1
|
Goretzki A, Lin Y, Schülke S. Immune metabolism in allergies, does it matter?-A review of immune metabolic basics and adaptations associated with the activation of innate immune cells in allergy. Allergy 2021; 76:3314-3331. [PMID: 33811351 DOI: 10.1111/all.14843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
Type I allergies are pathological, type 2 inflammatory immune responses against otherwise harmless environmental allergens that arise from complex interactions between different types of immune cells. Activated immune cells undergo extensive changes in phenotype and function to fulfill their effector functions. Hereby, activation, differentiation, proliferation, migration, and mounting of effector responses require metabolic reprogramming. While the metabolic changes associated with activation of dendritic cells, macrophages, and T cells are extensively studied, data about the metabolic phenotypes of the other cell types critically involved in allergic responses (epithelial cells, eosinophils, basophils, mast cells, and ILC2s) are rather limited. This review briefly covers the basics of cellular energy metabolism and its connection to immune cell function. In addition, it summarizes the current state of knowledge in terms of dendritic cell and macrophage metabolism and subsequently focuses on the metabolic changes associated with activation of epithelial cells, eosinophils, basophils, mast cells, as well as ILC2s in allergy. Interestingly, the innate key cell types in allergic inflammation were reported to change their metabolic phenotype during activation, shifting to either glycolysis (epithelial cells, M1 macrophages, DCs, eosinophils, basophils, acutely activated mast cells), oxidative phosphorylation (M2 macrophages, longer term activated mast cells), or fatty acid oxidation (ILC2s). Therefore, immune metabolism is of relevance in allergic diseases and its connection to immune cell effector function needs to be considered to better understand induction and maintenance of allergic responses. Further progress in this field will likely improve both our understanding of disease pathology and enable new treatment targets/strategies.
Collapse
Affiliation(s)
| | - Yen‐Ju Lin
- Molecular Allergology Paul‐Ehrlich‐Institut Langen Germany
| | - Stefan Schülke
- Molecular Allergology Paul‐Ehrlich‐Institut Langen Germany
| |
Collapse
|
2
|
Membrane Lipids in Presynaptic Function and Disease. Neuron 2016; 90:11-25. [DOI: 10.1016/j.neuron.2016.02.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
|
3
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2015; 66:1033-79. [PMID: 25244928 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
4
|
Larson D, Mitre E. Histamine release and surface CD200R1 staining as sensitive methods for assessing murine mast cell activation. J Immunol Methods 2012; 379:15-22. [PMID: 22394590 DOI: 10.1016/j.jim.2012.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/18/2012] [Accepted: 02/21/2012] [Indexed: 02/05/2023]
Abstract
Mast cells are important effector cells of allergy and are involved in the pathology of many other diseases. Measurement of β-hexosaminidase activity, the most commonly used method for evaluation of murine mast cell activity, requires a large number of cells and thus is of limited utility for studying mast cells in mouse models of disease. In this study we evaluated the sensitivity of histamine release as compared to β-hexosaminidase activity in the measurement of mast cell activation. Whereas a minimum of 6×10(4) mast cells per ml were required to detect slight increases in β-hexosaminidase activity after anti-IgE and ionomycin stimulation, substantial increases in histamine release could be detected under the same activating conditions with as few as 480 mast cells per ml. These findings demonstrate that measurement of histamine release is substantially more sensitive than assessment of β-hexosaminidase activity for detecting mast cell activation. Additionally, we describe a novel flow cytometric method for detecting murine mast cell activation. When using 7.5×10(5) peritoneal cells per condition and gating on IgE+c-kit+cells, mast cell expression of surface CD200R1 increased after both IgE and non IgE-mediated activation. This flow cytometric procedure was uncomplicated and rapid, with increases in surface CD200R1 expression appearing after as little as 30 min of stimulation time. Measuring histamine release and surface CD200R1 expression are sensitive approaches for detection of murine mast cell activation. Further, both approaches can be done on unpurified peritoneal cell populations. By requiring low numbers of cells, these approaches are ideal for investigating mast cell activation in murine models of disease.
Collapse
Affiliation(s)
- David Larson
- Department of Microbiology and Immunology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA.
| | | |
Collapse
|
5
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
6
|
LaPlante JM, Falardeau JL, Brown EM, Slaugenhaupt SA, Vassilev PM. The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain. Exp Cell Res 2011; 317:691-705. [PMID: 21256127 DOI: 10.1016/j.yexcr.2011.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 12/03/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
Abstract
Phospholipase modulators have been shown to affect the topology of lipid bilayers and the formation of tubulo-vesicular structures, but the specific endogenous phospholipases involved have yet to be identified. Here we show that TRPML1 (MLN1), a Ca(2+)-permeable channel, contributes to membrane remodeling through a serine lipase consensus domain, and thus represents a novel type of bifunctional protein. Remarkably, this serine lipase active site determines the ability of MLN1 to generate tubulo-vesicular extensions in mucolipin-1-expressing oocytes, human fibroblasts and model membrane vesicles. Our demonstration that MLN1 is involved in membrane remodeling and the formation of extensions suggests that it may play a role in the formation of cellular processes linked to the late endosome/lysosome (LE/L) pathway. MLN1 is absent or mutated in patients with mucolipidosis IV (MLIV), a lysosomal disorder with devastating neurological and other consequences. This study provides potential insight into the pathophysiology of MLIV.
Collapse
Affiliation(s)
- Janice M LaPlante
- Division of Endocrinology, Diabetes and Hypertension and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
7
|
Han X, Smith NL, Sil D, Holowka DA, McLafferty FW, Baird BA. IgE receptor-mediated alteration of membrane-cytoskeleton interactions revealed by mass spectrometric analysis of detergent-resistant membranes. Biochemistry 2009; 48:6540-50. [PMID: 19496615 DOI: 10.1021/bi900181w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We use electrospray ionization mass spectrometry to quantify >100 phospholipid (PL) components in detergent-resistant membrane (DRM) domains that are related to ordered membrane compartments commonly known as lipid rafts. We previously compared PL compositions of DRMs with plasma membrane vesicles and whole cell lipid extracts from RBL mast cells, and we made the initial observation that antigen stimulation of IgE receptors (FcepsilonRI) causes a significant change in the PL composition of DRMs [Fridriksson, E. K., et al. (1999) Biochemistry 38, 8056-8063]. We now characterize the signaling requirements and time course for this change, which is manifested as an increase in the recovery of polyunsaturated PL in DRM, particularly in phosphatidylinositol species. We find that this change is largely independent of tyrosine phosphorylation, stimulated by engagement of FcepsilonRI, and can be activated by Ca(2+) ionophore in a manner independent of antigen stimulation. Unexpectedly, we found that inhibitors of actin polymerization (cytochalasin D and latrunculin A) cause a similar, but more rapid, change in the PL composition of DRMs in the absence of FcepsilonRI activation, indicating that perturbations in the actin cytoskeleton affect the organization of plasma membrane domains. Consistent with this interpretation, a membrane-permeable stabilizer of F-actin, jasplakinolide, prevents antigen-stimulated changes in DRM PL composition. These results are confirmed by a detailed analysis of multiple experiments, showing that receptor and cytochalasin D-stimulated changes in DRM lipid composition follow first-order kinetics. Analysis in terms of the number of double bonds in the fatty acid chains is valid for total PL of the major headgroups and for headgroups individually. In this manner, we show that, on average, concentrations of saturated or monounsaturated PL decrease in the DRM, whereas concentrations of PL with two or more double bonds (polyunsaturated PL) increase due to cytoskeletal perturbation. We find that these changes are independent of fatty acid chain length. Our mass spectrometric analyses provide a detailed accounting of receptor-activated alterations in the plasma membrane that are regulated by the actin cytoskeleton.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | | | |
Collapse
|
8
|
Suppression of T cell activation by hirsutenone, isolated from the bark of Alnus japonica, and its therapeutic advantages for atopic dermatitis. Eur J Pharmacol 2009; 614:98-105. [DOI: 10.1016/j.ejphar.2009.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/13/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
|
9
|
Ryu H, Walker JKL, Kim S, Koo N, Barak LS, Noguchi T, Kang BY, Kim KM. Regulation of M2-type pyruvate kinase mediated by the high-affinity IgE receptors is required for mast cell degranulation. Br J Pharmacol 2008; 154:1035-46. [PMID: 18587448 PMCID: PMC2451040 DOI: 10.1038/bjp.2008.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/28/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE M2-type pyruvate kinase (M2PK) was found to interact directly with the 'ITAM' region of the gamma chain of the high-affinity IgE receptor (FcvarepsilonRI). Our hypothesis was that mast cell degranulation might require the FcvarepsilonRI-mediated inhibition of M2PK activity. EXPERIMENTAL APPROACH In rat basophilic leukaemia (RBL-2H3) cells, the effects of directly inhibiting M2PK or preventing the FcvarepsilonRI-mediated inhibition of M2PK (disinhibition) on degranulation was measured by hexosaminidase release. Effects of blocking the FcvarepsilonRI-mediated inhibition of M2PK was also assessed in vivo in a mouse model of allergen-induced airway hyper-responsiveness. KEY RESULTS Activation of FcvarepsilonRI in RBL-2H3 cells caused the rapid phosphorylation of tyrosine residues in M2PK, associated with a decrease in M2PK enzymatic activity. There was an inverse correlation between M2PK activity and mast cell degranulation. FcvarepsilonRI-mediated inhibition of M2PK involved Src kinase, phosphatidylinositol 3-kinase, PKC and calcium. Direct inhibition of M2PK potentiated FcvarepsilonRI-mediated degranulation and prevention of the FcvarepsilonRI-mediated inhibition of M2PK attenuated mast cell degranulation. Transfection of RBL-2H3 cells with M1PK which prevents FcvarepsilonRI-induced inhibition of M2PK, markedly reduced their degranulation and exogenous M1PK (i.p.) inhibited ovalbumin-induced airway hyper-responsiveness in vivo. CONCLUSIONS AND IMPLICATIONS We have identified a new control point and a novel biochemical pathway in the process of mast cell degranulation. Our study suggests that the FcvarepsilonRI-mediated inhibition of M2PK is a crucial step in responses to allergens. Moreover, the manipulation of glycolytic processes and intermediates could provide novel strategies for the treatment of allergic diseases.
Collapse
Affiliation(s)
- H Ryu
- Department of Pharmacology, Research Institute of Drug Development, College of Pharmacy, Chonnam National University Kwang-Ju, Korea
| | - J K L Walker
- Department of Medicine, Duke University Medical Center Durham, NC, USA
| | - S Kim
- Department of Pharmacology, Research Institute of Drug Development, College of Pharmacy, Chonnam National University Kwang-Ju, Korea
| | - N Koo
- Department of Pharmacology, Research Institute of Drug Development, College of Pharmacy, Chonnam National University Kwang-Ju, Korea
| | - L S Barak
- Department of Cell Biology, Duke University Medical Center Durham, NC, USA
| | - T Noguchi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University Nagoya, Japan
| | - B Y Kang
- Department of Pharmacology, Research Institute of Drug Development, College of Pharmacy, Chonnam National University Kwang-Ju, Korea
| | - K-M Kim
- Department of Pharmacology, Research Institute of Drug Development, College of Pharmacy, Chonnam National University Kwang-Ju, Korea
| |
Collapse
|
10
|
Gomez-Cambronero J, Di Fulvio M, Knapek K. Understanding phospholipase D (PLD) using leukocytes: PLD involvement in cell adhesion and chemotaxis. J Leukoc Biol 2007; 82:272-81. [PMID: 17431093 DOI: 10.1189/jlb.0107033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phospholipase D (PLD) is an enzyme that catalyzes the conversion of membrane phosphatidylcholine to choline and phosphatidic acid (PA; a second messenger). PLD is expressed in nearly all types of leukocytes and has been associated with phagocytosis, degranulation, microbial killing, and leukocyte maturation. With the application of recently developed molecular tools (i.e., expression vectors, silencing RNA, and specific antibodies), the demonstration of a key role for PLD in those and related cellular actions has contributed to a better awareness of its importance. A case in point is the recent findings that RNA interference-mediated depletion of PLD results in impaired leukocyte adhesion and chemotaxis toward a gradient of chemokines, implying that PLD is necessary for leukocyte movement. We forecast that based on results such as those, leukocytes may prove to be useful tools to unravel still-unresolved mechanistic issues in the complex biology of PLD. Three such issues are considered here: first, whether the cellular actions of PLD are mediated entirely by PA (the product of its enzymatic reaction) or whether PLD by itself interacts with other protein signaling molecules; second, the current difficulty of defining a "PA consensus site" in the various intracellular protein targets of PA; and third, the resolution of specific PLD location (upstream or downstream) in a particular effector signaling cascade. There are reasons to expect that leukocytes and their leukemic cell line counterparts will continue yielding invaluable information to cell biologists to resolve standing molecular and functional issues concerning PLD.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
11
|
Farquhar MJ, Powner DJ, Levine BA, Wright MH, Ladds G, Hodgkin MN. Interaction of PLD1b with actin in antigen-stimulated mast cells. Cell Signal 2007; 19:349-58. [PMID: 16978840 DOI: 10.1016/j.cellsig.2006.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/16/2006] [Accepted: 07/19/2006] [Indexed: 11/26/2022]
Abstract
Phosphatidic acid, the product of phospholipase D catalysed phosphatidylcholine hydrolysis is an important signalling molecule that has been implicated in regulation of actin cytoskeleton remodelling and secretion from mast cells. We show that human PLD1b (hPLD1b) is an actin-binding protein and the N-terminus is predominantly involved in this interaction. Protein kinase C (PKC) is a major upstream regulator of PLD activity and PKC phosphorylation sites have been identified within the N-terminus of PLD1b at serine 2 and threonine 147. Over-expression of wild type hPLD1b in mast cells showed that antigen stimulation significantly enhanced co-localisation of PLD1b with actin structures. Mutation of serine 2 to alanine abolished antigen-induced co-localisation whereas mutation of threonine 147 had less dramatic effects on co-localisation. The absence of co-localisation of PLD1b (S2A) with actin coincides with a significant decrease in PLD activity in cells expressing the PLD1b (S2A) mutant. In resting RBL-2H3 cells, mutation of serine 2 to aspartate resulted in constitutive co-localisation of PLD with the actin cytoskeleton, coincident with restored PLD activity. These results reveal that serine 2 is an important regulatory site involved in controlling PLD enzyme activity and the interaction between PLD and actin.
Collapse
Affiliation(s)
- M J Farquhar
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Scott GA, Jacobs SE, Pentland AP. sPLA2-X stimulates cutaneous melanocyte dendricity and pigmentation through a lysophosphatidylcholine-dependent mechanism. J Invest Dermatol 2006; 126:855-61. [PMID: 16456529 DOI: 10.1038/sj.jid.5700180] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoprotection of the skin is provided by melanocytes, neural crest derived cells that synthesize melanin in specialized organelles that are transferred to keratinocytes. Secretory phospholipases comprise a large family of Ca2+-dependent enzymes that liberate arachidonic acid (AA), a precursor of prostaglandins, as well as lysophospholipids. The predominant secretory phospholipase expressed by keratinocytes is group X secretory phospholipase A2 (sPLA2), which liberates large amounts of AA and the lysophospholipid lysophosphatidylcholine (LPC), from membrane preparations. Recent work by our laboratory has shown that melanocytes express receptors for prostaglandins that upon activation stimulate melanocyte dendricity and activity of tyrosinase, a key enzyme in melanin biosynthesis. In the present study, we have treated human melanocytes with recombinant sPLA2-X and show that low levels of sPLA2-X stimulate both tyrosinase activity and melanocyte dendricity. We found that the effects of sPLA2-X are mediated predominantly by LPC, not AA, and we have demonstrated expression of the phospholipase A2 receptor and two G-protein-coupled receptors for LPC (G2A and GPR119) in human melanocytes. Because secretory phospholipases are released during inflammation and are regulated by UV irradiation, our data suggest an important role for sPLA2-X in cutaneous pigmentation through the release of LPC.
Collapse
Affiliation(s)
- Glynis A Scott
- Department of Dermatology, University or Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
13
|
Huang FD, Woodruff E, Mohrmann R, Broadie K. Rolling blackout is required for synaptic vesicle exocytosis. J Neurosci 2006; 26:2369-79. [PMID: 16510714 PMCID: PMC6793665 DOI: 10.1523/jneurosci.3770-05.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.
Collapse
Affiliation(s)
- Fu-De Huang
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Brain Institute, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | | | | | |
Collapse
|
14
|
Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. MASS SPECTROMETRY REVIEWS 2005; 24:367-412. [PMID: 15389848 DOI: 10.1002/mas.20023] [Citation(s) in RCA: 882] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lipidomics, after genomics and proteomics, is a newly and rapidly expanding research field that studies cellular lipidomes and the organizational hierarchy of lipid and protein constituents mediating life processes. Lipidomics is greatly facilitated by recent advances in, and novel applications of, electrospray ionization mass spectrometry (ESI/MS). In this review, we will focus on the advances in ESI/MS, which have facilitated the development of shotgun lipidomics and the utility of intrasource separation as an enabling strategy for utilization of 2D mass spectrometry in shotgun lipidomics of biological samples. The principles and experimental details of the intrasource separation approach will be extensively discussed. Other ESI/MS approaches towards the quantitative analyses of global cellular lipidomes directly from crude lipid extracts of biological samples will also be reviewed and compared. Multiple examples of lipidomic analyses from crude lipid extracts employing these approaches will be given to show the power of ESI/MS techniques in lipidomics. Currently, modern society is plagued by the sequelae of lipid-related diseases. It is our hope that the integration of these advances in multiple disciplines will catalyze the development of lipidomics, and such development will lead to improvements in diagnostics and therapeutics, which will ultimately result in the extended longevity and an improved quality of life for humankind.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
15
|
Abstract
Membrane vesicle cycling is orchestrated through the combined actions of proteins and lipids. At neuronal synapses, this orchestration must meet the stringent demands of speed, fidelity and sustainability of the synaptic vesicle cycle that mediates neurotransmission. Historically, the lion's share of the attention has been focused on the proteins that are involved in this cycle; but, in recent years, it has become clear that the previously unheralded plasma membrane and vesicle lipids are also key regulators of this cycle. This article reviews recent insights into the roles of lipid-modifying enzymes and lipids in the acute modulation of neurotransmission.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | |
Collapse
|
16
|
Hitomi T, Zhang J, Nicoletti LM, Grodzki ACG, Jamur MC, Oliver C, Siraganian RP. Phospholipase D1 regulates high-affinity IgE receptor-induced mast cell degranulation. Blood 2004; 104:4122-8. [PMID: 15339843 DOI: 10.1182/blood-2004-06-2091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of phospholipase D (PLD) in FcepsilonRI signaling, the wild-type or the catalytically inactive forms of PLD1 or PLD2 were stably overexpressed in RBL-2H3 mast cells. FcepsilonRI stimulation resulted in the activation of both PLD1 and PLD2. However, PLD1 was the source of most of the receptor-induced PLD activity. There was enhanced FcepsilonRI-induced degranulation only in cells that overexpressed the catalytically inactive PLD1. This dominant-negative PLD1 enhanced FcepsilonRI-induced tyrosine phosphorylations of early signaling molecules such as the receptor subunits, Syk and phospholipase C-gamma which resulted in faster release of Ca(2+) from intracellular sources. Therefore, PLD1 negatively regulates signals upstream of the Ca(2+) response. However, FcepsilonRI-induced PLD activation required Syk and was downstream of the Ca(2+)response, suggesting that basal PLD1 activity rather than that activated by cell stimulation controlled these early signaling events. Dominant-negative PLD1 reduced the basal phosphatidic acid formation in unstimulated cells, which was accompanied by an increase in FcepsilonRI within the lipid rafts. These results indicate that constitutive basal PLD1 activity by regulating phosphatidic acid formation controls the early signals initiated by FcepsilonRI aggregation that lead to mast cell degranulation.
Collapse
Affiliation(s)
- Tomohiro Hitomi
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
18
|
Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. MASS SPECTROMETRY REVIEWS 2003; 22:332-64. [PMID: 12949918 DOI: 10.1002/mas.10061] [Citation(s) in RCA: 670] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phospholipids play a central role in the biochemistry of all living cells. These molecules constitute the lipid bilayer defining the outer confines of a cell, but also serve as the structural entities which confine subcellular components. Mass spectrometry has emerged as a powerful tool useful for the qualitative and quantitative analysis of complex phospholipids, including glycerophospholipids and the sphingolipid, sphingomyelin. Collision induced decomposition of both positive and negative molecular ion species yield rich information as to the polar head group of the phospholipid and the fatty-acyl substituents esterified to the glycerophospholipid backbone. This review presents the current level of understanding of the mechanisms involved in the formation of various product ions following collisional activation of molecular ion species generated by electrospray ionization of the common glycerophospholipids, including phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, cardiolipin, and sphingomyelin. Recent advances in the application of matrix assisted laser desorption ionization is also considered. Several applications of mass spectrometry applied to phospholipid analysis are presented as they apply to physiology as well as pathophysiology.
Collapse
Affiliation(s)
- Melissa Pulfer
- Department of Pediatrics, Division of Cell Biology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, Colorado 80206, USA
| | | |
Collapse
|
19
|
Ge M, Gidwani A, Brown HA, Holowka D, Baird B, Freed JH. Ordered and disordered phases coexist in plasma membrane vesicles of RBL-2H3 mast cells. An ESR study. Biophys J 2003; 85:1278-88. [PMID: 12885671 PMCID: PMC1303245 DOI: 10.1016/s0006-3495(03)74563-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 04/01/2003] [Indexed: 11/16/2022] Open
Abstract
Four chain spin labels and a spin-labeled cholestane were used to study the dynamic structure of plasma membrane vesicles (PMV) prepared from RBL-2H3 mast cells at temperatures ranging from 22 degrees C to 45 degrees C. Analysis shows that the spectra from most labels consist of two components. The abundant spectral components exhibit substantial ordering that is intermediate between that of a liquid-ordered (Lo) phase, and that of a liquid-crystalline (Lc) phase as represented by model membranes. Also, rotational diffusion rates of the spin labels are comparable to those in the Lo phase. In contrast, the ordering for the less abundant components is much lower. These results indicate that a Lo-like region or phase (the abundant component) and an Lc-like region or phase (the less abundant component) coexist in the PMV. In contrast, membranes reconstituted from extracted lipids exhibit the more ordered phase only. This suggests that membrane-associated proteins are important for the coexistence of Lo-like and Lc-like regions in the plasma membrane. In addition, binding of the myristoylated protein, ARF6 to PMV, leads to a new spectral component for a headgroup lipid spin label that indicates the formation of plasma membrane defects by this low molecular weight GTPase.
Collapse
Affiliation(s)
- Mingtao Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gidwani A, Brown HA, Holowka D, Baird B. Disruption of lipid order by short-chain ceramides correlates with inhibition of phospholipase D and downstream signaling by FcepsilonRI. J Cell Sci 2003; 116:3177-87. [PMID: 12829737 DOI: 10.1242/jcs.00621] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid-ordered properties appear to be important for their function. We investigated the possibility of using amphiphiles to disrupt lipid rafts and thereby inhibit IgE-FcepsilonRI signaling. We find that short-chain ceramides - C2-ceramide and C6-ceramide - decrease plasma membrane lipid order and reduce the extent of fluorescence resonance energy transfer between lipid-raft-associated molecules on intact cells; by contrast, biologically inactive C2-dihydroceramide does neither. Structural perturbations by these ceramides parallel their inhibitory effects on antigen-stimulated Ca2+ mobilization in RBL mast cells in the presence and absence of extracellular Ca2+. Similar inhibition of Ca2+ mobilization is caused by n-butanol, which prevents phosphatidic acid production by phospholipase D, but not by t-butanol, which does not prevent phosphatidic acid production. These results and previously reported effects of short-chain ceramides on phospholipase D activity prompted us to compare the effects of C2-ceramide, C2-dihydroceramide and C16-ceramide on phospholipase D1 and phospholipase D2 activities in vitro. We find that the effects of these ceramides on phospholipase D1 activity strongly correlate with their effects on antigen-stimulated Ca2+ mobilization and with their disruption of lipid order. Our results indicate that phospholipase D activity is upstream of antigen-stimulated Ca2+ mobilization in these cells, and they demonstrate that ceramides can serve as useful probes for investigating roles of plasma membrane structure and phospholipase D activity in cellular signaling.
Collapse
Affiliation(s)
- Arun Gidwani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
21
|
Brown WJ, Chambers K, Doody A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 2003; 4:214-21. [PMID: 12694560 DOI: 10.1034/j.1600-0854.2003.00078.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the mid-1990s, there have been tremendous advances in our understanding of the roles that lipid-modifying enzymes play in various intracellular membrane trafficking events. Phospholipases represent the largest group of lipid-modifying enzymes and accordingly display a wide range of functions. The largest class of phospholipases are the phospholipase A(2) (PLA2) enzymes, and these have been most extensively studied for their roles in the generation lipid signaling molecules, e.g. arachidonic acid. In recent years, however, cytoplasmic PLA2 enzymes have also become increasingly associated with various intracellular trafficking events, such as the formation of membrane tubules from the Golgi complex and endosomes, and membrane fusion events in the secretory and endocytic pathways. Moreover, the ability of cytoplasmic PLA2 enzymes to directly affect the structure and function of membranes by altering membrane curvature suggests novel functional roles for these enzymes. This review will focus on the role of cytoplasmic PLA2 enzymes in intracellular membrane trafficking and the mechanisms by which they influence membrane structure and function.
Collapse
Affiliation(s)
- William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
22
|
Eisen SF, Brown HA. Selective estrogen receptor (ER) modulators differentially regulate phospholipase D catalytic activity in ER-negative breast cancer cells. Mol Pharmacol 2002; 62:911-20. [PMID: 12237338 DOI: 10.1124/mol.62.4.911] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent successes in the pharmacotherapeutic treatment of breast cancer are associated with the use of selective estrogen receptor modulators. Two commonly prescribed pharmaceuticals in this class, tamoxifen and raloxifene, have been shown to have effects through estrogen receptor (ER)-independent mechanisms. Hyperactivation of phospholipase D (PLD) in certain tumor-derived cell lines have been reported, and recent findings suggest a role for PLD in transformation and metastasis. In the present study, we compare the effects of tamoxifen and raloxifene on PLD in the ER-positive mammary epithelial cell line MCF-12A, and the ER-negative, highly tumorigenic mammary carcinoma cell line MDA-MB-231. Our data demonstrate that tamoxifen and raloxifene have differential effects on PLD catalytic activity. Tamoxifen stimulates PLD in both ER-positive and -negative cells in vivo, whereas raloxifene inhibits PLD activity in these same cell types. In addition, we show that the active metabolite 4-OH-tamoxifen can be used to pharmacologically discriminate the two isoforms of PLD, through a stimulatory effect on PLD1 and an inhibitory effect on PLD2. Using recombinant PLD1, we show stimulation by tamoxifen requires a factor present in Sf21 insect cells that is not required for inhibition of PLD1 by raloxifene. Furthermore, tamoxifen stimulation and raloxifene inhibition of PLD activities are independent of the amino-terminal portion of PLD1 (amino acids 1-324). Knowledge of the mechanisms of action of these drugs on PLD may provide insights into the pharmacological action of these drugs and the role of PLD in some cancers.
Collapse
Affiliation(s)
- Susanne F Eisen
- Department of Molecular Medicine, Veterinary Medical Center, Field of Pharmacology, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
23
|
Melendez AJ, Khaw AK. Dichotomy of Ca2+ signals triggered by different phospholipid pathways in antigen stimulation of human mast cells. J Biol Chem 2002; 277:17255-62. [PMID: 11856736 DOI: 10.1074/jbc.m110944200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mast cell activation triggers Ca(2+) signals and the release of enzyme-containing granules, events that play a major role in allergic/hypersensitivity reactions. However, the precise molecular mechanisms that regulate antigen-triggered degranulation and Ca(2+) fluxes in human mast cells are still poorly understood. Here we show, for the first time, that a receptor can trigger Ca(2+) via two separate molecular mechanisms. Using an antisense approach, we show that IgE-antigen stimulation of human bone marrow-derived mast cells triggers a sphingosine kinase (SPHK) 1-mediated fast and transient Ca(2+) release from intracellular stores. However, phospholipase C (PLC) gamma1 triggers a second (slower) wave of calcium release from intracellular stores, and it is this PLCgamma1-generated signal that is responsible for Ca(2+) entry. Surprisingly, FcepsilonRI (a high affinity receptor for IgE)-triggered mast cell degranulation depends on the first, sphingosine kinase-mediated Ca(2+) signal. These two pathways act independently because antisense knock down of either enzyme does not interfere with the activity of the other enzyme. Of interest, similar to PLCgamma1, SPHK1 translocates rapidly to the membrane after FcepsilonRI cross-linking. Here we also show that SPHK1 activity depends on phospholipase D1 and that FcepsilonRI-triggered mast cell degranulation depends primarily on the activation of both phospholipase D1 and SPHK1.
Collapse
Affiliation(s)
- Alirio J Melendez
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | | |
Collapse
|
24
|
Humeau Y, Vitale N, Chasserot-Golaz S, Dupont JL, Du G, Frohman MA, Bader MF, Poulain B. A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci U S A 2001; 98:15300-5. [PMID: 11752468 PMCID: PMC65024 DOI: 10.1073/pnas.261358698] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidic acid produced by phospholipase D (PLD) as a result of signaling activity is thought to play a role in membrane vesicle trafficking, either as an intracellular messenger or as a cone-shaped lipid that promotes membrane fusion. We recently described that, in neuroendocrine cells, plasma membrane-associated PLD1 operates at a stage of Ca(2+)-dependent exocytosis subsequent to cytoskeletal-mediated recruitment of secretory granules to exocytotic sites. We show here that PLD1 also plays a crucial role in neurotransmitter release. Using purified rat brain synaptosomes subjected to hypotonic lysis and centrifugation, we found that PLD1 is associated with the particulate fraction containing the plasma membrane. Immunostaining of rat cerebellar granule cells confirmed localization of PLD1 at the neuronal plasma membrane in zones specialized for neurotransmitter release (axonal neurites, varicosities, and growth cone-like structures). To determine the potential involvement of PLD1 in neurotransmitter release, we microinjected catalytically inactive PLD1(K898R) into Aplysia neurons and analyzed its effects on evoked acetylcholine (ACh) release. PLD1(K898R) produced a fast and potent dose-dependent inhibition of ACh release. By analyzing paired-pulse facilitation and postsynaptic responses evoked by high-frequency stimulations, we found that the exocytotic inhibition caused by PLD1(K898R) was not the result of an alteration in stimulus-secretion coupling or in vesicular trafficking. Analysis of the fluctuations in amplitude of the postsynaptic responses revealed that the PLD1(K898R) blocked ACh release by reducing the number of active presynaptic-releasing sites. Our results provide evidence that PLD1 plays a major role in neurotransmission, most likely by controlling the fusogenic status of presynaptic release sites.
Collapse
Affiliation(s)
- Y Humeau
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2356, Neurotransmission et Sécrétion Neuroendocrine, 5 Rue Blaise Pascal, IFR37, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ge M, Cohen JS, Brown HA, Freed JH. ADP ribosylation factor 6 binding to phosphatidylinositol 4,5-bisphosphate-containing vesicles creates defects in the bilayer structure: an electron spin resonance study. Biophys J 2001; 81:994-1005. [PMID: 11463641 PMCID: PMC1301569 DOI: 10.1016/s0006-3495(01)75757-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of binding of myristoylated ADP ribosylation factor 6 (myr-ARF6), an activator of phospholipase D (PLD), to a model membrane were investigated using an electron spin resonance (ESR) labeling technique. Initial studies were conducted in vesicles composed of 1-palmitoyl-2-oleoyl phosphatidylethanolamine, dipalmitoylphosphatidylcholine, phosphatidylinositol 4,5-biphosphate (PIP(2)), and cholesterol. Recombinant ARF6 binding significantly enhances defects in both the headgroup and acyl-chain regions of the membrane, which are revealed by the emergence of sharp components in the spectra from a headgroup label, 1,2-dipalmitoylphosphatidyl-2,2,6,6-tetramethyl-1-piperidinyloxy-choline (DPPTC), and a chain label, 10PC, after myr-ARF6 binding. Binding of non-myristoylated ARF6 (non-ARF6) shows markedly reduced effects. Interestingly, no change in spectra from DPPTC was observed upon myr-ARF6 binding when PIP(2) in the vesicles was replaced by other negatively charged lipids, including phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol, even when normalized for charge. The production of the sharp peak appears to be a specific event, because another GTP binding protein, CDC42, which binds PIP(2) and activates PLD, fails to induce changes in vesicle structure. These results suggest a previously unappreciated role for ARF in mediating a protein/lipid interaction that produces defects in lipid bilayers. This function may serve as an initial event in destabilizing membrane structure for subsequent membrane fusion or biogenesis of vesicles.
Collapse
Affiliation(s)
- M Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
26
|
Ivanova PT, Cerda BA, Horn DM, Cohen JS, McLafferty FW, Brown HA. Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc Natl Acad Sci U S A 2001; 98:7152-7. [PMID: 11416200 PMCID: PMC34638 DOI: 10.1073/pnas.131195098] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.
Collapse
Affiliation(s)
- P T Ivanova
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | |
Collapse
|