1
|
Liu Y, Li H, Hu C, Tan L, Yin P, Li Z, Zhou S, Su L. A real-world pharmacovigilance analysis for transthyretin inhibitors: findings from the FDA adverse event reporting database. Front Pharmacol 2024; 15:1368244. [PMID: 38873427 PMCID: PMC11169801 DOI: 10.3389/fphar.2024.1368244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Objective The purpose of this study is to investigate the drug safety of three Transthyretin (TTR) inhibitors in the real world using the United States Food and Drug Administration Adverse Event Reporting System (FAERS) database. Methods This study extracted reports received by the FAERS database from the first quarter of 2018 to the third quarter of 2023 for descriptive analysis and disproportionality analysis. Safety signal mining was conducted at the Preferred Term (PT) level and the System Organ Class (SOC) level using reporting odds ratio (ROR). The characteristics of the time-to-onset curves were analyzed using the Weibull Shape Parameter (WSP). The cumulative incidence of TTR inhibitors was evaluated using the Kaplan-Meier method. Subgroup analyses were conducted based on whether the reporter was a medical professional. Results A total of 3,459 reports of adverse events (AEs) caused by TTR inhibitors as the primary suspect (PS) drug were extracted. The top three reported AEs for patisiran were fatigue, asthenia, and fall, with the most unexpectedly strong association being nonspecific reaction. The top three reported AEs for vutrisiran were fall, pain in extremity and malaise, with the most unexpectedly strong association being subdural haematoma. The top three reported AEs for inotersen were platelet count decreased, blood creatinine increased, and fatigue, with the most unexpectedly strong association being blood albumin decreased. Vitamin A decreased, arthralgia, and dyspnea were the same AEs mentioned in the drug labels of all three drugs, while malaise and asthenia were the same unexpected significant signals. This study offers evidence of the variability in the onset time characteristics of AEs associated with TTR inhibitors, as well as evidence of differences in adverse event reporting between medical professionals and non-medical professionals. Conclusion In summary, we compared the similarities and differences in drug safety of three TTR inhibitors in the real world using the FAERS database. The results indicate that not only do these three drugs share common AEs, but they also exhibit differences in drug safety profiles. This study contributes to enhancing the understanding of medical professionals regarding the safety of TTR inhibitors.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Li
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Hu
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Tan
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Yin
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhihao Li
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Shuangshan Zhou
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Su
- Department of Cardiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Sanguinetti C, Minniti M, Susini V, Caponi L, Panichella G, Castiglione V, Aimo A, Emdin M, Vergaro G, Franzini M. The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism. Biomedicines 2022; 10:biomedicines10081906. [PMID: 36009453 PMCID: PMC9405911 DOI: 10.3390/biomedicines10081906] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein mainly synthesised by the liver and the choroid plexus whose function is to carry the thyroid hormone thyroxine and the retinol-binding protein bound to retinol in plasma and cerebrospinal fluid. When the stability of the tetrameric structure is lost, it breaks down, paving the way for the aggregation of TTR monomers into insoluble fibrils leading to transthyretin (ATTR) amyloidosis, a progressive disorder mainly affecting the heart and nervous system. Several TTR gene mutations have been characterised as destabilisers of TTR structure and are associated with hereditary forms of ATTR amyloidosis. The reason why also the wild-type TTR is intrinsically amyloidogenic in some subjects is largely unknown. The aim of the review is to give an overview of the TTR biological life cycle which is largely unknown. For this purpose, the current knowledge on TTR physiological metabolism, from its synthesis to its catabolism, is described. Furthermore, a large section of the review is dedicated to examining in depth the role of mutations and physiological ligands on the stability of TTR tetramers.
Collapse
Affiliation(s)
- Chiara Sanguinetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marianna Minniti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Susini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Laura Caponi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giorgia Panichella
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Vincenzo Castiglione
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Michele Emdin
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Giuseppe Vergaro
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
3
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming increasingly common as the global economy grows and living standards improve. Timely and effective preventions and treatments for NAFLD are urgently needed. Retinol-binding protein-4 (RBP4), the protein that transports retinol through the circulation, was found to be positively related to diabetes, obesity, cardiovascular disease, and other metabolic diseases. Observational studies on the association between serum RBP4 level and the prevalence of NAFLD found contradictory results. Some of the underlying mechanisms responsible for this association have been revealed, and the possible clinical implications of treating NAFLD by targeting RBP4 have been demonstrated. Future studies should focus on the predictive value of RBP4 on NAFLD development and its potential as a therapeutic target in NAFLD.
Collapse
|
4
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
5
|
Discovery of phenylpyrrolidine derivatives as a novel class of retinol binding protein 4 (RBP4) reducers. Bioorg Med Chem 2021; 54:116553. [PMID: 34953340 DOI: 10.1016/j.bmc.2021.116553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a potential drug target for metabolic and ophthalmologic diseases. A high-throughput screening of our compound library has identified a small-molecule RBP4 reducer 7a, as a hit compound. Aiming to provide a suitable tool for investigating the pharmacological effects of RBP4 reducers, we conducted a structure-activity relationship study of 7a. Exploration of the aryl head, oxazole core, and propanoic acid tail of 7a resulted in the discovery of novel, potent, and orally available phenylpyrrolidine derivatives 43b and 43c. Compound 43b had a potent and long-lasting blood RBP4-level-reducing effect when orally administered to mice at a dose as low as 0.3 mg/kg.
Collapse
|
6
|
Dhokia V, Macip S. A master of all trades - linking retinoids to different signalling pathways through the multi-purpose receptor STRA6. Cell Death Discov 2021; 7:358. [PMID: 34785649 PMCID: PMC8595884 DOI: 10.1038/s41420-021-00754-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoids are a group of vitamin A-related chemicals that are essential to chordate mammals. They regulate a number of basic processes, including embryogenesis and vision. From ingestion to metabolism and the subsequent cellular effects, retinoid levels are tightly regulated in the organism to prevent toxicity. One component of this network, the membrane receptor STRA6, has been shown to be essential in facilitating the cellular entry and exit of retinol. However, recent data suggests that STRA6 may not function merely as a retinoid transporter but also act as a complex signalling hub in its own right, being able to affect cell fate through the integration of retinoid signalling with other key pathways, such as those involving p53, JAK/STAT, Wnt/β catenin and calcium. This may open new therapeutic strategies in diseases like cancer, where these pathways are often compromised. Here, we look at the growing evidence regarding the novel roles of STRA6 beyond its well characterized classic functions.
Collapse
Affiliation(s)
- Vinesh Dhokia
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
7
|
Ramkumar S, Parmar VM, Samuels I, Berger NA, Jastrzebska B, von Lintig J. The vitamin a transporter STRA6 adjusts the stoichiometry of chromophore and opsins in visual pigment synthesis and recycling. Hum Mol Genet 2021; 31:548-560. [PMID: 34508587 DOI: 10.1093/hmg/ddab267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
The retinal pigment epithelium of the vertebrate eyes acquires vitamin A from circulating retinol binding protein for chromophore biosynthesis. The chromophore covalently links with an opsin protein in the adjacent photoreceptors of the retina to form the bipartite visual pigment complexes. We here analyzed visual pigment biosynthesis in mice deficient for the retinol binding protein receptor STRA6. We observed that chromophore content was decreased throughout the life cycle of these animals, indicating that lipoprotein-dependent delivery pathways for the vitamin cannot substitute for STRA6. Changes in the expression of photoreceptor marker genes, including a down-regulation of the genes encoding rod and cone opsins, paralleled the decrease in ocular retinoid concentration in STRA6-deficient mice. Despite this adaptation, cone photoreceptors displayed absent or mislocalized opsins at all ages examined. Rod photoreceptors entrapped the available chromophore but exhibited significant amounts of chromophore-free opsins in the dark-adapted stage. Treatment of mice with pharmacological doses of vitamin A ameliorated the rod phenotype but did not restore visual pigment synthesis in cone photoreceptors of STRA6-deficient mice. The imbalance between chromophore and opsin concentrations of rod and cone photoreceptors was associated with an unfavorable retinal physiology, including diminished electrical responses of photoreceptors to light, and retinal degeneration during aging. Together, our study demonstrates that STRA6 is critical to adjust the stoichiometry of chromophore and opsins in rod cone photoreceptors and to prevent pathologies associated with ocular vitamin A deprivation.
Collapse
Affiliation(s)
- Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Vipul M Parmar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Ivy Samuels
- Northeast Ohio VA Healthcare System, Cleveland, 44106, OH, USA
| | - Nathan A Berger
- Center for Science, Health and Society, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| |
Collapse
|
8
|
|
9
|
Saponaro F, Kim JH, Chiellini G. Transthyretin Stabilization: An Emerging Strategy for the Treatment of Alzheimer's Disease? Int J Mol Sci 2020; 21:ijms21228672. [PMID: 33212973 PMCID: PMC7698513 DOI: 10.3390/ijms21228672] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), previously named prealbumin is a plasma protein secreted mainly by the liver and choroid plexus (CP) that is a carrier for thyroid hormones (THs) and retinol (vitamin A). The structure of TTR, with four monomers rich in β-chains in a globular tetrameric protein, accounts for the predisposition of the protein to aggregate in fibrils, leading to a rare and severe disease, namely transthyretin amyloidosis (ATTR). Much effort has been made and still is required to find new therapeutic compounds that can stabilize TTR ("kinetic stabilization") and prevent the amyloid genetic process. Moreover, TTR is an interesting therapeutic target for neurodegenerative diseases due to its recognized neuroprotective properties in the cognitive impairment context and interestingly in Alzheimer's disease (AD). Much evidence has been collected regarding the neuroprotective effects in AD, including through in vitro and in vivo studies as well as a wide range of clinical series. Despite this supported hypothesis of neuroprotection for TTR, the mechanisms are still not completely clear. The aim of this review is to highlight the most relevant findings on the neuroprotective role of TTR, and to summarize the recent progress on the development of TTR tetramer stabilizers.
Collapse
Affiliation(s)
| | - Jin Hae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea;
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy;
- Correspondence:
| |
Collapse
|
10
|
Cioffi CL, Muthuraman P, Raja A, Varadi A, Racz B, Petrukhin K. Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities. J Med Chem 2020; 63:11054-11084. [DOI: 10.1021/acs.jmedchem.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
11
|
Goel V, Gosselin NH, Jomphe C, Zhang X, Marier JF, Robbie GJ. Population Pharmacokinetic-Pharmacodynamic Model of Serum Transthyretin Following Patisiran Administration. Nucleic Acid Ther 2020; 30:143-152. [PMID: 32175804 DOI: 10.1089/nat.2019.0841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hereditary transthyretin-mediated amyloidosis is an inherited, rapidly progressive, life-threatening disease caused by mutated transthyretin (TTR) protein. Patisiran is a small interfering RNA (siRNA) formulated in a lipid nanoparticle that inhibits hepatic TTR protein synthesis by RNA interference. We have developed an indirect-response pharmacokinetic-pharmacodynamic model relating plasma siRNA (ALN-18328) levels to serum TTR reduction across five clinical studies. A sigmoidal function described this relationship, with estimated Hill coefficient of 0.548, and half maximal inhibitory concentration (IC50), IC80, and IC90 values of 9.45, 118.5, and 520.5 ng/mL, respectively. Following patisiran 0.3 mg/kg every 3 weeks (q3w), steady-state plasma ALN-18328 exposures were between IC80 and IC90, yielding average serum TTR reductions of 80%-90% from baseline. Covariate analysis indicated similar TTR reduction across evaluated intrinsic and extrinsic factors, obviating the need for dose adjustment. Modeling results support the recommended patisiran dosing schedule of 0.3 mg/kg q3w, with a maximum dose of 30 mg for patients weighing ≥100 kg.
Collapse
Affiliation(s)
- Varun Goel
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
12
|
Racz B, Varadi A, Pearson PG, Petrukhin K. Comparative pharmacokinetics and pharmacodynamics of the advanced Retinol-Binding Protein 4 antagonist in dog and cynomolgus monkey. PLoS One 2020; 15:e0228291. [PMID: 31978148 PMCID: PMC6980506 DOI: 10.1371/journal.pone.0228291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined following oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus monkeys. Dynamics of plasma RBP4 reduction in response to compound administration was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-normalized exposure was significantly higher in NHP than in dog. Baseline concentrations of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136 to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both species correlated with compound exposure. Despite adequate PK and PD characteristics of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support the choice of NHP as a non-rodent safety species.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
| | - Andras Varadi
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
| | - Paul G. Pearson
- Pearson Pharma Partners, Westlake Village, California, United States of America
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
- * E-mail:
| |
Collapse
|
13
|
Zhang X, Goel V, Attarwala H, Sweetser MT, Clausen VA, Robbie GJ. Patisiran Pharmacokinetics, Pharmacodynamics, and Exposure-Response Analyses in the Phase 3 APOLLO Trial in Patients With Hereditary Transthyretin-Mediated (hATTR) Amyloidosis. J Clin Pharmacol 2020; 60:37-49. [PMID: 31322739 PMCID: PMC6972979 DOI: 10.1002/jcph.1480] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022]
Abstract
Hereditary transthyretin-mediated (hATTR) amyloidosis is an inherited, rapidly progressive, life-threatening disease caused by deposition of abnormal transthyretin protein. Patisiran is an RNA interference therapeutic comprising a novel, small interfering ribonucleic acid (ALN-18328) formulated in a lipid nanoparticle targeted to inhibit hepatic transthyretin protein synthesis. The lipid nanoparticle also contains 2 novel lipid excipients (DLin-MC3-DMA and PEG2000 -C-DMG). Here we report patisiran pharmacokinetics (PK), pharmacodynamics (PD), and exposure-response analyses from the phase 3 APOLLO trial, in which patients with hATTR amyloidosis with polyneuropathy were randomized 2:1 to receive patisiran 0.3 mg/kg or placebo intravenously every 3 weeks over 18 months. In patisiran-treated patients, mean maximum reduction in serum transthyretin level from baseline was 87.8%. Patisiran PK exposure was stable following chronic dosing. There were no meaningful differences in PK exposure, serum transthyretin reduction, and efficacy (change from baseline in modified Neuropathy Impairment Score+7) across all subgroups analyzed (age, sex, race, body weight, genotype status of valine-to-methionine mutation at position 30 [V30M] and non-V30M, prior use of tetramer stabilizers, mild/moderate renal impairment, and mild hepatic impairment). transthyretin reduction and efficacy were similar across the interpatient PK exposure range for ALN-18328. There was no trend in the incidence of adverse events or serious adverse events across the interpatient PK exposure range for all 3 analytes. Incidence of antidrug antibodies was low (3.4%) and transient, with no impact on PK, PD, efficacy, or safety. The patisiran dosing regimen of 0.3 mg/kg every 3 weeks is appropriate for all patients with hATTR amyloidosis.
Collapse
|
14
|
Park GY, Jamerlan A, Shim KH, An SSA. Diagnostic and Treatment Approaches Involving Transthyretin in Amyloidogenic Diseases. Int J Mol Sci 2019; 20:E2982. [PMID: 31216785 PMCID: PMC6628571 DOI: 10.3390/ijms20122982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transthyretin (TTR) is a thyroid hormone-binding protein which transports thyroxine from the bloodstream to the brain. The structural stability of TTR in tetrameric form is crucial for maintaining its original functions in blood or cerebrospinal fluid (CSF). The altered structure of TTR due to genetic mutations or its deposits due to aggregation could cause several deadly diseases such as cardiomyopathy and neuropathy in autonomic, motor, and sensory systems. The early diagnoses for hereditary amyloid TTR with cardiomyopathy (ATTR-CM) and wild-type amyloid TTR (ATTRwt) amyloidosis, which result from amyloid TTR (ATTR) deposition, are difficult to distinguish due to the close similarities of symptoms. Thus, many researchers investigated the role of ATTR as a biomarker, especially its potential for differential diagnosis due to its varying pathogenic involvement in hereditary ATTR-CM and ATTRwt amyloidosis. As a result, the detection of ATTR became valuable in the diagnosis and determination of the best course of treatment for ATTR amyloidoses. Assessing the extent of ATTR deposition and genetic analysis could help in determining disease progression, and thus survival rate could be improved following the determination of the appropriate course of treatment for the patient. Here, the perspectives of ATTR in various diseases were presented.
Collapse
Affiliation(s)
- Gil Yong Park
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Korea.
| |
Collapse
|
15
|
Poodproh R, Kaewmeechai S, Leelawatwattana L, Prapunpoj P. Increasing the length and hydrophobicity of the C-terminal sequence of transthyretin strengthens its binding affinity to retinol binding protein. FEBS Open Bio 2017; 7:1891-1898. [PMID: 29226076 PMCID: PMC5715260 DOI: 10.1002/2211-5463.12329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022] Open
Abstract
Transthyretin (TTR) is a transporter for thyroid hormone (TH) and retinol, the latter via binding with retinol binding protein (RBP). Both the N‐terminal and C‐terminal regions of the TTR subunit are located in close proximity to the central binding channel for ligands. During the evolution of vertebrates, these regions changed in length and hydropathy. The changes in the N‐terminal sequence were demonstrated to affect the binding affinities for THs and RBP. Here, the effects of changes in the C‐terminal sequence were determined. Three chimeric TTRs, namely pigC/huTTR (human TTR with the C‐terminal sequence changed to that of Sus scrofa TTR), xenoN/pigC/huTTR (human TTR with the N‐terminal and C‐terminal sequences changed to those of Xenopus laevis and S. scrofa, respectively), and pigC/crocTTR (Crocodylus porosus TTR with the C‐terminal sequence changed to that of S. scrofa TTR), were constructed and their binding affinities for human RBP were determined at low TTR/RBP molar ratio using chemiluminescence immunoblotting. The binding dissociation constant (Kd) values of pigC/huTTR, xenoN/pigC/huTTR and pigC/crocTTR were 3.20 ± 0.35, 1.53 ± 0.38 and 0.31 ± 0.04 μm, respectively, and the Kd values of human and C. porosus TTR were 4.92 ± 0.68 and 1.42 ± 0.45 μm, respectively. These results demonstrate chimeric TTRs bound RBP with a higher strength than wild‐type TTRs, and the changes in the C‐terminal sequence of TTR had a positive effect on its binding affinity for RBP. In addition, changes to the N‐terminal and C‐terminal sequences showed comparable effects on the binding affinity.
Collapse
Affiliation(s)
- Rattawan Poodproh
- Department of Biochemistry Faculty of Science Prince of Songkla University Hat Yai Thailand
| | - Supavadee Kaewmeechai
- Department of Biochemistry Faculty of Science Prince of Songkla University Hat Yai Thailand
| | - Ladda Leelawatwattana
- Department of Biochemistry Faculty of Science Prince of Songkla University Hat Yai Thailand
| | - Porntip Prapunpoj
- Department of Biochemistry Faculty of Science Prince of Songkla University Hat Yai Thailand
| |
Collapse
|
16
|
Goswami R, Kaplan MH. Essential vitamins for an effective T cell response. World J Immunol 2016; 6:39-59. [DOI: 10.5411/wji.v6.i1.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Effective adaptive immune responses rely upon appropriate activation of T cells by antigenic peptide-major histocompatibility complex on the surface of antigen presenting cells (APCs). Activation relies on additional signals including co-stimulatory molecules on the surface of the APCs that promote T cell expansion. The immune response is further sculpted by the cytokine environment. However, T cells also respond to other environmental signals including hormones, neurotransmitters, and vitamins. In this review, we summarize the mechanisms through which vitamins A and D impact immune responses, particularly in the context of T cell responses.
Collapse
|
17
|
Leri M, Nosi D, Natalello A, Porcari R, Ramazzotti M, Chiti F, Bellotti V, Doglia SM, Stefani M, Bucciantini M. The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies. J Nutr Biochem 2016; 30:153-66. [PMID: 27012632 DOI: 10.1016/j.jnutbio.2015.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Transthyretin (TTR) is involved in a subset of familial or sporadic amyloid diseases including senile systemic amyloidosis (SSA), familial amyloid polyneuropathy and cardiomyopathy (FAP/FAC) for which no effective therapy has been found yet. These conditions are characterized by extracellular deposits primarily found in the heart parenchyma and in peripheral nerves whose main component are amyloid fibrils, presently considered the main culprits of cell sufferance. The latter are polymeric assemblies grown from misfolded TTR, either wt or carrying one out of many identified mutations. The recent introduction in the clinical practice of synthetic TTR-stabilizing molecules that reduce protein aggregation provides the rationale to search natural effective molecules able to interfere with TTR amyloid aggregation by hindering the appearance of toxic species or by favoring the growth of harmless aggregates. Here we carried out an in depth biophysical and morphological study on the molecular features of the aggregation of wt- and L55P-TTR involved in SSA or FAP/FAC, respectively, and on the interference with fibril aggregation, stability and toxicity to cardiac HL-1 cells to demonstrate the ability of Oleuropein aglycone (OleA), the main phenolic component of the extra virgin olive oil. We describe the molecular basis of such interference and the resulting reduction of TTR amyloid aggregate cytotoxicity. Our data offer the possibility to validate and optimize the use of OleA or its molecular scaffold to rationally design promising drugs against TTR-related pathologies that could enter a clinical experimental phase.
Collapse
Affiliation(s)
- Manuela Leri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Daniele Nosi
- Dipartimento di Medicina Sperimentale e Clinica - Università degli Studi di Firenze, Largo Brambilla 3, 50134, Firenze, Italy.
| | - Antonino Natalello
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus University College London, NW3 2PF, London, UK.
| | - Matteo Ramazzotti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Fabrizio Chiti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Centro Interuniversitario per lo Studio delle Malattie Neurodegenerative (CIMN), 50134, Firenze, Italy.
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus University College London, NW3 2PF, London, UK; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy.
| | - Silvia Maria Doglia
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; Dipartimento di Fisica G. Occhialini, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy.
| | - Massimo Stefani
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy.
| | - Monica Bucciantini
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio"- Università degli Studi di Firenze, Viale Morgagni 50, 50134, Firenze, Italy; Dipartimento di Medicina Molecolare, Istituto di Biochimica, Università degli Studi di Pavia, 27100, Pavia, Italy.
| |
Collapse
|
18
|
Abstract
Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP4) which, in turn, associates with another serum protein, transthyretin (TTR), to form a ternary retinol-RBP4-TTR complex. At some tissues, retinol-bound (holo-) RBP4 is recognised by a receptor termed stimulated by retinoic acid 6 (STRA6) which transports retinol into cells. This mini-review summarises evidence demonstrating that, in addition to functioning as a retinol transporter, STRA6 is also a signalling receptor which is activated by holo-RBP4. The data show that STRA6-mediated retinol transport induces receptor phosphorylation, in turn activating a Janus kinases2/signal transducers and activators of transcription (STAT)3/5 cascade that culminates in induction of STAT target genes. STRA6-mediated retinol transport and cell signalling are inter-dependent, and both functions critically rely on intracellular retinol trafficking and metabolism. Hence, STRA6 couples 'sensing' of vitamin A homeostasis and metabolism to cell signalling, allowing it to control important biological functions. For example, by inducing the expression of the STAT target gene suppressor of cytokine signalling 3, STRA6 potently suppresses insulin responses. These observations provide a rationale for understanding the reports that elevation in serum levels of RBP4, often observed in obese mice and human subjects, causes insulin resistance. The observations indicate that the holo-RBP4 /STRA6 signalling cascade may comprise an important link through which obesity leads to insulin resistance and suggest that the pathway may be a novel target for treatment of metabolic diseases.
Collapse
|
19
|
Abstract
Vitamin A, retinol, circulates in blood bound to retinol binding protein (RBP). In some tissues, the retinol-RBP complex (holo-RBP) is recognized by a membrane receptor, termed STRA6, which mediates uptake of retinol into cells. Recent studies have revealed that, in addition to serving as a retinol transporter, STRA6 is a ligand-activated cell surface signaling receptor that, upon binding of holo-RBP activates JAK/STAT signaling, culminating in the induction of STAT target genes. It has further been shown that retinol transport and cell signaling by STRA6 are critically interdependent and that both are coupled to intracellular vitamin A metabolism. The molecular mechanism of action of STRA6 and its associated machinery is beginning to be revealed, but further work is needed to identify and characterize the complete range of genes and associated signaling cascades that are regulated by STRA6 in different tissues. An understanding of STRA6 is clinically relevant, as for example, it has been shown to be hyper- activated in obese animals, leading to insulin resistance. A potential role for STRA6 in other pathologies, including cancer, awaits further investigation.
Collapse
Affiliation(s)
- Noa Noy
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
20
|
Kelly M, von Lintig J. STRA6: role in cellular retinol uptake and efflux. Hepatobiliary Surg Nutr 2015; 4:229-42. [PMID: 26312242 DOI: 10.3978/j.issn.2304-3881.2015.01.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/11/2022]
Abstract
Distribution of vitamin A throughout the body is important to maintain retinoid function in peripheral tissues and to ensure optimal vision. A critical step of this process is the transport of vitamin A across cell membranes. Increasing evidence indicates that this process is mediated by a multidomian membrane protein that is encoded by the stimulated by retinoic acid 6 (STRA6) gene. Biochemical studies revealed that STRA6 is a transmembrane pore which transports vitamin A bidirectionally between extra- and intracellular retinoid binding proteins. Vitamin A accumulation in cells is driven by coupling of transport with vitamin A esterification. Loss-of-function studies in zebrafish and mouse models have unraveled the critical importance of STRA6 for vitamin A homeostasis of peripheral tissues. Impairment in vitamin A transport and uptake homeostasis are associated with diseases including type 2 diabetes and a microphthalmic syndrome known as Matthew Wood Syndrome. This review will discuss the advanced state of knowledge about STRA6's biochemistry, biology and association with disease.
Collapse
Affiliation(s)
- Mary Kelly
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Cioffi CL, Racz B, Freeman EE, Conlon MP, Chen P, Stafford DG, Schwarz DMC, Zhu L, Kitchen DB, Barnes KD, Dobri N, Michelotti E, Cywin CL, Martin WH, Pearson PG, Johnson G, Petrukhin K. Bicyclic [3.3.0]-Octahydrocyclopenta[c]pyrrolo Antagonists of Retinol Binding Protein 4: Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. J Med Chem 2015; 58:5863-88. [PMID: 26181715 DOI: 10.1021/acs.jmedchem.5b00423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antagonists of retinol-binding protein 4 (RBP4) impede ocular uptake of serum all-trans retinol (1) and have been shown to reduce cytotoxic bisretinoid formation in the retinal pigment epithelium (RPE), which is associated with the pathogenesis of both dry age-related macular degeneration (AMD) and Stargardt disease. Thus, these agents show promise as a potential pharmacotherapy by which to stem further neurodegeneration and concomitant vision loss associated with geographic atrophy of the macula. We previously disclosed the discovery of a novel series of nonretinoid RBP4 antagonists, represented by bicyclic [3.3.0]-octahydrocyclopenta[c]pyrrolo analogue 4. We describe herein the utilization of a pyrimidine-4-carboxylic acid fragment as a suitable isostere for the anthranilic acid appendage of 4, which led to the discovery of standout antagonist 33. Analogue 33 possesses exquisite in vitro RBP4 binding affinity and favorable drug-like characteristics and was found to reduce circulating plasma RBP4 levels in vivo in a robust manner (>90%).
Collapse
Affiliation(s)
| | - Boglarka Racz
- §Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | | | | | | | | | | | | | | | | | - Nicoleta Dobri
- §Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Enrique Michelotti
- #National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Charles L Cywin
- ○National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - William H Martin
- ⊥WHM Consulting LLC, 111 Sterling City Road, Lyme, Connecticut 06371, United States
| | - Paul G Pearson
- ∥iCuraVision LLC, 31194 La Baya Drive, Suite 101, Westlake Village, California 91362, United States
| | - Graham Johnson
- ∥iCuraVision LLC, 31194 La Baya Drive, Suite 101, Westlake Village, California 91362, United States
| | - Konstantin Petrukhin
- §Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
22
|
Alshehri B, D'Souza DG, Lee JY, Petratos S, Richardson SJ. The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 2015; 27:303-23. [PMID: 25737004 DOI: 10.1111/jne.12271] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs). TTR synthesised in the liver is secreted into the bloodstream and distributes THs around the body, whereas TTR synthesised in the choroid plexus is involved in movement of thyroxine from the blood into the cerebrospinal fluid and the distribution of THs in the brain. This is important because an adequate amount of TH is required for normal development of the brain. Nevertheless, there has been heated debate on the role of TTR synthesised by the choroid plexus during the past 20 years. We present both sides of the debate and how they can be reconciled by the discovery of TH transporters. New roles for TTR have been suggested, including the promotion of neuroregeneration, protection against neurodegeneration, and involvement in schizophrenia, behaviour, memory and learning. Recently, TTR synthesis was revealed in neurones and peripheral Schwann cells. Thus, the synthesis of TTR in the central nervous system (CNS) is more extensive than previously considered and bolsters the hypothesis that TTR may play wide roles in neurobiological function. Given the high conservation of TTR structure, function and tissue specificity and timing of gene expression, this implies that TTR has a fundamental role, during development and in the adult, across vertebrates. An alarming number of 'unnatural' chemicals can bind to TTR, thus potentially interfering with its functions in the brain. One role of TTR is delivery of THs throughout the CNS. Reduced TH availability during brain development results in a reduced IQ. The combination of the newly discovered sites of TTR synthesis in the CNS, the increasing number of neurological diseases being associated with TTR, the newly discovered functions of TTR and the awareness of the chemicals that can interfere with TTR biology render this a timely review on TTR in neurobiology.
Collapse
Affiliation(s)
- B Alshehri
- School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | | | | | | |
Collapse
|
23
|
Noy N. Signaling by retinol and its serum binding protein. Prostaglandins Leukot Essent Fatty Acids 2015; 93:3-7. [PMID: 25481334 PMCID: PMC4323939 DOI: 10.1016/j.plefa.2014.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 01/13/2023]
Abstract
Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP) which, in turn, associates with transthyretin (TTR) to form a retinol-RBP-TTR ternary complex. At some tissues, retinol-bound (holo-) RBP is recognized by a membrane protein termed STRA6, which transports retinol from extracellular RBP into cells and, concomitantly, activates a JAK2/STAT3/5 signaling cascade that culminates in induction of STAT target genes. STRA6-mediated retinol transport and cell signaling are critically inter-dependent, and they both require the presence of cellular retinol-binding protein 1 (CRBP1), an intracellular retinol acceptor, as well as a retinol-metabolizing enzyme such as lecithin:retinol acyltransferase (LRAT). STRA6 thus functions as a "cytokine signaling transporter" which couples vitamin A homeostasis and metabolism to cell signaling, thereby regulating gene transcription. Recent studies provided molecular level insights into the mode of action of this unique protein.
Collapse
Affiliation(s)
- Noa Noy
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, and Department of Nutrition, Case Western Reserve University School of Medicine, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| |
Collapse
|
24
|
Sekijima Y. Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther 2015; 39:225-33. [PMID: 24749898 DOI: 10.1111/jcpt.12145] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/03/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Transthyretin (TTR) is a representative amyloidogenic protein in humans. Rate-limiting tetramer dissociation and rapid monomer misfolding and misassembly of variant TTR result in autosomal dominant familial amyloidosis. Analogous misfolding of wild-type TTR results in senile systemic amyloidosis (SSA) presenting as sporadic amyloid disease in the elderly. The objective of this review is to summarize recent progress in our understanding and treatment of TTR amyloidosis. METHODS Literature searches were conducted on the topics of transthyretin, familial amyloid polyneuropathy and clinical trials, using PubMed, the United States clinical trials directory, pharmaceutical company websites and news reports. The information was collected, evaluated for relevance and quality, critically assessed and summarized. RESULTS AND DISCUSSION The current standard first-line treatment of familial TTR amyloidosis is liver transplantation. However, large numbers of patients are not suitable transplant candidates. Recently, the clinical effects of TTR tetramer stabilizers, tafamidis and diflunisal, were demonstrated in randomized clinical trials, and tafamidis has been approved for the treatment of FAP in European countries and Japan. In addition, gene therapies with antisense oligonucleotides and small interfering RNAs are promising strategies to ameliorate TTR amyloidoses and are currently in clinical trials. WHAT IS NEW AND CONCLUSIONS Liver transplantation to treat the familial TTR amyloidosis will likely be replaced by other less invasive therapies, such as TTR tetramer stabilizers and possibly gene therapy approaches. These newly developed therapies are expected to be effective for not only familial TTR amyloidosis but also SSA, based on their mechanisms of action.
Collapse
Affiliation(s)
- Y Sekijima
- Department of Medicine (Neurology & Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
25
|
Cioffi CL, Dobri N, Freeman EE, Conlon MP, Chen P, Stafford DG, Schwarz DMC, Golden KC, Zhu L, Kitchen DB, Barnes KD, Racz B, Qin Q, Michelotti E, Cywin CL, Martin WH, Pearson PG, Johnson G, Petrukhin K. Design, synthesis, and evaluation of nonretinoid retinol binding protein 4 antagonists for the potential treatment of atrophic age-related macular degeneration and Stargardt disease. J Med Chem 2014; 57:7731-57. [PMID: 25210858 PMCID: PMC4174998 DOI: 10.1021/jm5010013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Accumulation of lipofuscin in the
retina is associated with pathogenesis
of atrophic age-related macular degeneration and Stargardt disease.
Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity.
Synthesis of lipofuscin bisretinoids depends on the influx of retinol
from serum to the retina. Compounds antagonizing the retinol-dependent
interaction of retinol-binding protein 4 (RBP4) with transthyretin
in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid
formation. We recently showed that A1120 (3), a potent
carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin
bisretinoid formation in the retinas of Abca4–/– mice. As part of the NIH
Blueprint Neurotherapeutics Network project we undertook the in vitro exploration to identify novel conformationally flexible and constrained
RBP4 antagonists with improved potency and metabolic stability. We
also demonstrate that upon acute and chronic dosing in rats, 43, a potent cyclopentyl fused pyrrolidine antagonist, reduced
circulating plasma RBP4 protein levels by approximately 60%.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Department of Medicinal Chemistry, Albany Molecular Research, Inc. , East Campus, C-Wing, Rensselaer, New York 12144, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Reply to "How free retinol behaves differently from RBP-bound retinol in RBP receptor-mediated vitamin A uptake". Mol Cell Biol 2014; 34:2111-2. [PMID: 24803603 DOI: 10.1128/mcb.01700-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Vieira M, Saraiva MJ. Transthyretin: a multifaceted protein. Biomol Concepts 2014; 5:45-54. [DOI: 10.1515/bmc-2013-0038] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 11/15/2022] Open
Abstract
AbstractTransthyretin is a highly conserved homotetrameric protein, mainly synthetized by the liver and the choroid plexus of brain. The carrier role of TTR is well-known; however, many other functions have emerged, namely in the nervous system. Behavior, cognition, neuropeptide amidation, neurogenesis, nerve regeneration, axonal growth and 14-3-3ζ metabolism are some of the processes where TTR has an important role. TTR aggregates are responsible for many amyloidosis such as familial amyloidotic polyneuropathy and cardiomyopathy. Normal TTR can also aggregate and deposit in the heart of old people and in preeclampsia placental tissue. Differences in TTR levels have been found in several neuropathologies, but its neuroprotective role, until now, was described in ischemia and Alzheimer’s disease. The aim of this review is to stress the relevance of TTR, besides its well-known role on transport of thyroxine and retinol-binding protein.
Collapse
|
28
|
Das BC, Thapa P, Karki R, Das S, Mahapatra S, Liu TC, Torregroza I, Wallace DP, Kambhampati S, Van Veldhuizen P, Verma A, Ray SK, Evans T. Retinoic acid signaling pathways in development and diseases. Bioorg Med Chem 2014; 22:673-83. [PMID: 24393720 PMCID: PMC4447240 DOI: 10.1016/j.bmc.2013.11.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
Retinoids comprise a group of compounds each composed of three basic parts: a trimethylated cyclohexene ring that is a bulky hydrophobic group, a conjugated tetraene side chain that functions as a linker unit, and a polar carbon-oxygen functional group. Biochemical conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for normal regulation of a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids regulate various physiological outputs by binding to nuclear receptors called retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which themselves are DNA-binding transcriptional regulators. The functional response of RA and their receptors are modulated by a host of coactivators and corepressors. Retinoids are essential in the development and function of several organ systems; however, deregulated retinoid signaling can contribute to serious diseases. Several natural and synthetic retinoids are in clinical use or undergoing trials for treating specific diseases including cancer. In this review, we provide a broad overview on the importance of retinoids in development and various diseases, highlighting various retinoids in the drug discovery process, ranging all the way from retinoid chemistry to clinical uses and imaging.
Collapse
Affiliation(s)
- Bhaskar C Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA; The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| | - Pritam Thapa
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Radha Karki
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sasmita Das
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Sweta Mahapatra
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Darren P Wallace
- The Kidney Institute, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Suman Kambhampati
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Peter Van Veldhuizen
- Division of Hematology and Oncology, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA; Molecular Bio-nanotechnology, Imaging and Therapeutic Research Unit, Veteran Affairs Medical Center, Kansas City, MO 64128, USA
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Chuang VTG, Otagiri M. Photoaffinity labeling of plasma proteins. Molecules 2013; 18:13831-59. [PMID: 24217326 PMCID: PMC6270137 DOI: 10.3390/molecules181113831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
Photoaffinity labeling is a powerful technique for identifying a target protein. A high degree of labeling specificity can be achieved with this method in comparison to chemical labeling. Human serum albumin (HSA) and α1-acid glycoprotein (AGP) are two plasma proteins that bind a variety of endogenous and exogenous substances. The ligand binding mechanism of these two proteins is complex. Fatty acids, which are known to be transported in plasma by HSA, cause conformational changes and participate in allosteric ligand binding to HSA. HSA undergoes an N-B transition, a conformational change at alkaline pH, that has been reported to result in increased ligand binding. Attempts have been made to investigate the impact of fatty acids and the N-B transition on ligand binding in HSA using ketoprofen and flunitrazepam as photolabeling agents. Meanwhile, plasma AGP is a mixture of genetic variants of the protein. The photolabeling of AGP with flunitrazepam has been utilized to shed light on the topology of the protein ligand binding site. Furthermore, a review of photoaffinity labeling performed on other major plasma proteins will also be discussed. Using a photoreactive natural ligand as a photolabeling agent to identify target protein in the plasma would reduce non-specific labeling.
Collapse
Affiliation(s)
- Victor Tuan Giam Chuang
- School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth 6845, WA, Australia
- Authors to whom correspondence should be addressed; E-Mails: (V.T.G.C.); (M.O.); Tel.: +61-8-9266-1983 (V.T.G.C.); Fax: +61-8-9266-2769 (V.T.G.C.); Tel./Fax: +81-96-326-3887 (M.O.)
| | - Masaki Otagiri
- Graduate School of Pharmaceutical Sciences, DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
- Authors to whom correspondence should be addressed; E-Mails: (V.T.G.C.); (M.O.); Tel.: +61-8-9266-1983 (V.T.G.C.); Fax: +61-8-9266-2769 (V.T.G.C.); Tel./Fax: +81-96-326-3887 (M.O.)
| |
Collapse
|
30
|
Petrukhin K. Pharmacological inhibition of lipofuscin accumulation in the retina as a therapeutic strategy for dry AMD treatment. ACTA ACUST UNITED AC 2013; 10:e11-e20. [PMID: 25152755 DOI: 10.1016/j.ddstr.2013.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. There is no FDA-approved treatment for the most prevalent dry (atrophic) form of AMD. Photoreceptor degeneration in dry AMD is triggered by abnormalities in the retinal pigment epithelium (RPE). It has been suggested that excessive accumulation of fluorescent lipofuscin pigment in the RPE represents an important pathogenic factor in etiology and progression of dry AMD. Cytotoxic lipofuscin bisretinoids, such as A2E, are formed in the retina in a non-enzymatic way from visual cycle retinoids. Inhibition of toxic bisretinoid production in the retina seems to be a sound treatment strategy for dry AMD. In this review we discuss the following classes of pharmacological treatments inhibiting lipofuscin bisretinoid formation in the retina: direct inhibitors of key visual cycle enzymes, RBP4 antagonists, primary amine-containing aldehyde traps, and deuterated analogs of vitamin A.
Collapse
|
31
|
Cross talk between signaling and vitamin A transport by the retinol-binding protein receptor STRA6. Mol Cell Biol 2012; 32:3164-75. [PMID: 22665496 DOI: 10.1128/mcb.00505-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane protein STRA6 transports vitamin A from its blood carrier retinol binding protein (RBP) into cells, and it also functions as a cytokine receptor which activates JAK/STAT signaling. We show here that, unlike other cytokine receptors, phosphorylation of STRA6 is not simply induced upon binding of its extracellular ligand. Instead, activation of the receptor is triggered by STRA6-mediated translocation of retinol from serum RBP to an intracellular acceptor, the retinol-binding protein CRBP-I. The observations also demonstrate that the movement of retinol from RBP to CRBP-I, and thus activation of STRA6, is critically linked to the intracellular metabolism of the vitamin. Furthermore, the data show that STRA6 phosphorylation is required for retinol uptake to proceed. Hence, the observations demonstrate that STRA6 orchestrates a multicomponent "machinery" that couples vitamin A homeostasis and metabolism to activation of a signaling cascade and that, in turn, STRA6 signaling regulates the cellular uptake of the vitamin. STRA6 appears to be a founding member of a new class of proteins that may be termed "cytokine signaling transporters."
Collapse
|
32
|
Oliveira SM, Cardoso I, Saraiva MJ. Transthyretin: roles in the nervous system beyond thyroxine and retinol transport. Expert Rev Endocrinol Metab 2012; 7:181-189. [PMID: 30764010 DOI: 10.1586/eem.12.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transthyretin (TTR) is a plasma- and cerebrospinal fluid-circulating protein. Besides the primordially attributed systemic role as a transporter molecule of thyroxine (T4) and retinol (through the binding to retinol-binding protein [RBP]), TTR has been recognized as a protein with important functions in several aspects of the nervous system physiology. TTR has been shown to play an important role in behavior, cognition, amidated neuropeptide processing and nerve regeneration. Furthermore, it has been proposed that TTR is neuroprotective in Alzheimer's disease and cerebral ischemia. Mutations in TTR are a well-known cause of familial amyloidotic polyneuropathy, an autosomal dominant neurodegenerative disorder characterized by systemic deposition of TTR amyloid fibrils, particularly in the peripheral nervous system. The purpose of this review is to highlight the roles of TTR in the nervous system, beyond its systemic role as a transporter molecule of T4 and RBP-retinol.
Collapse
Affiliation(s)
- Sandra Marisa Oliveira
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
| | - Isabel Cardoso
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- b Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Portugal
| | - Maria João Saraiva
- a Molecular Neurobiology, IBMC- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
- c ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
33
|
Berry DC, Noy N. Signaling by vitamin A and retinol-binding protein in regulation of insulin responses and lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:168-76. [PMID: 21782034 PMCID: PMC3204314 DOI: 10.1016/j.bbalip.2011.07.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/31/2011] [Accepted: 07/06/2011] [Indexed: 12/25/2022]
Abstract
Vitamin A, retinol, circulates in blood bound to serum retinol binding protein (RBP) and is transported into cells by a membrane protein termed stimulated by retinoic acid 6 (STRA6). It was reported that serum levels of RBP are elevated in obese rodents and humans, and that increased level of RBP in blood causes insulin resistance. A molecular mechanism by which RBP can exert such an effect is suggested by the recent discovery that STRA6 is not only a vitamin A transporter but also functions as a surface signaling receptor. Binding of RBP-ROH to STRA6 induces the phosphorylation of a tyrosine residue in the receptor C-terminus, thereby activating a JAK/STAT signaling cascade. Consequently, in STRA6-expressing cells such as adipocytes, RBP-ROH induces the expression of STAT target genes, including SOCS3, which suppresses insulin signaling, and PPARγ, which enhances lipid accumulation. RBP-retinol thus joins the myriad of cytokines, growth factors and hormones which regulate gene transcription by activating cell surface receptors that signal through activation of Janus kinases and their associated transcription factors STATs. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Daniel C Berry
- Department of Pharmacology and Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4695, USA
| | | |
Collapse
|
34
|
Leelawatwattana L, Praphanphoj V, Prapunpoj P. Effect of the N-terminal sequence on the binding affinity of transthyretin for human retinol-binding protein. FEBS J 2011; 278:3337-47. [PMID: 21777382 DOI: 10.1111/j.1742-4658.2011.08249.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During vertebrate evolution, the N-terminal region of transthyretin (TTR) subunit has undergone a change in both length and hydropathy. This was previously shown to change the binding affinity for thyroid hormones (THs). However, it was not known whether this change affects other functions of TTR. In the present study, the effect of these changes on the binding of TTR to retinol-binding protein (RBP) was determined. Two wild-type TTRs from human and Crocodylus porosus, and three chimeric TTRs, including a human chimeric TTR in which its N-terminal sequence was changed to that of C. porosus TTR (croc/huTTR) and two C. porosus chimeric TTRs (hu/crocTTR in which its N-terminal sequence was changed to that of human TTR and xeno/crocTTR in which its N-terminal sequence was changed to that of Xenopus laevis TTR), were analyzed for their binding to human RBP by native-PAGE followed by immunoblotting and a chemilluminescence assay. The K(d) of human TTR was 30.41 ± 2.03 μm, and was similar to that reported for the second binding site, whereas that of crocodile TTR was 2.19 ± 0.24 μm. The binding affinities increased in croc/huTTR (K(d) = 23.57 ± 3.54 μm) and xeno/crocTTR (K(d) = 0.61 ± 0.16 μm) in which their N-termini were longer and more hydrophobic, but decreased in hu/crocTTR (K(d) = 5.03 ± 0.68 μm) in which its N-terminal region was shorter and less hydrophobic. These results suggest an influence of the N-terminal primary structure of TTR on its function as a co-carrier for retinol with RBP.
Collapse
Affiliation(s)
- Ladda Leelawatwattana
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | |
Collapse
|
35
|
Berry DC, Jin H, Majumdar A, Noy N. Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc Natl Acad Sci U S A 2011; 108:4340-5. [PMID: 21368206 PMCID: PMC3060239 DOI: 10.1073/pnas.1011115108] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It currently is believed that vitamin A, retinol, functions through active metabolites: the visual chromophore 11-cis-retinal, and retinoic acids, which regulate gene transcription. Retinol circulates in blood bound to retinol-binding protein (RBP) and is transported into cells by a membrane protein termed "stimulated by retinoic acid 6" (STRA6). We show here that STRA6 not only is a vitamin A transporter but also is a cell-surface signaling receptor activated by the RBP-retinol complex. Association of RBP-retinol with STRA6 triggers tyrosine phosphorylation, resulting in recruitment and activation of JAK2 and the transcription factor STAT5. The RBP-retinol/STRA6/JAK2/STAT5 signaling cascade induces the expression of STAT target genes, including suppressor of cytokine signaling 3 (SOCS3), which inhibits insulin signaling, and peroxisome proliferator-activated receptor gamma (PPARγ), which enhances lipid accumulation. These observations establish that the parental vitamin A molecule is a transcriptional regulator in its own right, reveal that the scope of biological functions of the vitamin is broader than previously suspected, and provide a rationale for understanding how RBP and retinol regulate energy homeostasis and insulin responses.
Collapse
Affiliation(s)
- Daniel C. Berry
- Departments of Pharmacology and
- Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Hui Jin
- Departments of Pharmacology and
| | | | - Noa Noy
- Departments of Pharmacology and
- Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
36
|
Hyung SJ, Deroo S, Robinson CV. Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem Biol 2010; 5:1137-46. [PMID: 20845945 DOI: 10.1021/cb100144v] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transthyretin (TTR) is a plasma hormone carrier protein associated with hereditary and senile forms of systemic amyloid disease, wherein slow tetramer disassembly is thought to be an obligatory step. Plasma transport of retinol is carried out exclusively by the retinol-binding protein (RBP), through complexation with transthyretin. Using mass spectrometry to examine the subunit exchange dynamics, we find that retinol stabilizes the quaternary structure of transthyretin, through its interactions with RBP, reducing the rate of transthyretin disassembly ∼17-fold compared to apoTTR. In the absence of retinol but in the presence of RBP, transthyretin is only marginally stabilized with the rate of disassembly reduced ∼two-fold with respect to apoTTR. Surprisingly, we found two retinoids that stabilize transthyretin directly, in the absence of RBP, whereas retinol itself requires RBP in order to stabilize transthyretin. Our results demonstrate new roles for RBP and retinoids as stabilizers of transthyretin.
Collapse
Affiliation(s)
- Suk-Joon Hyung
- Department of Chemistry, Oxford University, South Parks Road, Oxford, OX1 3QY, United Kingdom
- University of Michigan, Department of Chemistry, 930 North University, Ann Arbor, Michigan 48109, United States
| | - Stéphanie Deroo
- Department of Chemistry, Oxford University, South Parks Road, Oxford, OX1 3QY, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, Oxford University, South Parks Road, Oxford, OX1 3QY, United Kingdom
| |
Collapse
|
37
|
Liz MA, Mar FM, Franquinho F, Sousa MM. Aboard transthyretin: From transport to cleavage. IUBMB Life 2010; 62:429-35. [PMID: 20503435 DOI: 10.1002/iub.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transthyretin (TTR) is a plasma and cerebrospinal fluid protein mainly recognized as the transporter of thyroxine (T(4)) and retinol. Mutated TTR leads to familial amyloid polyneuropathy, a neurodegenerative disorder characterized by TTR amyloid deposition particularly in peripheral nerves. Beside its transport activities, TTR is a cryptic protease and participates in the biology of the nervous system. Several studies have been directed at finding new ligands of TTR to further explore the biology of the protein. From the identified ligands, some were in fact TTR protease substrates. In this review, we will discuss the existent information concerning TTR ligands/substrates.
Collapse
Affiliation(s)
- Márcia A Liz
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | |
Collapse
|
38
|
Miyata M, Sato T, Mizuguchi M, Nakamura T, Ikemizu S, Nabeshima Y, Susuki S, Suwa Y, Morioka H, Ando Y, Suico MA, Shuto T, Koga T, Yamagata Y, Kai H. Role of the Glutamic Acid 54 Residue in Transthyretin Stability and Thyroxine Binding,. Biochemistry 2009; 49:114-23. [DOI: 10.1021/bi901677z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masanori Miyata
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Takashi Sato
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | | | | | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Seiko Susuki
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | | | | | - Yukio Ando
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-0811, Japan
| | - Mary Ann Suico
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Tsuyoshi Shuto
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | - Tomoaki Koga
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| | | | - Hirofumi Kai
- Departments of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit
| |
Collapse
|
39
|
Abstract
Thyroid hormones are involved in growth and development, particularly of the brain. Thus, it is imperative that these hormones get from their site of synthesis to their sites of action throughout the body and the brain. This role is fulfilled by thyroid hormone distributor proteins. Of particular interest is transthyretin, which in mammals is synthesized in the liver, choroid plexus, meninges, retinal and ciliary pigment epithelia, visceral yolk sac, placenta, pancreas and intestines, whereas the other thyroid hormone distributor proteins are synthesized only in the liver. Transthyretin is synthesized by all classes of vertebrates; however, the tissue specificity of transthyretin gene expression varies widely between classes. This review summarizes what is currently known about the evolution of transthyretin synthesis in vertebrates and presents hypotheses regarding tissue-specific synthesis of transthyretin in each vertebrate class.
Collapse
|
40
|
Prapunpoj P, Leelawatwattana L. Evolutionary changes to transthyretin: structure-function relationships. FEBS J 2009; 276:5330-41. [PMID: 19725883 DOI: 10.1111/j.1742-4658.2009.07243.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transthyretin is one of the three major thyroid hormone-binding proteins in plasma and/or cerebrospinal fluid of vertebrates. It transports retinol via binding to retinol-binding protein, and exists mainly as a homotetrameric protein of approximately 55 kDa in plasma. The first 3D structure of transthyretin was an X-ray crystal structure from human transthyretin. Elucidation of the structure-function relationship of transthyretin has been of significant interest since its highly conserved structure was shown to be associated with several aspects of metabolism and with human diseases such as amyloidosis. Transthyretin null mice do not have an overt phenotype, probably because transthyretin is part of a network with other thyroid hormone distributor proteins. Systematic study of the evolutionary changes of transthyretin structure is an effective way to elucidate its function. This review summarizes current knowledge about the evolution of structural and functional characteristics of vertebrate transthyretins. The molecular mechanism of evolutionary change and the resultant effects on the function of transthyretin are discussed.
Collapse
Affiliation(s)
- P Prapunpoj
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand.
| | | |
Collapse
|
41
|
Myron Johnson A, Merlini G, Sheldon J, Ichihara K. Clinical indications for plasma protein assays: transthyretin (prealbumin) in inflammation and malnutrition. Clin Chem Lab Med 2007; 45:419-26. [PMID: 17378745 DOI: 10.1515/cclm.2007.051] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A large number of circumstances are associated with reduced serum concentrations of transthyretin (TTR), or prealbumin. The most common of these is the acute phase response, which may be due to inflammation, malignancy, trauma, or many other disorders. Some studies have shown a decrease in hospital stay with nutritional therapy based on TTR concentrations, but many recent studies have shown that concentrations of albumin, transferrin, and transthyretin correlate with severity of the underlying disease rather than with anthropometric indicators of hypo- or malnutrition. There are few if any conditions in which the concentration of this protein by itself is more helpful in diagnosis, prognosis, or follow up than are other clinical findings. In the majority of cases, the serum concentration of C-reactive protein is adequate for detection and monitoring of acute phase responses and for prognosis. Although over diagnosis and treatment of presumed protein energy malnutrition is probably not detrimental to most patients, the failure to detect other causes of decreased concentrations (such as serious bacterial infections or malignancy) of the so-called visceral or hepatic proteins could possibly result in increased morbidity or even mortality. In addition to these caveats, assays for TTR have a relatively high level of uncertainty ("imprecision"). Clinical evaluation--history and physical examination--should remain the mainstay of nutritional assessment.
Collapse
Affiliation(s)
- A Myron Johnson
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27410, USA.
| | | | | | | |
Collapse
|
42
|
Moise AR, Noy N, Palczewski K, Blaner WS. Delivery of retinoid-based therapies to target tissues. Biochemistry 2007; 46:4449-58. [PMID: 17378589 PMCID: PMC2562735 DOI: 10.1021/bi7003069] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Through its various metabolites, vitamin A controls essential physiological functions. Both naturally occurring metabolites and novel retinoid analogues have shown effectiveness in many clinical settings that include skin diseases and cancer, and in animal models of human conditions affecting vision. In this review, we analyze several potential retinoid-based therapies from the point of view of drug metabolism and transport to target tissues. We focus on the endogenous factors that affect the absorption, transport, and metabolism of retinoids by taking into account data obtained from the analysis of animal models that lack the enzymes or proteins involved in the storage and absorption of retinoids. We also discuss findings of toxicity associated with retinoids in an effort to improve the outcome of retinoid-based therapies. In this context, we review evidence that esterification of retinol and retinol-based drugs within target tissues provides one of the most efficient means to improve the absorption and to reduce the toxicity associated with pharmacological doses of retinoids. Future retinoid-based therapeutic strategies could involve targeted delivery mechanisms leading to lower toxicity and improved effectiveness of retinoids.
Collapse
Affiliation(s)
- Alexander R Moise
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | |
Collapse
|
43
|
Richardson SJ. Cell and Molecular Biology of Transthyretin and Thyroid Hormones. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:137-93. [PMID: 17338921 DOI: 10.1016/s0074-7696(07)58003-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Advances in four areas of transthyretin (TTR) research result in this being a timely review. Developmental studies have revealed that TTR is synthesized in all classes of vertebrates during development. This leads to a new hypothesis on selection pressure for hepatic TTR synthesis during development only, changing the previous hypotheses from "onset" of hepatic TTR synthesis in adulthood to "maintaining" hepatic TTR synthesis into adulthood. Evolutionary studies have revealed the existence of TTR-like proteins (TLPs) in nonvertebrate species and elucidated some of their functions. Consequently, TTR is an excellent model for the study of the evolution of protein structure, function, and localization. Studies of human diseases have demonstrated that TTR in the cerebrospinal fluid can form amyloid, but more recently there has been recognition of the roles of TTR in depression and Alzheimer's disease. Furthermore, amyloid mutations in human TTR that are the normal residues in other species result in cardiac deposition of TTR amyloid in humans. Finally, a revised model for TTR-thyroxine entry into the cerebrospinal fluid via the choroid plexus, based on data from studies in TTR null mice, is presented. This review concentrates on TTR and its thyroid hormone binding, in development and during evolution, and summarizes what is currently known about TLPs and the role of TTR in diseases affecting the brain.
Collapse
Affiliation(s)
- Samantha J Richardson
- UMR CNRS 5166, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
44
|
Ueda M, Ando Y, Haraoka K, Katsuragi S, Terasaki Y, Sugimoto M, Sun X, Uchino M. Aging and transthyretin-related amyloidosis: pathologic examinations in pulmonary amyloidosis. Amyloid 2006; 13:24-30. [PMID: 16690497 DOI: 10.1080/13506120500537194] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although aging is closely related with the onset of senile systemic amyloidosis (SSA) caused by wild-type transthyretin (TTR), the effect of aging on amyloid formation has remained unclear in familial amyloidotic polyneuropathy (FAP), caused by variant- and wild-type TTR. The aim of this study was to elucidate the effects of aging and/or other factors in FAP on amyloid formation in the lung, one of the most important target organs of amyloid deposition in SSA. Pulmonary amyloid distribution was determined using 19 autopsied lung samples from patients with FAP amyloidogenic TTR (ATTR) V30M, the most common type of FAP. Amyloid deposition was observed around the walls of the bronchi/ bronchioles, the pulmonary arteries, and the pulmonary veins, while no amyloid deposits could be found around the lymphatics. In addition, amyloid deposition in the alveolar regions was a characteristic finding in aged patients with FAP ATTR V30M (average ages of the patients with amyloid positive vs. negative: 50.55 +/- 8.75 vs. 39.75 +/- 4.17 years old, p < 0.005), similar to the finding in one SSA patient. These results suggest that aging could play an important role in the progression of pulmonary amyloid formation in FAP ATTR V30M.
Collapse
Affiliation(s)
- Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sessler RJ, Noy N. A Ligand-Activated Nuclear Localization Signal in Cellular Retinoic Acid Binding Protein-II. Mol Cell 2005; 18:343-53. [PMID: 15866176 DOI: 10.1016/j.molcel.2005.03.026] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/28/2004] [Accepted: 03/31/2005] [Indexed: 12/30/2022]
Abstract
Primary sequences of proteins often contain motifs that serve as "signatures" for subcellular targeting, such as a nuclear localization signal (NLS). However, many nuclear proteins do not harbor a recognizable NLS, and the pathways that mediate their nuclear translocation are unknown. This work focuses on CRABP-II, a cytosolic protein that moves to the nucleus upon binding of retinoic acid. While CRABP-II does not contain an NLS in its primary sequence, such a motif could be recognized in the protein's tertiary structure. We map the retinoic acid-induced structural rearrangements that result in the presence of this NLS in holo- but not apo-CRABP-II. The signal, whose three-dimensional configuration aligns strikingly well with a "classical" NLS, mediates ligand-induced association of CRABP-II with importin alpha and is critical for nuclear localization of the protein. The ligand-controlled NLS "switch" of CRABP-II may represent a general mechanism for posttranslational regulation of the subcellular distribution of a protein.
Collapse
Affiliation(s)
- Richard J Sessler
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
46
|
Raghu P, Sivakumar B. Interactions amongst plasma retinol-binding protein, transthyretin and their ligands: implications in vitamin A homeostasis and transthyretin amyloidosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:1-9. [PMID: 15588697 DOI: 10.1016/j.bbapap.2004.09.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Revised: 09/22/2004] [Accepted: 09/27/2004] [Indexed: 11/29/2022]
Abstract
Retinol transport complex consisting of retinol-binding protein (RBP) and transthyretin (TTR) is involved in the transport of retinol (vitamin A) and thyroxine (T(4)) in the human plasma. RBP is a 21-kDa single polypeptide chain protein, synthesized in the liver, which binds and transports retinol to the target organs. The circulating RBP binds to another protein called TTR, a 55-kDa homotetrameric T(4) transport protein. Such protein-protein complex formation is thought to prevent glomerular filtration of low molecular mass RBP. Misfolding and aggregation of TTR is implicated in amyloid disorders such as familial amyloid polyneuropathy (FAP) and senile systemic amyloidosis (SSA). Recent observations suggest that both RBP and T(4), the physiological ligands of TTR, prevent its misfolding and amyloid fibril formation, suggesting yet another structure-function relationship to this protein-protein complex. TTR2, a poorly characterized protein, was also found bound to RBP in human and pig plasma but its significance remains to be understood. Furthermore, knockout models of both RBP and TTR unequivocally demonstrated the importance of this protein-protein complex in retinoid transport. Thus, interactions amongst multiple components of retinol transport play critical roles in vitamin A homeostasis and TTR amyloidosis.
Collapse
Affiliation(s)
- Pullakhandam Raghu
- Department of Biophysics, National Institute of Nutrition, (Indian Council of Medical Research), Hyderabad-500 007, India
| | | |
Collapse
|
47
|
Bellovino D, Apreda M, Gragnoli S, Massimi M, Gaetani S. Vitamin A transport: in vitro models for the study of RBP secretion. Mol Aspects Med 2003; 24:411-20. [PMID: 14585312 DOI: 10.1016/s0098-2997(03)00037-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinol-binding protein (RBP) is the specific plasma carrier of retinol, encharged of the vitamin transport from the liver to target cells. Ligand binding influences the RBP affinity for transthyretin (TTR), a homotetrameric protein involved in the RBP/TTR circulating complex, and the secretion rate of RBP. In fact, in vitamin A deficiency, the RBP release from the hepatocytes dramatically decreases and the protein accumulates in the cells, until retinol is available again. The mechanism is still not clear and new cellular models are needed to understand in detail how the soluble RBP can be retained inside the cell. In fish, a vitamin A transport system similar to that of higher vertebrates is emerging, although with significant differences.
Collapse
Affiliation(s)
- D Bellovino
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (INRAN), Rome, Italy.
| | | | | | | | | |
Collapse
|
48
|
Rosales FJ, Chau KK, Haskell MH, Shankar AH. Determination of a cut-off value for the molar ratio of retinol-binding protein to transthyretin (RBP:TTR) in Bangladeshi patients with low hepatic vitamin A stores. J Nutr 2002; 132:3687-92. [PMID: 12468608 DOI: 10.1093/jn/132.12.3687] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The purpose of this study was to determine a cut-off value of the molar ratio of retinol-binding protein to transthyretin (RBP:TTR) to indicate marginal vitamin A (VA) deficiency. Plasma RBP and TTR were measured by radial immunodiffusion in two groups of patients, i.e., surgical patients with known hepatic VA stores, and a cohort of children residing in a malaria-endemic area of Papua New Guinea who had received placebo or 210 micro mol of VA every 3 mo for 9 mo. A RBP:TTR ratio < or =0.36 selectively detected five of seven patients (71% sensitivity) with hepatic VA stores < or =69.9 nmol/g of tissue (i.e., < or =20 micro g/g), indicative of marginal VA deficiency. Using this cut-off value, 28% (n = 245) of children from Papua New Guinea had marginal VA deficiency before supplementation. After 7 mo, a low ratio persisted in 29% (n = 92) of placebo-treated children but in only 11% (n = 83) of those receiving VA supplements (chi(2), P < 0.01). At the end of the study, 13 mo after initiation or 4 mo after the last dose of VA, the percentage of children with a low ratio was still lower (chi(2), P < 0.02) in the VA group, 42.5% (n = 113) than in the placebo group, 58.6% (n = 118). These results demonstrate that a cut-off value < or =0.36 is indicative of marginal VA deficiency and can be used as an indirect method of VA assessment.
Collapse
Affiliation(s)
- Francisco J Rosales
- Nutrition Department, The Pennsylvania State University, University Park, USA.
| | | | | | | |
Collapse
|
49
|
White JT, Kelly JW. Support for the multigenic hypothesis of amyloidosis: the binding stoichiometry of retinol-binding protein, vitamin A, and thyroid hormone influences transthyretin amyloidogenicity in vitro. Proc Natl Acad Sci U S A 2001; 98:13019-24. [PMID: 11687657 PMCID: PMC60817 DOI: 10.1073/pnas.241406698] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amyloidoses are a large group of protein misfolding diseases. Genetic and biochemical evidence support the hypothesis that amyloid formation from wild-type or 1 of 80 sequence variants of transthyretin causes the human amyloid diseases senile systemic amyloidosis or familial amyloid polyneuropathy, respectively. The late onset and variable penetrance of these diseases has led to their designation as multigenic--implying that the expression levels and alleles of multiple gene products influence the course of pathology. Here we show that the binding stoichiometry of three interacting molecules, retinol-binding protein, vitamin A, and L-thyroxine, notably influenced transthyretin amyloidogenicity in vitro. At least 70 genes control retinol-binding protein, vitamin A, and L-thyroxine levels in plasma and have the potential to modulate the course of senile systemic amyloidosis or familial amyloid polyneuropathy.
Collapse
Affiliation(s)
- J T White
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road BCC-506, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Bui BV, Armitage JA, Fletcher EL, Richardson SJ, Schreiber G, Vingrys AJ. Retinal anatomy and function of the transthyretin null mouse. Exp Eye Res 2001; 73:651-9. [PMID: 11747365 DOI: 10.1006/exer.2001.1070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vitamin A (retinol) is vital for the normal development and function of many tissues in the body including the eye. The purpose of this project was to characterize the retinal anatomy and function of the transthyretin (TTR) null mouse. Mice lacking TTR have been constructed by homologous recombination. Immunocytochemistry was performed to localize short and mid-long wavelength cone opsins as well as morphological examination of the entire retina in wild-type and TTR null mice. Visual function was assessed using the electroretinogram (ERG) and resulting waveforms were analysed in terms of receptoral and postreceptoral components. Retinal morphology of the TTR null mouse was normal. In addition, short and mid-long wavelength cone opsins were localized normally in both TTR null and wild-type retinae. Consistent with these findings, TTR null mice show no anomalies of receptoral (P3) nor post-receptoral (b-wave) ERG components compared with wild-type mice. The results suggest that although circulating plasma levels of retinol and retinol binding protein (RBP) are extremely low, this reduction has little effect on the retinal structure or function of the TTR null mouse. These data are consistent with the existence of mechanisms for the transport of retinol to the retina independent of the classical retinol-RBP-TTR complex.
Collapse
Affiliation(s)
- B V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton 3053, Victoria, Australia
| | | | | | | | | | | |
Collapse
|