1
|
Albar RA, Smith HL, Sanches K, Wai DCC, Naseem MU, Szanto TG, Panyi G, Prentis PJ, Norton RS. Structure and functional studies of Avt1, a novel peptide from the sea anemone Aulactinia veratra. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1873:141050. [PMID: 39357665 DOI: 10.1016/j.bbapap.2024.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Sea anemones are a rich source of peptide toxins spanning a diverse range of biological activities, typically targeting proteins such as ion channels, receptors and transporters. These peptide toxins and their analogues are usually highly stable and selective for their molecular targets, rendering them of interest as molecular tools, insecticides and therapeutics. Recent transcriptomic and proteomic analyses of the sea anemone Aulactinia veratra identified a novel 28-residue peptide, designated Avt1. Avt1 was produced using solid-phase peptide synthesis, followed by oxidative folding and purification of the folded peptide using reversed-phase high-performance liquid chromatography. The liquid chromatography-mass spectrometry profile of synthetic Avt1 showed a pure peak with molecular mass 6 Da less than that of the reduced form of the peptide, indicating the successful formation of three disulfide bonds. The solution structure determined by NMR revealed that Avt1 adopts an inhibitor cystine knot (ICK) fold, in which a ring is formed by two disulfide bonds with a third disulfide penetrating the ring to create the pseudo-knot. This structure provides ICK peptides with high structural, thermal and proteolytic stability. Consistent with its ICK structure, Avt1 was resistant to proteolysis by trypsin, chymotrypsin and pepsin, although it was not a trypsin inhibitor. Avt1 at 100 nM showed no activity in patch-clamp electrophysiological assays against several mammalian voltage-gated ion channels, but has structural features similar to toxins targeting insect sodium ion channels. Although sequence homologues of Avt1 are found in a number of sea anemones, this is the first representative of this family to be characterised structurally and functionally.
Collapse
Affiliation(s)
- Renad A Albar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Li Y, Wei Y, Ultsch M, Li W, Tang W, Tombling B, Gao X, Dimitrova Y, Gampe C, Fuhrmann J, Zhang Y, Hannoush RN, Kirchhofer D. Cystine-knot peptide inhibitors of HTRA1 bind to a cryptic pocket within the active site region. Nat Commun 2024; 15:4359. [PMID: 38777835 PMCID: PMC11111691 DOI: 10.1038/s41467-024-48655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Cystine-knot peptides (CKPs) are naturally occurring peptides that exhibit exceptional chemical and proteolytic stability. We leveraged the CKP carboxypeptidase A1 inhibitor as a scaffold to construct phage-displayed CKP libraries and subsequently screened these collections against HTRA1, a trimeric serine protease implicated in age-related macular degeneration and osteoarthritis. The initial hits were optimized by using affinity maturation strategies to yield highly selective and potent picomolar inhibitors of HTRA1. Crystal structures, coupled with biochemical studies, reveal that the CKPs do not interact in a substrate-like manner but bind to a cryptic pocket at the S1' site region of HTRA1 and abolish catalysis by stabilizing a non-competent active site conformation. The opening and closing of this cryptic pocket is controlled by the gatekeeper residue V221, and its movement is facilitated by the absence of a constraining disulfide bond that is typically present in trypsin fold serine proteases, thereby explaining the remarkable selectivity of the CKPs. Our findings reveal an intriguing mechanism for modulating the activity of HTRA1, and highlight the utility of CKP-based phage display platforms in uncovering potent and selective inhibitors against challenging therapeutic targets.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuehua Wei
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Mark Ultsch
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wei Li
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wanjian Tang
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Tombling
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yoana Dimitrova
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christian Gampe
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jakob Fuhrmann
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Chen FJ, Pinnette N, Gao J. Strategies for the Construction of Multicyclic Phage Display Libraries. Chembiochem 2024; 25:e202400072. [PMID: 38466139 PMCID: PMC11437370 DOI: 10.1002/cbic.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody-based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein-protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody-like potencies and specificities. Compared to linear and disulfide-monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein-protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof-of-concept work done on validating these libraries against different protein targets.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Nicole Pinnette
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| |
Collapse
|
4
|
Zhou L, Cai F, Li Y, Gao X, Wei Y, Fedorova A, Kirchhofer D, Hannoush RN, Zhang Y. Disulfide-constrained peptide scaffolds enable a robust peptide-therapeutic discovery platform. PLoS One 2024; 19:e0300135. [PMID: 38547109 PMCID: PMC10977697 DOI: 10.1371/journal.pone.0300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Peptides present an alternative modality to immunoglobulin domains or small molecules for developing therapeutics to either agonize or antagonize cellular pathways associated with diseases. However, peptides often suffer from poor chemical and physical stability, limiting their therapeutic potential. Disulfide-constrained peptides (DCP) are naturally occurring and possess numerous desirable properties, such as high stability, that qualify them as drug-like scaffolds for peptide therapeutics. DCPs contain loop regions protruding from the core of the molecule that are amenable to peptide engineering via direct evolution by use of phage display technology. In this study, we have established a robust platform for the discovery of peptide therapeutics using various DCPs as scaffolds. We created diverse libraries comprising seven different DCP scaffolds, resulting in an overall diversity of 2 x 1011. The effectiveness of this platform for functional hit discovery has been extensively evaluated, demonstrating a hit rate comparable to that of synthetic antibody libraries. By utilizing chemically synthesized and in vitro folded peptides derived from selections of phage displayed DCP libraries, we have successfully generated functional inhibitors targeting the HtrA1 protease. Through affinity maturation strategies, we have transformed initially weak binders against Notch2 with micromolar Kd values to high-affinity ligands in the nanomolar range. This process highlights a viable hit-to-lead progression. Overall, our platform holds significant potential to greatly enhance the discovery of peptide therapeutics.
Collapse
Affiliation(s)
- Lijuan Zhou
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Fei Cai
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Yanjie Li
- Department of Peptide Therapeutics, Genentech, Inc., South San Francisco, California, United States of America
| | - Xinxin Gao
- Department of Peptide Therapeutics, Genentech, Inc., South San Francisco, California, United States of America
| | - Yuehua Wei
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Anna Fedorova
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Daniel Kirchhofer
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Rami N. Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Yingnan Zhang
- Departments of Biological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
5
|
Ecballium elaterium (L.) A. Rich. seed oil: Chemical composition and antiproliferative effect on human colonic adenocarcinoma and fibrosarcoma cancer cell lines. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Mong SK, Cochran FV, Yu H, Graziano Z, Lin YS, Cochran JR, Pentelute BL. Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 2017; 56:5720-5725. [PMID: 28952732 DOI: 10.1021/acs.biochem.7b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Homochirality is a general feature of biological macromolecules, and Nature includes few examples of heterochiral proteins. Herein, we report on the design, chemical synthesis, and structural characterization of heterochiral proteins possessing loops of amino acids of chirality opposite to that of the rest of a protein scaffold. Using the protein Ecballium elaterium trypsin inhibitor II, we discover that selective β-alanine substitution favors the efficient folding of our heterochiral constructs. Solution nuclear magnetic resonance spectroscopy of one such heterochiral protein reveals a homogeneous global fold. Additionally, steered molecular dynamics simulation indicate β-alanine reduces the free energy required to fold the protein. We also find these heterochiral proteins to be more resistant to proteolysis than homochiral l-proteins. This work informs the design of heterochiral protein architectures containing stretches of both d- and l-amino acids.
Collapse
Affiliation(s)
- Surin K Mong
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Frank V Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Hongtao Yu
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Zachary Graziano
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University , 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University , 450 Serra Mall, Stanford, California 94305, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Gao X, Stanger K, Kaluarachchi H, Maurer T, Ciepla P, Chalouni C, Franke Y, Hannoush RN. Cellular uptake of a cystine-knot peptide and modulation of its intracellular trafficking. Sci Rep 2016; 6:35179. [PMID: 27734922 PMCID: PMC5062073 DOI: 10.1038/srep35179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
Cyclotides or cyclic cystine-knot peptides have emerged as a promising class of pharmacological ligands that modulate protein function. Interestingly, very few cyclotides have been shown to enter into cells. Yet, it remains unknown whether backbone cyclization is required for their cellular internalization. In this report, we studied the cellular behavior of EETI-II, a model acyclic cystine-knot peptide. Even though synthetic methods have been used to generate EETI-II, recombinant methods that allow efficient large scale biosynthesis of EETI-II have been lagging. Here, we describe a novel protocol for recombinant generation of folded EETI-II in high yields and to near homogeneity. We also uncover that EETI-II is efficiently uptaken via an active endocytic pathway to early endosomes in mammalian cells, eventually accumulating in late endosomes and lysosomes. Notably, co-incubation with a cell-penetrating peptide enhanced the cellular uptake and altered the trafficking of EETI-II, leading to its evasion of lysosomes. Our results demonstrate the feasibility of modulating the subcellular distribution and intracellular targeting of cystine-knot peptides, and hence enable future exploration of their utility in drug discovery and delivery.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Karen Stanger
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Harini Kaluarachchi
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Till Maurer
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Paulina Ciepla
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Cecile Chalouni
- Department of Pathology, Genentech, South San Francisco, California
| | - Yvonne Franke
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| |
Collapse
|
8
|
Poth AG, Chan LY, Craik DJ. Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 2016; 100:480-91. [PMID: 23893608 DOI: 10.1002/bip.22284] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/08/2022]
Abstract
Cyclotides are a family of naturally occurring backbone-cyclized macrocyclic mini-proteins from plants that have a knotted trio of intramolecular disulfide bonds. Their structural features imbue cyclotides with extraordinary stability against degradation at elevated temperatures or in the presence of proteolytic enzymes. The plasticity of their intracysteine loop sequences is exemplified by the more than 250 natural cyclotides sequenced to date, and this tolerance to sequence variation, along with their diverse bioactivities, underpins the suitability of the cyclic cystine knot motif as a valuable drug design scaffold and research tool for protein engineering studies. Here, we review the recent literature on applications of cyclotides for the stabilization of peptide epitopes and related protein engineering studies. Possible future directions in this field are also described.
Collapse
Affiliation(s)
- Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | |
Collapse
|
9
|
Karaki L, Da Silva P, Rizk F, Chouabe C, Chantret N, Eyraud V, Gressent F, Sivignon C, Rahioui I, Kahn D, Brochier-Armanet C, Rahbé Y, Royer C. Genome-wide analysis identifies gain and loss/change of function within the small multigenic insecticidal Albumin 1 family of Medicago truncatula. BMC PLANT BIOLOGY 2016; 16:63. [PMID: 26964738 PMCID: PMC4785745 DOI: 10.1186/s12870-016-0745-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/25/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND Albumin 1b peptides (A1b) are small disulfide-knotted insecticidal peptides produced by Fabaceae (also called Leguminosae). To date, their diversity among this plant family has been essentially investigated through biochemical and PCR-based approaches. The availability of high-quality genomic resources for several fabaceae species, among which the model species Medicago truncatula (Mtr), allowed for a genomic analysis of this protein family aimed at i) deciphering the evolutionary history of A1b proteins and their links with A1b-nodulins that are short non-insecticidal disulfide-bonded peptides involved in root nodule signaling and ii) exploring the functional diversity of A1b for novel bioactive molecules. RESULTS Investigating the Mtr genome revealed a remarkable expansion, mainly through tandem duplications, of albumin1 (A1) genes, retaining nearly all of the same canonical structure at both gene and protein levels. Phylogenetic analysis revealed that the ancestral molecule was most probably insecticidal giving rise to, among others, A1b-nodulins. Expression meta-analysis revealed that many A1b coding genes are silent and a wide tissue distribution of the A1 transcripts/peptides within plant organs. Evolutionary rate analyses highlighted branches and sites with positive selection signatures, including two sites shown to be critical for insecticidal activity. Seven peptides were chemically synthesized and folded in vitro, then assayed for their biological activity. Among these, AG41 (aka MtrA1013 isoform, encoded by the orphan TA24778 contig.), showed an unexpectedly high insecticidal activity. The study highlights the unique burst of diversity of A1 peptides within the Medicago genus compared to the other taxa for which full-genomes are available: no A1 member in Lotus, or in red clover to date, while only a few are present in chick pea, soybean or pigeon pea genomes. CONCLUSION The expansion of the A1 family in the Medicago genus is reminiscent of the situation described for another disulfide-rich peptide family, the "Nodule-specific Cysteine-Rich" (NCR), discovered within the same species. The oldest insecticidal A1b toxin was described from the Sophorae, dating the birth of this seed-defense function to more than 58 million years, and making this model of plant/insect toxin/receptor (A1b/insect v-ATPase) one of the oldest known.
Collapse
Affiliation(s)
- L. Karaki
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />ER030-EDST; Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
- />Université de Lyon, F-69000 Lyon, France
| | - P. Da Silva
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| | - F. Rizk
- />ER030-EDST; Department of Life and Earth Sciences, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
| | - C. Chouabe
- />Université de Lyon, F-69000 Lyon, France
- />UCBL, CarMeN Laboratory, INSERM UMR-1060, Cardioprotection Team, Faculté de Médecine, Univ Lyon-1, Université Claude Bernard Lyon1, 8 Avenue Rockefeller, 69373 Lyon Cedex 08, France
| | - N. Chantret
- />INRA, UMR1334 AGAP, 2 Place Pierre Viala, 34060 Montpellier, France
- />Supagro Montpellier, 2 Place Pierre Viala, 34060 Montpellier, France
| | - V. Eyraud
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| | - F. Gressent
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| | - C. Sivignon
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| | - I. Rahioui
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| | - D. Kahn
- />Université de Lyon, F-69000 Lyon, France
- />Université Claude Bernard Lyon 1; CNRS; INRA; UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - C. Brochier-Armanet
- />Université de Lyon, F-69000 Lyon, France
- />Université Claude Bernard Lyon 1; CNRS; INRA; UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Y. Rahbé
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| | - C. Royer
- />INRA, UMR0203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621 Villeurbanne, France
- />Insa-Lyon, UMR0203 BF2I, F-69621 Villeurbanne, France
- />Université de Lyon, F-69000 Lyon, France
| |
Collapse
|
10
|
Synthetic Cystine-Knot Miniproteins - Valuable Scaffolds for Polypeptide Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:121-44. [PMID: 27236555 DOI: 10.1007/978-3-319-32805-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Peptides with the cystine-knot architecture, often termed knottins, are promising scaffolds for biomolecular engineering. These unique molecules combine diverse bioactivities with excellent structural, thermal, and proteolytical stability. Being different in the composition and structure of their amino acid backbone, knottins share the same core element, namely cystine knot, which is built by six cysteine residues forming three disulfides upon oxidative folding. This motif ensures a notably rigid framework that highly tolerates both rational and combinatorial changes in the primary structure. Being accessible through recombinant production and total chemical synthesis, cystine-knot miniproteins can be endowed with novel bioactivities by variation of surface-exposed loops and incorporation of non-natural elements within their non-conserved regions towards the generation of tailor-made peptidic compounds. In this chapter the topology of cystine-knot peptides, their synthesis and applications for diagnostics and therapy is discussed.
Collapse
|
11
|
Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 2014; 289:34953-64. [PMID: 25342741 PMCID: PMC4263892 DOI: 10.1074/jbc.m114.599878] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/17/2014] [Indexed: 01/06/2023] Open
Abstract
Fungi and bacteria compete with an arsenal of secreted molecules for their ecological niche. This repertoire represents a rich and inexhaustible source for antibiotics and fungicides. Antimicrobial peptides are an emerging class of fungal defense molecules that are promising candidates for pharmaceutical applications. Based on a co-cultivation system, we studied the interaction of the coprophilous basidiomycete Coprinopsis cinerea with different bacterial species and identified a novel defensin, copsin. The polypeptide was recombinantly produced in Pichia pastoris, and the three-dimensional structure was solved by NMR. The cysteine stabilized α/β-fold with a unique disulfide connectivity, and an N-terminal pyroglutamate rendered copsin extremely stable against high temperatures and protease digestion. Copsin was bactericidal against a diversity of Gram-positive bacteria, including human pathogens such as Enterococcus faecium and Listeria monocytogenes. Characterization of the antibacterial activity revealed that copsin bound specifically to the peptidoglycan precursor lipid II and therefore interfered with the cell wall biosynthesis. In particular, and unlike lantibiotics and other defensins, the third position of the lipid II pentapeptide is essential for effective copsin binding. The unique structural properties of copsin make it a possible scaffold for new antibiotics.
Collapse
Affiliation(s)
| | - Daniela Hofmann
- the Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniela Münch
- the Institute of Medical Microbiology, Immunology, and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany, and
| | | | | | | | - Hans-Georg Sahl
- the Institute of Medical Microbiology, Immunology, and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany, and
| | - Gerhard Wider
- the Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Tanja Schneider
- the Institute of Medical Microbiology, Immunology, and Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Bonn 53115, Germany, and the German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung), partner site Bonn-Cologne, Bonn 53115, Germany
| | | |
Collapse
|
12
|
Bastianelli G, Bouillon A, Nguyen C, Le-Nguyen D, Nilges M, Barale JC. Computational design of protein-based inhibitors of Plasmodium vivax subtilisin-like 1 protease. PLoS One 2014; 9:e109269. [PMID: 25343504 PMCID: PMC4208747 DOI: 10.1371/journal.pone.0109269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/16/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Malaria remains a major global health concern. The development of novel therapeutic strategies is critical to overcome the selection of multiresistant parasites. The subtilisin-like protease (SUB1) involved in the egress of daughter Plasmodium parasites from infected erythrocytes and in their subsequent invasion into fresh erythrocytes has emerged as an interesting new drug target. FINDINGS Using a computational approach based on homology modeling, protein-protein docking and mutation scoring, we designed protein-based inhibitors of Plasmodium vivax SUB1 (PvSUB1) and experimentally evaluated their inhibitory activity. The small peptidic trypsin inhibitor EETI-II was used as scaffold. We mutated residues at specific positions (P4 and P1) and calculated the change in free-energy of binding with PvSUB1. In agreement with our predictions, we identified a mutant of EETI-II (EETI-II-P4LP1W) with a Ki in the medium micromolar range. CONCLUSIONS Despite the challenges related to the lack of an experimental structure of PvSUB1, the computational protocol we developed in this study led to the design of protein-based inhibitors of PvSUB1. The approach we describe in this paper, together with other examples, demonstrates the capabilities of computational procedures to accelerate and guide the design of novel proteins with interesting therapeutic applications.
Collapse
Affiliation(s)
- Giacomo Bastianelli
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS UMR 3528, Paris, France
| | - Anthony Bouillon
- Institut Pasteur, Unité d’Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie & CNRS URA 2581, Paris, France
- CNRS, URA2581, Paris, France
| | | | | | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS UMR 3528, Paris, France
| | - Jean-Christophe Barale
- Institut Pasteur, Unité d’Immunologie Moléculaires des Parasites, Département de Parasitologie et de Mycologie & CNRS URA 2581, Paris, France
- CNRS, URA2581, Paris, France
| |
Collapse
|
13
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|
14
|
Glotzbach B, Reinwarth M, Weber N, Fabritz S, Tomaszowski M, Fittler H, Christmann A, Avrutina O, Kolmar H. Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1. PLoS One 2013; 8:e76956. [PMID: 24146945 PMCID: PMC3795654 DOI: 10.1371/journal.pone.0076956] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/27/2013] [Indexed: 12/02/2022] Open
Abstract
Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals. Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI (Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides. Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and matriptase-1 was identified.
Collapse
Affiliation(s)
- Bernhard Glotzbach
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Reinwarth
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Niklas Weber
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Michael Tomaszowski
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heiko Fittler
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Andreas Christmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
15
|
Hofmeyer T, Bulani SI, Grzeschik J, Krah S, Glotzbach B, Uth C, Avrutina O, Brecht M, Göringer HU, van Zyl P, Kolmar H. Protein Production in Yarrowia lipolytica Via Fusion to the Secreted Lipase Lip2p. Mol Biotechnol 2013; 56:79-90. [DOI: 10.1007/s12033-013-9684-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kaas Q, Craik DJ. NMR of plant proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:1-34. [PMID: 23611313 DOI: 10.1016/j.pnmrs.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
17
|
Chan LY, He W, Tan N, Zeng G, Craik DJ, Daly NL. A new family of cystine knot peptides from the seeds of Momordica cochinchinensis. Peptides 2013; 39:29-35. [PMID: 23127518 DOI: 10.1016/j.peptides.2012.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Abstract
Momordica cochinchinensis, a Cucurbitaceae plant commonly found in Southeast Asia, has the unusual property of containing both acyclic and backbone-cyclized trypsin inhibitors with inhibitor cystine knot (ICK) motifs. In the current study we have shown that M. cochinchinensis also contains another family of acyclic ICK peptides. We recently reported two novel peptides from M. cochinchinensis but have now discovered four additional peptides (MCo-3-MCo-6) with related sequences. Together these peptides form a novel family of M. cochinchinensis ICK peptides (MCo-ICK) that do not have sequence homology with other known peptides and are not potent trypsin inhibitors. Otherwise these new peptides MCo-3 to MCo-6 were evaluated for antimalarial activity against Plasmodium falciparum, and cytotoxic activity against the cancer cell line MDA-MB-231. But these peptides were not active.
Collapse
Affiliation(s)
- Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Chemical synthesis, backbone cyclization and oxidative folding of cystine-knot peptides: promising scaffolds for applications in drug design. Molecules 2012; 17:12533-52. [PMID: 23095896 PMCID: PMC6268209 DOI: 10.3390/molecules171112533] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 02/03/2023] Open
Abstract
Cystine-knot peptides display exceptional structural, thermal, and biological stability. Their eponymous motif consists of six cysteine residues that form three disulfide bonds, resulting in a notably rigid structural core. Since they highly tolerate either rational or combinatorial changes in their primary structure, cystine knots are considered to be promising frameworks for the development of peptide-based pharmaceuticals. Despite their relatively small size (two to three dozens amino acid residues), the chemical synthesis route is challenging since it involves critical steps such as head-to-tail cyclization and oxidative folding towards the respective bioactive isomer. Herein we describe the topology of cystine-knot peptides, their synthetic availability and briefly discuss potential applications of engineered variants in diagnostics and therapy.
Collapse
|
19
|
Gressent F, Da Silva P, Eyraud V, Karaki L, Royer C. Pea Albumin 1 subunit b (PA1b), a promising bioinsecticide of plant origin. Toxins (Basel) 2011; 3:1502-17. [PMID: 22295174 PMCID: PMC3268454 DOI: 10.3390/toxins3121502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/24/2011] [Accepted: 11/30/2011] [Indexed: 11/17/2022] Open
Abstract
PA1b (Pea Albumin 1, subunit b) is a peptide extract from pea seeds showing significant insecticidal activity against certain insects, such as cereal weevils (genus Sitophilus), the mosquitoes Culex pipiens and Aedes aegyptii, and certain species of aphids. PA1b has great potential for use on an industrial scale and for use in organic farming: it is extracted from a common plant; it is a peptide (and therefore suitable for transgenic applications); it can withstand many steps of extraction and purification without losing its activity; and it is present in a seed regularly consumed by humans and mammals without any known toxicity or allergenicity. The potential of this peptide to limit pest damage has stimulated research concerning its host range, its mechanism of action, its three-dimensional structure, the natural diversity of PA1b and its structure-function relationships.
Collapse
Affiliation(s)
- Frédéric Gressent
- INSA-Lyon, INRA, Université de Lyon, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Bat. Louis-Pasteur 20 av. Albert Einstein, Villeurbanne F-69621, France.
| | | | | | | | | |
Collapse
|
20
|
Discovery and applications of the plant cyclotides. Toxicon 2010; 56:1092-102. [DOI: 10.1016/j.toxicon.2010.02.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/02/2010] [Accepted: 02/18/2010] [Indexed: 11/20/2022]
|
21
|
Walewska A, Jaśkiewicz A, Bulaj G, Rolka K. Selenopeptide analogs of EETI-II retain potent trypsin inhibitory activities. Chem Biol Drug Des 2010; 77:93-7. [PMID: 20958922 DOI: 10.1111/j.1747-0285.2010.01046.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-disulfide-bridged Ecballium elaterium trypsin inhibitor II (EETI-II) is a 28-residue peptide that belongs to the squash family of canonical trypsin inhibitors. Herein, we report synthesis and biological activity of three EETI-II analogs. In each of analog, a pair of cysteine residues forming a native disulfide bridge was individually replaced by a pair of selenocysteine residues. All selenopeptide analogs were chemically synthesized using the Fmoc protocol and subsequently folded in the presence of oxidized and reduced glutathione. The analogs containing a diselenide bridge displayed association constants with trypsin that ranged from 2.6 x 10(9) to 5.1 x 10(9) [M(-1) ]. Our results suggest that the selenopeptide analogs retained low nanomolar inhibitory potencies, and only the diselenide bridge adjacent to the inhibitory binding loop weakened the interactions with trypsin by approximately fivefold. We discuss these findings in the context of a broader use of selenopeptide analogs as proxies to study cysteine-rich peptides.
Collapse
|
22
|
Lahti JL, Silverman AP, Cochran JR. Interrogating and predicting tolerated sequence diversity in protein folds: application to E. elaterium trypsin inhibitor-II cystine-knot miniprotein. PLoS Comput Biol 2009; 5:e1000499. [PMID: 19730675 PMCID: PMC2725296 DOI: 10.1371/journal.pcbi.1000499] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022] Open
Abstract
Cystine-knot miniproteins (knottins) are promising molecular scaffolds for protein engineering applications. Members of the knottin family have multiple loops capable of displaying conformationally constrained polypeptides for molecular recognition. While previous studies have illustrated the potential of engineering knottins with modified loop sequences, a thorough exploration into the tolerated loop lengths and sequence space of a knottin scaffold has not been performed. In this work, we used the Ecballium elaterium trypsin inhibitor II (EETI) as a model member of the knottin family and constructed libraries of EETI loop-substituted variants with diversity in both amino acid sequence and loop length. Using yeast surface display, we isolated properly folded EETI loop-substituted clones and applied sequence analysis tools to assess the tolerated diversity of both amino acid sequence and loop length. In addition, we used covariance analysis to study the relationships between individual positions in the substituted loops, based on the expectation that correlated amino acid substitutions will occur between interacting residue pairs. We then used the results of our sequence and covariance analyses to successfully predict loop sequences that facilitated proper folding of the knottin when substituted into EETI loop 3. The sequence trends we observed in properly folded EETI loop-substituted clones will be useful for guiding future protein engineering efforts with this knottin scaffold. Furthermore, our findings demonstrate that the combination of directed evolution with sequence and covariance analyses can be a powerful tool for rational protein engineering.
Collapse
Affiliation(s)
- Jennifer L. Lahti
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Adam P. Silverman
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Combelles C, Gracy J, Heitz A, Craik DJ, Chiche L. Structure and folding of disulfide-rich miniproteins: insights from molecular dynamics simulations and MM-PBSA free energy calculations. Proteins 2009; 73:87-103. [PMID: 18393393 DOI: 10.1002/prot.22054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fold of small disulfide-rich proteins largely relies on two or more disulfide bridges that are main components of the hydrophobic core. Because of the small size of these proteins and their high cystine content, the cysteine connectivity has been difficult to ascertain in some cases, leading to uncertainties and debates in the literature. Here, we use molecular dynamics simulations and MM-PBSA free energy calculations to compare similar folds with different disulfide pairings in two disulfide-rich miniprotein families, namely the knottins and the short-chain scorpion toxins, for which the connectivity has been discussed. We first show that the MM-PBSA approach is able to discriminate the correct knotted topology of knottins from the laddered one. Interestingly, a comparison of the free energy components for kalata B1 and MCoTI-II suggests that cyclotides and squash inhibitors, although sharing the same scaffold, are stabilized through different interactions. Application to short-chain scorpion toxins suggests that the conventional cysteine pairing found in many homologous toxins is significantly more stable than the unconventional pairing reported for maurotoxin and for spinoxin. This would mean that native maurotoxin and spinoxin are not at the lowest free energy minimum and might result from kinetically rather than thermodynamically driven oxidative folding processes. For both knottins and toxins, the correct or conventional disulfide connectivities provide lower flexibilities and smaller deviations from the initial conformations. Overall, our work suggests that molecular dynamics simulations and the MM-PBSA approach to estimate free energies are useful tools to analyze and compare disulfide bridge connectivities in miniproteins.
Collapse
Affiliation(s)
- Cecil Combelles
- Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale, 34090 Montpellier, France
| | | | | | | | | |
Collapse
|
24
|
Abstract
Microbodies are novel pharmacophoric entities which are derived from naturally occurring cystine-knot microproteins. They provide extremely stable scaffolds that can be engineered to high-affinity binding proteins. A peptide-grafting approach yielded specific ligands for human thrombopoietin receptor (TPO-R). Thrombopoietin (TPO) is the primary regulator of platelet production and acts by dimerization of its cognate receptor. Chemical cross linking of two anti TPO-R Microbodies resulted in highly potent TPO mimetics which are promising candidates for the treatment of TPO deficiencies. The approach demonstrates the high potential of dimeric Microbodies as synthetic receptor agonists.
Collapse
|
25
|
Heitz A, Avrutina O, Le-Nguyen D, Diederichsen U, Hernandez JF, Gracy J, Kolmar H, Chiche L. Knottin cyclization: impact on structure and dynamics. BMC STRUCTURAL BIOLOGY 2008; 8:54. [PMID: 19077275 PMCID: PMC2659701 DOI: 10.1186/1472-6807-8-54] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/12/2008] [Indexed: 01/30/2023]
Abstract
Background Present in various species, the knottins (also referred to as inhibitor cystine knots) constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity or protein stability. Unfolding simulations showed however that cyclization is a stabilizing factor in strongly denaturing conditions. This information should be useful if one wants to use the squash inhibitor scaffold in drug design.
Collapse
Affiliation(s)
- Annie Heitz
- CNRS, UMR5048, Université Montpellier 1 et 2, Centre de Biochimie Structurale, 34090 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Krause S, Schmoldt HU, Wentzel A, Ballmaier M, Friedrich K, Kolmar H. Grafting of thrombopoietin-mimetic peptides into cystine knot miniproteins yields high-affinity thrombopoietin antagonists and agonists. FEBS J 2006; 274:86-95. [PMID: 17147697 DOI: 10.1111/j.1742-4658.2006.05567.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thrombopoietin is the primary regulator of platelet production. We exploited two naturally occurring miniproteins of the inhibitor cystine knot family as stable and rigid scaffolds for the incorporation of peptide sequences that have been shown to act as high-affinity thrombopoietin antagonists. Several miniproteins that antagonistically block thrombopoietin-mediated receptor activation were identified using a microscale reporter assay. Covalent miniprotein dimerization yielded potent bivalent c-Mpl receptor agonists with EC(50) values in the low nanomolar or picomolar range. One selected miniprotein-derived thrombopoietin agonist was almost as active as natural thrombopoietin with regard to stimulation of megakaryocyte colony formation from human bone marrow mononuclear cells, and elicited doubling of platelet counts in mice. Our data suggest that dimeric cystine knot miniproteins have considerable potential for the future development of small and stable receptor agonists. This approach may provide a promising strategy for pharmaceutical interference with other receptors activated by ligand-induced dimerization.
Collapse
Affiliation(s)
- Sebastian Krause
- University of Jena Medical School, Institute of Biochemistry, Jena, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Laure HJ, Faça VM, Izumi C, Padovan JC, Greene LJ. Low molecular weight squash trypsin inhibitors from Sechium edule seeds. PHYTOCHEMISTRY 2006; 67:362-70. [PMID: 16406091 DOI: 10.1016/j.phytochem.2005.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 09/10/2005] [Indexed: 05/06/2023]
Abstract
Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.
Collapse
Affiliation(s)
- Hélen J Laure
- Departamento de Bioquímica, Area de Biologia Molecular, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
28
|
Mayasundari A, Whittemore NA, Serpersu EH, Peterson CB. The Solution Structure of the N-terminal Domain of Human Vitronectin. J Biol Chem 2004; 279:29359-66. [PMID: 15123712 DOI: 10.1074/jbc.m401279200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of an N-terminal fragment comprising the first 51 amino acids from human plasma vitronectin, the somatomedin B (SMB) domain, has been determined by two-dimensional NMR approaches. An average structure was calculated, representing the overall fold from a set of 20 minimized structures. The core residues (18-41) overlay with a root mean square deviation of 2.29 +/- 0.62 A. The N- and C-terminal segments exhibit higher root mean square deviations, reflecting more flexibility in solution and/or fewer long-range NOEs for these regions. Residues 26-30 form a unique single-turn alpha-helix, the locus where plasminogen activator inhibitor type-1 (PAI-1) is bound. This structure of this helix is highly homologous with that of a recombinant SMB domain solved in a co-crystal with PAI-1 (Zhou, A., Huntington, J. A., Pannu, N. S., Carrell, R. W., and Read, R. J. (2003) Nat. Struct. Biol. 10, 541-544), although the remainder of the structure differs. Significantly, the pattern of disulfide cross-links observed in this material isolated from human plasma is altogether different from the disulfides proposed for recombinant forms. The NMR structure reveals the relative orientation of binding sites for cell surface receptors, including an integrin-binding site at residues 45-47, which was disordered and did not diffract in the co-crystal, and a site for the urokinase receptor, which overlaps with the PAI-1-binding site.
Collapse
Affiliation(s)
- Anand Mayasundari
- Department of Biochemistry and Cellular and Molecular Biology and the Center of Excellence in Structural Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
29
|
Gelly JC, Gracy J, Kaas Q, Le-Nguyen D, Heitz A, Chiche L. The KNOTTIN website and database: a new information system dedicated to the knottin scaffold. Nucleic Acids Res 2004; 32:D156-9. [PMID: 14681383 PMCID: PMC308750 DOI: 10.1093/nar/gkh015] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The KNOTTIN website and database organize information about knottins or inhibitor cystine knots, small disulfide-rich proteins with a knotted topology. Thanks to their small size and high stability, knottins provide appealing scaffolds for protein engineering and drug design. Static pages present the main historical and recent results about knottin discoveries, sequences, structures, folding, functions, applications and bibliography. Database searches provide dynamically generated tabular reports or sequence alignments for knottin three-dimensional structures or sequences. BLAST/HMM searches are also available. A simple nomenclature, based on loop lengths between cysteines, is proposed and is complemented by a uniform numbering scheme. This standardization is applied to all knottin structures in the database, facilitating comparisons. Renumbered and structurally fitted knottin PDB files are available for download. The standardized numbering is used for automatic drawing of two-dimensional Colliers de Perles. The KNOTTIN website and database are available at http://knottin.cbs.cnrs.fr and http://knottin.com.
Collapse
Affiliation(s)
- Jean-Christophe Gelly
- Centre de Biochimie Structurale, UMR 5048 CNRS INSERM Université Montpellier I, Faculté de Pharmacie, 15 avenue Charles Flahault, F-34093 Montpellier, France
| | | | | | | | | | | |
Collapse
|
30
|
Daly NL, Clark RJ, Craik DJ. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. J Biol Chem 2003; 278:6314-22. [PMID: 12482862 DOI: 10.1074/jbc.m210492200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (Le-Nguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.
Collapse
Affiliation(s)
- Norelle L Daly
- Institute for Molecular Bioscience, Australian Research Council Centre for Functional and Applied Genomics, University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | |
Collapse
|
31
|
Baggio R, Burgstaller P, Hale SP, Putney AR, Lane M, Lipovsek D, Wright MC, Roberts RW, Liu R, Szostak JW, Wagner RW. Identification of epitope-like consensus motifs using mRNA display. J Mol Recognit 2002; 15:126-34. [PMID: 12203838 DOI: 10.1002/jmr.567] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mRNA display approach to in vitro protein selection is based upon the puromycin-mediated formation of a covalent bond between an mRNA and its gene product. This technique can be used to identify peptide sequences involved in macromolecular recognition, including those identical or homologous to natural ligand epitopes. To demonstrate this approach, we determined the peptide sequences recognized by the trypsin active site, and by the anti-c-Myc antibody, 9E10. Here we describe the use of two peptide libraries of different diversities, one a constrained library based on the trypsin inhibitor EETI-II, where only the six residues in the first loop were randomized (6.4 x 10(7) possible sequences, 6.0 x 10(11) sequences in the library), the other a linear-peptide library with 27 randomized amino acids (1.3 x 10(35) possible sequences, 2 x 10(13) sequences in the library). The constrained library was screened against the natural target of wild-type EETI, bovine trypsin, and the linear library was screened against the anti-c-myc antibody, 9E10. The analysis of selected sequences revealed minimal consensus sequences of PR(I,L,V)L for the first loop of EETI-II and LISE for the 9E10 epitope. The wild-type sequences, PRILMR for the first loop of EETI-II and QKLISE for the 9E10 epitope, were selected with the highest frequency, and in each case the complete wild-type epitope was selected from the library.
Collapse
Affiliation(s)
- Rick Baggio
- Phylos Inc., 128 Spring St, Lexington, MA 02421, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Walker JR, Roth JR, Altman E. An in vivo study of novel bioactive peptides that inhibit the growth of Escherichia coli. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:380-8. [PMID: 11892847 DOI: 10.1034/j.1399-3011.2001.00897.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have created a system in which synthetically produced novel bioactive peptides can be expressed in vivo in Escherichia coli. Twenty thousand of these peptides were screened and 21 inhibitors were found that could inhibit the growth of E. coli on minimal media. The inhibitors could be placed into one of two groups, 1-day inhibitors, which were partially inhibitory, and 2-day inhibitors, which were completely inhibitory. Sequence analysis showed that two of the most potent inhibitors were actually peptide-protein chimeras in which the peptides had become fused to the 63 amino acid Rop protein which was also contained in the expression vector used in this study. Given that Rop is known to form an incredibly stable structure, it could be serving as a stabilizing motif for these peptides. Sequence analysis of the predicted coding regions from the next 10 most inhibitory peptides showed that four of the 10 peptides contained one or more proline residues either at or very near the C-terminal end of the peptide which could act to prevent degradation by peptidases. Collectively, based on what we observed in our screen of synthetic bioactive peptides that could prevent the growth of E. coli and what has been learned from structural studies of naturally occurring bioactive peptides, the presence of a stabilizing motif seems to be important for small peptides, if they are to be biologically active.
Collapse
Affiliation(s)
- J R Walker
- Center for Molecular BioEngineering, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
33
|
Felizmenio-Quimio ME, Daly NL, Craik DJ. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Biol Chem 2001; 276:22875-82. [PMID: 11292835 DOI: 10.1074/jbc.m101666200] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta-sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol. 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed. Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.
Collapse
Affiliation(s)
- M E Felizmenio-Quimio
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | |
Collapse
|
34
|
Leluk J. Regularities in mutational variability in selected protein families and the Markovian model of amino acid replacement. COMPUTERS & CHEMISTRY 2000; 24:659-72. [PMID: 10966124 DOI: 10.1016/s0097-8485(00)00070-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three families of proteinase inhibitors and the trypsin family were the subjects of the analysis of amino acid replacements at aligned positions. This approach concerned some specific types of replacement and the mechanisms that can be involved in their control. The usefulness of the Markovian model for interpretation of mutational replacement within homologous proteins was examined. The same sequences were also analyzed with the use of the non-Markovian algorithm of genetic semihomology. This study leads to the conclusion that the Markovian model is not suitable for the interpretation of protein mutational variability since: (1) The information about the history of a variable unit is included in its genetic code. (2) This information plays an important role in the probability of further possible changes of the unit.
Collapse
Affiliation(s)
- J Leluk
- Institute of Biochemistry and Molecular Biology, University of Wrocław, Poland.
| |
Collapse
|
35
|
Kamei K, Sato S, Hamato N, Takano R, Ohshima K, Yamamoto R, Nishino T, Kato H, Hara S. Effect of P(2)' site tryptophan and P(20)' site deletion of Momordica charantia trypsin inhibitor II on inhibition of proteinases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:6-12. [PMID: 11004551 DOI: 10.1016/s0167-4838(00)00102-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Momordica charantia trypsin inhibitor II (MCTI-II) inhibits the amidolytic activity of factor Xa with a K(i) value 10-100-fold smaller than those of other squash family inhibitors. It also inhibits factor X activation mediated by factor VIIa-tissue factor complex or factor IXa. Comparison of other squash family inhibitors reveal Trp at position 7 (P(2)') and a deletion at position 25 (P(20)') are characteristics of MCTI-II. In order to elucidate the effect of these positions on the inhibitory activity, we chemically synthesized three inhibitors: S-MCTI-II whose amino acid sequence is identical to natural MCTI-II, S-MCTI-II(7L) whose P(2)'(Trp) is substituted with Leu, and S-MCTI-II(25N) whose P(20)'(deletion) is filled with Asn. The dissociation constants of the complexes of human factor Xa with S-MCTI-II, S-MCTI-II(7L), and S-MCTI-II(25N) were 1.3x10(-6) M, 2.8x10(-5) M, and 7.3x10(-6) M, respectively. They inhibited factor X activation mediated by factor VIIa with the same degree. As in the case of natural MCTI-II, S-MCTI-II suppressed factor X activation mediated by factor IXa, while S-MCTI-II(7L) and S-MCTI-II(25N) did not. Both the Trp at the P(2)' position and deletion at the P(20)' position are thus likely required for the inhibition of factor Xa, trypsin, and factor IXa, while these two positions do not affect factor X activation initiated by the factor VIIa-tissue factor complex.
Collapse
Affiliation(s)
- K Kamei
- Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Grzesiak A, Buczek O, Petry I, Szewczuk Z, Otlewski J. Inhibition of serine proteinases from human blood clotting system by squash inhibitor mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:318-24. [PMID: 10825543 DOI: 10.1016/s0167-4838(00)00034-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A series of six CMTI I variants mutated in the P(2)-P(4)' region of the canonical binding loop were used to probe the role of single amino acid substitutions on binding to the following human proteinases involved in blood clotting: plasmin, plasma kallikrein, factors X(a) and XII(a). The mutants were expressed as fusion proteins with the LE1413 hydrophobic polypeptide in Escherichia coli, purified from inclusion bodies, followed by cyanobromide cleavage and refolding. The mutants inhibited the proteinases with the association constants in the range 10(3)-10(9) M(-1). Inhibition of plasma kallikrein and factors X(a) and XII(a) could be improved up to 30-fold by single mutations. In contrast, neither of the introduced mutations increased inhibitory properties of CMTI I against plasmin. Additionally, using two inhibitors of natural origin, CMTI I (P(1) Arg) and CPTI II (P(1) Lys), we determined the effect of Lys-->Arg on binding to four proteinases. With the exception of plasmin (no effect), P(1) Arg resulted in up to 30-fold stronger binding than P(1) Lys.
Collapse
Affiliation(s)
- A Grzesiak
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Poland
| | | | | | | | | |
Collapse
|
37
|
Abstract
The non-statistical, non-Markovian model of protein mutational variability is described. There are presented the essential features of the algorithm of genetic semihomology and some examples of its application. The results of genetic semihomology approach are compared with the results obtained by using statistical algorithms and matrices which are assumed in widely used programs such as ClustalW, FASTA, MultAlin and BLAST. The aim of the new algorithm elaboration is to improve the accuracy of the results of protein sequence comparison, avoid the wrong assumptions and misinterpretation of the results, and increase the amount of information available from such study.
Collapse
Affiliation(s)
- J Leluk
- Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137, Wroclaw, Poland.
| |
Collapse
|
38
|
Christmann A, Walter K, Wentzel A, Krätzner R, Kolmar H. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. PROTEIN ENGINEERING 1999; 12:797-806. [PMID: 10506290 DOI: 10.1093/protein/12.9.797] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Ecballium elaterium trypsin inhibitor II (EETI-II), a member of the squash family of protease inhibitors, is composed of 28 amino acid residues and is a potent inhibitor of trypsin. Its compact structure is defined by a triple-stranded antiparallel beta-sheet, which is held together by three intramolecular disulfide bonds forming a cystine knot. In order to explore the potential of the EETI-II peptide to serve as a structural scaffold for the presentation of randomized oligopeptides, we constructed two EETI-II derivatives, where the six-residue inhibitor loop was replaced by a 13-residue epitope of Sendai virus L-protein and by a 17-residue epitope from human bone Gla-protein. EETI-II and derived variants were produced via fusion to maltose binding protein MalE. By secretion of the fusion into the periplasmic space, fully oxidized and correctly folded EETI-II was obtained in high yield. EETI-II and derived variants could be presented on the Escherichia coli outer membrane by fusion to truncated Lpp'-OmpA', which comprises the first nine residues of mature lipoprotein plus the membrane spanning beta-strand from residues 46-66 of OmpA protein. Gene expression was under control of the strong and tightly regulated tetA promoter/operator. Cell viability was found to be drastically reduced by high level expression of Lpp'-OmpA'-EETI-II fusion protein. To restore cell viability, net accumulation of fusion protein in the outer membrane was reduced to a tolerable level by introduction of an amber codon at position 9 of the lpp' sequence and utilizing an amber suppressor strain as expression host. Cells expressing EETI-II variants containing an epitope were shown to be surface labeled with the respective monoclonal antibody by indirect immunofluorescence corroborating the cell surface exposure of the epitope sequences embedded in the EETI-II cystine knot scaffold. Cells displaying a particular epitope sequence could be enriched 10(7)-fold by combining magnetic cell sorting with fluorescence-activated cell sorting. These results demonstrate that E.coli cell surface display of conformationally constrained peptides tethered to the EETI-II cystine knot scaffold has the potential to become an effective technique for the rapid isolation of small peptide molecules from combinatorial libraries that bind with high affinity to acceptor molecules.
Collapse
Affiliation(s)
- A Christmann
- Abteilung für Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
39
|
Wentzel A, Christmann A, Krätzner R, Kolmar H. Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening. J Biol Chem 1999; 274:21037-43. [PMID: 10409654 DOI: 10.1074/jbc.274.30.21037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ecballium elaterium trypsin inhibitor II (EETI-II) contains 28 amino acids and three disulfides forming a cystine knot. Reduced EETI-II refolds spontaneously and quantitatively in vitro and regains its native structure. Due to its high propensity to form a reverse turn, the GPNG sequence of segment 22-25 comprising a beta-turn in native EETI-II is a possible candidate for a folding initiation site. We generated a molecular repertoire of EETI-II variants with variegated 22-25 tetrapeptide sequences and presented these proteins on the outer membrane of Escherichia coli cells via fusion to the Iga(beta) autotransporter. Functional trypsin-binding variants were selected by combination of magnetic and fluorescence-activated cell sorting. At least 1-5% of all possible tetrapeptide sequences were compatible with formation of the correct three disulfides. Occurrence of amino acid residues in functional variants is positively correlated with their propensity to be generally found in beta-turns. The folding pathway of two selected variants, EETI-beta(NEDE) and EETI-beta(TNNK), was found to be indistinguishable from EETI-II and occurs through formation of a stable 2-disulfide intermediate. Substantial amounts of misfolded byproducts, however, were obtained upon refolding of these variants corroborating the importance of the wild type EETI-II GPNG sequence to direct quantitative formation of the cystine knot architecture.
Collapse
Affiliation(s)
- A Wentzel
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
40
|
Zhu Y, Huang Q, Qian M, Jia Y, Tang Y. Crystal structure of the complex formed between bovine beta-trypsin and MCTI-A, a trypsin inhibitor of squash family, at 1.8-A resolution. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:505-9. [PMID: 10524768 DOI: 10.1023/a:1020690931043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stoichiometric complex formed between bovine beta-trypsin and Momordica charantia, Linn. Cucurbitaceae trypsin inhibitor A (MCTI-A) was crystallized and its X-ray crystal structure was refined to a final R value of 0.179 using data of 7.0- to 1.8-A resolution. Combination with results on the complex of MCTI-A with porcine trypsin gives the sequence of MCTI-A definitely, of which 13 residues are conserved compared with other squash family trypsin inhibitors. Its spatial structure and the conformation of its primary binding segment from Cys3I (P3) to Glu7I (P3'), which contains a reactive scissile bond Arg5I C-Ile6I N, were found to be very similar to the other squash family proteinase inhibitors.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
41
|
Mahé E, Vossen P, Van den Hooven HW, Le-Nguyen D, Vervoort J, De Wit PJ. Solid-phase synthesis, conformational analysis, and biological activity of AVR9 elicitor peptides of the fungal tomato pathogen Cladosporium fulvum. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:482-94. [PMID: 9924993 DOI: 10.1111/j.1399-3011.1998.tb01253.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The race-specific peptide elicitor AVR9 of the fungal pathogen Cladosporium fulvum specifically induces a hypersensitive response in tomato genotypes carrying the complementary resistance gene Cf-9. The total chemical syntheses of this 28-residue AVR9 peptide containing three disulfide bonds, and of three mutant peptides [R8K]AVR9, [F10A]AVR9 and [F21A]AVR9, have been accomplished. The syntheses were carried out using a stepwise solid-phase approach based on tBoc chemistry. The disulfide bridges were formed by air oxidation. The correctness of the chemical structure of all folded synthetic peptides was confirmed by combined NMR and MS analyses. The biological activity and a number of physicochemical properties of folded synthetic AVR9 are identical to those of native fungal 28-residue AVR9. The overall conformations of the folded synthetic mutant peptides were comparable to that of synthetic wild-type AVR9 as demonstrated by NMR spectroscopy. Mutant [R8K]AVR9 showed a threefold higher, and mutant [F10A]AVR9 a threefold lower necrosis-inducing activity when compared to synthetic wild-type AVR9. However, mutant [F21A]AVR9 showed hardly any necrosis-inducing activity. Affinity for polyclonal antibodies raised against native fungal AVR9 is positively correlated with the necrosis-inducing activity of the synthetic AVR9 peptides ([R8K]AVR9 > wild-type AVR9 > [F10A]AVR9 > [F21A]AVR9).
Collapse
Affiliation(s)
- E Mahé
- INSERM U 376, CHU Arnaud de Villeneuve, Montpellier, France
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
This paper describes a simple biomimetic strategy to prepare small cyclic proteins containing multiple disulfide bonds. Our strategy involves intramolecular acyl transfer reactions to assist both the synthesis and fragmentation of these highly constrained cyclic structures in aqueous solution. To illustrate our strategy, we synthesized the naturally occurring circulin B and cyclopsychotride (CPT), both consisting of 31 amino acid residues tightly packed in a cystine-knot motif with three disulfide bonds and an end-to-end cyclic form. The synthesis of these small cyclic proteins can be achieved by orthogonal ligation of free peptide thioester via the thia zip reaction, which involves a series of reversible thiol-thiolactone exchanges to arrive at an alpha-amino thiolactone, which then undergoes an irreversible, spontaneous ring contraction through an S,N-acyl migration to form the cyclic protein. A two-step disulfide formation strategy is employed for obtaining the desired disulfide-paired products. Partial acid hydrolysis through intramolecular acyl transfer of X-Ser, X-Thr, Asp-X, and Glu-X sequences is used to obtain the assignment of the circulins disulfide bond connectives. Both synthetic circulin B and CPT are identical to the natural products and, thus, the total synthesis confirms the disulfide connectivity of circulin B and CPT contain a cystine-knot motif of 1-4, 2-5, and 3-6. In general, our strategy, based on the convergence of chemical proteolysis and aminolysis of peptide bonds through acyl transfer, is biomimetic and provides a useful approach for the synthesis and characterization of large end-to-end cyclic peptides and small proteins.
Collapse
Affiliation(s)
- J P Tam
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
43
|
Heitz A, Le-Nguyen D, Castro B, Chiche L. Conformational study of a native monodisulfide bridge analogue of EETI II. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf02442884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Choy WY, Sanctuary BC, Zhu G. Using neural network predicted secondary structure information in automatic protein NMR assignment. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 1997; 37:1086-94. [PMID: 9392858 DOI: 10.1021/ci970012c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In CAPRI, an automated NMR assignment software package that was developed in our laboratory, both chemical shift values and coupling topologies of spin patterns are used in a procedure for amino acids recognition. By using a knowledge base of chemical shift distributions of the 20 amino acid types, fuzzy mathematics, and pattern recognition theory, the spin coupling topological graphs are mapped onto specific amino acid residues. In this work, we investigated the feasibility of using secondary structure information of proteins as predicted by neural networks in the automated NMR assignment. As the 1H and 13C chemical shifts of proteins are known to correlate to their secondary structures, secondary structure information is useful in improving the amino acid recognition. In this study, the secondary structures of proteins predicted by the PHD protein server and our own trained neural networks are used in the amino acid type recognition. The results show that the predicted secondary structure information can help to improve the accuracy of the amino acid recognition.
Collapse
Affiliation(s)
- W Y Choy
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
45
|
Kooman-Gersmann M, Vogelsang R, Hoogendijk EC, De Wit PJ. Assignment of amino acid residues of the AVR9 peptide of Cladosporium fulvum that determine elicitor activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:821-9. [PMID: 9304857 DOI: 10.1094/mpmi.1997.10.7.821] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The AVR9 peptide of Cladosporium fulvum is an elicitor of the hypersensitive response in tomato plants carrying the Cf-9 resistance gene (MM-Cf9). To determine the structure-activity relationship of the AVR9 peptide, amino acids important for AVR9 elicitor activity were identified by independently substituting each amino acid of AVR9 by alanine. In addition, surface-exposed amino acid residues of AVR9 were substituted by other amino acids. Activity of the mutant Avr9 constructs was studied by expressing the constructs in MM-Cf9 tomato plants, using the potato virus X (PVX) expression system and assessing the severity of necrosis induced by each PVX::Avr9 construct. This allowed direct identification of amino acid residues of AVR9 that are essential for elicitor activity. We identified amino acid substitutions that resulted in AVR9 mutants with higher, similar, or lower elicitor activity compared to the wild-type AVR9 peptide. Some mutants had completely lost elicitor activity. A selection of peptides, representing different categories, was isolated and injected into leaves of MM-Cf9 plants. The necrosis-inducing activity of the isolated peptides correlated well with the necrosis induced by the corresponding PVX::Avr9 derivatives. Based on the necrosis-inducing activity of the mutant AVR9 peptides and the global structure of AVR9, we assigned sites in AVR9 that are important for its necrosis-inducing activity. We postulate that the "hydrophobic beta-loop" region of the AVR9 peptide is crucial for necrosis-inducing activity in tomato plants that carry the Cf-9 resistance gene.
Collapse
Affiliation(s)
- M Kooman-Gersmann
- Department of Phytopathology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
46
|
Qu Y, Liang S, Ding J, Liu X, Zhang R, Gu X. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena: 2. Three-dimensional structure in solution. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:565-74. [PMID: 9263120 DOI: 10.1023/a:1026314722607] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The three-dimensional structure in aqueous solution of native huwentoxin-I, a neurotoxin from the venom of the spider Selenocosmia huwena, has been determined from two-dimensional H NMR data recorded at 500 and 600 MHz. Structural constraints consisting of interproton distances inferred from NOEs and dihedral angles from spin-spin coupling constants were used as input for distance geometry calculation with the program XPLOR 3.1. The best 10 structures have NOE violations < 0.3 A, dihedral violations < 2 degrees, and pairwise root-mean-square differences of 1.08 (+/- 0.20) A over backbone atoms (N, C alpha, C). The molecule adopts a compact structure consisting of a small triple-stranded antiparallel beta-sheet and five beta-turns. A small hydrophobic patch consisting of Phe 6, Trp 28, and Trp 31 is located on one side of the molecule. All six lysine residues are distributed on the molecular surface. The three disulfide bridges are buried within the molecule. The structure contains an "inhibitor cystine knot motif" which is adopted by several other small proteins, such as omega-conotoxin, agatoxin IVA, and gurmarin.
Collapse
Affiliation(s)
- Y Qu
- Department of Biology, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
Heitz A, Chiche L, Le-Nguyen D, Castro B. Folding of the squash trypsin inhibitor EETI II. Evidence of native and non-native local structural preferences in a linear analogue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:837-46. [PMID: 8521849 DOI: 10.1111/j.1432-1033.1995.837_3.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A peptide, corresponding to the entire sequence of the squash trypsin inhibitor EETI II (Ecballium elaterium trypsin inhibitor) in which the six cysteines, engaged in three disulphide bridges in native EETI II, have been replaced by six serines, has been synthesised. CD, Fourier-transform infrared spectroscopy (FTIR) and 1H-NMR studies of this peptide revealed that some secondary structures present in native EETI II are still populated in the absence of disulphide bonds. Native-like secondary structures were observed for segments 10-15 (helix), 16-19 and 22-25 (reverse turns) but no native tertiary interaction was detected. However, a non-native local interaction between the aromatic ring of Phe26 and the amide group of Gly28 was observed. It is hypothesised that the 10-15, 16-19 and 22-25 native-like local conformations could play a major role in the early folding of EETI II.
Collapse
Affiliation(s)
- A Heitz
- Centre de Biochimie Structurale, CNRS-INSERM, Faculté de Pharmacie, Université Montpellier I, Montpellier, France
| | | | | | | |
Collapse
|
48
|
Pallaghy PK, Nielsen KJ, Craik DJ, Norton RS. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides. Protein Sci 1994; 3:1833-9. [PMID: 7849598 PMCID: PMC2142598 DOI: 10.1002/pro.5560031022] [Citation(s) in RCA: 399] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A common structural motif consisting of a cystine knot and a small triple-stranded beta-sheet has been defined from comparison of the 3-dimensional structures of the polypeptides omega-conotoxin GVIA (Conus geographus), kalata BI (Oldenlandia affinis DC), and CMTI-I (Curcurbita maxima). These 3 polypeptides have diverse biological activities and negligible amino acid sequence identity, but each contains 3 disulfide bonds that give rise to a cystine knot. This knot consists of a ring formed by the first 2 bonds (1-4 and 2-5) and the intervening polypeptide backbone, through which the third disulfide (3-6) passes. The other component of this motif is a triple-stranded, anti-parallel beta-sheet containing a minimum of 10 residues, XXC2, XC5X, XXC6X (where the numbers on the half-cysteine residues refer to their positions in the disulfide pattern). The presence in these polypeptides of both the cysteine knot and antiparallel beta-sheet suggests that both structural features are required for the stability of the motif. This structural motif is also present in other protease inhibitors and a spider toxin. It appears to be one of the smallest stable globular domains found in proteins and is commonly used in toxins and inhibitors that act by blocking the function of larger protein receptors such as ion channels or proteases.
Collapse
Affiliation(s)
- P K Pallaghy
- NMR Laboratory, Biomolecular Research Institute, Parkville, Australia
| | | | | | | |
Collapse
|
49
|
Nielsen KJ, Alewood D, Andrews J, Kent SB, Craik DJ. An 1H NMR determination of the three-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI-II). Protein Sci 1994; 3:291-302. [PMID: 8003965 PMCID: PMC2142802 DOI: 10.1002/pro.5560030213] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 3-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor Ecballium elaterium (EETI-II) have been determined by 1H NMR spectroscopy and simulated annealing calculations incorporating NOE-derived distance constraints. Spectra were assigned using 2-dimensional NMR methods at 400 MHz, and internuclear distances were determined from NOESY experiments. Three-bond spin-spin couplings between C alpha H and amide protons, amide exchange rates, and the temperature dependence of amide chemical shifts were also measured. The structure consists largely of loops and turns, with a short region of beta-sheet. The Leu-5 substitution produces a substantial reduction in affinity for trypsin relative to native EETI-II, which contains an Ile at this position. The global structure of the Leu-5 analogue studied here is similar to that reported for native EETI-II (Heitz A, Chiche L, Le-Nguyen D, Castro B, 1989, Biochemistry 28:2392-2398) and to X-ray and NMR structures of the related proteinase inhibitor CMTI-I (Bode W et al., 1989, FEBS Lett 242:285-292; Holak TA et al., 1989a, J Mol Biol 210:649-654; Holak TA, Gondol D, Otlewski J, Wilusz T, 1989b, J Mol Biol 210:635-648; Holak TA, Habazettl J, Oschkinat H, Otlewski J, 1991, J Am Chem Soc 113:3196-3198). The region near the scissile bond is the most disordered part of the structure, based on geometric superimposition of 40 calculated structures. This disorder most likely reflects additional motion being present in this region relative to the rest of the protein. This motional disorder is increased in the Leu-5 analogue relative to the native form and may be responsible for its reduced trypsin binding. A second form of the protein synthesized with all (D) amino acids was also studied by NMR and found to have a spectrum identical with that of the (L) form. This is consistent with the (D) form being a mirror image of the (L) form and not distinguishable by NMR in an achiral solvent (i.e., H2O). The (D) form has no activity against trypsin, as would be expected for a mirror-image form.
Collapse
Affiliation(s)
- K J Nielsen
- Victorian College of Pharmacy, Monash University, Parkville, Australia
| | | | | | | | | |
Collapse
|
50
|
Skalicky JJ, Metzler WJ, Ciesla DJ, Galdes A, Pardi A. Solution structure of the calcium channel antagonist omega-conotoxin GVIA. Protein Sci 1993; 2:1591-603. [PMID: 8251934 PMCID: PMC2142269 DOI: 10.1002/pro.5560021005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The three-dimensional solution structure is reported for omega-conotoxin GVIA, which is a potent inhibitor of presynaptic calcium channels in vertebrate neuromuscular junctions. Structures were generated by a hybrid distance geometry and restrained molecular dynamics approach using interproton distance, torsion angle, and hydrogen-bonding constraints derived from 1H NMR data. Conformations of GVIA with low constraint violations converged to a common peptide fold. The secondary structure in the peptide is an antiparallel triple-stranded beta-sheet containing a beta-hairpin and three tight turns. The NMR data are consistent with the region of the peptide from residues S9 to C16 being more dynamic than the rest of the peptide. The peptide has an amphiphilic structure with a positively charged hydrophilic side and an opposite side that contains a small hydrophobic region. Residues that are thought to be important in binding and function are located on the hydrophilic face of the peptide.
Collapse
Affiliation(s)
- J J Skalicky
- Department of Chemistry and Biochemistry, University of Colorado at Boulder 80309-0215
| | | | | | | | | |
Collapse
|