pK(a) values indicates that the residues facing the catalytic thiol, Asn136, Gln80, and, to a lesser extent Trp135, contribute to the dissociation of the thiol group, Asn136 being most relevant. These data disclose that the catalytic site of GPxs has to be redrawn as a tetrad, including Asn136, and suggest a mechanism accounting for the extraordinary catalytic efficiency of GPxs.
Collapse
|
44
|
Hashemy SI, Holmgren A. Regulation of the Catalytic Activity and Structure of Human Thioredoxin 1 via Oxidation and S-Nitrosylation of Cysteine Residues. J Biol Chem 2008; 283:21890-8. [DOI: 10.1074/jbc.m801047200] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Kouwen TR, Andréll J, Schrijver R, Dubois JYF, Maher MJ, Iwata S, Carpenter EP, van Dijl JM. Thioredoxin A active-site mutants form mixed disulfide dimers that resemble enzyme-substrate reaction intermediates. J Mol Biol 2008; 379:520-34. [PMID: 18455736 PMCID: PMC2896474 DOI: 10.1016/j.jmb.2008.03.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/21/2008] [Accepted: 03/25/2008] [Indexed: 11/10/2022]
Abstract
Thioredoxin functions in nearly all organisms as the major thiol-disulfide oxidoreductase within the cytosol. Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. Thioredoxin has been reported to contribute to a wide variety of physiological functions by interacting with specific sets of substrates in different cell types. To investigate the function of the essential thioredoxin A (TrxA) in the low-GC Gram-positive bacterium Bacillus subtilis, we purified wild-type TrxA and three mutant TrxA proteins that lack either one or both of the two cysteine residues in the CxxC active site. The pure proteins were used for substrate-binding studies known as "mixed disulfide fishing" in which covalent disulfide-bonded reaction intermediates can be visualized. An unprecedented finding is that both active-site cysteine residues can form mixed disulfides with substrate proteins when the other active-site cysteine is absent, but only the N-terminal active-site cysteine forms stable interactions. A second novelty is that both single-cysteine mutant TrxA proteins form stable homodimers due to thiol oxidation of the remaining active-site cysteine residue. To investigate whether these dimers resemble mixed enzyme-substrate disulfides, the structure of the most abundant dimer, C32S, was characterized by X-ray crystallography. This yielded a high-resolution (1.5A) X-ray crystallographic structure of a thioredoxin homodimer from a low-GC Gram-positive bacterium. The C32S TrxA dimer can be regarded as a mixed disulfide reaction intermediate of thioredoxin, which reveals the diversity of thioredoxin/substrate-binding modes.
Collapse
Affiliation(s)
- Thijs R.H.M. Kouwen
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Juni Andréll
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Rianne Schrijver
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Jean-Yves F. Dubois
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Megan J. Maher
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - So Iwata
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Elisabeth P. Carpenter
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
46
|
Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A. Inhibition of the Human Thioredoxin System. J Biol Chem 2008; 283:11913-23. [DOI: 10.1074/jbc.m710133200] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Chew E, Lu J, Bradshaw TD, Holmgren A. Thioredoxin reductase inhibition by antitumor quinols: a quinol pharmacophore effect correlating to antiproliferative activity. FASEB J 2008; 22:2072-83. [DOI: 10.1096/fj.07-101477] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eng‐Hui Chew
- Department of Medical Biochemistry and BiophysicsMedical Nobel Institute for BiochemistryKarolinska InstitutetStockholmSweden
| | - Jun Lu
- Department of Medical Biochemistry and BiophysicsMedical Nobel Institute for BiochemistryKarolinska InstitutetStockholmSweden
| | - Tracey D. Bradshaw
- School of PharmacyCentre for Biomolecular SciencesUniversity of NottinghamNottinghamUK
| | - Arne Holmgren
- Department of Medical Biochemistry and BiophysicsMedical Nobel Institute for BiochemistryKarolinska InstitutetStockholmSweden
| |
Collapse
|
48
|
Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM. Probing the chemistry of thioredoxin catalysis with force. Nature 2007; 450:124-7. [PMID: 17972886 PMCID: PMC3963401 DOI: 10.1038/nature06231] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 09/07/2007] [Indexed: 02/07/2023]
Abstract
Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms. Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (S(N)2) reaction, the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectroscopy, we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25-600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 +/- 0.09 A (+/- s.e.m.), and the second elongating the substrate disulphide bond by 0.17 +/- 0.02 A (+/- s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-ångström precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease. Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme's active site during catalysis that cannot be resolved with any other current structural biological technique.
Collapse
Affiliation(s)
- Arun P Wiita
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaimul AM, Nakamura H, Masutani H, Yodoi J. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med 2007; 43:861-8. [PMID: 17697931 DOI: 10.1016/j.freeradbiomed.2007.05.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/25/2007] [Accepted: 05/25/2007] [Indexed: 12/27/2022]
Abstract
Thioredoxin (TRX), a small redox-active multifunctional protein, acts as a potent antioxidant and a redox regulator in signal transduction. TRX expression is elevated in various types of human cancer. Overexpression of TRX introduces resistance to anti-cancer drugs or radiation-induced apoptosis; however, there is no evidence that the incidence of cancer is frequent in TRX-transgenic mice or that the administration of recombinant human TRX enhances tumor growth. Plasma/serum level of TRX is a good marker for oxidative stress-induced various disorders, including metabolic syndrome. Thioredoxin-binding protein-2 (TBP-2), which was originally identified as a negative regulator of TRX, acts as a growth suppressor and a regulator in lipid metabolism. TBP-2 expression is downregulated in various types of human cancer. TBP-2 deficiency induces lipid dysfunction and a phenotype resembling Reye syndrome. Thus, TRX and TBP-2 play important roles in the pathophysiology of cancer and metabolic syndrome by direct interaction or by independent mechanisms.
Collapse
Affiliation(s)
- Ahsan M Kaimul
- Thioredoxin Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, 54 Shogoin, Kawahara-cho, Sakyo, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
50
|
Hashemy SI, Johansson C, Berndt C, Lillig CH, Holmgren A. Oxidation and S-Nitrosylation of Cysteines in Human Cytosolic and Mitochondrial Glutaredoxins. J Biol Chem 2007; 282:14428-36. [PMID: 17355958 DOI: 10.1074/jbc.m700927200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione (GSH) is the major intracellular thiol present in 1-10-mm concentrations in human cells. However, the redox potential of the 2GSH/GSSG (glutathione disulfide) couple in cells varies in association with proliferation, differentiation, or apoptosis from -260 mV to -200 or -170 mV. Hydrogen peroxide is transiently produced as second messenger in receptor-mediated growth factor signaling. To understand oxidation mechanisms by GSSG or nitric oxide-related nitrosylation we studied effects on glutaredoxins (Grx), which catalyze GSH-dependent thiol-disulfide redox reactions, particularly reversible glutathionylation of protein sulfhydryl groups. Human Grx1 and Grx2 contain Cys-Pro-Tyr-Cys and Cys-Ser-Tyr-Cys active sites and have three and two additional structural Cys residues, respectively. We analyzed the redox state and disulfide pairing of Cys residues upon GSSG oxidation and S-nitrosylation. Cytosolic/nuclear Grx1 was partly inactivated by both S-nitrosylation and oxidation. Inhibition by nitrosylation was reversible under anaerobic conditions; aerobically it was stronger and irreversible, indicating inactivation by nitration. Oxidation of Grx1 induced a complex pattern of disulfide-bonded dimers and oligomers formed between Cys-8 and either Cys-79 or Cys-83. In addition, an intramolecular disulfide between Cys-79 and Cys-83 was identified, predicted to have a profound effect on the three-dimensional structure. In contrast, mitochondrial Grx2 retains activity upon oxidation, did not form disulfide-bonded dimers or oligomers, and could not be S-nitrosylated. The dimeric iron sulfur cluster-coordinating inactive form of Grx2 dissociated upon nitrosylation, leading to activation of the protein. The striking differences between Grx1 and Grx2 reflect their diverse regulatory functions in vivo and also adaptation to different subcellular localization.
Collapse
Affiliation(s)
- Seyed Isaac Hashemy
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|