1
|
Green KD, Punetha A, Hou C, Garneau-Tsodikova S, Tsodikov OV. Probing the Robustness of Inhibitors of Tuberculosis Aminoglycoside Resistance Enzyme Eis by Mutagenesis. ACS Infect Dis 2019; 5:1772-1778. [PMID: 31433614 DOI: 10.1021/acsinfecdis.9b00228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Each year, millions of people worldwide contract tuberculosis (TB), the deadliest infection. The spread of infections with drug-resistant strains of Mycobacterium tuberculosis (Mtb) that are refractory to treatment poses a major global challenge. A major cause of resistance to antitubercular drugs of last resort, aminoglycosides, is overexpression of the Eis (enhanced intracellular survival) enzyme of Mtb, which inactivates aminoglycosides by acetylating them. We showed previously that this inactivation of aminoglycosides could be overcome by our recently reported Eis inhibitors that are currently in development as potential aminoglycoside adjunctive therapeutics against drug-resistant TB. To interrogate the robustness of the Eis inhibitors, we investigated the enzymatic activity of Eis and its inhibition by Eis inhibitors from three different structural families for nine single-residue mutants of Eis, including those found in the clinic. Three engineered mutations of the substrate binding site, D26A, W36A, and F84A, abolished inhibitor binding while compromising Eis enzymatic activity 2- to 3-fold. All other Eis mutants, including clinically observed ones, were potently inhibited by at least one inhibitor. This study helps position us one step ahead of Mtb resistance to Eis inhibitors as they are being developed for TB therapy.
Collapse
Affiliation(s)
- Keith D. Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Ankita Punetha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Oleg V. Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
2
|
Vong K, Auclair K. Understanding and overcoming aminoglycoside resistance caused by N-6'-acetyltransferase. MEDCHEMCOMM 2012; 3:397-407. [PMID: 28018574 PMCID: PMC5179255 DOI: 10.1039/c2md00253a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides occupy a special niche amongst antibiotics in part because of their broad spectrum of action. Bacterial resistance is however menacing to render these drugs obsolete. A significant amount of work has been devoted to understand and overcome aminoglycoside resistance. This mini-review will discuss aminoglycoside-modifying enzymes (AMEs), with a special emphasis on the efforts to comprehend and block resistance caused by aminoglycoside 6'-N-acetyltransferase (AAC(6')).
Collapse
Affiliation(s)
- Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
3
|
Stogios PJ, Shakya T, Evdokimova E, Savchenko A, Wright GD. Structure and function of APH(4)-Ia, a hygromycin B resistance enzyme. J Biol Chem 2010; 286:1966-75. [PMID: 21084294 DOI: 10.1074/jbc.m110.194266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 Å resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2″) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.
Collapse
Affiliation(s)
- Peter J Stogios
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
4
|
Houghton JL, Green KD, Chen W, Garneau-Tsodikova S. The future of aminoglycosides: the end or renaissance? Chembiochem 2010; 11:880-902. [PMID: 20397253 DOI: 10.1002/cbic.200900779] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Indexed: 11/05/2022]
Abstract
Although aminoglycosides have been used as antibacterials for decades, their use has been hindered by their inherent toxicity and the resistance that has emerged to these compounds. It seems that such issues have relegated a formerly front-line class of antimicrobials to the proverbial back shelf. However, recent advances have demonstrated that novel aminoglycosides have a potential to overcome resistance as well as to be used to treat HIV-1 and even human genetic disorders, with abrogated toxicity. It is not the end for aminoglycosides, but rather, the challenges faced by researchers have led to ingenuity and a change in how we view this class of compounds, a renaissance.
Collapse
Affiliation(s)
- Jacob L Houghton
- Department of Medicinal Chemistry in the College of Pharmacy, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
5
|
Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine. Biochem J 2008; 416:281-8. [PMID: 18637789 DOI: 10.1042/bj20080389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The modification of proteins by reducing sugars through the process of non-enzymatic glycation is one of the principal mechanisms by which hyperglycaemia may precipitate the development of diabetic complications. Fn3K (fructosamine 3-kinase) and Fn3KRP (Fn3K-related protein) are two recently discovered enzymes that may play roles in metabolizing early glycation products. However, although the activity of these enzymes towards various glycated substrates has been established, very little is known about their structure-function relationships or their respective mechanisms of action. Furthermore, their only structural similarities noted to date with members of other kinase families has been with the bacterial aminoglycoside kinases. In the present study, we employed affinity labelling with the ATP analogue FSBA {5'-p-[(fluorosulfonyl)benzoyl]adenosine} to probe the active-site topology of Fn3KRP as an example of this enigmatic family of kinases. FSBA was found to modify Fn3KRP at five distinct sites; four of these were predicted to be localized in close proximity to its ATP-binding site, based on alignments with the aminoglycoside kinase APH(3')-IIIa, and examination of its published tertiary structure. The results of the present studies provide evidence that Fn3KRP possesses an ATP-binding domain that is structurally related to that of both the aminoglycoside kinases and eukaryotic protein kinases.
Collapse
|
6
|
Yuan C, Kent C. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans. J Biol Chem 2004; 279:17801-9. [PMID: 14960577 DOI: 10.1074/jbc.m401382200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choline kinase catalyzes the phosphorylation of choline by ATP, the first committed step in the CDP-choline pathway for phosphatidylcholine biosynthesis. To begin to elucidate the mechanism of catalysis by this enzyme, choline kinase A-2 from Caenorhabditis elegans was analyzed by systematic mutagenesis of highly conserved residues followed by analysis of kinetic and structural parameters. Specifically, mutants were analyzed with respect to K(m) and k(cat) values for each substrate and Mg(2+), inhibitory constants for Mg(2+) and Ca(2+), secondary structure as monitored by circular dichroism, and sensitivity to unfolding in guanidinium hydrochloride. The most severe impairment of catalysis occurred with the modification of Asp-255 and Asn-260, which are located in the conserved Brenner's phosphotransferase motif, and Asp-301 and Glu-303, in the signature choline kinase motif. For example, mutation of Asp-255 or Asp-301 to Ala eliminated detectable catalytic activity, and mutation of Asn-260 and Glu-303 to Ala decreased k(cat) by 300- and 10-fold, respectively. Additionally, the K(m) for Mg(2+) for mutants N260A and E303A was approximately 30-fold higher than that of wild type. Several other residues (Ser-86, Arg-111, Glu-125, and Trp-387) were identified as being important: Catalytic efficiencies (k(cat)/K(m)) for the enzymes in which these residues were mutated to Ala were reduced to 2-25% of wild type. The high degree of structural similarity among choline kinase A-2, aminoglycoside phosphotransferases, and protein kinases, together with the results from this mutational analysis, indicates it is likely that these conserved residues are located at the catalytic core of choline kinase.
Collapse
Affiliation(s)
- Chong Yuan
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0606, USA.
| | | |
Collapse
|
7
|
Lee HK, Vakulenko SB, Clewell DB, Lerner SA, Chow JW. Mutations in the aph(2")-Ic gene are responsible for increased levels of aminoglycoside resistance. Antimicrob Agents Chemother 2002; 46:3253-6. [PMID: 12234853 PMCID: PMC128768 DOI: 10.1128/aac.46.10.3253-3256.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random PCR mutagenesis of the enterococcal aph(2")-Ic gene followed by selection for mutant enzymes that confer enhanced levels of aminoglycoside resistance resulted in mutants of APH(2")-Ic with His-258-Leu and Phe-108-Leu substitutions, all of which conferred rises in the MICs of several aminoglycosides. The mutated residues are located outside conserved regions of aminoglycoside phosphotransferases.
Collapse
Affiliation(s)
- Hae Kyung Lee
- Division of Infectious Diseases, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
8
|
Boehr DD, Lane WS, Wright GD. Active site labeling of the gentamicin resistance enzyme AAC(6')-APH(2") by the lipid kinase inhibitor wortmannin. CHEMISTRY & BIOLOGY 2001; 8:791-800. [PMID: 11514228 DOI: 10.1016/s1074-5521(01)00051-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Aminoglycoside antibiotic resistance is largely the result of the production of enzymes that covalently modify the drugs including kinases (APHs) with structural and functional similarity to protein and lipid kinases. One of the most important aminoglycoside resistance enzymes is AAC(6')-APH(2"), a bifunctional enzyme with both aminoglycoside acetyltransferase and kinase activities. Knowledge of enzyme active site structure is important in deciphering the molecular mechanism of antibiotic resistance and here we explored active site labeling techniques to study AAC(6')-APH(2") structure and function. RESULTS AAC(6')-APH(2") was irreversibly inactivated by wortmannin, a potent phosphatidylinositol 3-kinase inhibitor, through the covalent modification of a conserved lysine in the ATP binding pocket. 5'-[p-(Fluorosulfonyl)benzoyl]adenosine, an electrophilic ATP analogue and known inactivator of other APH enzymes such as APH(3')-IIIa, did not inactivate AAC(6')-APH(2"), and reciprocally, wortmannin did not inactivate APH(3')-IIIa. CONCLUSIONS These distinct active site label sensitivities point to important differences in aminoglycoside kinase active site structures and suggest that design of broad range, ATP binding site-directed inhibitors against APHs will be difficult. Nonetheless, given the sensitivity of APH enzymes to both protein and lipid kinase inhibitors, potent lead inhibitors of this important resistance enzyme are likely to be found among the libraries of compounds directed against other pharmacologically important kinases.
Collapse
Affiliation(s)
- D D Boehr
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
9
|
Boehr DD, Thompson PR, Wright GD. Molecular mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: roles of conserved active site residues. J Biol Chem 2001; 276:23929-36. [PMID: 11279088 DOI: 10.1074/jbc.m100540200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aminoglycoside antibiotic kinases (APHs) constitute a clinically important group of antibiotic resistance enzymes. APHs share structural and functional homology with Ser/Thr and Tyr kinases, yet only five amino acids are invariant between the two groups of enzymes and these residues are all located within the nucleotide binding regions of the proteins. We have performed site-directed mutagenesis on all five conserved residues in the aminoglycoside kinase APH(3')-IIIa: Lys(44) and Glu(60) involved in ATP capture, a putative active site base required for deprotonating the incoming aminoglycoside hydroxyl group Asp(190), and the Mg(2+) ligands Asn(195) and Glu(208), which coordinate two Mg(2+) ions, Mg1 and Mg2. Previous structural and mutagenesis evidence have demonstrated that Lys(44) interacts directly with the phosphate groups of ATP; mutagenesis of invariant Glu(60), which forms a salt bridge with the epsilon-amino group of Lys(44), demonstrated that this residue does not play a critical role in ATP recognition or catalysis. Results of mutagenesis of Asp(190) were consistent with a role in proper positioning of the aminoglycoside hydroxyl during phosphoryl transfer but not as a general base. The Mg1 and Mg2 ligand Asp(208) was found to be absolutely required for enzyme activity and the Mg2 ligand Asn(195) is important for Mg.ATP recognition. The mutagenesis results together with solvent isotope, solvent viscosity, and divalent cation requirements are consistent with a dissociative mechanism of phosphoryl transfer where initial substrate deprotonation is not essential for phosphate transfer and where Mg2 and Asp(208) likely play a critical role in stabilization of a metaphosphate-like transition state. These results lay the foundation for the synthesis of transition state mimics that could reverse aminoglycoside antibiotic resistance in vivo.
Collapse
Affiliation(s)
- D D Boehr
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
10
|
Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 1999; 43:727-37. [PMID: 10103173 PMCID: PMC89199 DOI: 10.1128/aac.43.4.727] [Citation(s) in RCA: 539] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- M P Mingeot-Leclercq
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, Bruxelles, Belgium.
| | | | | |
Collapse
|
11
|
Yang Y, Roestamadji J, Mobashery S, Orlando R. The use of neamine as a molecular template: identification of active site residues in the bacterial antibiotic resistance enzyme aminoglycoside 3'-phosphotransferase type IIa by mass spectroscopy. Bioorg Med Chem Lett 1998; 8:3489-94. [PMID: 9934458 DOI: 10.1016/s0960-894x(98)00634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel aminoglycoside-based affinity inactivators were shown to covalently modify the active site of aminoglycoside 3'-phosphotransferase type IIa (APH(3')-IIa), an important resistance factor in bacteria for aminoglycoside antibiotics. Standard peptide mapping techniques failed with this enzyme. A novel mass spectroscopic analysis which combines protease digestion on the instrument probe, followed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is described which permitted rapid identification of the sites of protein modification. By this new technique, Glu-3 and Asp-23 were identified as active-site residues, the side chains of which potentially may serve as counter ions for the ammonium functionalities at positions 6', and 1 and 3 of the antibiotic substrates, respectively. These findings contradict previous assertions that the C-terminal third of the enzyme should form the active site, by placing the active site clearly in the N-terminal portion of the enzyme.
Collapse
Affiliation(s)
- Y Yang
- Complex Carbohydrate Research Center, University of GA, Athens 30602-4712, USA
| | | | | | | |
Collapse
|
12
|
Thompson PR, Hughes DW, Cianciotto NP, Wright GD. Spectinomycin kinase from Legionella pneumophila. Characterization of substrate specificity and identification of catalytically important residues. J Biol Chem 1998; 273:14788-95. [PMID: 9614079 DOI: 10.1074/jbc.273.24.14788] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterium Legionella pneumophila is the responsible agent for Legionnaires' disease and has recently been shown to harbor a gene encoding a kinase that confers resistance to the aminoglycoside antibiotic spectinomycin (Suter, T. M., Viswanathan, V. K., and Cianciotto, N. P. (1997) Antimicrob. Agents Chemother. 41, 1385-1388). We report the overproduction, purification, and characterization of this spectinomycin kinase from an expressing system in Escherichia coli. The purified protein shows stringent substrate specificity for spectinomycin with Km = 21.5 microM and kcat = 24.2 s-1 and does not bind other aminoglycosides including kanamycin, amikacin, neomycin, butirosin, streptomycin, or apramycin. Purification of spectinomycin phosphate followed by characterization by mass spectrometry and 1H, 13C, and 31P NMR established the site of phosphorylation to be at the hydroxyl group at position 9. Thus this enzyme is designated APH(9)-Ia (where APH is aminoglycoside kinase). The enzyme was inactivated by the electrophilic ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine, consistent with a nucleophilic residue such as Lys lining the nucleotide binding pocket. Site-directed mutagenesis of Lys-52 and Asp-212 to Ala confirmed that these residues were important for catalysis, with Lys-52 playing a potential role in ATP binding and Asp-212 in phosphoryl transfer. Thio and solvent isotope effect experiments in the presence of either Mg2+ or Mn2+ were consistent with a kinetic mechanism in which phosphate transfer does not contribute significantly to the rate-limiting step. These results establish that APH(9)-Ia is a highly specific antibiotic resistance kinase and provides the requisite mechanistic information for future structural studies.
Collapse
Affiliation(s)
- P R Thompson
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5
| | | | | | | |
Collapse
|
13
|
|
14
|
|
15
|
Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, Berghuis AM. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 1997; 89:887-95. [PMID: 9200607 DOI: 10.1016/s0092-8674(00)80274-3] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial resistance to aminoglycoside antibiotics is almost exclusively accomplished through either phosphorylation, adenylylation, or acetylation of the antibacterial agent. The aminoglycoside kinase, APH(3')-IIIa, catalyzes the phosphorylation of a broad spectrum of aminoglycoside antibiotics. The crystal structure of this enzyme complexed with ADP was determined at 2.2 A. resolution. The three-dimensional fold of APH(3')-IIIa reveals a striking similarity to eukaryotic protein kinases despite a virtually complete lack of sequence homology. Nearly half of the APH(3')-IIIa sequence adopts a conformation identical to that seen in these kinases. Substantial differences are found in the location and conformation of residues presumably responsible for second-substrate specificity. These results indicate that APH(3') enzymes and eukaryotic-type protein kinases share a common ancestor.
Collapse
Affiliation(s)
- W C Hon
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The aminoglycoside antibiotics are broad-spectrum antibacterial compounds that are used extensively for the treatment of many bacterial infections. In view of the current concerns over the global rise in antibiotic-resistant microorganisms, there has been renewed interest in the mechanisms of resistance to the aminoglycosides, including the superfamily of aminoglycoside-modifying enzymes.
Collapse
Affiliation(s)
- J Davies
- Dept of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
17
|
Thompson PR, Hughes DW, Wright GD. Mechanism of aminoglycoside 3'-phosphotransferase type IIIa: His188 is not a phosphate-accepting residue. CHEMISTRY & BIOLOGY 1996; 3:747-55. [PMID: 8939691 DOI: 10.1016/s1074-5521(96)90251-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The enzyme aminoglycoside 3'-phosphotransferase Type IIIa (APH(3')-IIIa), confers resistance to many aminoglycoside antibiotics by regiospecific phosphorylation of their hydroxyl groups. The chemical mechanism of phosphoryl transfer is unknown. Based on sequence homology, it has been suggested that a conserved His residue, His188, could be phosphorylated by ATP, and this phospho-His would transfer the phosphate to the incoming aminoglycoside. We have used chemical modification, site-directed mutagenesis and positional isotope exchange methods to probe the mechanism of phosphoryl transfer by APH(3')-IIIa. RESULTS Chemical modification by diethylpyrocarbonate implicated His in aminoglycoside phosphorylation by APH(3')-IIIa. We prepared His --> Ala mutants of all four His residues in APH(3')-IIIa and found minimal effects of the mutations on the steady-state phosphorylation of several aminoglycosides. One of these mutants, His188Ala, was largely insoluble when compared to the wild-type enzyme. Positional isotope exchange experiments using gamma-[18O]-ATP did not support a double-displacement mechanism. CONCLUSIONS His residues are not required for aminoglycoside phosphorylation by APH(3')-IIIa. The conserved His 188 is thus not a phosphate accepting residue but does seem to be important for proper enzyme folding. Positional isotope exchange experiments are consistent with direct attack of the aminoglycoside hydroxyl group on the gamma-phosphate of ATP.
Collapse
Affiliation(s)
- P R Thompson
- Department of Biochemistry, McMaster University, Hamilton, ON, Canada L8N3Z5.
| | | | | |
Collapse
|