1
|
Joshi G, Yadav UP, Rafiq Z, Grewal P, Kumar M, Singh T, Jha V, Sharma P, Eriksson LA, Srinivas L, Dahibhate NL, Srivastava P, Bhutani P, Mishra UK, Sharon A, Banerjee UC, Sharma N, Chatterjee J, Tikoo K, Singh S, Kumar R. Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents. J Med Chem 2025. [PMID: 39808731 DOI: 10.1021/acs.jmedchem.4c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential. Our findings revealed that the compound 5c significantly produced anticancer effects in vitro and in vivo by reducing the tumor growth and its size in the A549 cell-induced lung cancer xenograft model through multiple mechanisms, primarily by multi-inhibition of hTopoI/II and HDACs, especially HDAC1 via atypical binding. The present paper discusses detailed mechanistic biological investigations, structure-activity effects supported by computational docking studies, and DMPK studies and provides future scope for lead optimization and modification.
Collapse
Affiliation(s)
- Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Zahid Rafiq
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Preeti Grewal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | | | | | | | | | - Uttam Kumar Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar 160062, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India
| |
Collapse
|
2
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2025; 358:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
3
|
Xu W, Zeng Z, Tang Y, Tian J, Hao X, Sun P, Peng Y, Tian T, Xiang D, Wang R, Chen C, Wu J. Spatiotemporal-controllable ROS-responsive camptothecin nano-bomb for chemo/photo/immunotherapy in triple-negative breast cancer. J Nanobiotechnology 2024; 22:798. [PMID: 39725974 DOI: 10.1186/s12951-024-03050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity. To prepare a spatiotemporal controllable CPT nano-formulation, we construct a ROS-responsive self-assembly nanoparticle by combining hydrophobic CPT and hydrophilic 5-floxuridine (FUDR). A ROS-sensitive thioketal (TK) linker is used to prepare CPT-TK-FUDR (CTF). Next, we introduced IR780-based phototherapy to elicit massive ROS regeneration due to the endogenous ROS is not sufficient. IR780 is modified with hyaluronic acid (HA) to prepare HA-modified IR780 (HAIR) for its biocompatibility and tumor targeting ability improvement. CTF and HAIR self-assemble to form an attractive nano-bomb (HAIR/CTF NPs). HA accurately guides the NPs to tumor sites via HA-receptor recognition on tumor cells. After internalization, overexpressed intracellular HAase in tumor cells disassembles the NPs to free the contents. Due to the presence of IR780 molecules, the scheduled irradiation of 808 nm laser induces massive reactive oxygen species (ROS) generation, which further result in the cleavage of TK linker for free drugs release. Additionally, ROS-mediated photodynamic therapy (PDT) and near-infrared laser-mediated photothermal therapy (PTT) synergistically worked to eradicate tumor cells. Then immunogenic cell death (ICD) was evoked by CPT and phototherapy to amplify antitumor immunity, thereby achieving primary and abscopal tumor inhibition. In conclusion, the HAIR/CTF nano-bomb realized spatiotemporal controllable drug release, exciting tumor eradication and attractive anti-metastasis efficacy via combination chemo/photo/immunotherapy, offering a valuable reference for the re-development of classic drug in future clinical practice.
Collapse
Affiliation(s)
- Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Zhaokui Zeng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Jingjing Tian
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Pengcheng Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Yanjin Peng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Tian Tian
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China
| | - Rongrong Wang
- Hunan Institute of Drug Inspection, 60 Bayi Road, Changsha, 410001, Hunan, China.
| | - Chuanpin Chen
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, China.
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Don TM, Hong YT, Jheng PR, Chuang EY, Huang YC. Improved camptothecin encapsulation and efficacy by environmentally sensitive block copolymer/chitosan/fucoidan nanoparticles for targeting lung cancer cells. Int J Biol Macromol 2024; 277:133901. [PMID: 39038585 DOI: 10.1016/j.ijbiomac.2024.133901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
In this study, thermo-sensitive poly(N-isopropyl acrylamide) (PNP) was polymerized with pH-sensitive poly(acrylic acid) (PAA) to prepare a PAA-b-PNP block copolymer. Above its cloud point, the block copolymer self-assembled into nanoparticles (NPs), encapsulating the anticancer drug camptothecin (CPT) in situ. Chitosan (CS) and fucoidan (Fu) further modified these NPs, forming Fu-CPT-NPs to enhance biocompatibility, drug encapsulation efficiency (EE), and loading content (LC), crucially facilitating P-selectin targeting of lung cancer cells through a drug delivery system. The EE and LC reached 82 % and 3.5 %, respectively. According to transmission electron microscope observation, these Fu-CPT-NPs had uniform spherical shapes with an average diameter of ca. 250 nm. They could maintain their stability in a pH range of 5.0-6.8. In vitro experimental results revealed that the Fu-CPT-NPs exhibited good biocompatibility and had anticancer activity after encapsulating CPT. It could deliver CPT to cancer cells by targeting P-selectin, effectively increasing cell uptake and inducing cell apoptosis. Animal study results showed that the Fu-CPT-NPs inhibited lung tumor growth by increasing tumor cell apoptosis without causing significant tissue damage related to generating reactive oxygen species in lung cancer cells. This system can effectively improve drug-delivery efficiency and treatment effects and has great potential for treating lung cancer.
Collapse
Affiliation(s)
- Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yu-Ting Hong
- College of Life Sciences, Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan.
| | - Yi-Cheng Huang
- College of Life Sciences, Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
5
|
Fedorov II, Bubis JA, Kazakova EM, Lobas AA, Ivanov MV, Emekeeva DD, Tarasova IA, Nazarov AA, Gorshkov MV. On the utility of ultrafast MS1-only proteomics in drug target discovery studies based on thermal proteome profiling method. Anal Bioanal Chem 2024; 416:4083-4089. [PMID: 38744720 DOI: 10.1007/s00216-024-05330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Advances in high-throughput high-resolution mass spectrometry and the development of thermal proteome profiling approach (TPP) have made it possible to accelerate a drug target search. Since its introduction in 2014, TPP quickly became a method of choice in chemical proteomics for identifying drug-to-protein interactions on a proteome-wide scale and mapping the pathways of these interactions, thus further elucidating the unknown mechanisms of action of a drug under study. However, the current TPP implementations based on tandem mass spectrometry (MS/MS), associated with employing lengthy peptide separation protocols and expensive labeling techniques for sample multiplexing, limit the scaling of this approach for the ever growing variety of drug-to-proteomes. A variety of ultrafast proteomics methods have been developed in the last couple of years. Among them, DirectMS1 provides MS/MS-free quantitative proteome-wide analysis in 5-min time scale, thus opening the way for sample-hungry applications, such as TPP. In this work, we demonstrate the first implementation of the TPP approach using the ultrafast proteome-wide analysis based on DirectMS1. Using a drug topotecan, which is a known topoisomerase I (TOP1) inhibitor, the feasibility of the method for identifying drug targets at the whole proteome level was demonstrated for an ovarian cancer cell line.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
| | - Elizaveta M Kazakova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
| | - Anna A Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
| | - Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
| | - Daria D Emekeeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991, Moscow, Russia
- Faculty of Chemistry of the National Research University Higher School of Economics, Vavilova Str. 7, 101000, Moscow, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Leninsky Pr. 38, Bld.2, 119334, Moscow, Russia.
| |
Collapse
|
6
|
Chowdhury M, Biswas N, Saha S, Rahaman A, Gupta PS, Banerjee A, Mandal DP, Bhattacharjee S, Zangrando E, Sciortino G, Pisanu F, Garribba E, Roy Choudhury R, Roy Choudhury C. Interaction with CT-DNA and in vitro cytotoxicity of two new copper(II)-based potential drugs derived from octanoic hydrazide ligands. J Inorg Biochem 2024; 256:112546. [PMID: 38593611 DOI: 10.1016/j.jinorgbio.2024.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.
Collapse
Affiliation(s)
- Manas Chowdhury
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Niladri Biswas
- Department of Biotechnology, Institute of Genetic Engineering, No. 30, Thakurhat Road, Badu, Madhyamgram, Kolkata, West Bengal 700128, India
| | - Sandeepta Saha
- Sripur High School, Madhyamgram Bazar, Kolkata 700130, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Poulami Sen Gupta
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Ankur Banerjee
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Barasat, Kolkata 700126, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy.
| | - Ruma Roy Choudhury
- Department of Chemistry and Environment, Heritage Institute of Technology, Chowbaga Road, Badu, Kolkata 700 107, India
| | | |
Collapse
|
7
|
Frese-Schaper M, Voll RE, Frese S. Increased binding of anti-dsDNA antibodies to short oligonucleotides modified with topoisomerase I reveals a potential new enzyme function independent from DNA relaxation. BMC Res Notes 2023; 16:298. [PMID: 37898816 PMCID: PMC10612351 DOI: 10.1186/s13104-023-06592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE Topoisomerase I (topo I) is a highly conserved enzyme which is known to reduce torsional stress at double-stranded (ds) DNA. Torsional stress induced by supercoiling of dsDNA requires either very long dsDNA existing in genomic DNA or circulation as presented in plasmid DNA. To enable DNA relaxation, topo I induce a transient single-strand break followed by stress-relieving rotation of the released DNA strand. Our group found by serendipity that the topo I inhibitor irinotecan is able to suppress murine systemic lupus erythematosus (SLE), an autoimmune disease which is characterized by the existence of pathogenic anti-dsDNA antibodies (abs). As a possible mechanism we demonstrated in the absence of immunosuppression an increased binding of anti-dsDNA abs to long genomic or circulated plasmid dsDNA modified with topo I. RESULTS Here we show that this effect requires active site tyrosine of topo I which is known to facilitate DNA relaxation activity. Moreover, topo I enhanced anti-dsDNA abs binding to short linear oligonucleotides down to a size of 42 bp. Since oligonucleotides of such length are devoid of torsional stress and relaxation respectively, our results suggest a new and unknown function for the enzyme topo I.
Collapse
Affiliation(s)
- Manuela Frese-Schaper
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Steffen Frese
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany.
- Department of Thoracic Surgery, AMEOS Klinikum Schönebeck, Köthener Str. 13, D-39218, Schönebeck, Germany.
| |
Collapse
|
8
|
Zhang M, Zhu LZ, Yang CJ, Yan JX, Wang ZP, Bai YP, Peng LZ, Luo HB, Zhang ZJ, Li L, Xu CR, Liu YQ. Improved anti-tumor activity of fluorinated camptothecin derivatives 9-fluorocamptothecin and 7-ethyl-9-fluorocamptothecin on hepatocellular carcinoma by targeting topoisomerase I. Bioorg Chem 2023; 139:106652. [PMID: 37390632 DOI: 10.1016/j.bioorg.2023.106652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
Primary liver cancer is one of the most common malignant cancers of the digestive system that lacks effective chemotherapeutic drugs in clinical settings. Camptothecin (CPT) and its derivatives have been approved for cancer treatment; however, their application is limited by their systemic toxicity. For lead optimization in new drug discovery stages, fluorination is an effective and robust approach to increase the bioavailability and optimize the pharmacokinetics of candidate compounds, thereby improving their efficacy. To obtain new and highly active CPT derivatives, we designed, synthesized, and evaluated two new fluorinated CPT derivatives, 9-fluorocamptothecin (A1) and 7-ethyl-9-fluorocamptothecin (A2), in this study. In vitro, A1 and A2 exhibited more robust anti-tumor activity than topotecan (TPT) in various cancer cells, particularly hepatocellular carcinoma (HCC) cells. In vivo, A1 and A2 exhibited greater anti-tumor activity than TPT in both AKT/Met induced primary HCC mouse models and implanted HepG2 cell xenografts. Acute toxicity tests revealed that A1 and A2 were not lethal and did not cause significant body weight loss at high doses. Moreover, A1 and A2 exhibited no significant toxicity in the mouse liver, heart, lung, spleen, kidney, and hematopoietic systems at therapeutic doses. Mechanistically, A1 and A2 blocked HCC cell proliferation by inhibiting the enzymatic activity of Topo I, subsequently inducing DNA damage, cell cycle arrest, and apoptosis. In summary, our results indicate that fluorination improves the anti-tumor activity of CPT while decreasing its toxicity and highlight the application potential of fluorination products A1 and A2 in clinical settings.
Collapse
Affiliation(s)
- Mi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Li-Zu Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jia-Xuan Yan
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhi-Ping Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, PR China
| | - Yin-Peng Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Li-Zeng Peng
- Jinan AISI Pharmaceutical Technology Co Ltd, Jinan 250104, PR China
| | - Hong-Bo Luo
- Department of Urology, The Second Hospital of Huangshi, Huangshi, Hubei 435000, PR China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Chuan-Rui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
9
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Howard D, Balnis J, Jaitovich A, Chittur SV, Rilley M, Peredo-Wende R, Ammoura I, Shin SJ, Barroso M, Barra J, Shishkova E, Coon JJ, Lopez-Soler RI, Jourd'heuil D. Regulation of DNA damage and transcriptional output in the vasculature through a cytoglobin-HMGB2 axis. Redox Biol 2023; 65:102838. [PMID: 37573836 PMCID: PMC10428073 DOI: 10.1016/j.redox.2023.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.
Collapse
Affiliation(s)
- Clinton Mathai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Frances Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Le Gia Cat Pham
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Kurrim Gilliard
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dennis Howard
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Joseph Balnis
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA; Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Ariel Jaitovich
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA; Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Cancer Research Center, University at Albany, New York, 12144, USA
| | - Mark Rilley
- Division of Rheumatology, Department of Medicine, Samuel Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Ruben Peredo-Wende
- Division of Rheumatology, Department of Medicine, Samuel Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Ibrahim Ammoura
- Department of Pathology and Medicine, Albany Medical Center, Albany, NY, 12208, USA
| | - Sandra J Shin
- Department of Pathology and Medicine, Albany Medical Center, Albany, NY, 12208, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53506, USA
| | - Joshua J Coon
- Department of Pathology and Medicine, Albany Medical Center, Albany, NY, 12208, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53506, USA; Morgridge Institute for Research, Madison, WI, 53515, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53506, USA
| | - Reynold I Lopez-Soler
- Section of Renal Transplantation, Edward Hines VA Jr. Hospital, Hines, IL, 60141, USA; Department of Surgery, Division of Intra-Abdominal Transplantation, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
10
|
Huang YC, Zeng YJ, Lin YW, Tai HC, Don TM. In Situ Encapsulation of Camptothecin by Self-Assembly of Poly(acrylic acid)- b-Poly( N-Isopropylacrylamide) and Chitosan for Controlled Drug Delivery. Polymers (Basel) 2023; 15:polym15112463. [PMID: 37299263 DOI: 10.3390/polym15112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Camptothecin (CPT) has been shown to exhibit anticancer activity against several cancers. Nevertheless, CPT is very hydrophobic with poor stability, and thus its medical application is limited. Therefore, various drug carriers have been exploited for effectively delivering CPT to the targeted cancer site. In this study, a dual pH/thermo-responsive block copolymer of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNP) was synthesized and applied to encapsulate CPT. At temperatures above its cloud point, the block copolymer self-assembled to form nanoparticles (NPs) and in situ encapsulate CPT, owing to their hydrophobic interaction as evidenced by fluorescence spectrometry. Chitosan (CS) was further applied on the surface through the formation of a polyelectrolyte complex with PAA for improving biocompatibility. The average particle size and zeta potential of the developed PAA-b-PNP/CPT/CS NPs in a buffer solution were 168 nm and -30.6 mV, respectively. These NPs were still stable at least for 1 month. The PAA-b-PNP/CS NPs exhibited good biocompatibility toward NIH 3T3 cells. Moreover, they could protect the CPT at pH 2.0 with a very slow-release rate. At pH 6.0, these NPs could be internalized by Caco-2 cells, followed by intracellular release of the CPT. They became highly swollen at pH 7.4, and the released CPT was able to diffuse into the cells at higher intensity. Among several cancer cell lines, the highest cytotoxicity was observed for H460 cells. As a result, these environmentally-responsive NPs have the potential to be applied in oral administration.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yang-Jie Zeng
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yu-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Hung-Chih Tai
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| |
Collapse
|
11
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Howard D, Balnis J, Jaitovich A, Chittur SV, Rilley M, Peredo-Wende R, Ammoura I, Shin SJ, Barroso M, Barra J, Shishkova E, Coon JJ, Lopez-Soler RI, Jourd'heuil D. Nuclear cytoglobin associates with HMGB2 and regulates DNA damage and genome-wide transcriptional output in the vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540045. [PMID: 37214992 PMCID: PMC10197644 DOI: 10.1101/2023.05.10.540045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.
Collapse
|
12
|
Barazorda-Ccahuana HL, Ranilla LG, Candia-Puma MA, Cárcamo-Rodriguez EG, Centeno-Lopez AE, Davila-Del-Carpio G, Medina-Franco JL, Chávez-Fumagalli MA. PeruNPDB: the Peruvian Natural Products Database for in silico drug screening. Sci Rep 2023; 13:7577. [PMID: 37165197 PMCID: PMC10170056 DOI: 10.1038/s41598-023-34729-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023] Open
Abstract
Since the number of drugs based on natural products (NPs) represents a large source of novel pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a megadiverse country with many endemic species of plants, terrestrial, and marine animals, and microorganisms. NPs databases have a major impact on drug discovery development. For this reason, several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain NPs databases that are representative of their diversity and ethnopharmacological usage. We describe the assembly, curation, and chemoinformatic evaluation of the content and coverage in chemical space, as well as the physicochemical attributes and chemical diversity of the initial version of the Peruvian Natural Products Database (PeruNPDB), which contains 280 natural products. Access to PeruNPDB is available for free ( https://perunpdb.com.pe/ ). The PeruNPDB's collection is intended to be used in a variety of tasks, such as virtual screening campaigns against various disease targets or biological endpoints. This emphasizes the significance of biodiversity protection both directly and indirectly on human health.
Collapse
Affiliation(s)
- Haruna L Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, 04000, Arequipa, Peru
- Escuela Profesional de Ingeniería de Industria Alimentaria, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, 04000, Arequipa, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Eymi Gladys Cárcamo-Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, 04000, Arequipa, Peru
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, 04000, Arequipa, Peru.
| |
Collapse
|
13
|
Fatmi S, Taouzinet L, Skiba M, Iguer-Ouada M. Camptothecin: Solubility, In-Vitro Drug Release, and Effect on Human Red Blood Cells and Sperm Cold Preservation. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND: Camptothecin (CPT) is an anticancer drug, and is not employed in the clinic because of its high hydrophobicity and low active form stability. CPT may also have potential for use in cold preservation. OBJECTIVE : To overcome these drawbacks, CPT solubility variations
in the presence of cyclodextrins (CDs) and polyethylene glycol (PEG) were evaluated by Higuchi solubility experiments. MATERIALS AND METHODS: CPT was encapsulated in different cyclodextrins and polyethylene glycol using a co-evaporation method. The CPT interactions with CDs and PEG
6000 were investigated by Fourier-transformed infrared spectroscopy (FT-IR), and X-ray powder diffraction (XRPD). Then, CPT complexes were evaluated for in-vitro drug release. To evaluate the potential anticancer efficacy of the CPT complexes system, in-vitro cytotoxicity studies on human
red blood cells were carried out using UV assay. The impact of the CPT complex systems on sperm motility protection during cold preservation at 4°C was studied using CASA. RESULTS: The dissolution profile of these preparations shows the improvement of the dissolution of the CPT
following a fickien diffusion. The CPT solubility and stability improvement were the cause of the cytotoxicity on the red blood cells test. However, CPT alone, encapsulated, dispersed, and chemically modified protected spermatozoids during cold preservation. CONCLUSION: We confirm the
interest in CPT encapsulated and dispersed in anticancer treatments. We also found that CPT encapsulated or dispersed could protect sperm against oxidative damage and improve the membrane integrity of human sperm. Consequently, CPT encapsulated our dispersed could eventually be beneficial
for infertility therapy.
Collapse
Affiliation(s)
- Sofiane Fatmi
- Technology Pharmaceutical Laboratory, Department of Processes Engineering, Faculty of Technology, Université de Bejaia, 06000 Bejaia, Algeria
| | - Lamia Taouzinet
- Associated Laboratory in Marine Ecosystems and Aquaculture, Faculty of Nature and Life Sciences, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mohamed Skiba
- Technology Pharmaceutical and Bio pharmaceutics Laboratory, UFR Medicine and Pharmacy, Rouen University, 22 Blvd. Gambetta, 76183, Rouen, France
| | - Mokrane Iguer-Ouada
- Associated Laboratory in Marine Ecosystems and Aquaculture, Faculty of Nature and Life Sciences, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
14
|
Li X, Bo Y, Yin H, Liu X, Li X, Yang F. Population pharmacokinetic analysis of TQ-B3203 following intravenous administration of TQ-B3203 liposome injection in Chinese patients with advanced solid tumors. Front Pharmacol 2023; 14:1102244. [PMID: 36726585 PMCID: PMC9885713 DOI: 10.3389/fphar.2023.1102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Background: TQ-B3203 is a novel topoisomerase I inhibitor currently in development for the treatment of advanced solid tumors. Great differences in pharmacokinetic characteristics were found among individuals according to the phase I clinical trial following intravenous administration of TQ-B3203 liposome injection (TLI) in Chinese patients with advanced solid tumors. Thus, it is significant to establish a population pharmacokinetic model to find the key factors and recognize their effect on pharmacokinetic parameters in order to guide individualized administration. Methods: Non-linear mixed effect models were developed using the plasma concentrations obtained from the phase I clinical trial by implementing the Phoenix NLME program. Covariates that may be related to pharmacokinetics were screened using stepwise methods. The final model was validated by goodness-of-fit plots, visual predictive check, non-parametric bootstrap and a test of normalized prediction distribution errors. Results: A three-compartment model with first-order elimination was selected as the best structural model to describe TQ-B3203 disposition adequately. Direct bilirubin (DBIL) and body mass index (BMI) were the two most influential factors on clearance, while lean body weight (LBW) was considered to affect the apparent distribution volume of the central compartment. The population estimations of clearance and central volume were typical at 3.97 L/h and 4.81 L, respectively. Model-based simulations indicated that LBW had a great impact on Cmax, BMI exerted a considerable influence on AUC0-t, and the significance of DBIL on both AUC0-t and Cmax was similarly excellent. Conclusion: The first robust population pharmacokinetic model of TQ-B3203 was successfully generated following intravenous administration of TLI in Chinese patients with advanced solid tumors. BMI, LBW and DBIL were significant covariates that affected the pharmacokinetics of TQ-B3203. This model could provide references for the dose regimen in the future study of TLI.
Collapse
Affiliation(s)
- Xiaoqing Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National drug clinical trial center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunhai Bo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National drug clinical trial center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Han Yin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National drug clinical trial center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaohong Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National drug clinical trial center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xu Li
- Chia Tai Tianqing Pharmaceutical Group Co Ltd, Nanjing, Jiangsu, China
| | - Fen Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National drug clinical trial center, Peking University Cancer Hospital & Institute, Beijing, China,*Correspondence: Fen Yang,
| |
Collapse
|
15
|
Zhang L, Zhu L, Tang L, Xie J, Gao Y, Yu C, Shang K, Han H, Liu C, Lu Y. Glutathione-Responsive Nanoparticles of Camptothecin Prodrug for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205246. [PMID: 36442854 PMCID: PMC9875659 DOI: 10.1002/advs.202205246] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Indexed: 05/28/2023]
Abstract
Camptothecin (CPT) is a potent chemotherapeutic agent for various cancers, but the broader application of CPT is still hindered by its poor bioavailability and systemic toxicity. Here, a prodrug that releases CPT in response to glutathione (GSH), which is commonly overexpressed by cancer cells is reported. Through assembling with PEGylated lipids, the prodrug is incorporated within as-assembled nanoparticles, affording CPT with a prolonged half-life in blood circulation, enhanced tumor targetingability, and improved therapeutic efficacy. Furthermore, such prodrug nanoparticles can also promote dendritic cell maturation and tumor infiltration of CD8+ T cells, providing a novel strategy to improve the therapeutic efficacy of CPT.
Collapse
Affiliation(s)
- Lingpu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lin Zhu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiayi Xie
- Department of AutomaticTsinghua UniversityPeking University Third HospitalBeijing Key Laboratory of Magnetic Resonance Imaging Devices and TechnologyBeijing100191P. R. China
| | - Yajuan Gao
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Changyuan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Kun Shang
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Hongbin Han
- Department of RadiologyPeking University Third HospitalInstitute of Medical TechnologyPeking University Health Science CenterBeijing100019P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yunfeng Lu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
16
|
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int J Mol Sci 2022; 23:15765. [PMID: 36555406 PMCID: PMC9779495 DOI: 10.3390/ijms232415765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the deadliest non communicable diseases. Numerous anticancer medications have been developed to target the molecular pathways driving cancer. However, there has been no discernible increase in the overall survival rate in cancer patients. Therefore, innovative chemo-preventive techniques and agents are required to supplement standard cancer treatments and boost their efficacy. Fruits and vegetables should be tapped into as a source of compounds that can serve as cancer therapy. Phytochemicals play an important role as sources of new medication in cancer treatment. Some synthetic and natural chemicals are effective for cancer chemoprevention, i.e., the use of exogenous medicine to inhibit or impede tumor development. They help regulate molecular pathways linked to the development and spread of cancer. They can enhance antioxidant status, inactivating carcinogens, suppressing proliferation, inducing cell cycle arrest and death, and regulating the immune system. While focusing on four main categories of plant-based anticancer agents, i.e., epipodophyllotoxin, camptothecin derivatives, taxane diterpenoids, and vinca alkaloids and their mode of action, we review the anticancer effects of phytochemicals, like quercetin, curcumin, piperine, epigallocatechin gallate (EGCG), and gingerol. We examine the different signaling pathways associated with cancer and how inflammation as a key mechanism is linked to cancer growth.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan
| | | | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
| | - Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
17
|
Buchelnikova VA, Rogozhin EA, Barashkova AS, Buchelnikov AS, Evstigneev MP. C 60 Fullerene Clusters Stabilize the Biologically Inactive Form of Topotecan. Chem Res Toxicol 2022; 35:1482-1492. [PMID: 35980010 DOI: 10.1021/acs.chemrestox.2c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a range of experimental proofs that biologically relevant compounds change their activity in the presence of C60 fullerene clusters in aqueous solution, which most frequently act as a nanoplatform for drug delivery. Inspired by this evidence, we made an effort to investigate the interaction of fullerene clusters with the antibiotic topotecan (TPT). This study proceeded in three steps, namely, UV/vis titration to confirm complexation and in vitro assays on proliferating and nonproliferating cells to elucidate the role of C60 fullerene in the putative change in TPT activity. Surprisingly, although the nonproliferating cell assay is consistent with the titration data and confirms complex formation, it contradicted the results of the proliferating cell assay. The latter showed that the mixture of TPT and fullerene affects the cells in the same way as pure TPT, as if there were no fullerenes in solution at all, whereas the action of TPT was expected to be enhanced. We explained this contradiction by the specific stabilization of the biologically inactive carboxylate form of the antibiotic adsorbed in the alkaline shell of large fullerene clusters, which leads to neutralization of the drug delivery function and almost zero net biological effect of the antibiotic in vitro. The practical outcome of the work is that fullerene clusters can be used for the selective delivery of pH-sensitive drug forms.
Collapse
Affiliation(s)
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117997, Russia.,Gause Institute of New Antibiotics, Moscow 119021, Russia
| | - Anna S Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117997, Russia
| | | | | |
Collapse
|
18
|
Wang Z, Li J, Lin G, He Z, Wang Y. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J Control Release 2022; 348:1066-1088. [PMID: 35718211 DOI: 10.1016/j.jconrel.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Metal complexes are of increasing interest as pharmaceutical agents in cancer diagnostics and therapeutics, while some of them suffer from issues such as limited water solubility and severe systemic toxicity. These drawbacks severely hampered their efficacy and clinical applications. Liposomes hold promise as delivery vehicles for constructing metal complex-based liposomes to maximize the therapeutic efficacy and minimize the side effects of metal complexes. This review provides an overview on the latest advances of metal complex-based liposomal delivery systems. First, the development of metal complex-mediated liposomal encapsulation is briefly introduced. Next, applications of metal complex-based liposomes in a variety of fields are overviewed, where drug delivery, cancer imaging (single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI)), and cancer therapy (chemotherapy, phototherapy, and radiotherapy) were involved. Moreover, the potential toxicity, action of toxic mechanisms, immunological effects of metal complexes as well as the advantages of metal complex-liposomes in this content are also discussed. In the end, the future expectations and challenges of metal complex-based liposomes in clinical cancer therapy are tentatively proposed.
Collapse
Affiliation(s)
- Zhaomeng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Guimei Lin
- School of Pharmacy, Shandong University, Jinan 250000, PR China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
19
|
Perry M, Ghosal G. Mechanisms and Regulation of DNA-Protein Crosslink Repair During DNA Replication by SPRTN Protease. Front Mol Biosci 2022; 9:916697. [PMID: 35782873 PMCID: PMC9240642 DOI: 10.3389/fmolb.2022.916697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
DNA-protein crosslinks (DPCs) are deleterious DNA lesions that occur when proteins are covalently crosslinked to the DNA by the action of variety of agents like reactive oxygen species, aldehydes and metabolites, radiation, and chemotherapeutic drugs. Unrepaired DPCs are blockades to all DNA metabolic processes. Specifically, during DNA replication, replication forks stall at DPCs and are vulnerable to fork collapse, causing DNA breakage leading to genome instability and cancer. Replication-coupled DPC repair involves DPC degradation by proteases such as SPRTN or the proteasome and the subsequent removal of DNA-peptide adducts by nucleases and canonical DNA repair pathways. SPRTN is a DNA-dependent metalloprotease that cleaves DPC substrates in a sequence-independent manner and is also required for translesion DNA synthesis following DPC degradation. Biallelic mutations in SPRTN cause Ruijs-Aalfs (RJALS) syndrome, characterized by hepatocellular carcinoma and segmental progeria, indicating the critical role for SPRTN and DPC repair pathway in genome maintenance. In this review, we will discuss the mechanism of replication-coupled DPC repair, regulation of SPRTN function and its implications in human disease and cancer.
Collapse
Affiliation(s)
- Megan Perry
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Fred and Pamela Buffett Cancer Center, Omaha, NE, United States,*Correspondence: Gargi Ghosal,
| |
Collapse
|
20
|
Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur-Al-Hossain ASM, Fukase K. A Review on Mechanistic Insight of Plant Derived Anticancer Bioactive Phytocompounds and Their Structure Activity Relationship. Molecules 2022; 27:3036. [PMID: 35566385 PMCID: PMC9102595 DOI: 10.3390/molecules27093036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a disorder that rigorously affects the human population worldwide. There is a steady demand for new remedies to both treat and prevent this life-threatening sickness due to toxicities, drug resistance and therapeutic failures in current conventional therapies. Researchers around the world are drawing their attention towards compounds of natural origin. For decades, human beings have been using the flora of the world as a source of cancer chemotherapeutic agents. Currently, clinically approved anticancer compounds are vincristine, vinblastine, taxanes, and podophyllotoxin, all of which come from natural sources. With the triumph of these compounds that have been developed into staple drug products for most cancer therapies, new technologies are now appearing to search for novel biomolecules with anticancer activities. Ellipticine, camptothecin, combretastatin, curcumin, homoharringtonine and others are plant derived bioactive phytocompounds with potential anticancer properties. Researchers have improved the field further through the use of advanced analytical chemistry and computational tools of analysis. The investigation of new strategies for administration such as nanotechnology may enable the development of the phytocompounds as drug products. These technologies have enhanced the anticancer potential of plant-derived drugs with the aim of site-directed drug delivery, enhanced bioavailability, and reduced toxicity. This review discusses mechanistic insights into anticancer compounds of natural origins and their structural activity relationships that make them targets for anticancer treatments.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Priyanka Roy
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Biswajit Biswas
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Md. Emran Hossain
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh; (A.A.); (P.R.); (B.B.); (M.E.H.); (K.K.S.)
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - Firoj Ahmed
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh; (S.C.B.); (F.A.)
| | - A. S. M. Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1207, Bangladesh;
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Chia CSB. A Patent Review on FDA-Approved Antibody-Drug Conjugates, Their Linkers and Drug Payloads. ChemMedChem 2022; 17:e202200032. [PMID: 35384350 DOI: 10.1002/cmdc.202200032] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a promising class of biologics since the first approval of Gemtuzumab ozogamicin in 2000. Compared to small molecule drugs, ADCs are structurally much more complex as they comprise of an antibody conjugated to cytotoxic payloads by specially-designed linkers. Correspondingly, the ADC patent landscape is also much more complex. This review collates and discusses the patents protecting ADCs approved by the FDA up to 31 December 2021, with particular emphasis on their linker and cytotoxin payload technologies.
Collapse
Affiliation(s)
- C S Brian Chia
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos #08-01, 138670, Singapore, Singapore
| |
Collapse
|
22
|
Topoisomerase I inhibitors: Challenges, progress and the road ahead. Eur J Med Chem 2022; 236:114304. [DOI: 10.1016/j.ejmech.2022.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
|
23
|
Küng R, Göstl R, Schmidt BM. Release of Molecular Cargo from Polymer Systems by Mechanochemistry. Chemistry 2022; 28:e202103860. [PMID: 34878679 PMCID: PMC9306765 DOI: 10.1002/chem.202103860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/15/2022]
Abstract
The design and manipulation of (multi)functional materials at the nanoscale holds the promise of fuelling tomorrow's major technological advances. In the realm of macromolecular nanosystems, the incorporation of force-responsive groups, so called mechanophores, has resulted in unprecedented access to responsive behaviours and enabled sophisticated functions of the resulting structures and advanced materials. Among the diverse force-activated motifs, the on-demand release or activation of compounds, such as catalysts, drugs, or monomers for self-healing, are sought-after since they enable triggering pristine small molecule function from macromolecular frameworks. Here, we highlight examples of molecular cargo release systems from polymer-based architectures in solution by means of sonochemical activation by ultrasound (ultrasound-induced mechanochemistry). Important design concepts of these advanced materials are discussed, as well as their syntheses and applications.
Collapse
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
24
|
Meany HJ, Widemann BC, Hinds PS, Bagatell R, Shusterman S, Stern E, Jayaprakash N, Peer CJ, Figg WD, Hall OM, Sissung TM, Kim A, Fox E, London WB, Rodriguez-Galindo C, Minturn JE, Dome JS. Phase 1 study of sorafenib and irinotecan in pediatric patients with relapsed or refractory solid tumors. Pediatr Blood Cancer 2021; 68:e29282. [PMID: 34383370 DOI: 10.1002/pbc.29282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sorafenib,an orally bioavailable, multitarget tyrosine kinase inhibitor, and irinotecan, a topoisomerase I inhibitor, have demonstrated activity in pediatric and adult malignancies. We evaluated the toxicity, pharmacokinetic (PK), and pharmacogenomic (PGX) profile of sorafenib with irinotecan in children with relapsed or refractory solid tumors and assessed the feasibility of incorporating patient-reported outcome (PRO) measures as an adjunct to traditional endpoints. METHODS Sorafenib, continuous oral twice daily dosing, was administered with irinotecan, orally, once daily days 1-5, repeated every 21 days (NCT01518413). Based on tolerability, escalation of sorafenib followed by escalation of irinotecan was planned. Three patients were initially enrolled at each dose level. Sorafenib and irinotecan PK analyses were performed during cycle 1. PRO measurements were collected during cycles 1 and 2. RESULTS Fifteen patients were evaluable. Two of three patients at dose level 2 experienced dose-limiting toxicity (DLT), grade 3 diarrhea, and grade 3 hyponatremia. Therefore, dose level 1 was expanded to 12 patients and two patients had DLT, grade 4 thrombocytopenia, grade 3 elevated lipase. Nine of 15 (60%) patients had a best response of stable disease with four patients receiving ≥6 cycles. CONCLUSIONS The recommended dose for pediatric patients was sorafenib 150 mg/m2 /dose twice daily with irinotecan 70 mg/m2 /dose daily × 5 days every 21 days. This oral outpatient regimen was well tolerated and resulted in prolonged disease stabilization. There were no significant alterations in the PK profile of either agent when administered in combination. Patients were willing and able to report their subjective experiences with this regimen.
Collapse
Affiliation(s)
- Holly J Meany
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela S Hinds
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Division of Nursing, Children's National Hospital, Washington, District of Columbia
| | - Rochelle Bagatell
- Perelman School of Medicine, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts
| | - Emily Stern
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia
| | - Nalini Jayaprakash
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - O Morgan Hall
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tristan M Sissung
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aerang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Elizabeth Fox
- Perelman School of Medicine, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts
| | - Carlos Rodriguez-Galindo
- Departments of Oncology and Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jane E Minturn
- Perelman School of Medicine, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
25
|
Parthiban D, Baskaran S, Rani S, Arumugham M, Si NT, Kumar R. Synthesis, crystal structure, DFT analysis, and DNA studies of a binuclear copper(II) complex with 2,2′-bipyridine and 4-aminobenzoate. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1985112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Parthiban
- Department of Chemistry, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
| | - S. Baskaran
- Department of Chemistry, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
| | - S. Rani
- Department of Chemistry, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
| | - M.N. Arumugham
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - N. T. Si
- Department of Chemistry, Can Tho University, Can Tho, Vietnam
| | - R. Kumar
- Department of Chemistry, MCM DAV College, Kangra, Himachal Pradesh, India
| |
Collapse
|
26
|
Dhakshinamoorthy M, Ponnusamy SK, Nyayiru Kannaian UP, Srinivasan B, Shankar SN, Kilavan Packiam K. Plant-microbe interactions implicated in the production of camptothecin - An anticancer biometabolite from Phyllosticta elongata MH458897 a novel endophytic strain isolated from medicinal plant of Western Ghats of India. ENVIRONMENTAL RESEARCH 2021; 201:111564. [PMID: 34228950 DOI: 10.1016/j.envres.2021.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Endophytic wild fungal strain Phyllosticta elongata MH458897 isolated from medicinal plant Cipadessa baccifera from the Western Ghats region of Sathyamangalam Tiger Reserve Forest. This endophytic fungus has potential of effective anticancer drug Camptothecin (CPT). Endophytic fungi act as key symbionts in-between plants and ecosystem in the biosphere. This recently identified microbial population inside the plants produces many defence metabolites against plant pathogens. Among these defense metabolites, CPT gained much attention because of its effective anticancer activity. The maximum yield of CPT produced by optimizing the various factors like DEKM07 medium, pH 5.6, incubation time using Response Surface Methodology based on Central Composite Design. Extracted CPT is characterized using High Performance Liquid Chromatography and Electrospray ionization-Mass spectrometry. The highest yield of CPT was 0.747 mg/L was produced at optimized factors of dextrose - 50 g L-1, peptone - 5.708 g L-1, magnesium sulphate - 0.593 g L-1, and incubation time - 14 days. In-vitro MTT assay revealed the CPT derivatives were cytotoxic to A-549 cancer cell line (IC50 58.28 μg/ml) as nearly compared to the (IC50 51.08 μg/ml) standard CPT. CPT producing strain P. elongata from C. baccifera has the potential of CPT biosynthesis, and could be an effective anticancer bio metabolite. This compound has been described in the literature to be an effective anticancer metabolite. Our findings support the novel lifesaving anticancer drug from endophytic fungus in forest ecosystem concludes effective utilization of key symbionts will safeguard the humans and forest ecosystem.
Collapse
Affiliation(s)
- Madhankumar Dhakshinamoorthy
- Endophytic Fungal Metabolite Research Laboratory, Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603 110, India.
| | | | | | - Sripriya Nannu Shankar
- Marina Labs Research and Development, NT Patel Road, Nerkundram, Chennai, TamilNadu, India.
| | - Kannan Kilavan Packiam
- Endophytic Fungal Metabolite Research Laboratory, Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India.
| |
Collapse
|
27
|
Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of Natural Bioactive Alkaloids: Anticancer perspective. Mini Rev Med Chem 2021; 22:200-212. [PMID: 34254913 DOI: 10.2174/1389557521666210712111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Ravi Vanecha
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Jay Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Divy Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
28
|
Leung E, Patel J, Hollywood JA, Zafar A, Tomek P, Barker D, Pilkington LI, van Rensburg M, Langley RJ, Helsby NA, Squire CJ, Baguley BC, Denny WA, Reynisson J, Leung IKH. Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs. Oncol Ther 2021; 9:541-556. [PMID: 34159519 PMCID: PMC8593127 DOI: 10.1007/s40487-021-00158-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Jennifer A Hollywood
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Michelle van Rensburg
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Nuala A Helsby
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Christopher J Squire
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK.
| | - Ivanhoe K H Leung
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
29
|
Ghanbari-Movahed M, Kaceli T, Mondal A, Farzaei MH, Bishayee A. Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review. Biomedicines 2021; 9:480. [PMID: 33925750 PMCID: PMC8146681 DOI: 10.3390/biomedicines9050480] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Camptothecin (CPT), a natural plant alkaloid, has indicated potent antitumor activities via targeting intracellular topoisomerase I. The promise that CPT holds in therapies is restricted through factors that include lactone ring instability and water insolubility, which limits the drug oral solubility and bioavailability in blood plasma. Novel strategies involving CPT pharmacological and low doses combined with nanoparticles have indicated potent anticancer activity in vitro and in vivo. This systematic review aims to provide a comprehensive and critical evaluation of the anticancer ability of nano-CPT in various cancers as a novel and more efficient natural compound for drug development. Studies were identified through systematic searches of PubMed, Scopus, and ScienceDirect. Eligibility checks were performed based on predefined selection criteria. Eighty-two papers were included in this systematic review. There was strong evidence for the association between antitumor activity and CPT treatment. Furthermore, studies indicated that CPT nano-formulations have higher antitumor activity in comparison to free CPT, which results in enhanced efficacy for cancer treatment. The results of our study indicate that CPT nano-formulations are a potent candidate for cancer treatment and may provide further support for the clinical application of natural antitumor agents with passive targeting of tumors in the future.
Collapse
Affiliation(s)
- Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Department of Biology, Faculty of Science, University of Guilan, Rasht 4193833697, Iran
| | - Tea Kaceli
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, Bengal College of Pharmaceutical Technology, Dubrajpur 731123, India;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
30
|
Wu Z, Graf FE, Hirsch HH. Antivirals against human polyomaviruses: Leaving no stone unturned. Rev Med Virol 2021; 31:e2220. [PMID: 33729628 DOI: 10.1002/rmv.2220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Human polyomaviruses (HPyVs) encompass more than 10 species infecting 30%-90% of the human population without significant illness. Proven HPyV diseases with documented histopathology affect primarily immunocompromised hosts with manifestations in brain, skin and renourinary tract such as polyomavirus-associated nephropathy (PyVAN), polyomavirus-associated haemorrhagic cystitis (PyVHC), polyomavirus-associated urothelial cancer (PyVUC), progressive multifocal leukoencephalopathy (PML), Merkel cell carcinoma (MCC), Trichodysplasia spinulosa (TS) and pruritic hyperproliferative keratinopathy. Although virus-specific immune control is the eventual goal of therapy and lasting cure, antiviral treatments are urgently needed in order to reduce or prevent HPyV diseases and thereby bridging the time needed to establish virus-specific immunity. However, the small dsDNA genome of only 5 kb of the non-enveloped HPyVs only encodes 5-7 viral proteins. Thus, HPyV replication relies heavily on host cell factors, thereby limiting both, number and type of specific virus-encoded antiviral targets. Lack of cost-effective high-throughput screening systems and relevant small animal models complicates the preclinical development. Current clinical studies are limited by small case numbers, poorly efficacious compounds and absence of proper randomized trial design. Here, we review preclinical and clinical studies that evaluated small molecules with presumed antiviral activity against HPyVs and provide an outlook regarding potential new antiviral strategies.
Collapse
Affiliation(s)
- Zongsong Wu
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Fabrice E Graf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Nanomaterials for Protein Delivery in Anticancer Applications. Pharmaceutics 2021; 13:pharmaceutics13020155. [PMID: 33503889 PMCID: PMC7910976 DOI: 10.3390/pharmaceutics13020155] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments.
Collapse
|
32
|
Yang XY, Zhao HY, Lei H, Yuan B, Mao S, Xin M, Zhang SQ. Synthesis and Biological Evaluation of 10-Substituted Camptothecin Derivatives with Improved Water Solubility and Activity. ChemMedChem 2020; 16:1000-1010. [PMID: 33241878 DOI: 10.1002/cmdc.202000753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Indexed: 11/09/2022]
Abstract
Despite remarkable clinical achievements, camptothecin (CPT) still suffers from poor solubility and severe toxicity. Therefore, it is necessary to redevelop CPT derivatives as supplementary antitumor agents with good water solubility and small side effects. In this work, 27 camptothecin derivatives were synthesized and screened for their cytotoxicity against A549 (lung) and HCT-116 (colon) cancer cell lines. Among them, compound B7, 7-ethyl-10-(2-oxo-2-(4-methylpiperidin-1-yl)ethoxy)camptothecin,was demonstrated in vitro to be a more potent antitumor agent than SN-38 by comparison of their inhibitory activities against cell proliferation and colony formation and interference effect on process of cell cycle and cell apoptosis. Additionally, a molecular docking model revealed that B7 can interact with the topoisomerase I-DNA complex, and that the solubility of B7 reached 5.73 μg/mL in water. Moreover, B7 significantly inhibited tumor growth in an A549 xenograft model at dosages of 0.4 and 2.0 mg/kg, and exhibited minimum lethal doses comparable to those of irinotecan. These results indicated that B7, with improved solubility, enhanced activity and acceptable acute toxicity, can be used as a lead compound for the development of novel anticancer agents.
Collapse
Affiliation(s)
- Xue-Yan Yang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Bo Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Minghang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| |
Collapse
|
33
|
Shi Z, Song Q, Göstl R, Herrmann A. Mechanochemical activation of disulfide-based multifunctional polymers for theranostic drug release. Chem Sci 2020; 12:1668-1674. [PMID: 34163927 PMCID: PMC8179261 DOI: 10.1039/d0sc06054b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug delivery systems responsive to physicochemical stimuli allow spatiotemporal control over drug activity to overcome limitations of systemic drug administration. Alongside, the non-invasive real-time tracking of drug release and uptake remains challenging as pharmacophore and reporter function are rarely unified within one molecule. Here, we present an ultrasound-responsive release system based on the mechanochemically induced 5-exo-trig cyclization upon scission of disulfides bearing cargo molecules attached via β-carbonate linker within the center of a water soluble polymer. In this bifunctional theranostic approach, we release one reporter molecule per drug molecule to quantitatively track drug release and distribution within the cell in real-time. We use N-butyl-4-hydroxy-1,8-naphthalimide and umbelliferone as fluorescent reporter molecules to accompany the release of camptothecin and gemcitabine as clinically employed anticancer agents. The generality of this approach paves the way for the theranostic release of a variety of probes and drugs by ultrasound. A theranostic approach for the mechanochemically induced release of drugs is presented to track drug release and uptake in real-time.![]()
Collapse
Affiliation(s)
- Zhiyuan Shi
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Qingchuan Song
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany.,Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
34
|
Lyski RD, Bou LB, Lau UY, Meyer DW, Cochran JH, Okeley NM, Emmerton KK, Zapata F, Simmons JK, Trueblood ES, Ortiz DJ, Zaval MC, Snead KM, Jin S, Farr LM, Ryan MC, Senter PD, Jeffrey SC. Development of Novel Antibody-Camptothecin Conjugates. Mol Cancer Ther 2020; 20:329-339. [PMID: 33273058 DOI: 10.1158/1535-7163.mct-20-0526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
We have developed a highly active and well-tolerated camptothecin (CPT) drug-linker designed for antibody-mediated drug delivery in which the lead molecule consists of a 7-aminomethyl-10,11-methylenedioxy CPT (CPT1) derivative payload attached to a novel hydrophilic protease-cleavable valine-lysine-glycine tripeptide linker. A defined polyethylene glycol stretcher was included to improve the properties of the drug-linker, facilitating high antibody-drug conjugate (ADC) drug loading, while reducing the propensity for aggregation. A CPT1 ADC with 8 drug-linkers/mAb displayed a pharmacokinetic profile coincident with parental unconjugated antibody and had high serum stability. The ADCs were broadly active against cancer cells in vitro and in mouse xenograft models, giving tumor regressions and complete responses at low (≤3 mg/kg, single administration) doses. Pronounced activities were obtained in both solid and hematologic tumor models and in models of bystander killing activity and multidrug resistance. Payload release studies demonstrated that two CPTs, CPT1 and the corresponding glycine analog (CPT2), were released from a cAC10 ADC by tumor cells. An ADC containing this drug-linker was well tolerated in rats at 60 mg/kg, given weekly four times. Thus, ADCs comprised of this valine-lysine-glycine linker with CPT drug payloads have promise in targeted drug delivery.
Collapse
Affiliation(s)
| | | | - Uland Y Lau
- Neoleukin Therapeutics, Inc., Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | - Steven Jin
- Seagen Inc., Bothell, Seattle, Washington
| | | | | | | | | |
Collapse
|
35
|
Buzun K, Bielawska A, Bielawski K, Gornowicz A. DNA topoisomerases as molecular targets for anticancer drugs. J Enzyme Inhib Med Chem 2020; 35:1781-1799. [PMID: 32975138 PMCID: PMC7534307 DOI: 10.1080/14756366.2020.1821676] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The significant role of topoisomerases in the control of DNA chain topology has been confirmed in numerous research conducted worldwide. The prevalence of these enzymes, as well as the key importance of topoisomerase in the proper functioning of cells, have made them the target of many scientific studies conducted all over the world. This article is a comprehensive review of knowledge about topoisomerases and their inhibitors collected over the years. Studies on the structure-activity relationship and molecular docking are one of the key elements driving drug development. In addition to information on molecular targets, this article contains details on the structure-activity relationship of described classes of compounds. Moreover, the work also includes details about the structure of the compounds that drive the mode of action of topoisomerase inhibitors. Finally, selected topoisomerases inhibitors at the stage of clinical trials and their potential application in the chemotherapy of various cancers are described.
Collapse
Affiliation(s)
- Kamila Buzun
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
36
|
Patel D, Patel N. Fabrication and characterization of sterically stabilized liposomes of topotecan. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00089-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBackgroundRecently, the development of drug delivery which delivers controlled drug release at the tumor sites emerged as an attractive option for enhancing anticancer therapeutics. Next-generation nanotherapeutics must not contain only the nanoscale but should find their way to the solid tumor via active or passive targeting. Surface modification by pegylated lipids is one of the approaches used to made liposomes long-circulating and passively target the tumor. Pegylation of liposomes help them to alter the pharmacokinetics of drug molecule in vivo. The successful journey of such a complex drug delivery system from bench to clinic requires in-depth understanding and characterization. In this research, we fabricated and characterized sterically stabilized liposomes of topotecan which meets the clinical need. Liposomes have been prepared using ethanol injection-solvent evaporation method followed by extrusion for size reduction. Outer medium was replaced with an isotonic sucrose solution using dialysis followed by drug loading. We characterized liposomes’ membrane phase and dynamics, drug and lipid quantification, size distribution, state of encapsulated drug, internal volume and internal pH of liposomes, presence, and thickness of grafted PEG on the liposomes surface, and in vitro leakage test.ResultsAll these studied parameters directly or indirectly provide information regarding the pharmacokinetic behavior of the formulation and the tumor-targeting property of the drugs in vivo. We encapsulated the topotecan in nanoliposomes with pegylation on the surface resulting in long-circulating stealth liposomes. Nanoliposomes remotely loaded with topotecan by transmembrane gradient method.ConclusionOur in vitro characterization of topotecan liposomes provides an explanation for the good therapeutic efficacy of tumor cells.
Collapse
|
37
|
Phytochemical investigation on the fruits of Camptotheca acuminata and their chemotaxonomic significance. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Xiao LX, Qi L, Zhang XL, Zhou YQ, Yue HL, Yu ED, Li QY. Liver injury in septic mice were suppressed by a camptothecin-bile acid conjugate via inhibiting NF-κB signaling pathway. Life Sci 2020; 257:118130. [DOI: 10.1016/j.lfs.2020.118130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
|
39
|
Fan S, Cao YX, Li GY, Lei H, Attiogbe MKI, Yao JC, Yang XY, Liu YJ, Hei YY, Zhang H, Cao L, Zhang XY, Du SS, Zhang GM, Zhang SQ. F10, a new camptothecin derivative, was identified as a new orally-bioavailable, potent antitumor agent. Eur J Med Chem 2020; 202:112528. [PMID: 32650182 DOI: 10.1016/j.ejmech.2020.112528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/12/2023]
Abstract
Topoisomerases are interesting targets for drug discovery. In the present study, we attached saturated carbon atoms to the 10-position of camptothecin and synthesized 10 new camptothecin derivatives from 10-HCPT or SN-38. The activities of new compounds were evaluated both in vitro and in vivo. The most promising compound F10, 7-ethyl-10-(2-oxo-2-(piperidin-1-yl)ethoxy)camptothecin, inhibited cancer cells growth with the IC50 of 0.002, 0.003, 0.011 and 0.081 μM on Raji, HCT116, A549 and Lovo cells, respectively. Meanwhile, oral administration of F10 remarkably suppressed the HCT116-xenograft tumor growth in the nude-mice model at the dosage of 0.5, 2.0 and 8.0 mg/kg in vivo. Intraperitoneal administration of F10 can completely inhibit Raji-xenograft tumor growth in established NPG mouse model at 2.0 and 4.0 mg/kg. In addition, the minimum lethal doses of F10 and SN-38 in mice by intravenous administration were 80 and 40 mg/kg (or 0.155, 0.102 mmol/kg), respectively. The solubility of F10 reached 9.86 μg/mL in a buffer solution of pH 4.5. The oral bioavailability of F10 achieved 22.4% in mice. The molecular docking model revealed that F10 can interact with topoisomerase I-DNA complex. Our findings indicate that F10 is a new orally-oavailable antitumor agent with potent anticancer effect. Furthermore, attaching a ring hydrophobic moiety to the 10-position of camptothecin provides a favorable approach in the optimization of camptothecin.
Collapse
Affiliation(s)
- Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Guang-Yan Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jing-Chun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - Xue-Yan Yang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yan-Jie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Xiao-Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shuai-Shuai Du
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Gui-Min Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
40
|
Slobodin B, Bahat A, Sehrawat U, Becker-Herman S, Zuckerman B, Weiss AN, Han R, Elkon R, Agami R, Ulitsky I, Shachar I, Dikstein R. Transcription Dynamics Regulate Poly(A) Tails and Expression of the RNA Degradation Machinery to Balance mRNA Levels. Mol Cell 2020; 78:434-444.e5. [PMID: 32294471 DOI: 10.1016/j.molcel.2020.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 02/02/2023]
Abstract
Gene expression is regulated by the rates of synthesis and degradation of mRNAs, but how these processes are coordinated is poorly understood. Here, we show that reduced transcription dynamics of specific genes leads to enhanced m6A deposition, preferential activity of the CCR4-Not complex, shortened poly(A) tails, and reduced stability of the respective mRNAs. These effects are also exerted by internal ribosome entry site (IRES) elements, which we found to be transcriptional pause sites. However, when transcription dynamics, and subsequently poly(A) tails, are globally altered, cells buffer mRNA levels by adjusting the expression of mRNA degradation machinery. Stress-provoked global impediment of transcription elongation leads to a dramatic inhibition of the mRNA degradation machinery and massive mRNA stabilization. Accordingly, globally enhanced transcription, such as following B cell activation or glucose stimulation, has the opposite effects. This study uncovers two molecular pathways that maintain balanced gene expression in mammalian cells by linking transcription to mRNA stability.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirly Becker-Herman
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amanda N Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruiqi Han
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idit Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
41
|
The development and validation of an LC-MS/MS method for the quantification of CZ112, a prodrug of 9-Nitrocamptothecin in rat plasma. J Pharm Biomed Anal 2020; 179:112963. [PMID: 31848079 DOI: 10.1016/j.jpba.2019.112963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022]
Abstract
9-Nitrocamptothecin-20-O-propionate (CZ112) and 9-Nitrocamptothecin (9NC) are the bioactive derivatives of camptothecin (CPT), an alkaloid isolated from Camptotheca acuminata, and have been confirmed to possess high anti-cancer properties. In the present study, 9NC was identified as the major metabolite of CZ112 in rat plasma through HPLC/photodiode array detection (PDA) and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. A highly sensitive LC-MS/MS method was developed and validated for the simultaneous analysis of CZ112 and 9NC in rat plasma, and camptothecin-20-O-acetate (CZ44) was used as an internal standard (IS). The calibration curves were linear (r2 > 0.999) over concentrations from 2.5 to 320 ng/mL for both CZ112 and 9NC. The method had an accuracy of 96.7-109.6%, and the intra- and inter-day precision (RSD%) were 10.9% or less for CZ112 and 9NC. The stability data showed no significant degradation occurred under the experimental conditions. This method was successfully applied to the pharmacokinetic study of CZ112 and its metabolite 9NC in rat plasma after intravenous and intragastric administration. The oral bioavailability of CZ112 was 6.2 ± 3.3% (n = 6).
Collapse
|
42
|
Development of (G3-C12)-mediated camptothecin polymeric prodrug targeting to Galectin-3 receptor against androgen-independent prostate cancer. Int J Pharm 2020; 580:119123. [PMID: 32035258 DOI: 10.1016/j.ijpharm.2020.119123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/08/2023]
Abstract
The development of small molecule anticancer drugs, with low water solubility and high toxicity, into polymeric prodrugs has developed into a promising strategy in clinical application. In this study, we synthesized a novel G3-C12-mediated esterase-sensitive tumor-targeting polymeric prodrug of camptothecin (CPT), P(OEGMA-co-CPT-co-G3-C12), and explored its anticancer activity against androgen-independent prostate cancer in vitro and in vivo. Compared to free CPT, the multifunctional polymeric prodrug demonstrated improved water solubility and stability, higher intracellular uptake, and enhanced cytotoxicity in DU145 cells in vitro. Furthermore, it displayed an improved accumulation in the tumor and an enhanced anticancer activity in vivo. Hence, P(OEGMA-co-CPT-co-G3-C12) could be a promising drug in the treatment of androgen-independent prostate cancer.
Collapse
|
43
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2020; 10:1614. [PMID: 32116665 PMCID: PMC7025531 DOI: 10.3389/fphar.2019.01614] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.
Collapse
Affiliation(s)
- Amit S Choudhari
- Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Pallavi C Mandave
- Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Manasi Deshpande
- Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
44
|
Nanoparticles guided drug delivery and imaging in gastric cancer. Semin Cancer Biol 2020; 69:69-76. [PMID: 31954835 DOI: 10.1016/j.semcancer.2020.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023]
Abstract
Gastric cancer represents a deadly malignancy worldwide, yet current therapeutic regimens remain ineffective. Nanoparticle (NP) -based solutions could allow the design of novel therapeutic methods to eliminate this fatal disease. NPs typically carry out a significant role in multifunctional, multimodal imaging, and drug delivery carriers. In the recent decade, they have emerged as candidate approaches for the design of novel treatment strategies. Tumor nanotherapeutics characteristically possess various distinct advantages compared to conventional anti-cancer medications, which suffer from nonspecific bio-distribution, low solubility, and poor bioavailability. In this review, we will discuss the application of NPs in diagnosis and controlled drug delivery in gastric cancer (GC). We will focus on various NPs-based strategies employed against GC.
Collapse
|
45
|
Joshi G, Kalra S, Yadav UP, Sharma P, Singh PK, Amrutkar S, Ansari AJ, Kumar S, Sharon A, Sharma S, Sawant DM, Banerjee UC, Singh S, Kumar R. E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase. Bioorg Chem 2020; 94:103409. [DOI: 10.1016/j.bioorg.2019.103409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
|
46
|
Padhi S, Behera A. Nanotechnology Based Targeting Strategies for the Delivery of Camptothecin. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
El-Metwally SA, Khalil AK, El-Sayed WM. Design, molecular modeling and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as inhibitors of topoisomerase II. Bioorg Chem 2020; 94:103492. [PMID: 31864673 DOI: 10.1016/j.bioorg.2019.103492] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/07/2019] [Accepted: 12/01/2019] [Indexed: 02/03/2023]
|
48
|
Jain S, Chandra V, Kumar Jain P, Pathak K, Pathak D, Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.10.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
49
|
Bardhi E, Marchetti C, Scopelliti A, Musacchio L, Tomao F, Schiavi M, Carraro C, Palaia I, Monti M, Muzii L, Benedetti Panici P. Etirinotecan pegol in women with recurrent platinum-resistant or refractory ovarian cancer. Expert Opin Investig Drugs 2019; 28:667-673. [PMID: 31353973 DOI: 10.1080/13543784.2019.1648430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: A PEGylated form of irinotecan, a topoisomerase I inhibitor, is now available in commerce; its safety and efficacy have been tested in platinum resistant/refractory ovarian cancer (PROC) patients. This novel agent is known as Etirinotecan Pegol (EP). EP, like irinotecan, exerts its action through its principal metabolite SN-38. Areas covered: This drug evaluation article focuses on the most recent investigations and clinical progress regarding EP, a long-acting polymer conjugate of irinotecan for the treatment of PROC. Expert opinion: EP provides prolonged and continuous exposure of SN-38 in tumors, when compared to its parent drug irinotecan. Results from phase II studies are comparable in terms of efficacy to other agents of proven use in PROC. A limitation of the use of EP is the schedule-dependent toxicities (mainly diarrhea and dehydration). In the future, EP could be investigated in association with other agents, even in attempts to restore sensitivity to other treatments. PROC remains a very difficult setting and EP might be a valid agent for patients with good performance status that have exhausted therapeutic options. In such a setting, participation in clinical trials is strongly encouraged.
Collapse
Affiliation(s)
- Erlisa Bardhi
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Claudia Marchetti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy.,b Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Rome , Italy
| | - Annalisa Scopelliti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Lucia Musacchio
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Federica Tomao
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Michele Schiavi
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Carlo Carraro
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Innocenza Palaia
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Marco Monti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Ludovico Muzii
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Pierluigi Benedetti Panici
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| |
Collapse
|
50
|
Xiao L, Yu E, Yue H, Li Q. Enhanced Liver Targeting of Camptothecin via Conjugation with Deoxycholic Acid. Molecules 2019; 24:E1179. [PMID: 30917485 PMCID: PMC6472190 DOI: 10.3390/molecules24061179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Camptothecin (CPT) shows potent anticancer activity through inhibition of topoisomerase I. However, its water insolubility and severe toxicity limit its clinical application. Coupling with bile acid moieties is a promising method for liver-targeted drug delivery, which takes advantage of the bile acid receptors on hepatocytes. In this study, we evaluated the potential liver targeting and stability of a deoxycholic acid-CPT conjugate (G2). The competitive inhibition of antitumor activity experiment based on bile acid transporters was performed using the MTT method. The effects of deoxycholic acid on uptake of G2 and CPT were assessed in 2D and 3D HepG2 cell models. The stability of G2 and CPT was evaluated in vitro (in simulated gastric fluid, simulated intestinal fluid, and fresh rat plasma). Finally, biodistribution of G2 and CPT was investigated in Kunming mice following oral administration. The results showed that deoxycholic acid pretreatment could significantly reduce the antitumor activity and cellular uptake of G2 in HepG2 cells, but had no distinct effects on CPT. Meanwhile, G2 exhibited better stability compared with CPT. More importantly, biodistribution study in mice demonstrated that the liver targeting index of G2 increased 1.67-fold than that of CPT. Overall, the study suggests that conjugation with deoxycholic acid is a feasible method to achieve liver targeting delivery of CPT.
Collapse
Affiliation(s)
- Linxia Xiao
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Endian Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hanlin Yue
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|