1
|
Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 2020; 10:3224. [PMID: 32081894 PMCID: PMC7035247 DOI: 10.1038/s41598-020-59802-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
P-glycoprotein (Pgp) pumps an array of hydrophobic compounds out of cells, and has major roles in drug pharmacokinetics and cancer multidrug resistance. Yet, polyspecific drug binding and ATP hydrolysis-driven drug export in Pgp are poorly understood. Fluorescence spectroscopy using tryptophans (Trp) inserted at strategic positions is an important tool to study ligand binding. In Pgp, this method will require removal of 11 endogenous Trps, including highly conserved Trps that may be important for function, protein-lipid interactions, and/or protein stability. Here, we developed a directed evolutionary approach to first replace all eight transmembrane Trps and select for transport-active mutants in Saccharomyces cerevisiae. Surprisingly, many Trp positions contained non-conservative substitutions that supported in vivo activity, and were preferred over aromatic amino acids. The most active construct, W(3Cyto), served for directed evolution of the three cytoplasmic Trps, where two positions revealed strong functional bias towards tyrosine. W(3Cyto) and Trp-less Pgp retained wild-type-like protein expression, localization and transport function, and purified proteins retained drug stimulation of ATP hydrolysis and drug binding affinities. The data indicate preferred Trp substitutions specific to the local context, often dictated by protein structural requirements and/or membrane lipid interactions, and these new insights will offer guidance for membrane protein engineering.
Collapse
|
2
|
Khrapunov S, Chang E, Callender RH. Thermodynamic and Structural Adaptation Differences between the Mesophilic and Psychrophilic Lactate Dehydrogenases. Biochemistry 2017. [PMID: 28627164 DOI: 10.1021/acs.biochem.7b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamics of substrate binding and enzymatic activity of a glycolytic enzyme, lactate dehydrogenase (LDH), from both porcine heart, phLDH (Sus scrofa; a mesophile), and mackerel icefish, cgLDH (Chamapsocephalus gunnari; a psychrophile), were investigated. Using a novel and quite sensitive fluorescence assay that can distinguish protein conformational changes close to and distal from the substrate binding pocket, a reversible global protein structural transition preceding the high-temperature transition (denaturation) was surprisingly found to coincide with a marked change in enzymatic activity for both LDHs. A similar reversible structural transition of the active site structure was observed for phLDH but not for cgLDH. An observed lower substrate binding affinity for cgLDH compared to that for phLDH was accompanied by a larger contribution of entropy to ΔG, which reflects a higher functional plasticity of the psychrophilic cgLDH compared to that of the mesophilic phLDH. The natural osmolyte, trimethylamine N-oxide (TMAO), increases stability and shifts all structural transitions to higher temperatures for both orthologs while simultaneously reducing catalytic activity. The presence of TMAO causes cgLDH to adopt catalytic parameters like those of phLDH in the absence of the osmolyte. Our results are most naturally understood within a model of enzyme dynamics whereby different conformations of the enzyme that have varied catalytic parameters (i.e., binding and catalytic proclivity) and whose population profiles are temperature-dependent and influenced by osmolytes interconvert among themselves. Our results also show that adaptation can be achieved by means other than gene mutations and complements the synchronic evolution of the cellular milieu.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert H Callender
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
3
|
Catalán J. The first UV absorption band ofl-tryptophan is not due to two simultaneous orthogonal electronic transitions differing in the dipole moment. Phys Chem Chem Phys 2016; 18:15170-6. [DOI: 10.1039/c6cp00790b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The difference between the emission spectrum ofl-tryptophan in ethanol obtained at 113 K and at 293 K.
Collapse
Affiliation(s)
- Javier Catalán
- Departamento de Química Física Aplicada
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
4
|
Nie B, Deng H, Desamero R, Callender R. Large scale dynamics of the Michaelis complex in Bacillus stearothermophilus lactate dehydrogenase revealed by a single-tryptophan mutant study. Biochemistry 2013; 52:1886-92. [PMID: 23428201 DOI: 10.1021/bi3017125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site. This suggests that a large portion of the protein-substrate complex moves in a rather concerted fashion to bring about catalysis. The catalytically important surface loop undergoes two distinct movements, both needed for a competent enzyme. Our results also suggest that what is called "loop motion" is not just localized to the loop and active site residues. Rather, it involves the motion of atoms spread over the protein, even some quite distal from the active site. How these results bear on the catalytic mechanism of bsLDH is discussed.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | |
Collapse
|
5
|
Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis. Nat Struct Mol Biol 2012; 19:731-6. [PMID: 22683996 DOI: 10.1038/nsmb.2322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/11/2012] [Indexed: 11/08/2022]
Abstract
To understand how proteins fold, assemble and function, it is necessary to characterize the structure and dynamics of each state they adopt during their lifetime. Experimental characterization of the transient states of proteins remains a major challenge because high-resolution structural techniques, including NMR and X-ray crystallography, cannot be directly applied to study short-lived protein states. To circumvent this limitation, we show that transient states during protein folding can be characterized by measuring the fluorescence of tryptophan residues, introduced at many solvent-exposed positions to determine whether each position is native-like, denatured-like or non-native-like in the intermediate state. We use this approach to characterize a late-folding-intermediate state of the small globular mammalian protein ubiquitin, and we show the presence of productive non-native interactions that suggest a 'flycatcher' mechanism of concerted binding and folding.
Collapse
|
6
|
Yadav SC, Jagannadham MV, Kundu S. Equilibrium unfolding of kinetically stable serine protease milin: the presence of various active and inactive dimeric intermediates. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1385-96. [DOI: 10.1007/s00249-010-0593-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/24/2010] [Accepted: 02/28/2010] [Indexed: 11/29/2022]
|
7
|
Loving GS, Sainlos M, Imperiali B. Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 2010; 28:73-83. [PMID: 19962774 PMCID: PMC2818466 DOI: 10.1016/j.tibtech.2009.11.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Solvatochromic fluorophores possess emission properties that are sensitive to the nature of the local microenvironment. These dyes have been exploited in applications ranging from the study of protein structural dynamics to the detection of protein-binding interactions. Although the solvatochromic indole fluorophore of tryptophan has been utilized extensively for in vitro studies to advance our understanding of basic protein biochemistry, the emergence of new extrinsic synthetic dyes with improved properties, in conjunction with recent developments in site-selective methods to incorporate these chemical tools into proteins, now open the way for studies in more complex systems. Herein, we discuss recent technological advancements and their application in the design of powerful reporters, which serve critical roles in modern cell biology and assay development.
Collapse
Affiliation(s)
- Galen S Loving
- Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
8
|
Jenkins DC, Sylvester ID, Pinheiro TJT. The elusive intermediate on the folding pathway of the prion protein. FEBS J 2008; 275:1323-35. [DOI: 10.1111/j.1742-4658.2008.06293.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
10
|
Multiple tryptophan probes reveal that ubiquitin folds via a late misfolded intermediate. J Mol Biol 2007; 374:791-805. [PMID: 17949746 DOI: 10.1016/j.jmb.2007.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/22/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
Much of our understanding of protein folding mechanisms is derived from experiments using intrinsic fluorescence of natural or genetically inserted tryptophan (Trp) residues to monitor protein refolding and site-directed mutagenesis to determine the energetic role of amino acids in the native (N), intermediate (I) or transition (T) states. However, this strategy has limited use to study complex folding reactions because a single fluorescence probe may not detect all low-energy folding intermediates. To overcome this limitation, we suggest that protein refolding should be monitored with different solvent-exposed Trp probes. Here, we demonstrate the utility of this approach by investigating the controversial folding mechanism of ubiquitin (Ub) using Trp probes located at residue positions 1, 28, 45, 57, and 66. We first show that these Trp are structurally sensitive and minimally perturbing fluorescent probes for monitoring folding/unfolding of the protein. Using a conventional stopped-flow instrument, we show that ANS and Trp fluorescence detect two distinct transitions during the refolding of all five Trp mutants at low concentrations of denaturant: T(1), a denaturant-dependent transition and T(2), a slower transition, largely denaturant-independent. Surprisingly, some Trp mutants (Ub(M1W), Ub(S57W)) display Trp fluorescence changes during T(1) that are distinct from the expected U-->N transition suggesting that the denaturant-dependent refolding transition of Ub is not a U-->N transition but represents the formation of a structurally distinct I-state (U-->I). Alternatively, this U-->I transition could be also clearly distinguished by using a combination of two Trp mutations Ub(F45W-T66W) for which the two Trp probes that display fluorescence changes of opposite sign during T(1) and T(2) (Ub(F45W-T66W)). Global fitting of the folding/unfolding kinetic parameters and additional folding-unfolding double-jump experiments performed on Ub(M1W), a mutant with enhanced fluorescence in the I-state, demonstrate that the I-state is stable, compact, misfolded, and on-pathway. These results illustrate how transient low-energy I-states can be characterized efficiently in complex refolding reactions using multiple Trp probes.
Collapse
|
11
|
Qiu L, Gulotta M, Callender R. Lactate dehydrogenase undergoes a substantial structural change to bind its substrate. Biophys J 2007; 93:1677-86. [PMID: 17483169 PMCID: PMC1948838 DOI: 10.1529/biophysj.107.109397] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Employing temperature-jump relaxation spectroscopy, we investigate the kinetics and thermodynamics of the formation of a very early ternary binding intermediate formed when lactate dehydrogenase (LDH) binds a substrate mimic on its way to forming the productive LDH/NADH.substrate Michaelis complex. Temperature-jump scans show two distinct submillisecond processes are involved in the formation of this ternary binding intermediate, called the encounter complex here. The on-rate of the formation of the encounter complex from LDH/NADH with oxamate (a substrate mimic) is determined as a function of temperature and in the presence of small concentrations of a protein destabilizer (urea) and protein stabilizer (TMAO). It shows a strong temperature dependence with inverse Arrhenius behavior and a temperature-dependent enthalpy (heat capacity of 610 +/- 84 cal/Mol K), is slowed in the presence of TMAO and speeded up in the presence of urea. These results suggest that LDH/NADH occupies a range of conformations, some competent to bind substrate (open structure; a minority population) and others noncompetent (closed), in fast equilibrium with each other in accord with a select fit model of binding. From the thermodynamic results, the two species differ in the rearrangement of low energy hydrogen bonds as would arise from changes in internal hydrogen bonding and/or increases in the solvation of the protein structure. The binding-competent species can bind ligand at or very near diffusion-limited speeds, suggesting that the binding pocket is substantially exposed to solvent in these species. This would be in contrast to the putative closed structure where the binding pocket resides deep within the protein interior.
Collapse
Affiliation(s)
- Linlin Qiu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
12
|
Bushell SR, Bottomley SP, Rossjohn J, Beddoe T. Tracking the Unfolding Pathway of a Multirepeat Protein via Tryptophan Scanning. J Biol Chem 2006; 281:24345-50. [PMID: 16803880 DOI: 10.1074/jbc.m602966200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tetratricopeptide repeat (TPR) is a degenerate 34-amino acid repeating motif that forms a repeating helix-turn-helix structure and is a well characterized mediator of protein-protein interactions. Recently, a biophysical investigation on one naturally occurring TPR protein, Tom70, found that the mitochondrial receptor displayed an unusual three-state unfolding pathway, distinct from the two-state model usually displayed by TPR proteins. To investigate this unusual behavior, we undertook a tryptophan-scanning analysis of Tom70, where both native and engineered tryptophan residues are used as fluorescent reporters to monitor the range of local and global unfolding events that comprise the unfolding pathway of Tom70. Specifically, seven Tom70 variants were constructed, each with a single tryptophan residue in each of the seven TPR repeats of Tom70. By combining equilibrium and kinetic fluorescent unfolding assays, with circular dichroism experiments, our study reveals that the unusual folding pathway of Tom70 is a consequence of the unfolding of two separate, autonomous TPR arrays, with the less stable region appearing to account for the low structural stability of Tom70.
Collapse
Affiliation(s)
- Simon R Bushell
- Protein Crystallography Unit, Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
13
|
Takita T, Nakagoshi M, Inouye K, Tonomura B. Lysyl-tRNA synthetase from Bacillus stearothermophilus: the Trp314 residue is shielded in a non-polar environment and is responsible for the fluorescence changes observed in the amino acid activation reaction. J Mol Biol 2003; 325:677-95. [PMID: 12507472 DOI: 10.1016/s0022-2836(02)01238-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue.
Collapse
Affiliation(s)
- Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
14
|
Tew DJ, Bottomley SP. Probing the equilibrium denaturation of the serpin alpha(1)-antitrypsin with single tryptophan mutants; evidence for structure in the urea unfolded state. J Mol Biol 2001; 313:1161-9. [PMID: 11700071 DOI: 10.1006/jmbi.2001.5104] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The native conformation of proteins in the serpin superfamily is metastable. In order to understand why serpins attain the native state instead of more stable conformations we have begun investigations into the equilibrium-unfolding of alpha(1)-antitrypsin. alpha(1)-Antitrypsin contains two tryptophan residues, Trp194 and Trp238, situated on the A and B beta-sheets, respectively. Site-directed mutagenesis was used to construct two single-tryptophan variants. Both variants were fully active and had similar secondary structure and stabilities to alpha(1)-antitrypsin. The denaturation of alpha(1)-antitrypsin and its variants was extremely similar when followed by far-UV CD, indicating the presence of a single intermediate. Fluorescence analysis of the unfolding behavior of each single tryptophan variant indicated that the sole tryptophan residue reported the structural changes within its immediate environment. These data suggest that the A beta-sheet is expanded in the intermediate state whilst no structural change around the B beta-sheet has occurred. In the urea-induced unfolded state, Trp238 does not become fully solvated, suggesting the persistence of structure around this residue. The implications of these data on the folding, misfolding and function of the serpin superfamily are discussed.
Collapse
Affiliation(s)
- D J Tew
- Department of Biochemistry and Molecular Biology, Monash University, Australia, 3800
| | | |
Collapse
|
15
|
Abstract
Actin contains four tryptophan residues, W79, W86, W340, and W356, all located in subdomain 1 of the protein. Replacement of each of these residues with either tyrosine (W79Y and W356Y) or phenylalanine (W86F and W340F) generated viable proteins in the yeast Saccharomyces cerevisiae, which, when purified, allowed the analysis of the contribution of these residues to the overall tryptophan fluorescence of actin. The sum of the relative contributions of these tryptophans was found to account for the intrinsic fluorescence of wild-type actin, indicating that energy transfer between the tryptophans is not the main determinant of their quantum yield, and that these mutations induce little conformational change to the protein. This was borne out by virtually identical polymerization rates and similar myosin interactions of each of the mutants and the wild-type actin. In addition, these mutants allowed the dissection of the microenvironment of each tryptophan as actin undergoes conformational changes upon metal cation exchange and polymerization. Based on the relative tryptophan contributions determined from single mutants, a triple mutant of yeast actin (W79) was generated that showed small intrinsic fluorescence and should be useful for studies of actin interactions with actin-binding proteins.
Collapse
Affiliation(s)
- T C Doyle
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
16
|
Aung HP, Bocola M, Schleper S, Röhm KH. Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:349-59. [PMID: 11018727 DOI: 10.1016/s0167-4838(00)00179-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asparaginase II from Escherichia coli is well-known member of the bacterial class II amidohydrolases. Enzymes of this family utilize a peculiar catalytic mechanism in which a pair of threonine residues play pivotal roles. Another common feature is a mobile surface loop that closes over the active site when the substrates is bound. We have studied the motion of the loop by stopped-flow experiments using the fluorescence of tryptophan residues as the spectroscopic probe. With wild-type enzyme the fluorescence of the only tryptophan, W66, was monitored. Here asparagine induced a rapid closure of the loop. The rate constants of the process (100-150 s(-1) at 4 degrees C) were considerably higher than those of the rate-limiting catalytic step. A more selective spectroscopic probe was generated by replacing W66 with tyrosine and Y25, a component of the loop, with tryptophan. In the resulting enzyme variant, k(cat) and the rate of loop movement were reduced by factors of 10(2) and >10(3), respectively, while substrate binding was unaffected. This indicates that the presence of tyrosine in position 25 is essential for both loop closure and catalysis. Numerical simulations of the observed transients are consistent with a model where loop closure is an absolute prerequisite for substrate turnover.
Collapse
Affiliation(s)
- H P Aung
- Chemistry Department, University of Yangon, Myanmar
| | | | | | | |
Collapse
|
17
|
Coker AR, Purvis A, Baker D, Pepys MB, Wood SP. Molecular chaperone properties of serum amyloid P component. FEBS Lett 2000; 473:199-202. [PMID: 10812074 DOI: 10.1016/s0014-5793(00)01530-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective binding of serum amyloid P component (SAP) to proteins in the pathological amyloid cross-beta fold suggests a possible chaperone role. Here we show that human SAP enhances the refolding yield of denatured lactate dehydrogenase and protects against enzyme inactivation during agitation of dilute solutions. These effects are independent of calcium ions and are not inhibited by compounds that block the amyloid recognition site on the B face of SAP, implicating the A face and/or the edges of the SAP pentamer. We discuss the possibility that the chaperone property of SAP, or its failure, may contribute to the pathogenesis of amyloidosis.
Collapse
Affiliation(s)
- A R Coker
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, UK
| | | | | | | | | |
Collapse
|
18
|
James EL, Whisstock JC, Gore MG, Bottomley SP. Probing the unfolding pathway of alpha1-antitrypsin. J Biol Chem 1999; 274:9482-8. [PMID: 10092631 DOI: 10.1074/jbc.274.14.9482] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding plays a role in the pathogenesis of many diseases. alpha1-Antitrypsin misfolding leads to the accumulation of long chain polymers within the hepatocyte, reducing its plasma concentration and predisposing the patient to emphysema and liver disease. In order to understand the misfolding process, it is necessary to examine the folding of alpha1-antitrypsin through the different structures involved in this process. In this study we have used a novel technique in which unique cysteine residues were introduced at various positions into alpha1-antitrypsin and fluorescently labeled with N, N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)ethylenediamine. The fluorescence properties of each protein were studied in the native state and as a function of guanidine hydrochloride-mediated unfolding. The studies found that alpha1-antitrypsin unfolded through a series of intermediate structures. From the position of the fluorescence probes, the fluorescence quenching data, and the molecular modeling, we show that unfolding of alpha1-antitrypsin occurs via disruption of the A and C beta-sheets followed by the B beta-sheet. The implications of these data on both alpha1-antitrypsin function and polymerization are discussed.
Collapse
Affiliation(s)
- E L James
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
19
|
Chang LS, Lin SR, Chang CC. Unfolding/folding studies on cobrotoxin from Taiwan cobra venom: pH and GSH/GSSG govern disulfide isomerization at the C-terminus. Arch Biochem Biophys 1998; 354:1-8. [PMID: 9633591 DOI: 10.1006/abbi.1998.0660] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Refolding of cobrotoxin was assessed by the exposure degree of its single Trp determined by an acrylamide quenching study. The change in the accessibility of Trp for acrylamide quantitatively reflected the formation of folded cobrotoxin, and the data were confirmed by HPLC and gel electrophoresis analyses. However, the site-specific information provided by quenching Trp fluorescence revealed that the ordered structure in the neighborhood of Trp was attained prior to the complete formation of the tertiary structure of cobrotoxin. HPLC analyses showed that, in addition to refolded cobrotoxin, two novel species (cobrotoxin II and cobrotoxin III) with isomerization of disulfide bonds at the C-terminus of the toxin molecule were produced along the folding reaction. The disulfide pairings in cobrotoxin II and cobrotoxin III were Cys43-Cys55 and Cys54-Cys60 and Cys43-Cys60 and Cys54-Cys55, respectively. Among the three possible two-disulfide species at the C-terminus, the disulfide linkages Cys43-Cys60 and Cys54-Cys55 of cobrotoxin III caused a marked decrease in lethality and resulted in a conformation which was notably different from that observed with the native toxin molecule as evidenced by CD spectra. The refolding reaction was accelerated by the addition of GSH/GSSG, and the resulting products were mostly folded cobrotoxin. However, if GSH/GSSG was not added into the initial folding materials, the yields of cobrotoxin II and cobrotoxin III greatly increased. The conversion of cobrotoxin to its isomers was to be irreversible and pH-dependent: the higher the pH, the faster the rate of conversion. However, this conversion could be partly inhibited by GSH/GSSG. Cobrotoxin II and cobrotoxin III were purified from Taiwan cobra venom as well, and their yields in comparison to that of cobrotoxin in venom were similar to that noted with the folded products in the presence of GSH/GSSG. Moreover, the rate of disulfide isomerization was expected to be slow in venom fluid in which the pH was approximately pH 6.2. Thus, the finding that cobrotoxin represents the predominant neurotoxin species in Taiwan cobra venom is probably associated with the synergistic effects of GSH/GSSG and pH.
Collapse
Affiliation(s)
- L S Chang
- Department of Biochemistry, Kaohsiung Medical College, Taiwan, Republic of China.
| | | | | |
Collapse
|
20
|
Extrinsic fluorescence probe study of human serum albumin using Nile red. J Fluoresc 1996; 6:23-32. [DOI: 10.1007/bf00726723] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1994] [Accepted: 12/07/1995] [Indexed: 10/26/2022]
|
21
|
Engelhard M, Evans PA. Experimental investigation of sidechain interactions in early folding intermediates. FOLDING & DESIGN 1996; 1:R31-7. [PMID: 9079367 DOI: 10.1016/s1359-0278(96)00016-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kinetic studies of folding sometimes reveal very rapid spectroscopic changes that may indicate the population of intermediates, but it is difficult to elucidate in detail the nature of the interactions involved. In this review, we focus on one important aspect of this problem: how to probe the nature and extent of clustering of hydrophobic sidechains. As the information obtainable from different experimental approaches is outlined, it becomes clear that a combination of methods is likely to be necessary to build up a reasonable picture of early folding events.
Collapse
Affiliation(s)
- M Engelhard
- Department of Biochemistry, University of Cambridge, UK.
| | | |
Collapse
|
22
|
Shahrokh Z, Eberlein G, Wang YJ. Probing the conformation of protein (bFGF) precipitates by fluorescence spectroscopy. J Pharm Biomed Anal 1994; 12:1035-41. [PMID: 7819377 DOI: 10.1016/0731-7085(94)e0030-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aggregation and precipitation are major events in the handling and aging of most protein pharmaceuticals. We demonstrate the utility of fluorescence spectroscopy in determining protein conformation in precipitates using basic fibroblast growth factor (bFGF) as an example. Conversion of the native to the soluble denatured from by chaotropes was accompanied by an increase in tryptophan emission. The emission spectra of resuspended precipitates were as reproducible as the spectra of the soluble form. The sum of emission spectra of native soluble bFGF and denatured precipitated bFGF was superimposable on the spectrum of the unfractionated suspension, suggesting that quantitative analysis of denatured aggregates in turbid protein formulations is possible. The ratio of tryptophan to tyrosine emissions increased with increasing extent of denaturation both in solution and in suspension. For example, salting out by ammonium sulphate increased the fluorescence index (indicative of denaturation) which was reversible upon dissolution. In addition, aging (35 degrees C) of bFGF in the presence of sulphated ligands produced precipitates with native-like fluorescence index, in contrast to denatured precipitates formed without ligands.
Collapse
Affiliation(s)
- Z Shahrokh
- Scios Nova Inc, Mountain View, California 94043
| | | | | |
Collapse
|
23
|
Staniforth RA, Burston SG, Atkinson T, Clarke AR. Affinity of chaperonin-60 for a protein substrate and its modulation by nucleotides and chaperonin-10. Biochem J 1994; 300 ( Pt 3):651-8. [PMID: 7912068 PMCID: PMC1138217 DOI: 10.1042/bj3000651] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The refolding of lactate dehydrogenase fully unfolded in 4 M guanidinium chloride was initiated by dilution into assay buffer, and the emergence of active enzyme was recorded. This was performed in the presence of the following chaperonin complexes in the refolding medium: chaperonin-60 (cpn60), cpn60-MgATP, cpn60-Mgp[NH]ppA, cpn60-MgADP in both the presence and absence of chaperonin-10 (cpn10). For each nucleotide-chaperonin complex studied, the effect of nucleotide concentration was measured. Dissociation constants (Kd) for unfolded LDH bound to the various chaperonin complexes were derived directly from the ability of the complexes to retard the folding of the enzyme. Dissociation constants for the different complexes were found to be in the order: cpn60 < cpn60-MgADP-cpn10 (formed at low [MgADP]) < cpn60-MgADP < cpn60-MgADP-cpn10 < cpn60-Mgp[NH]ppA < cpn60-Mgp[NH]ppA-cpn10 < cpn60-MgATP < cpn60-MgATP-cpn10; i.e. the tightest complex is with cpn60 and the weakest with cpn60-MgATP-cpn10. Only when MgATP is the nucleotide do we see the yield of native enzyme increased on the time scale of 1 h. The results provide estimates of the change in binding energy between the chaperonin and a substrate protein through the cycle of MgATP binding, hydrolysis and dissociation.
Collapse
Affiliation(s)
- R A Staniforth
- Molecular Recognition Centre, University of Bristol, School of Medical Sciences, U.K
| | | | | | | |
Collapse
|
24
|
Pineda-Lucena A, Núñez De Castro I, Lozano RM, Muñoz-Willery I, Zazo M, Giménez-Gallego G. Effect of low pH and heparin on the structure of acidic fibroblast growth factor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:425-31. [PMID: 7517355 DOI: 10.1111/j.1432-1033.1994.tb18881.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Changes in the fluorescence of the single tryptophan of acidic fibroblast growth factor have been used to monitor the effect of low pH on the conformation of the molecule, and the consequences of heparin binding and high ionic strength under such conditions. These studies demonstrate that the conformation of the protein changes reversibly below pH 5, and that heparin, depending on the conditions, may either prevent that change or induce a new irreversible modification of the structure, which runs parallel to the partial inactivation of the protein. It is also demonstrated that secondary heparin-binding sites appear at low pH, which favor the formation of precipitates at some protein/heparin ratios. Precipitation and inactivation of fibroblast growth factor at low pH may hinder its wound-healing activity, since acidification seems frequent in wounds.
Collapse
Affiliation(s)
- A Pineda-Lucena
- Centro de Investigaciones Biológicas (C.S.I.C.), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Nobbs TJ, Cortés A, Gelpi JL, Holbrook JJ, Atkinson T, Scawen MD, Nicholls DJ. Contribution of a buried aspartate residue towards the catalytic efficiency and structural stability of Bacillus stearothermophilus lactate dehydrogenase. Biochem J 1994; 300 ( Pt 2):491-9. [PMID: 8002955 PMCID: PMC1138189 DOI: 10.1042/bj3000491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The X-ray structure of lactate dehydrogenase (LDH) shows the side-chain carboxylate group of Asp-143 to be buried in the hydrophobic interior of the enzyme, where it makes hydrogen-bonding interactions with both the side-chain hydroxyl group of Ser-273 and the main-chain amide group of His-195. This is an unusual environment for a carboxylate side-chain as hydrogen bonding normally occurs with water molecules at the surface of the protein. A charged hydrogen-bonding interaction in the interior of a protein would be expected to be much stronger than a similar interaction on the solvent-exposed exterior. In this respect the side-chain carboxylate group of Asp-143 appears to be important for maintaining tertiary structure by providing a common linkage point between three discontinuous elements of the secondary structure, alpha 1F, beta K and the beta-turn joining beta G and beta H. The contribution of the Asp-143 side-chain to the structure and function of Bacillus stearothermophilus LDH was assessed by creating a mutant enzyme containing Asn-143. The decreased thermal stability of both unactivated and fructose-1,6-diphosphate (Fru-1,6-P2)-activated forms of the mutant enzyme support a structural role for Asp-143. Furthermore, the difference in stability of the wild-type and mutant enzymes in guanidinium chloride suggested that the carboxylate group of Asp-143 contributes at least 22 kJ/mol to the conformational stability of the wild-type enzyme. However, there was no alteration in the amount of accessible tryptophan fluorescence in the mutant enzyme, indicating that the mutation caused a structural weakness rather than a gross conformational change. Comparison of the wild-type and mutant enzyme steady-state parameters for various 2-keto acid substrates showed the mutation to have a general effect on catalysis, with an average difference in binding energy of 11 kJ/mol for the transition-state complexes. The different effects of pH and Fru-1,6-P2 on the wild-type and mutant enzymes also confirmed a perturbation of the catalytic centre in the mutant enzyme. As the side-chain of Asp-143 is not sufficiently close to the active site to be directly involved in catalysis or substrate binding it is proposed that the effects on catalysis shown by the mutant enzyme are induced either by a structural change or by charge imbalance at the active site.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T J Nobbs
- Division of Biotechnology, Centre for Applied Microbiology and Research, Porton, Salisbury, U.K
| | | | | | | | | | | | | |
Collapse
|
26
|
Itzhaki LS, Evans PA, Dobson CM, Radford SE. Tertiary interactions in the folding pathway of hen lysozyme: kinetic studies using fluorescent probes. Biochemistry 1994; 33:5212-20. [PMID: 8172895 DOI: 10.1021/bi00183a026] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The refolding kinetics of hen lysozyme have been studied using a range of fluorescent probes. These experiments have provided new insight into the nature of intermediates detected in our recent hydrogen-exchange labeling studies [Radford, S.E., et al. (1992) Nature 358, 302-307], which were performed under the same conditions. Protection from exchange results primarily from the development of stabilizing side-chain interactions, and the fluorescence studies reported here have provided a new perspective on this aspect of the refolding process. The intrinsic fluorescence of the six tryptophan residues and its susceptibility to quenching by iodide have been used to monitor the development of hydrophobic structure, and these studies have been complemented by experiments involving binding to a fluorescent hydrophobic dye 1-anilino-naphthalenesulfonic acid (ANS). Formation of fixed tertiary interactions of aromatic residues has been monitored by near-UV circular dichorism, while development of a competent active site has been probed by binding to a competitive inhibitor bearing a fluorescent label, 4-methylumbelliferyl-N,N'-diacetyl-beta-chitobiose. The combination of these techniques has enabled us to monitor the development both of the hydrophobic core of the protein and of interactions between the two folding domains. If the behavior of the tryptophans is representative of the hydrophobic residues of the protein in general, it seems that collapse is already substantial in species formed within the first few milliseconds of refolding and is highly developed in later intermediates which nonetheless appear to lack many fixed tertiary interactions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L S Itzhaki
- Cambridge Centre for Molecular Recognition, Cambridge University, U.K
| | | | | | | |
Collapse
|
27
|
Abstract
This paper presents three theorems pertaining to thermodynamic properties of the intermediate (e.g., molten globule) state of proteins exhibiting such a conformation in the presence of GuHCl or urea. The theorems are proved for the three-state case using the denaturant binding model and the linear extrapolation model; their utility is illustrated via applications to examples in the literature. Theorem One states that the denaturant activity that maximizes the population of a partly folded conformation is at any temperature independent of the Gibbs free energy difference between the intermediate and native states. This result holds for both models of protein-denaturant interaction. The second theorem claims that the population maximum is independent of the denaturant association constant for the denaturant binding model. Theorem Three, which also applies to both models considered here, states that at the temperatures corresponding to the extrema in the population of the intermediate, the enthalpy change of the intermediate is equal to the excess enthalpy function, an experimentally accessible quantity. In the absence of denaturant, the enthalpy change of the intermediate state at the population extrema can be written as a function of the thermodynamic parameters of the unfolded state alone. These results, which can be applied to systems of any number of states under certain conditions, should aid in the optimization of conditions employed for experimental studies of partly organized states of proteins.
Collapse
Affiliation(s)
- D T Haynie
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
28
|
|
29
|
|
30
|
Federwisch M, Wollmer A, Emde M, Stühmer T, Melcher T, Klos A, Köhl J, Bautsch W. Tryptophan mutants of human C5a anaphylatoxin: a fluorescence anisotropy decay and energy transfer study. Biophys Chem 1993; 46:237-48. [PMID: 8343570 DOI: 10.1016/0301-4622(93)80017-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Three mutants of the anaphylatoxin C5a were prepared with positions 2, 64 and 70, respectively, substituted by tryptophan. The last mutant was additionally labelled at Cys27 for fluorescence energy transfer (FET) measurements. The structural integrity and biological activity of the molecules were not affected. Fluorescence anisotropy decay (FAD) measurements showed that the rotational correlation time for tryptophan decreases in the order: [Trp2]rhC5a > [Trp64]rhC5a > [Trp70]rhC5a, indicating an increasing mobility of the side chain. Measurements of the fluorescence energy transfer from Trp70 to the 1,5-AEDANS group at Cys27 yielded a distance distribution of 2.4 +/- 0.8 nm. This value is compatible with the C-terminal chain being arranged as a slightly stretched helix pointing away from the body of the molecule.
Collapse
Affiliation(s)
- M Federwisch
- Institut für Biochemie, Rheinisch-Westfälische Technische Hochschule Aachen, Klinikum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Staniforth RA, Burston SG, Smith CJ, Jackson GS, Badcoe IG, Atkinson T, Holbrook JJ, Clarke AR. The energetics and cooperativity of protein folding: a simple experimental analysis based upon the solvation of internal residues. Biochemistry 1993; 32:3842-51. [PMID: 8471598 DOI: 10.1021/bi00066a003] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reversible unfolding of two dissimilar proteins, phosphoglycerate kinase from Bacillus stearothermophilus (PGK) and Staphylococcus aureus nuclease (SAN), was induced with two denaturants, urea and guanidinium chloride (GuHCl). For each protein, structural transitions were monitored by intrinsic fluorescence intensity changes arising from a unique tryptophan residue. In the case of SAN the single, native tryptophan residue was used, whereas for PGK two versions, one with a tryptophan at position 315 and one at 379, were constructed genetically. The resultant folding curves were analyzed by considering the change in the solvation free energy of internal amino acid residues as the denaturant concentration was varied. We derive the following simple relationship: -RT ln K = delta Gw + n delta Gs,m[D]/Kden. + [D]) where K is the equilibrium constant describing the distribution of folded and unfolded forms at a given denaturant concentration [D], delta Gw is the free energy change for the transition in the absence of denaturant, and n is the number of internal side chains becoming exposed. delta Gs,m and Kden. are constants derived empirically from the solvation energies of model compounds and represent the behavior of an average internal side chain between 0 and 6 M GuHCl and 0 and 8 M urea. For proteins of known structure these values can easily be derived, and for others, average values in guanidinium chloride (delta Gs,m = 0.775 kcal/mol and Kden. = 5.4 M) or urea (delta Gs,m = 1.198 kcal/mol and Kden. = 25.25 M) can be used in the analysis. Results show that the parameters n and delta Gw are independent of the denaturant used for all 12 transitions studied. This supports the hypothesis that the unfolding activity of urea and GuHCl can be accounted for by their effect on the solvation energy of amino acid side chains which are buried in the folded but exposed in the unfolded protein. This simple analytical treatment allows the "cooperativity" of protein folding to be interpreted in terms of the number of side chains becoming exposed to the solvent in a given step and allows accurate estimation of the free energy irrespective of the denaturant concentration needed to induce the transition.
Collapse
Affiliation(s)
- R A Staniforth
- Molecular Recognition Centre, School of Medical Sciences, University of Bristol, U.K
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nicholls DJ, Wood IS, Nobbs TJ, Clarke AR, Holbrook JJ, Atkinson T, Scawen MD. Dissecting the contributions of a specific side-chain interaction to folding and catalysis of Bacillus stearothermophilus lactate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:447-55. [PMID: 8444183 DOI: 10.1111/j.1432-1033.1993.tb17681.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
X-ray crystallography predicts hydrogen-bonding interactions between the side chains of Thr198 and two other amino acid residues, Glu194 (adjacent to the catalytic His195) and Ser318 (on the alpha-H helix which rearranges on substrate binding). In order to investigate the contribution of this conserved amino acid residue, Thr198, two mutants of Bacillus stearothermophilus lactate dehydrogenase were created (Val198 and Ile198). The steady-state kinetic parameters for both mutant enzymes were very similar with increased substrate Km and reduced kcat when compared with the wild-type enzyme. The mutation Val198 allowed non-productive binding of pyruvate to the unprotonated form of His195. Steady-state kinetic parameters determined for the Val198 mutant enzyme in high solvent viscosity suggested both an altered rate-limiting step in catalysis and implicated Thr198 in allosteric activation by the effector fructose 1,6-bisphosphate (Fru1,6P2). A shift in the Fru1,6P2 activation constant for the Val198 mutant enzyme suggested that Thr198 stabilises the catalytically competent (Fru1,6P2-activated) form of the enzyme by 6.6 kJ/mol. However, Thr198 was not important for maintaining the thermal stability of the Fru1,6P2-activated form. Equilibrium unfolding in guanidinium chloride indicated that Thr198 contributes 17.2 kJ/mol subunits towards the tertiary structural stability. The results emphasise the importance of the side chain-hydroxyl group of Thr198 which is required for (a) productive substrate binding, (b) allosteric activation and (c) protein conformational stability. The characteristics of the B. stearothermophilus lactate dehydrogenase mutations reported here were significantly different from those of the same mutations made in the corresponding position of the analogous enzyme Thermus flavus malate dehydrogenase [Nishiyama, M., Shimada, K., Horinouchi, S., & Beppu, T. (1991) J. Biol. Chem. 266, 14294-14299].
Collapse
Affiliation(s)
- D J Nicholls
- Division of Biotechnology, Centre for Applied Microbiology and Research, Porton Down, Salisbury, England
| | | | | | | | | | | | | |
Collapse
|
33
|
Ballery N, Desmadril M, Minard P, Yon JM. Characterization of an intermediate in the folding pathway of phosphoglycerate kinase: chemical reactivity of genetically introduced cysteinyl residues during the folding process. Biochemistry 1993; 32:708-14. [PMID: 8422377 DOI: 10.1021/bi00053a040] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The unfolding-refolding kinetics of yeast phosphoglycerate kinase were studied using the chemical reactivity of genetically introduced cysteinyl residues as conformational probes and far-ultraviolet circular dichroism. A unique internal cysteinyl residue was introduced in several mutants at selected positions in the N- and C-domains. The cysteinyl residues were at positions 97 (the unique cysteinyl residue of the wild-type enzyme), 183 in the N-domain, 285 and 324 in the C-domain. A similar strategy has been used to study the unfolding-refolding transition under equilibrium conditions [Ballery et al. (1990) Protein Eng. 3, 199-204]. Except for the mutant C97A,A183C, whose cysteinyl residue is located at the domain interface, three labeling phases were observed during the refolding process, indicating the presence of three species, the unfolded, intermediate, and folded proteins. The comparison of the data obtained following the accessibility of the thiol group to 5,5'-dithiobis(2-nitrobenzoate) and ellipticity at 218 nm indicated that all mutants have the same folding pathway and allowed us to characterize the intermediate. In this species, each domain appeared to have a high content of secondary structure but a flexible tertiary structure; this intermediate, which had the characteristics of a molten globule, remained in fluctuating equilibrium with a widely unfolded form. The same folding intermediate was detected for mutant C97A,A183C; however, the cysteinyl residue being totally accessible to the reagent, it is likely that in this intermediate the interdomain interactions are not established. Domain pairing and formation of the native tertiary structure occur simultaneously in the slow phase of refolding. The validity and limitations of the methodology are discussed.
Collapse
Affiliation(s)
- N Ballery
- Laboratoire d'Enzymologie Physicochimique et Moléculaire, Centre National de la Recherche Scientifique, Université de Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
34
|
Kotik M, Zuber H. Mutations that significantly change the stability, flexibility and quaternary structure of the l-lactate dehydrogenase from Bacillus megaterium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:267-80. [PMID: 8425537 DOI: 10.1111/j.1432-1033.1993.tb19895.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to investigate the physical basis of protein stability, two mutant L-lactate dehydrogenases (LDH) and the wild-type enzyme from Bacillus megaterium were analyzed for differences in quaternary structure, global protein conformation, thermal stability, stability against guanidine hydrochloride, and polypeptide chain flexibility. One mutant enzyme, ([T29A, S39A]LDH), differing at two positions in the alpha-B helix, exhibited a 20 degrees C increase in thermostability. Hydrogen/deuterium exchange revealed a rigid structure of this enzyme at room temperature. The substitutions Ala37 to Val and Met40 to Leu destabilize the protein. This is observable in a greater susceptibility to thermal denaturation and in an unusual monomer/dimer/tetramer equilibrium in the absence of fructose 1,6-bisphosphate Fru(1,6)P2. The stability, flexibility and protein-conformation measurements were all performed in the presence of 5 mM Fru(1,6)P2, i.e. under conditions where the three investigated LDH species are stable tetramers. Tryptophan fluorescence was used to monitor the unfolding in guanidine HCl of two local structures in or very close to the beta-sheets at the protein surface. The LDHs form folding intermediates in guanidine HCl that aggregate at elevated temperatures. Pronounced differences between the three investigated enzymes are found in their ability to aggregate. The exchange of Thr29 and Ser39 for Ala leads to significantly less aggregation in guanidine HCl than is observed for wild-type LDH. Using 8-anilinonaphthalene-1-sulfonic acid, the folding intermediates were shown to be in accordance with molten-globule-like structures. We have found, by means of molecular sieve chromatography, that the [T29A, S39A]LDH with its increased thermostability has lower susceptibility to disintegrate into monomers in guanidine HCl at 25 degrees C. Despite the differences in aggregation at low guanidine HCl concentrations and temperatures above 25 degrees C, the molten-globule-like structures of the three investigated LDH species are structurally similar, as shown by molecular-sieve chromatography. Although the thermostabilities of the three LDH species are so different in aqueous buffers, their stabilities in guanidine HCl at 20 degrees C are, surprisingly, almost identical. Some comments are made as to the origin of the observed difference between thermal and guanidine HCl stabilities of the LDH. Near-ultraviolet and far-ultraviolet circular dichroism measurements, as well as differences in the amount of activation by Fru(1,6)P2, point to small global structural rearrangements caused by the mutations. Conformational changes upon Fru(1,6)P2 binding or point mutations in the alpha-B helix show that the Fru(1,6)P2-binding site and the alpha-B helix are structurally linked together.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Kotik
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, Switzerland
| | | |
Collapse
|
35
|
BURSTON SG, SLEIGH R, HALSALL DJ, SMITH CJ, HOLBROOK JJ, CLARKE AR. The Influence of Chaperonins on Protein Folding. Ann N Y Acad Sci 1992. [DOI: 10.1111/j.1749-6632.1992.tb35595.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Burston SG, Sleigh R, Halsall DJ, Smith CJ, Holbrook JJ, Clarke AR. The Influence of Chaperonins on Protein Folding. Ann N Y Acad Sci 1992; 672:1-9. [PMID: 1362048 DOI: 10.1111/j.1749-6632.1992.tb32651.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S G Burston
- Molecular Recognition Center, University of Bristol, School of Medical Sciences, England
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
It is becoming increasingly evident that intermediates observed in protein folding in vitro may be closely related to conformational states that are important in various intracellular processes. This review focuses on recent advances in in vitro protein-folding studies with particular reference to the molten globule state, which is purported to be a common and distinct intermediate of protein folding.
Collapse
Affiliation(s)
- K Kuwajima
- Department of Physics, Faculty of Science, University of Tokyo, Japan
| |
Collapse
|
38
|
Kotik M, Zuber H. Evidence for temperature-dependent conformational changes in the L-lactate dehydrogenase from Bacillus stearothermophilus. Biochemistry 1992; 31:7787-95. [PMID: 1510965 DOI: 10.1021/bi00149a007] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
L-Lactate dehydrogenase from Bacillus stearothermophilus (BSLDH) has been shown to change its conformation in a temperature-dependent manner in the temperature range between 25 and 70 degrees C. To provide a more detailed understanding of this reversible structural reorganization of the tetrameric form of BSLDH, we have determined in the presence of 5 mM fructose, 1,6-bisphosphate (FBP) the effect of temperature on far-UV and near-UV circular dichroism (CD), Nile red-binding to the enzyme surface, NADH binding, fluorescence polarization of fluorescamine-labeled protein, and hydrogen-deuterium exchange. In addition, we have analyzed the temperature dependence of the dimer-tetramer equilibrium of this protein by steady-state enzyme kinetics in the absence of FBP. The results obtained from these measurements at various temperatures can be summarized as follows. No changes in the secondary-structure distribution are detectable from far-UV CD measurements. On the other hand, near-UV CD data reveal that changes in the arrangements of aromatic side chains do occur. With increasing temperature, the asymmetry of the environment around aromatic residues decreases with a small change at 45 degrees C and a more pronounced change at 65 degrees C. Nile red-binding data suggest that the BSLDH surface hydrophobicity changes with temperature. It appears that decreasing the surface hydrophobicity may be a strategy to increase the protein stability of the active enzyme. We have noted significant alterations in the thermodynamic binding parameters of NADH above 45 degrees C, indicating a conformational change in the active site at 45 degrees C. The hydrodynamic volume of BSLDH is also temperature dependent.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Kotik
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland
| | | |
Collapse
|
39
|
Cortes A, Emery DC, Halsall DJ, Jackson RM, Clarke AR, Holbrook JJ. Charge balance in the alpha-hydroxyacid dehydrogenase vacuole: an acid test. Protein Sci 1992; 1:892-901. [PMID: 1304374 PMCID: PMC2142153 DOI: 10.1002/pro.5560010707] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The proposal that the active site vacuole of NAD(+)-S-lactate dehydrogenase is unable to accommodate any imbalance in electrostatic charge was tested by genetically manipulating the cDNA coding for human muscle lactate dehydrogenase to make a protein with an aspartic acid introduced at position 140 instead of the wild-type asparagine. The Asn 140-Asp mutant enzyme has the same kcat as the wild type (Asn 140) at low pH (4.5), and at higher pH the Km for pyruvate increases 10-fold for each unit increase in pH up to pH 9. We conclude that the anion of Asp 140 is completely inactive and that it binds pyruvate with a Km that is over 1,000 times that of the Km of the neutral, protonated aspartic-140. Experimental results and molecular modeling studies indicate the pKa of the active site histidine-195 in the enzyme-NADH complex is raised to greater than 10 by the presence of the anion at position 140. Energy minimization and molecular dynamics studies over 36 ps suggest that the anion at position 140 promotes the opening of and the entry of mobile solvent beneath the polypeptide loop (98-110), which normally seals off the internal active site vacuole from external bulk solvent.
Collapse
Affiliation(s)
- A Cortes
- Department of Biochemistry and Physiology, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Bryant C, Strohl M, Green LK, Long HB, Alter LA, Pekar AH, Chance RE, Brems DN. Detection of an equilibrium intermediate in the folding of a monomeric insulin analog. Biochemistry 1992; 31:5692-8. [PMID: 1610818 DOI: 10.1021/bi00140a002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To determine the conformational properties of the C-terminal region of the insulin B-chain relative to the helical core of the molecule, we have investigated the fluorescence properties of an insulin analog in which amino acids B28 and B29 have been substituted with a tryptophan and proline residue respectively, ([WB28,PB29]insulin). The biological properties and far-UV circular dichroism (CD) spectrum of the molecule indicate that the conformation is similar to that of native human insulin. Guanidine hydrochloride (GdnHCl)-induced equilibrium denaturation of the analog as monitored by CD intensity at 224 nm indicates a single cooperative transition with a midpoint of 4.9 M GdnHCl. In contrast, when the equilibrium denaturation is observed by steady-state fluorescence emission intensity at 350 nm, two distinct transitions are observed. The first transition accounts for 60% of the observed signal and has a midpoint of 1.5 M GdnHCl. The second transition roughly parallels that observed by CD measurements with an approximate midpoint of 4.5 M GdnHCl. The near-UV CD spectrum, size-exclusion, and ultracentrifugation properties of [WB28,PB29]insulin indicate that this analog does not self-associate in a concentration-dependent manner as does human insulin. Thus, the observed fluorescence changes must be due to specific conformational transitions which occur upon unfolding of the insulin monomer with the product of the first transition representing a stable folding intermediate of this molecule.
Collapse
Affiliation(s)
- C Bryant
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana 46285
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Dunn CR, Wilks HM, Halsall DJ, Atkinson T, Clarke AR, Muirhead H, Holbrook JJ. Design and synthesis of new enzymes based on the lactate dehydrogenase framework. Philos Trans R Soc Lond B Biol Sci 1991; 332:177-84. [PMID: 1678537 DOI: 10.1098/rstb.1991.0047] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Analysis of the mechanism and structure of lactate dehydrogenases is summarized in a map of the catalytic pathway. Chemical probes, single tryptophan residues inserted at specific sites and a crystal structure reveal slow movements of the protein framework that discriminate between closely related small substrates. Only small and correctly charged substrates allow the protein to engulf the substrate in an internal vacuole that is isolated from solvent protons, in which water is frozen and hydride transfer is rapid. The closed vacuole is very sensitive to the size and charge of the substrate and provides discrimination between small substrates that otherwise have too few functional groups to be distinguished at a solvated protein surface. This model was tested against its ability to successfully predict the design and synthesis of new enzymes such as L-hydroxyisocaproate dehydrogenase and fully active malate dehydrogenase. Solvent friction limits the rate of forming the vacuole and thus the maximum rate of catalysis.
Collapse
Affiliation(s)
- C R Dunn
- University of Bristol Molecular Recognition Centre, School of Medical Sciences, U.K
| | | | | | | | | | | | | |
Collapse
|