1
|
Toupalas G, Karlsson J, Black FA, Masip-Sánchez A, López X, Ben M'Barek Y, Blanchard S, Proust A, Alves S, Chabera P, Clark IP, Pullerits T, Poblet JM, Gibson EA, Izzet G. Tuning Photoinduced Electron Transfer in POM-Bodipy Hybrids by Controlling the Environment: Experiment and Theory. Angew Chem Int Ed Engl 2021; 60:6518-6525. [PMID: 33350554 DOI: 10.1002/anie.202014677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 11/07/2022]
Abstract
The optical and electrochemical properties of a series of polyoxometalate (POM) oxoclusters decorated with two bodipy (boron-dipyrromethene) light-harvesting units were examined. Evaluated here in this polyanionic donor-acceptor system is the effect of the solvent and associated counterions on the intramolecular photoinduced electron transfer. The results show that both solvents and counterions have a major impact upon the energy of the charge-transfer state by modifying the solvation shell around the POMs. This modification leads to a significantly shorter charge separation time in the case of smaller counterion and slower charge recombination in a less polar solvent. These results were rationalized in terms of Marcus theory and show that solvent and counterion both affect the driving force for photoinduced electron transfer and the reorganization energy. This was corroborated with theoretical investigations combining DFT and molecular dynamics simulations.
Collapse
Affiliation(s)
- Georgios Toupalas
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Joshua Karlsson
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Fiona A Black
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Albert Masip-Sánchez
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Xavier López
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Youssef Ben M'Barek
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Sébastien Blanchard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Anna Proust
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Sandra Alves
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| | - Pavel Chabera
- Chemical Physics and NanoLund, Lund University, Box 124, 22241, Lund, Sweden
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Tönu Pullerits
- Chemical Physics and NanoLund, Lund University, Box 124, 22241, Lund, Sweden
| | - Josep M Poblet
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Elizabeth A Gibson
- Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
2
|
Toupalas G, Karlsson J, Black FA, Masip‐Sánchez A, López X, Ben M'Barek Y, Blanchard S, Proust A, Alves S, Chabera P, Clark IP, Pullerits T, Poblet JM, Gibson EA, Izzet G. Tuning Photoinduced Electron Transfer in POM‐Bodipy Hybrids by Controlling the Environment: Experiment and Theory. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Georgios Toupalas
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Joshua Karlsson
- Energy Materials Laboratory Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Fiona A. Black
- Energy Materials Laboratory Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Albert Masip‐Sánchez
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Xavier López
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Youssef Ben M'Barek
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Sébastien Blanchard
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Anna Proust
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Sandra Alves
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| | - Pavel Chabera
- Chemical Physics and NanoLund Lund University Box 124 22241 Lund Sweden
| | - Ian P. Clark
- Central Laser Facility Research Complex at Harwell Science and Technology Facilities Council Rutherford Appleton Laboratory Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Tönu Pullerits
- Chemical Physics and NanoLund Lund University Box 124 22241 Lund Sweden
| | - Josep M. Poblet
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Marcel⋅lí Domingo 1 43007 Tarragona Spain
| | - Elizabeth A. Gibson
- Energy Materials Laboratory Chemistry, School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Guillaume Izzet
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire IPCM 4 Place Jussieu 75005 Paris France
| |
Collapse
|
3
|
Martin WF, Bryant DA, Beatty JT. A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiol Rev 2018; 42:205-231. [PMID: 29177446 PMCID: PMC5972617 DOI: 10.1093/femsre/fux056] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy-the cyanobacterial lineage.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
4
|
Jones HBL, Wells SA, Prentice EJ, Kwok A, Liang LL, Arcus VL, Pudney CR. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. FEBS J 2017. [PMID: 28650586 DOI: 10.1111/febs.14152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Our understanding of how enzymes work is coloured by static structure depictions where the enzyme scaffold is presented as either immobile, or in equilibrium between well-defined static conformations. Proteins, however, exhibit a large degree of motion over a broad range of timescales and magnitudes and this is defined thermodynamically by the enzyme free energy landscape (FEL). The role and importance of enzyme motion is extremely contentious. Much of the challenge is in the experimental detection of so called 'conformational sampling' involved in enzyme turnover. Herein we apply combined pressure and temperature kinetics studies to elucidate the full suite of thermodynamic parameters defining an enzyme FEL as it relates to enzyme turnover. We find that the key thermodynamic parameters governing vibrational modes related to enzyme turnover are the isobaric expansivity term and the change in heat capacity for enzyme catalysis. Variation in the enzyme FEL affects these terms. Our analysis is supported by a range of biophysical and computational approaches that specifically capture information on protein vibrational modes and the FEL (all atom flexibility calculations, red edge excitation shift spectroscopy and viscosity studies) that provide independent evidence for our findings. Our data suggest that restricting the enzyme FEL may be a powerful strategy when attempting to rationally engineer enzymes, particularly to alter thermal activity. Moreover, we demonstrate how rational predictions can be made with a rapid computational approach.
Collapse
Affiliation(s)
- Hannah B L Jones
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | - Stephen A Wells
- Department of Chemical Engineering, Faculty of Science, University of Bath, UK
| | - Erica J Prentice
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Anthony Kwok
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| | - Liyin L Liang
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Vickery L Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Christopher R Pudney
- Department of Biology and Biochemistry, Faculty of Science, University of Bath, UK
| |
Collapse
|
5
|
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Govindjee, Scholes GD. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem Rev 2016; 117:249-293. [PMID: 27428615 DOI: 10.1021/acs.chemrev.6b00002] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.
Collapse
Affiliation(s)
- Tihana Mirkovic
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Evgeny E Ostroumov
- Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania , 231 S. 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, and Department of Plant Biology, University of Illinois at Urbana-Champaign , 265 Morrill Hall, 505 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Gregory D Scholes
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Erratum: Internal friction in enzyme reactions, IUBMB life, 2012, Jan;65(1):35-42. IUBMB Life 2013. [DOI: 10.1002/iub.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Rauscher A, Derényi I, Gráf L, Málnási-Csizmadia A. Internal friction in enzyme reactions. IUBMB Life 2013; 65:35-42. [PMID: 23281036 DOI: 10.1002/iub.1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/21/2012] [Indexed: 11/11/2022]
Abstract
The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed.
Collapse
Affiliation(s)
- Anna Rauscher
- Department of Biochemistry, Eötvös University, Budapest, Hungary
| | | | | | | |
Collapse
|
8
|
Simultaneous true, gated, and coupled electron-transfer reactions and energetics of protein rearrangement. J Inorg Biochem 2012; 106:143-50. [DOI: 10.1016/j.jinorgbio.2011.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/06/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022]
|
9
|
Waldeck DH, Khoshtariya DE. Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Jankowska KI, Pagba CV, Piatnitski Chekler EL, Deshayes K, Piotrowiak P. Electrostatic docking of a supramolecular host-guest assembly to cytochrome c probed by bidirectional photoinduced electron transfer. J Am Chem Soc 2010; 132:16423-31. [PMID: 21038913 DOI: 10.1021/ja102188e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A water-soluble octacarboxyhemicarcerand was used as a shuttle to transport redox-active substrates across the aqueous medium and deliver them to the target protein. The results show that weak multivalent interactions and conformational flexibility can be exploited to reversibly bind complex supramolecular assemblies to biological molecules. Hydrophobic electron donors and acceptors were encapsulated within the hemicarcerand, and photoinduced electron transfer (ET) between the Zn-substituted cytochrome c (MW = 12.3 kD) and the host-guest complexes (MW = 2.2 kD) was used to probe the association between the negatively charged hemicarceplex and the positively charged protein. The behavior of the resulting ternary protein-hemicarcerand-guest assembly was investigated in two binding limits: (1) when K(encaps) ≫ K(assoc), the hemicarcerand transports the ligand to the protein while protecting it from the aqueous medium; and (2) when K(assoc) > K(encaps), the hemicarcerand-protein complex is formed first, and the hemicarcerand acts as an artificial receptor site that intercepts ligands from solution and positions them close to the active site of the metalloenzyme. In both cases, ET mediated by the protein-bound hemicarcerand is much faster than that due to diffusional encounters with the respective free donor or acceptor in solution. The measured ET rates suggest that the dominant binding region of the host-guest complex on the surface of the protein is consistent with the docking area of the native redox partner of cytochrome c. The strong association with the protein is attributed to the flexible conformation and adaptable charge distribution of the hemicarcerand, which allow for surface-matching with the cytochrome.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | | | | | | | | |
Collapse
|
11
|
Heyes DJ, Sakuma M, Scrutton NS. Solvent-slaved protein motions accompany proton but not hydride tunneling in light-activated protochlorophyllide oxidoreductase. Angew Chem Int Ed Engl 2009; 48:3850-3. [PMID: 19373814 DOI: 10.1002/anie.200900086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
H(+) but not H(-): The reduction reaction of protochlorophyllide catalyzed by protochlorophyllide oxidoreductase features solvent-slaved motions that control the proton- but not the hydride-tunneling mechanism. These motions imply a long-range dynamic network from the solvent to the enzyme active site that facilitate proton transfer (see picture, left). Motions for hydride transfer are more localized and are not slaved by the solvent (see picture, right).
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | |
Collapse
|
12
|
Heyes D, Sakuma M, Scrutton N. Solvent-Slaved Protein Motions Accompany Proton but Not Hydride Tunneling in Light-Activated Protochlorophyllide Oxidoreductase. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Hay S, Sutcliffe MJ, Scrutton NS. Probing Coupled Motions in Enzymatic Hydrogen Tunnelling Reactions: Beyond Temperature-Dependence Studies of Kinetic Isotope Effects. QUANTUM TUNNELLING IN ENZYME-CATALYSED REACTIONS 2009. [DOI: 10.1039/9781847559975-00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sam Hay
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Michael J. Sutcliffe
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Nigel S. Scrutton
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
14
|
Björn LO, Papageorgiou GC, Blankenship RE. A viewpoint: why chlorophyll a? PHOTOSYNTHESIS RESEARCH 2009; 99:85-98. [PMID: 19125349 DOI: 10.1007/s11120-008-9395-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/09/2008] [Indexed: 05/21/2023]
Abstract
Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a(2), (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at -1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
15
|
Conlan B. Designing photosystem II: molecular engineering of photo-catalytic proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:687-700. [PMID: 18777102 DOI: 10.1007/s11120-008-9355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biological Science, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
16
|
Shi X, Duft D, Parks JH. Fluorescence Quenching Induced by Conformational Fluctuations in Unsolvated Polypeptides. J Phys Chem B 2008; 112:12801-15. [DOI: 10.1021/jp8033598] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangguo Shi
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142
| | - Denis Duft
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142
| | - Joel H Parks
- The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142
| |
Collapse
|
17
|
Schröper F, Brüggemann D, Mourzina Y, Wolfrum B, Offenhäusser A, Mayer D. Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.03.068] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Hay S, Pudney CR, Sutcliffe MJ, Scrutton NS. Are environmentally coupled enzymatic hydrogen tunneling reactions influenced by changes in solution viscosity? Angew Chem Int Ed Engl 2008; 47:537-40. [PMID: 18058788 DOI: 10.1002/anie.200704484] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sam Hay
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
19
|
Hay S, Pudney C, Sutcliffe M, Scrutton N. Are Environmentally Coupled Enzymatic Hydrogen Tunneling Reactions Influenced by Changes in Solution Viscosity? Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Solvent-Fluctuation Control of Solution Reactions and its Manifestation in Protein Functions. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141663.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
21
|
Khoshtariya DE, Dolidze TD, Seifert S, Sarauli D, Lee G, van Eldik R. Kinetic, Thermodynamic, and Mechanistic Patterns for Free (Unbound) Cytochromec at Au/SAM Junctions: Impact of Electronic Coupling, Hydrostatic Pressure, and Stabilizing/Denaturing Additives. Chemistry 2006; 12:7041-56. [PMID: 16888736 DOI: 10.1002/chem.200600059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Combined kinetic (electrochemical) and thermodynamic (calorimetric) investigations were performed for an unbound (intact native-like) cytochrome c (CytC) freely diffusing to and from gold electrodes modified by hydroxyl-terminated self-assembled monolayer films (SAMs), under a unique broad range of experimental conditions. Our approach included: 1) fine-tuning of the charge-transfer (CT) distance by using the extended set of Au-deposited hydroxyl-terminated alkanethiol SAMs [-S-(CH(2))(n)-OH] of variable thickness (n=2, 3, 4, 6, 11); 2) application of a high-pressure (up to 150 MPa) kinetic strategy toward the representative Au/SAM/CytC assemblies (n=3, 4, 6); 3) complementary electrochemical and microcalorimetric studies on the impact of some stabilizing and denaturing additives. We report for the first time a mechanistic changeover detected for "free" CytC by three independent kinetic methods, manifested through 1) the abrupt change in the dependence of the shape of the electron exchange standard rate constant (k(o)) versus the SAM thickness (resulting in a variation of estimated actual CT range within ca. 15 to 25 A including ca. 11 A of an "effective" heme-to-omega-hydroxyl distance). The corresponding values of the electronic coupling matrix element vary within the range from ca. 3 to 0.02 cm(-1); 2) the change in activation volume from +6.7 (n=3), to approximately 0 (n=4), and -5.5 (n=6) cm(3) mol(-1) (disclosing at n=3 a direct pressure effect on the protein's internal viscosity); 3) a "full" Kramers-type viscosity dependence for k(o) at n=2 and 3 (demonstrating control of an intraglobular friction through the external dynamic properties), and its gradual transformation to the viscosity independent (nonadiabatic) regime at n=6 and 11. Multilateral cross-testing of "free" CytC in a native-like, glucose-stabilized and urea-destabilized (molten-globule-like) states revealed novel intrinsic links between local/global structural and functional characteristics. Importantly, our results on the high-pressure and solution-viscosity effects, together with matching literature data, strongly support the concept of "dynamic slaving", which implies that fluctuations involving "small" solution components control the proteins' intrinsic dynamics and function in a highly cooperative manner as far as CT processes under adiabatic conditions are concerned.
Collapse
Affiliation(s)
- Dimitri E Khoshtariya
- Institute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Khoshtariya DE, Dolidze TD, Sarauli D, van Eldik R. High-Pressure Probing of a Changeover in the Charge-Transfer Mechanism for Intact Cytochromec at Gold/Self-Assembled Monolayer Junctions. Angew Chem Int Ed Engl 2006; 45:277-81. [PMID: 16311995 DOI: 10.1002/anie.200502386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dimitri E Khoshtariya
- Institute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
23
|
Khoshtariya DE, Dolidze TD, Sarauli D, van Eldik R. High-Pressure Probing of a Changeover in the Charge-Transfer Mechanism for Intact Cytochromec at Gold/Self-Assembled Monolayer Junctions. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
Rate-limiting processes of catalysis by eukaryotic molybdenum-containing nitrate reductase (NaR, EC 1.7.1.1-3) were investigated using two viscosogens (glycerol and sucrose) and observing their impact on NAD(P)H:NaR activity of corn leaf NaR and recombinant Arabidopsis and yeast NaR. Holo-NaR has two "hinge" sequences between stably folded regions housing its internal electron carriers: 1) Hinge 1 between the molybdenum-containing nitrate reducing module and cytochrome b domain containing heme and 2) Hinge 2 between cytochrome b and cytochrome b reductase (CbR) module containing FAD. Solution viscosity negatively impacted the activity of these holo-NaR forms, which suggests that the rate-limiting events in catalysis were likely to involve large conformational changes that restrict or "gate" internal electron-proton transfers (IET). Little effect of viscosity was observed on recombinant CbR module and methyl viologen nitrate reduction by holo-NaR, suggesting that these activities involved no large conformational changes. To determine whether Hinge 2 is involved in gating the first step in IET, the effects of viscosogen on cytochrome c and ferricyanide reductase activities of holo-NaR and ferricyanide reductase activity of the recombinant molybdenum reductase module (CbR, Hinge 2, and cytochrome b) were analyzed. Solution viscosity negatively impacted these partial activities, as if Hinge 2 were involved in gating IET in both enzyme forms. We concluded that both Hinges 1 and 2 appear to be involved in gating IET steps by restricting the movement of the cytochrome b domain relative to the larger nitrate-reducing and electron-donating modules of NaR.
Collapse
|
25
|
Liu L, Hong J, Ogawa MY. Gated Electron Transfer as a Probe of the Configurational Dynamics of Peptide−Protein Complexes. J Am Chem Soc 2003; 126:50-1. [PMID: 14709054 DOI: 10.1021/ja036579t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gated electron-transfer measurements are used to probe the configurational dynamics of complexes formed between small metallopeptides and cytochrome c. The results show that that an apparently subtle chemical alteration of the metallopeptide produces significant changes to the dynamics of the peptide-protein complex.
Collapse
Affiliation(s)
- Liu Liu
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | |
Collapse
|
26
|
Jeuken LJC. Conformational reorganisation in interfacial protein electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:67-76. [PMID: 12765764 DOI: 10.1016/s0005-2728(03)00026-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein-protein electron transfer (ET) plays an essential role in all redox chains. Earlier studies which used cross-linking and increased solution viscosity indicated that the rate of many ET reactions is limited (i.e., gated) by conformational reorientations at the surface interface. These results are later supported by structural studies using NMR and molecular modelling. New insights into conformational gating have also come from electrochemical experiments in which proteins are noncovalently adsorbed on the electrode surface. These systems have the advantage that it is relatively easy to vary systematically the driving force and electronic coupling. In this review we summarize the current knowledge obtained from these electrochemical experiments and compare it with some of the results obtained for protein-protein ET.
Collapse
|
27
|
Baymann F, Barlow NL, Aubert C, Schoepp-Cothenet B, Leroy G, Armstrong FA. Voltammetry of a "protein on a rope". FEBS Lett 2003; 539:91-4. [PMID: 12650932 DOI: 10.1016/s0014-5793(03)00206-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A periplasmic electron-transfer protein, cytochrome c(555)(m) from Aquifex aeolicus contains a 62-residue N-terminal extension by which it is anchored to the membrane--most probably via a thioester bond to its N-terminal cysteine. This linker can act as a "rope" to tether the protein close to its reaction partners. Mimicking this principle, a recombinant cytochrome c(555)(m), expressed in Escherichia coli, has been attached covalently to a gold electrode modified with 6-mercaptohexan-1-ol. The "tethered" cytochrome c(555)(m) displays remarkably fast electron-transfer kinetics, with an electrochemical exchange rate constant k(0) of 1.4 x 10(4) s(-1). The results show that fast electron transfer is associated with weak interactions: importantly, the tethered cytochrome can explore many different orientations without escaping into solution.
Collapse
Affiliation(s)
- Frauke Baymann
- Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Jones M, Talfournier F, Bobrov A, Grossmann JG, Vekshin N, Sutcliffe MJ, Scrutton NS. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J Biol Chem 2002; 277:8457-65. [PMID: 11756429 DOI: 10.1074/jbc.m111105200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.
Collapse
Affiliation(s)
- Matthew Jones
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Metzler DE, Metzler CM, Sauke DJ. Transition Metals in Catalysis and Electron Transport. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Tremain SM, Kostić NM. Fate of the excited triplet state of zinc cytochrome c in the presence of iron(III), iron(II), iron-free, and heme-free forms of cytochrome c. Inorganica Chim Acta 2000. [DOI: 10.1016/s0020-1693(00)00012-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Avila A, Gregory BW, Niki K, Cotton TM. An Electrochemical Approach to Investigate Gated Electron Transfer Using a Physiological Model System: Cytochrome c Immobilized on Carboxylic Acid-Terminated Alkanethiol Self-Assembled Monolayers on Gold Electrodes. J Phys Chem B 2000. [DOI: 10.1021/jp992591p] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Albert Avila
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry, Illinois State University, Normal, Illinois 61790
| | - Brian W. Gregory
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry, Illinois State University, Normal, Illinois 61790
| | - Katsumi Niki
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry, Illinois State University, Normal, Illinois 61790
| | - Therese M. Cotton
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Department of Chemistry, Illinois State University, Normal, Illinois 61790
| |
Collapse
|
32
|
Ivković-Jensen MM, Ullmann GM, Crnogorac MM, Ejdebäck M, Young S, Hansson O, Kostić NM. Comparing the rates and the activation parameters for the forward reaction between the triplet state of zinc cytochrome c and cupriplastocyanin and the back reaction between the zinc cytochrome c cation radical and cuproplastocyanin. Biochemistry 1999; 38:1589-97. [PMID: 9931026 DOI: 10.1021/bi9817156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This is a comparative study of the photoinduced (so-called forward) electron-transfer reaction 3Zncyt/pc(II) --> Zncyt+/pc(I), between the triplet state of zinc cytochrome c (3Zncyt) and cupriplastocyanin [pc(II)], and the thermal (so-called back) electron-transfer reaction Zncyt+/pc(I) --> Zncyt/pc(II), between the cation (radical) of zinc cytochrome c (Zncyt+) and cuproplastocyanin [pc(I)], which follows it. Both reactions occur between associated (docked) reactants, and the respective unimolecular rate constants are kF and kB. Our previous studies showed that the forward reaction is gated by a rearrangement of the diprotein complex. Now we examine the back reaction and complare the two. We study the effects of temperature (in the range 273.3-302.9 K) and viscosity (in the range 1.00-17.4 cP) on the rate constants and determine enthalpies (DeltaH), entropies (DeltaS), and free energies (DeltaG) of activation. We compare wild-type spinach plastocyanin, the single mutants Tyr83Leu and Glu59Lys, and the double mutant Glu59Lys/Glu60Gln. The rate constant kB for wild-type spinach plastocyanin and its mutants markedly depends on viscosity, an indication that the back reaction is also gated. The activation parameters DeltaH and DeltaS show that the forward and back reactions have similar mechanisms, involving a rearrangement of the diprotein complex from the initial binding configuration to the reactive configuration. The rearrangements of the complexes 3Zncyt/pc(II) and Zncyt+/pc(I) that gate their respective reactions are similar but not identical. Since the back reaction of all plastocyanin variants is faster than the forward reaction, the difference in free energy between the docking and the reactive configuration is smaller for the back reaction than for the forward reaction. This difference is explained by the change in the electrostatic potential on the plastocyanin surface as Cu(II) is reduced to Cu(I). It is the smaller DeltaH that makes DeltaG smaller for the back reaction than for the forward reaction.
Collapse
|
33
|
Asano T, Sumi H. An experimental examination of Biswas–Bagchi's prediction on the viscosity dependence of the rate of activated barrier surmounting in viscous liquids. Chem Phys Lett 1998. [DOI: 10.1016/s0009-2614(98)00899-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Ivković-Jensen MM, Ullmann GM, Young S, Hansson O, Crnogorac MM, Ejdebäck M, Kostić NM. Effects of single and double mutations in plastocyanin on the rate constant and activation parameters for the rearrangement gating the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin. Biochemistry 1998; 37:9557-69. [PMID: 9649339 DOI: 10.1021/bi9802871] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The unimolecular rate constant for the photoinduced electron-transfer reaction 3Zncyt/pc(II) --> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and spinach cupriplastocyanin is kF. We report the effects on kF of the following factors, all at pH 7.0: 12 single mutations on the plastocyanin surface (Leu12Asn, Leu12Glu, Leu12Lys, Asp42Asn, Asp42Lys, Glu43Asn, Glu59Gln, Glu59Lys, Glu60Gln, Glu60Lys, Gln88Glu, and Gln88Lys), the double mutation Glu59Lys/Glu60Gln, temperature (in the range 273.3-302.9 K), and solution viscosity (in the range 1. 00-116.0 cP) at 283.2 and 293.2 K. We also report the effects of the plastocyanin mutations on the association constant (Ka) and the corresponding free energy of association (DeltaGa) with zinc cytochrome c at 298.2 K. Dependence of kF on temperature yielded the activation parameters DeltaH, DeltaS, and DeltaG. Dependence of kF on solution viscosity yielded the protein friction and confirmed the DeltaG values determined from the temperature dependence. The aforementioned intracomplex reaction is not a simple electron-transfer reaction because donor-acceptor electronic coupling (HAB) and reorganizational energy (lambda), obtained by fitting of the temperature dependence of kF to the Marcus equation, deviate from the expectations based on precedents and because kF greatly depends on viscosity. This last dependence and the fact that certain mutations affect Ka but not kF are two lines of evidence against the mechanism in which the electron-transfer step is coupled with the faster, but thermodynamically unfavorable, rearrangement step. The electron-transfer reaction is gated by the slower, and thus rate determining, structural rearrangement of the diprotein complex; the rate constant kF corresponds to this rearrangement. Isokinetic correlation of DeltaH and DeltaS parameters and Coulombic energies of the various configurations of the Zncyt/pc(II) complex consistently show that the rearrangement is a facile configurational fluctuation of the associated proteins, qualitatively the same process regardless of the mutations in plastocyanin. Correlation of kF with the orientation of the cupriplastocyanin dipole moment indicates that the reactive configuration of the diprotein complex involves the area near the residue 59, between the upper acidic cluster and the hydrophobic patch. Kinetic effects and noneffects of plastocyanin mutations show that the rearrangement from the initial (docking) configuration, which involves both acidic clusters, to the reactive configuration does not involve the lower acidic cluster and the hydrophobic patch but involves the upper acidic cluster and the area near the residue 88.
Collapse
|
35
|
Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 1998; 6:323-35. [PMID: 9551554 DOI: 10.1016/s0969-2126(98)00035-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The reduction of plastocyanin by cytochrome f is part of the chain of photosynthetic electron transfer reactions that links photosystems II and I. The reaction is rapid and is influenced by charged residues on both proteins. Previously determined structures show that the plastocyanin copper and cytochrome f haem redox centres are some distance apart from the relevant charged sidechains, and until now it was unclear how a transient electrostatic complex can be formed that brings the redox centres sufficiently close for a rapid reaction. RESULTS A new approach was used to determine the structure of the transient complex between cytochrome f and plastocyanin. Diamagnetic chemical shift changes and intermolecular pseudocontact shifts in the NMR spectrum of plastocyanin were used as input in restrained rigid-body molecular dynamics calculations. An ensemble of ten structures was obtained, in which the root mean square deviation of the plastocyanin position relative to cytochrome f is 1.0 A. Electrostatic interaction is maintained at the same time as the hydrophobic side of plastocyanin makes close contact with the haem area, thus providing a short electron transfer pathway (Fe-Cu distance 10.9 A) via residues Tyr1 or Phe4 (cytochrome f) and the copper ligand His87 (plastocyanin). CONCLUSIONS The combined use of diamagnetic and paramagnetic chemical shift changes makes it possible to obtain detailed information about the structure of a transient complex of redox proteins. The structure suggests that the electrostatic interactions 'guide' the partners into a position that is optimal for electron transfer, and which may be stabilised by short-range interactions.
Collapse
Affiliation(s)
- M Ubbink
- Department of Biochemistry, University of Cambridge, England.
| | | | | | | |
Collapse
|
36
|
de Andrade PCP, Onuchic JN. Generalized pathway model to compute and analyze tunneling matrix elements in proteins. J Chem Phys 1998. [DOI: 10.1063/1.475828] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Ivković-Jensen MM, Kostić NM. Effects of viscosity and temperature on the kinetics of the electron-transfer reaction between the triplet state of zinc cytochrome c and cupriplastocyanin. Biochemistry 1997; 36:8135-44. [PMID: 9201962 DOI: 10.1021/bi970327l] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This is a study of the effects of viscosity (in the range of 0.8-790 cP), of temperature (in the range of 260.7-307.7 K), and of ionic strength (in the range of 2.5-20.0 mM) on the kinetics of photoinduced electron-transfer reaction 3Zncyt/pc(II) --> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and cupriplastocyanin at pH 7.0. The unimolecular rate constant is kF. The apparent activation parameters DeltaH*, DeltaS*, and DeltaG* for this reaction were obtained in experiments with aqueous glycerol solutions having a constant composition. The interpolation of kF values obtained at the constant composition into the dependence of kF on temperature at constant viscosity gave the proper activation parameters, which agree with those obtained in experiments with solutions having a constant viscosity. This agreement validates the latter method, which is more efficient than the former, for determining activation parameters of processes that are modulated by viscosity. The smooth change in kF is governed by the change in viscosity, not in other properties of the solvent, and it does not depend on the choice of the viscosigen. Donor/acceptor electronic coupling (HAB) and reorganizational energy (lambda), obtained by fitting of the temperature dependence of kF to the Marcus equation, are consistent with true electron transfer and with electron transfer that is coupled to, or gated by, a preceding structural rearrangement of the diprotein complex 3Zncyt/pc(II). The fact that at very high viscosity kF approaches zero shows that the reaction is probably gated throughout the investigated range of viscosity. Kinetic effects and noneffects of ionic strength, viscosity, and thermodynamic driving force indicate, but do not prove, that the reaction under consideration is gated. The kinetic effect of viscosity is analyzed in terms of two models. Because ln kF is a nonlinear function of ln eta, protein friction has to be considered in the analysis of viscosity effects on kinetics.
Collapse
|
38
|
Van Pouderoyen G, Cigna G, Rolli G, Cutruzzolà F, Malatesta F, Silvestrini MC, Brunori M, Canters GW. Electron-transfer properties of Pseudomonas aeruginosa [Lys44, Glu64]azurin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:322-31. [PMID: 9249043 DOI: 10.1111/j.1432-1033.1997.00322.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the hydrophobic patch of azurin from Pseudomonas aeruginosa, an electric dipole was created by changing Met44 into Lys and Met64 into Glu. The effect of this dipole on the electron-transfer properties of azurin was investigated. From a spectroscopic characterization (NMR, EPR and ultraviolet-visible) it was found that both the copper site and the overall structure of the [Lys44, Glu64]azurin were not disturbed by the two mutations. A small perturbation of the active site at high pH, similar to that observed for [Lys44]azurin, occurs in the double mutant. At neutral pH the electron-self-exchange rate constant of the double mutant shows a decrease of three orders of magnitude compared with the wild-type value. The possible reasons for this decrease are discussed. Electron transfer with the proposed physiological redox partners cytochrome c551 and nitrite reductase have been investigated and the data analyzed in the Marcus framework. From this analysis it is confirmed that the hydrophobic patch of azurin is the interaction site with both partners, and that cytochrome c551 uses its hydrophobic patch and nitrite reductase a negatively charged surface area for the electron transfer.
Collapse
Affiliation(s)
- G Van Pouderoyen
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ye S, Shen C, Cotton TM, Kostić NM. Characterization of zinc-substituted cytochrome c by circular dichroism and resonance Raman spectroscopic methods. J Inorg Biochem 1997; 65:219-26. [PMID: 9025273 DOI: 10.1016/s0162-0134(97)00001-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Iron(III) in cytochrome c is replaced with zinc(II) by a modification of a method published by others, and the procedure is described in full detail. Three forms of cytochrome c-those containing iron(III), iron(II), and zinc(II)-are examined by circular dichroism spectroscopy and resonance Raman spectroscopy. Spectra of both kinds show that introduction of zinc(II) ions does not appreciably alter the overall structure and conformation of cytochrome c. Resonance Raman spectra indicate the size of the porphyrin "core" that is inconsistent with six-coordination and consistent with five-coordination. Unlike the iron(III) and iron(II) ions, which are bound to two axial ligands (His 18 and Met 80), the zinc(II) ion in cytochrome c seems to be bound to only one, most probably His 18. Evidence pertaining to the question of axial coordination is discussed.
Collapse
Affiliation(s)
- S Ye
- Department of Chemistry, Iowa State University, Ames 50011-3111, USA
| | | | | | | |
Collapse
|
40
|
General expression for rates of solution reactions influenced by slow solvent fluctuations, and its experimental evidence. Electrochim Acta 1997. [DOI: 10.1016/s0013-4686(97)00080-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Crnogorac MM, Shen C, Young S, Hansson O, Kostić NM. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway. Biochemistry 1996; 35:16465-74. [PMID: 8987979 DOI: 10.1021/bi961914u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We study, by flash kinetic spectrophotometry on the microsecond time scale, the effects of ionic strength and viscosity on the kinetics of oxidative quenching of the triplet state of zinc cytochrome c (3Zncyt) by the wild-type form and the following nine mutants of cupriplastocyanin: Leu12Glu, Leu12Asn, Phe35Tyr, Gln88Glu, Tyr83Phe, Tyr83His, Asp42Asn, Glu43Asn, and the double mutant Glu59Lys/Glu60Gln. The unimolecular rate constants for the quenching reactions within the persistent diprotein complex, which predominates at low ionic strengths, and within the transient diprotein complex, which is involved at higher ionic strengths, are equal irrespective of the mutation. Evidently, the two complexes are the same. In both reactions, the rate-limiting step is rearrangement of the diprotein complex from a configuration optimal for docking to the one optimal for the subsequent electron-transfer step, which is fast. We investigate the effects of plastocyanin mutations on this rearrangement, which gates the overall electron-transfer reaction. Conversion of the carboxylate anions into amide groups in the lower acidic cluster (residues 42 and 43), replacement of Tyr83 with other aromatic residues, and mutations in the hydrophobic patch in plastocyanin do not significantly affect the rearrangement. Conversion of a pair of carboxylate anions into a cationic and a neutral residue in the upper acidic cluster (residues 59 and 60) impedes the rearrangement. Creation of an anion at position 88, between the upper acidic cluster and the hydrophobic patch, facilitates the rearrangement. The rate constant for the rearrangement smoothly decreases as the solution viscosity increases, irrespective of the mutation. Fittings of this dependence to the modified Kramers's equation and to an empirical equation show that zinc cytochrome c follows the same trajectory on the surfaces of all the plastocyanin mutants but that the obstacles along the way vary as mutations alter the electrostatic potential. Mutations that affect protein association (i.e., change the binding constant) do not necessarily affect the reaction between the associated proteins (i.e., the rate constant) and vice versa. All of the kinetic and thermodynamic effects and noneffects of mutations consistently indicate that in the protein rearrangement the basic patch of zinc cytochrome c moves from a position between the two acidic clusters to a position at or near the upper acidic cluster.
Collapse
Affiliation(s)
- M M Crnogorac
- Department of Chemistry, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
42
|
Ivković-Jensen MM, Kostić NM. Effects of temperature on the kinetics of the gated electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of configurational fluctuation of the diprotein complex. Biochemistry 1996; 35:15095-106. [PMID: 8942677 DOI: 10.1021/bi961608g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This is a study of the effects of temperature (in the range 273.3-307.7 K) and of ionic strength (in the range 2.5-100 mM) on the kinetics of photoinduced electron-transfer reaction 3Zncyt/pc(II)--> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and cupriplastocyanin at pH 7.0. In order to separate direct and indirect effects of temperature on the rate constants, viscosity of the solutions was fixed, at different values, by additions of sucrose. The activation parameters for the reaction within the preformed complex, at the low ionic strength, are delta H++ = 13 +/- 2 kJ/mol and delta S++ = -97 +/- 4 J/K mol. The activation parameters for the reaction within the encounter complex, at the higher ionic strength, are delta H++ = 13 +/- 1 kJ/mol and delta S++ = -96 +/- 3 J/K mol. Evidently, the two complexes are the same. The proteins associate similarly in the persistent and the transient complex, i.e., at different ionic strengths. In both complexes, however, electron transfer is gated by a rearrangement, as previous studies from this laboratory showed. Changes in the solution viscosity modulate this rearrangement by affecting delta H++, not delta S++. The activation parameters are analyzed by empirical methods. The thermodynamic parameters delta H and delta S for the formation of the complex Zncyt/pc(II) are determined and related to changes in hydrophilic and hydrophobic surfaces upon protein association in three configurations. A difference between the values of delta H for the configuration providing optimal electronic coupling between the redox sites and the configuration providing optimal docking equals the experimental value delta H++ = 13 kJ/mol for the rearrangement of the latter configuration into the former. Enthalpy of activation may reflect a change in the character of the exposed surface as the diprotein complex rearranges. Entropy of activation may reflect tightening of the contact between the associated proteins.
Collapse
|
43
|
Turro C, Bossmann SH, Niu S, Barton JK, Turro NJ. Effect of guest/host interactions on photoinduced electron transfer reactions. Inorganica Chim Acta 1996. [DOI: 10.1016/s0020-1693(96)05332-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Shen C, Kostić NM. Reductive Quenching of the Triplet State of Zinc Cytochrome c by the Hexacyanoferrate(II) Anion and by Conjugate Bases of Ethylenediaminetetraacetic Acid. Inorg Chem 1996. [DOI: 10.1021/ic9510270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengyu Shen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Nenad M. Kostić
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
45
|
Qin L, Kostić NM. Enforced interaction of one molecule of plastocyanin with two molecules of cytochrome c and an electron-transfer reaction involving the hydrophobic patch on the plastocyanin surface. Biochemistry 1996; 35:3379-86. [PMID: 8639487 DOI: 10.1021/bi9516586] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laser flash photolysis is used to study the photoinduced electron-transfer reaction cyt(III)//pc(II) + 3Zncyt --> cyt(III)//pc(I) + Zincyt+ at pH 7.0 and 25 degrees. In the covalent (symbol//) complex cyt(III)//pc(II) the acidic patch in cupriplastocyanin is directly cross-linked to the basic patch in ferricytochrome c. The triplet state of zinc cytochrome c reduces the pc(II) moiety, not the cyt(III) moiety, of the covalent complex. The reaction is strictly bimolecular in the entire range of ionic strength studied, from 1.25 mM to 1.00 M. The two reactants interact only transiently, in a collisional complex, and do not form a persistent complex cyt(III)//pc(II)/Zncyt. Because noncovalent (symbol/) association of three separate protein molecules is far less probable than association of the covalent complex and another protein molecule, we conclude that, without the aid of covalent cross-links, one molecule of plastocyanin will not form a ternary complex with two molecules of cytochrome c, cyt/pc/cyt. Dependence of the rate constant on ionic strength is analyzed in terms of van Leeuwen theory of electrostatic interactions, which recognizes the importance of dipole moments of the proteins. This analysis shows that 3Zncyt reacts with the hydrophobic patch in the pc(II) moiety of the covalent complex cyt(III)//pc(II). At high ionic strength, at which electrostatic interactions are practically abolished, the blue copper site is reduced with approximately equal rates via the hydrophobic patch in the pc(II) moiety of the complex and via the acidic patch in free pc(II). This is evidence that the two distinct patches on the plastocyanin surface are comparable in their intrinsic "conductivity" for electrons coming to the copper site. Positively charged and electroneutral redox partners tend to react at the acidic patch (although not necessarily at the initial docking site in this broad patch) for electrostatic, not electronic, reasons. Earlier theorectical studies disagreed about the relative electronic conductivities of the two patches. This experimental study corroborates very recent theoretical studies that found the two patches to be comparable in the efficiency of electron transfer.
Collapse
Affiliation(s)
- L Qin
- Department of Chemistry, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
46
|
Feng ZQ, Imabayashi S, Kakiuchi T, Niki K. Electroreflectance spectroscopic study of the electron transfer rate of cytochrome c electrostatically immobilized on the ω-carboxyl alkanethiol monolayer modified gold electrode. J Electroanal Chem (Lausanne) 1995. [DOI: 10.1016/0022-0728(95)04058-v] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Durham B, Fairris JL, McLean M, Millett F, Scott JR, Sligar SG, Willie A. Electron transfer from cytochrome b5 to cytochrome c. J Bioenerg Biomembr 1995; 27:331-40. [PMID: 8847346 DOI: 10.1007/bf02110102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The reaction of cytochrome b5 with cytochrome c has become a very prominent system for investigating fundamental questions regarding interprotein electron transfer. One of the first computer modeling studies of electron transfer and protein/protein interaction was reported using this system. Subsequently, numerous studies focused on the experimental determination of the features which control protein/protein interactions. Kinetic measurements of the intracomplex electron transfer reaction have only appeared in the last 10 years. The current review will provide a summary of the kinetic measurements and a critical assessment of the interpretation of these experiments.
Collapse
Affiliation(s)
- B Durham
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Robinson CR, Sligar SG. Hydrostatic and osmotic pressure as tools to study macromolecular recognition. Methods Enzymol 1995; 259:395-427. [PMID: 8538464 DOI: 10.1016/0076-6879(95)59054-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clearly, hydrostatic and osmotic pressure techniques offer unique potential in the study of fundamental problems of molecular recognition in biological systems. With the recent advances in technology such investigations are rapidly becoming commonplace. We look forward to further advances and their report in succeeding compendiums such as this volume.
Collapse
Affiliation(s)
- C R Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
49
|
Abstract
The developments in the field of biological electron transfer over the past 2 years are reviewed. Attention is given to theoretical developments, especially with respect to the concept of 'electronic pathways' inside proteins, and the association process of redox proteins in solution and the idea of 'conformational gating'.
Collapse
Affiliation(s)
- G W Canters
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | |
Collapse
|