1
|
Enzymatic Production of 3-OH Phlorizin, a Possible Bioactive Polyphenol from Apples, by Bacillus megaterium CYP102A1 via Regioselective Hydroxylation. Antioxidants (Basel) 2021; 10:antiox10081327. [PMID: 34439575 PMCID: PMC8406095 DOI: 10.3390/antiox10081327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Phlorizin is the most abundant glucoside of phloretin from the apple tree and its products. Phlorizin and its aglycone phloretin are currently considered health-beneficial polyphenols from apples useful in treating hyperglycemia and obesity. Recently, we showed that phloretin could be regioselectively hydroxylated to make 3-OH phloretin by Bacillus megaterium CYP102A1 and human P450 enzymes. The 3-OH phloretin has a potent inhibitory effect on differentiating 3T3-L1 preadipocytes into adipocytes and lipid accumulation. The glucoside of 3-OH phloretin would be a promising agent with increased bioavailability and water solubility compared with its aglycone. However, procedures to make 3-OH phlorizin, a glucoside of 3-OH phloretin, using chemical methods, are not currently available. Here, a biocatalytic strategy for the efficient synthesis of a possibly valuable hydroxylated product, 3-OH phlorizin, was developed via CYP102A1-catalyzed regioselective hydroxylation. The production of 3-OH phlorizin by CYP102A1 was confirmed by HPLC and LC–MS spectroscopy in addition to enzymatic removal of its glucose moiety for comparison to 3-OH phloretin. Taken together, in this study, we found a panel of mutants from B. megaterium CYP102A1 could catalyze regioselective hydroxylation of phlorizin to produce 3-OH phlorizin, a catechol product.
Collapse
|
2
|
Kim V, Lim YR, Lee I, Lee JH, Han S, Pham TV, Kim H, Lee R, Kang LW, Kim D. Structural insights into CYP107G1 from rapamycin-producing Streptomyces rapamycinicus. Arch Biochem Biophys 2020; 692:108544. [PMID: 32822639 DOI: 10.1016/j.abb.2020.108544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Rapamycin is a clinically important macrolide agent with immunosuppressant and antiproliferative properties, produced by the actinobacterium, Streptomyces rapamycinicus. Two cytochrome P450 enzymes are involved in the biosynthesis of rapamycin. CYP107G1 and CYP122A2 catalyze the oxidation reactions of C27 and C9 of pre-rapamycin, respectively. To understand the structural and biochemical features of P450 enzymes in rapamycin biosynthesis, the CYP107G1 and CYP122A2 genes were cloned, their recombinant proteins were expressed in Escherichia coli, and the purified enzymes were characterized. Both enzymes displayed low spin states in the absolute spectra of ferric forms, and the titrations with rapamycin induced type I spectral changes with Kd values of 4.4 ± 0.4 and 3.0 ± 0.3 μM for CYP107G1 and CYP122A2, respectively. The X-ray crystal structures of CYP107G1 and its co-crystal complex with everolimus, a clinical rapamycin derivative, were determined at resolutions of 2.9 and 3.0 Å, respectively. The overall structure of CYP107G1 adopts the canonical scaffold of cytochrome P450 and possesses large substrate pocket. The distal face of the heme group is exposed to solvents to accommodate macrolide access. When the structure of the everolimus-bound CYP107G1 complex (CYP107G1-Eve) was compared to that of the ligand-free CYP107G1 form, no significant conformational change was observed. Hence, CYP107G1 has a relatively rigid structure with versatile loops to accommodate a bulky substrate. The everolimus molecule is bound to the substrate-binding pocket in the shape of a squeezed donut, and its elongated structure is bound perpendicular to a planar heme plane and I-helix.
Collapse
Affiliation(s)
- Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Inho Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Jong-Ha Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Tan-Viet Pham
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05025, Republic of Korea.
| |
Collapse
|
3
|
Park HG, Kim V, Kim H, Lee R, Cho MA, Park SW, Chun YJ, Kim D. CYP52A23 from Candida albicans and its Substrate Preference for Fatty Acid Hydroxylation. Arch Biochem Biophys 2019; 671:27-34. [PMID: 31181182 DOI: 10.1016/j.abb.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/07/2023]
Abstract
The pathogenic fungus Candida albicans contains genes encoding five fatty acid hydroxylases belonging to the CYP52 family in its genome. Our previous study reported that CYP52A21 demonstrated typical omega-hydroxylation of lauric acid (Kim D, Cryle MJ, De Voss JJ, Ortiz de Montellano PR (2007) Arch Biochem Biophys 464, 213-220). Functional characterization of CYP52 fatty acid hydroxylases was studied, and their selectivity for hydroxylation was analyzed. Genes for four other CYP52 members (CYP52A22, CYP52A23, CYP52A24, and CYP52C3) from C. albicans were cloned, and their recombinant enzymes were expressed in Escherichia coli. CO-binding spectral analyses showed that the functional P450 holoenzyme was obtained only in CYP52A23, while no holoenzyme peak was observed in the other three CYP52 enzymes. Spectral change of the type II binding was observed in purified CYP52A23 when titrated with fatty acids but none was observed with alkanes. The gas chromatography-mass spectrometry (GC-MS) analysis revealed that CYP52A23 predominantly exhibited omega-hydroxylation activity during the oxidation reaction of fatty acids. Interestingly, it was found that CYP52A23 preferred longer-chain fatty acids (stearic acid and arachidic acid) for its catalytic activities while CYP52A21 preferred mid-chain fatty acids (lauric acid and mystic acid). To analyze the selectivity of fatty acids, hybrid mutagenesis of genes encoding CYP52A21 and CYP52A23 by overlap extension polymerase chain reaction was conducted. Two hybrid mutants containing the N-terminal fragments of CYP52A21 and C-terminal fragments of CYP52A23 displayed higher catalytic activity in palmitic acid and arachidic acid. These results suggested that the C-terminal part of CYP52A23 may be responsible for its preference to longer-chain fatty acids.
Collapse
Affiliation(s)
- Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Sung-Woo Park
- Division of Respiratory and Allergy, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, South Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
4
|
Wu J, Zhu S, Wu Y, Jiang T, Wang L, Jiang J, Wen J, Deng Y. Multiple CH/π Interactions Maintain the Binding of Aflatoxin B₁ in the Active Cavity of Human Cytochrome P450 1A2. Toxins (Basel) 2019; 11:toxins11030158. [PMID: 30871064 PMCID: PMC6468651 DOI: 10.3390/toxins11030158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 11/26/2022] Open
Abstract
Human cytochrome P450 1A2 (CYP1A2) is one of the key CYPs that activate aflatoxin B1 (AFB1), a notorious mycotoxin, into carcinogenic exo-8,9-epoxides (AFBO) in the liver. Although the structure of CYP1A2 is available, the mechanism of CYP1A2-specific binding to AFB1 has not been fully clarified. In this study, we used calculation biology to predict a model of CYP1A2 with AFB1, where Thr-124, Phe-125, Phe-226, and Phe-260 possibly participate in the specific binding. Site-directed mutagenesis was performed to construct mutants T124A, F125A, F226A, and F260A. Escherichia coli-expressed recombinant proteins T124A, F226A, and F260A had active structures, while F125A did not. This was evidenced by Fe2+∙Carbon monoxide (CO)-reduced difference spectra and circular dichroism spectroscopy. Mutant F125A was expressed in HEK293T cells. Steady kinetic assays showed that T124A had enhanced activity towards AFB1, while F125A, F226A, and F260A were significantly reduced in their ability to activate AFB1, implying that hydrogen bonds between Thr-124 and AFB1 were not important for substrate-specific binding, whereas Phe-125, Phe-226, and Phe-260 were essential for the process. The computation simulation and experimental results showed that the three key CH/π interactions between Phe-125, Phe-226, or Phe-260 and AFB1 collectively maintained the stable binding of AFB1 in the active cavity of CYP1A2.
Collapse
Affiliation(s)
- Jun Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Sisi Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Yunbo Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Lee Y, Park HG, Kim V, Cho MA, Kim H, Ho TH, Cho KS, Lee IS, Kim D. Inhibitory effect of α-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem Biol Interact 2018; 289:90-97. [PMID: 29723517 DOI: 10.1016/j.cbi.2018.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Human cytochrome P450 2B6 is an important hepatic enzyme for the metabolism of xenobiotics and clinical drugs. Recently, more attention has been paid to P450 2B6 because of the increasing number of drugs it metabolizes. It has been known to interact with terpenes, the major constituents of the essential oils used for various medicinal purposes. In this study, the effect of monoterpenes on P450 2B6 catalytic activity was investigated. Recombinant P450 2B6 was expressed in Escherichia coli and purified using Ni-affinity chromatography. The purified P450 2B6 enzyme displayed bupropion hydroxylation activity in gas-mass spectrometry (GC-MS) analysis with a kcat of 0.5 min-1 and a Km of 47 μM. Many terpenes displayed the type I binding spectra to purified P450 2B6 enzyme and α-terpinyl acetate showed strong binding affinity with a Kd value of 5.4 μM. In GC-MS analysis, P450 2B6 converted α-terpinyl acetate to a putative oxidative product. The bupropion hydroxylation activity of P450 2B6 was inhibited by α-terpinyl acetate and its IC50 value was 10.4 μM α-Terpinyl acetate was determined to be a competitive inhibitor of P450 2B6 with a Ki value of 7.6 μM. The molecular docking model of the binding site of the P450 2B6 complex with α-terpinyl acetate was constructed. It showed the tight binding of α-terpinyl acetate in the active site of P450 2B6, which suggests that it could be a competitive substrate for P450 2B6.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea.
| |
Collapse
|
6
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
7
|
Denisov IG, Baylon JL, Grinkova YV, Tajkhorshid E, Sligar SG. Drug-Drug Interactions between Atorvastatin and Dronedarone Mediated by Monomeric CYP3A4. Biochemistry 2017; 57:805-816. [PMID: 29200287 DOI: 10.1021/acs.biochem.7b01012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterotropic interactions between atorvastatin (ARVS) and dronedarone (DND) have been deciphered using global analysis of the results of binding and turnover experiments for pure drugs and their mixtures. The in vivo presence of atorvastatin lactone (ARVL) was explicitly taken into account by using pure ARVL in analogous experiments. Both ARVL and ARVS inhibit DND binding and metabolism, while a significantly higher affinity of CYP3A4 for ARVL makes the latter the main modulator of activity (effector) in this system. Molecular dynamics simulations reveal significantly different modes of interactions of DND and ARVL with the substrate binding pocket and with a peripheral allosteric site. Interactions of both substrates with residues F213 and F219 at the allosteric site play a critical role in the communication of conformational changes induced by effector binding to productive binding of the substrate at the catalytic site.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Javier L Baylon
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yelena V Grinkova
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry, ‡Center for Biophysics and Quantitative Biology, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture. J Inorg Biochem 2017; 167:100-115. [DOI: 10.1016/j.jinorgbio.2016.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
|
9
|
Biochemical analysis of recombinant CYP4A11 allelic variant enzymes: W126R, K276T and S353G. Drug Metab Pharmacokinet 2016; 31:445-450. [DOI: 10.1016/j.dmpk.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
|
10
|
Lam Q, Cortez A, Nguyen TT, Kato M, Cheruzel L. Chromogenic nitrophenolate-based substrates for light-driven hybrid P450 BM3 enzyme assay. J Inorg Biochem 2015; 158:86-91. [PMID: 26712653 DOI: 10.1016/j.jinorgbio.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 11/16/2022]
Abstract
The incorporation of a p-nitrophenoxy moiety in substrates has enabled the development of colorimetric assays to rapidly screen for O-demethylation activity of P450 enzymes. For the light-driven hybrid P450 BM3 enzymes, where a Ru(II) photosensitizer powers the enzyme upon visible light irradiation, we have investigated a family of p-nitrophenoxy derivatives as useful chromogenic substrates compatible with the light-driven approach. The validation of this assay and its adaptability to a 96-well plate format will enable the screening of the next generation of hybrid P450 BM3 enzymes towards C-H bond functionalization of non-natural substrates.
Collapse
Affiliation(s)
- Quan Lam
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Alejandro Cortez
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Thanh Truc Nguyen
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States.
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States.
| |
Collapse
|
11
|
Takahiro R, Nakamura S, Kohno H, Yoshimura N, Nakamura T, Ozawa S, Hirono K, Ichida F, Taguchi M. Contribution of CYP3A Isoforms to Dealkylation of PDE5 Inhibitors: A Comparison between Sildenafil N-Demethylation and Tadalafil Demethylenation. Biol Pharm Bull 2015; 38:58-65. [DOI: 10.1248/bpb.b14-00566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rikako Takahiro
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Saki Nakamura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Hiroyuki Kohno
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Naoki Yoshimura
- First Department of Surgery, Faculty of Medicine, University of Toyama
| | | | - Sayaka Ozawa
- Department of Pediatrics, Faculty of Medicine, University of Toyama
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama
| | - Fukiko Ichida
- Department of Pediatrics, Faculty of Medicine, University of Toyama
| | - Masato Taguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
12
|
Hartman JH, Knott K, Miller GP. CYP2E1 hydroxylation of aniline involves negative cooperativity. Biochem Pharmacol 2014; 87:523-33. [DOI: 10.1016/j.bcp.2013.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/24/2022]
|
13
|
Hartman JH, Boysen G, Miller GP. Cooperative effects for CYP2E1 differ between styrene and its metabolites. Xenobiotica 2013; 43:755-64. [PMID: 23327532 DOI: 10.3109/00498254.2012.760764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity. We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes. Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 µM) and lower affinity for the cooperative site (1100 µM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity. Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds.
Collapse
Affiliation(s)
- Jessica H Hartman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
14
|
Roberts AG, Sjögren SEA, Fomina N, Vu KT, Almutairi A, Halpert JR. NMR-derived models of amidopyrine and its metabolites in complexes with rabbit cytochrome P450 2B4 reveal a structural mechanism of sequential N-dealkylation. Biochemistry 2011; 50:2123-34. [PMID: 21375273 DOI: 10.1021/bi101797v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of amidopyrine (AP) as well as the metabolites of this reaction, desmethylamidopyrine (DMAP) and aminoantipyrine (AAP), using the X-ray crystal structure of rabbit P450 2B4 and two nuclear magnetic resonance (NMR) techniques: saturation transfer difference (STD) spectroscopy and longitudinal (T(1)) relaxation NMR. Results of STD NMR of AP and its metabolites bound to P450 2B4 were similar, suggesting that they occupy similar niches within the enzyme's active site. The model-dependent relaxation rates (R(M)) determined from T(1) relaxation NMR of AP and DMAP suggest that the N-linked methyl is closest to the heme. To determine the orientation(s) of AP and its metabolites within the P450 2B4 active site, we used distances calculated from the relaxation rates to constrain the metabolites to the X-ray crystal structure of P450 2B4. Simulated annealing of the complex revealed that the metabolites do indeed occupy similar hydrophobic pockets within the active site, while the N-linked methyls are free to rotate between two binding modes. From these bound structures, a model of N-demethylation in which the N-linked methyl functional groups rotate between catalytic and noncatalytic positions was developed. This study is the first to provide a structural model of a drug and its metabolites complexed to a cytochrome P450 based on NMR and to provide a structural mechanism for how a drug can undergo sequential oxidations without unbinding. The rotation of the amide functional group might represent a common structural mechanism for N-dealkylation reactions for other drugs such as the local anesthetic lidocaine.
Collapse
Affiliation(s)
- Arthur G Roberts
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, #0703, La Jolla, California 92093-0703, United States.
| | | | | | | | | | | |
Collapse
|
15
|
Conner KP, Woods C, Atkins WM. Interactions of cytochrome P450s with their ligands. Arch Biochem Biophys 2011; 507:56-65. [PMID: 20939998 PMCID: PMC3041843 DOI: 10.1016/j.abb.2010.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 01/12/2023]
Abstract
Cytochrome P450s (CYPs) are heme-containing monooxygenases that contribute to an enormous range of enzymatic function including biosynthetic and detoxification roles. This review summarizes recent studies concerning interactions of CYPs with ligands including substrates, inhibitors, and diatomic heme-ligating molecules. These studies highlight the complexity in the relationship between the heme spin state and active site occupancy, the roles of water in directing protein-ligand and ligand-heme interactions, and the details of interactions between heme and gaseous diatomic CYP ligands. Both kinetic and thermodynamic aspects of ligand binding are considered.
Collapse
Affiliation(s)
- Kip P. Conner
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - Caleb Woods
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - William M. Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| |
Collapse
|
16
|
Braam W, van Geijlswijk I, Keijzer H, Smits MG, Didden R, Curfs LMG. Loss of response to melatonin treatment is associated with slow melatonin metabolism. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2010; 54:547-555. [PMID: 20576063 DOI: 10.1111/j.1365-2788.2010.01283.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND In some of our patients with intellectual disability (ID) and sleep problems, the initial good response to melatonin disappeared within a few weeks after starting treatment, while the good response returned only after considerable dose reduction. The cause for this loss of response to melatonin is yet unknown. We hypothesise that this loss of response is associated with slow melatonin metabolism. METHOD In this study, we determined melatonin clearance in two female (aged 61 and 6 years) and one male (aged 3 years) patients who had chronic insomnia, late melatonin onset and mild ID, and whose sleep quality worsened a few weeks after initial good response to melatonin treatment, suggesting melatonin tolerance. After a 3-week washout period, patients received melatonin 1.0, 0.5 or 0.1 mg, respectively. Salivary melatonin level was measured just before melatonin administration, and 2 and 4 h thereafter. After this melatonin clearance test, melatonin treatment was resumed with a considerably lower dose. RESULTS In all patients melatonin concentrations remained >50 pg/mL at 2 and 4 h after melatonin administration. After resuming melatonin treatment sleep problems disappeared. The same procedure was followed in three patients who did not show loss of response to melatonin after 6 months of treatment. In all patients in the control group melatonin concentrations decreased between 2 and 4 h after melatonin administration with a mean of 83%. CONCLUSION We hypothesise that loss of response to melatonin treatment can be caused by slow metabolisation of exogenous melatonin. As melatonin is metabolised in the liver almost exclusively by cytochrome P450 enzyme CYP1A2, this slow melatonin metabolism is probably due to decreased activity/inducibility of CYP1A2. In patients with loss of response to melatonin, a melatonin clearance test should be considered and a considerably dose reduction is advised.
Collapse
Affiliation(s)
- W Braam
- 's Heeren Loo Zuid-Veluwe, Wekerom, Postbus 75, 6710 BB Ede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Denisov IG, Frank DJ, Sligar SG. Cooperative properties of cytochromes P450. Pharmacol Ther 2009; 124:151-67. [PMID: 19555717 DOI: 10.1016/j.pharmthera.2009.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 form a large and important class of heme monooxygenases with a broad spectrum of substrates and corresponding functions, from steroid hormone biosynthesis to the metabolism of xenobiotics. Despite decades of study, the molecular mechanisms responsible for the complex non-Michaelis behavior observed with many members of this superfamily during metabolism, often termed 'cooperativity', remain to be fully elucidated. Although there is evidence that oligomerization may play an important role in defining the observed cooperativity, some monomeric cytochromes P450, particularly those involved in xenobiotic metabolism, also display this behavior due to their ability to simultaneously bind several substrate molecules. As a result, formation of distinct enzyme-substrate complexes with different stoichiometry and functional properties can give rise to homotropic and heterotropic cooperative behavior. This review aims to summarize the current understanding of cooperativity in cytochromes P450, with a focus on the nature of cooperative effects in monomeric enzymes.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, United States of America
| | | | | |
Collapse
|
18
|
Isin EM, Guengerich FP. Substrate binding to cytochromes P450. Anal Bioanal Chem 2008; 392:1019-30. [PMID: 18622598 DOI: 10.1007/s00216-008-2244-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023]
Abstract
P450s have attracted tremendous attention owing to not only their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely, the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s, including mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active-site features. Some of the substrate binding studies extending over a period of more than 40 years of dedicated work have been summarized in this review and categorized by the techniques employed in the binding studies.
Collapse
Affiliation(s)
- Emre M Isin
- Biotransformation Section, Department of Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R & D Mölndal, 431 83, Mölndal, Sweden.
| | | |
Collapse
|
19
|
Isin EM, Sohl CD, Eoff RL, Guengerich FP. Cooperativity of cytochrome P450 1A2: interactions of 1,4-phenylene diisocyanide and 1-isopropoxy-4-nitrobenzene. Arch Biochem Biophys 2008; 473:69-75. [PMID: 18328798 PMCID: PMC4662254 DOI: 10.1016/j.abb.2008.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/19/2008] [Accepted: 02/22/2008] [Indexed: 11/26/2022]
Abstract
Homotropic cooperativity of 1-alkoxy-4-nitrobenzene substrates and also their heterotropic cooperative binding interactions with the iron ligand 1,4-phenylene diisocyanide (Ph(NC)2) had been demonstrated previously with rabbit cytochrome P450 (P450) 1A2 [G.P. Miller, F.P. Guengerich, Biochemistry 40 (2001) 7262-7272]. Multiphasic kinetics were observed for the binding of Ph(NC)2 to both ferric and ferrous P450 1A2, including relatively slow steps. Ph(NC)2 induced an apparently rapid change in the circular dichroism spectrum, consistent with a structural change, but had no effect on tryptophan fluorescence. Ph(NC)2 binds the P450 iron in both the ferric and ferrous forms; ferric P450 1A2 was reduced rapidly in the absence of added ligands, and the rate was attenuated when Ph(NC)2 was bound. No oxidation products of Ph(NC)2 were detected. Docking studies with a rabbit P450 1A2 homology model based on the published structure of a human P450 1A2.alpha-naphthoflavone (alphaNF) complex indicated adequate room for a complex with either two 1-isopropoxy-4-nitrobenzene molecules or a combination of one 1-isopropoxy-4-nitrobenzene and one Ph(NC)2; in the case of alphaNF no space for an extra ligand was available. The patterns of homotropic cooperativity seen with 1-alkoxy-4-nitrobenzenes (biphasic plots of v vs. S) differ from those seen with polycyclic hydrocarbons (positive cooperativity), suggesting that only with the latter does the ligand interaction produce improved catalysis. Consistent with this view, Ph(NC)2 inhibited the oxidation of 1-isopropoxy-4-nitrobenzene and other substrates.
Collapse
Affiliation(s)
- Emre M Isin
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | | | | | | |
Collapse
|
20
|
Ding Y, Seufert WH, Beck ZQ, Sherman DH. Analysis of the cryptophycin P450 epoxidase reveals substrate tolerance and cooperativity. J Am Chem Soc 2008; 130:5492-8. [PMID: 18366166 DOI: 10.1021/ja710520q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptophycins are potent anticancer agents isolated from Nostoc sp. ATCC 53789 and Nostoc sp. GSV 224. The most potent natural cryptophycin analogues retain a beta-epoxide at the C2'-C3' position of the molecule. A P450 epoxidase encoded by c rpE recently identified from the cryptophycin gene cluster was shown to install this key functional group into cryptophycin-4 (Cr-4) to produce cryptophycin-2 (Cr-2) in a regio- and stereospecific manner. Here we report a detailed characterization of the CrpE epoxidase using an engineered maltose binding protein (MBP)-CrpE fusion. The substrate tolerance of the CrpE polypeptide was investigated with a series of structurally related cryptophycin analogues generated by chemoenzymatic synthesis. The enzyme specifically installed a beta-epoxide between C2' and C3' of cyclic cryptophycin analogues. The kcat/Km values of the enzyme were determined to provide further insights into the P450 epoxidase catalytic efficiency affected by substrate structural variation. Finally, binding analysis revealed cooperativity of MBP-CrpE toward natural and unnatural desepoxy cryptophycin substrates.
Collapse
Affiliation(s)
- Yousong Ding
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
21
|
Ikezawa N, Iwasa K, Sato F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 2008; 283:8810-21. [PMID: 18230623 DOI: 10.1074/jbc.m705082200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions. We report here the isolation and characterization of a C-C phenol-coupling P450 cDNA (CYP80G2) from an expressed sequence tag library of cultured Coptis japonica cells. Structural analysis showed that CYP80G2 had high amino acid sequence similarity to Berberis stolonifera CYP80A1, an intermolecular C-O phenol-coupling P450 involved in berbamunine biosynthesis. Heterologous expression in yeast indicated that CYP80G2 had intramolecular C-C phenol-coupling activity to produce (S)-corytuberine (aporphine-type) from (S)-reticuline (benzylisoquinoline type). Despite this intriguing reaction, recombinant CYP80G2 showed typical P450 properties: its C-C phenol-coupling reaction required NADPH and oxygen and was inhibited by a typical P450 inhibitor. Based on a detailed substrate-specificity analysis, this unique reaction mechanism and substrate recognition were discussed. CYP80G2 may be involved in magnoflorine biosynthesis in C. japonica, based on the fact that recombinant C. japonica S-adenosyl-L-methionine:coclaurine N-methyltransferase could convert (S)-corytuberine to magnoflorine.
Collapse
Affiliation(s)
- Nobuhiro Ikezawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | | | | |
Collapse
|
22
|
Sohl CD, Isin EM, Eoff RL, Marsch GA, Stec DF, Guengerich FP. Cooperativity in oxidation reactions catalyzed by cytochrome P450 1A2: highly cooperative pyrene hydroxylation and multiphasic kinetics of ligand binding. J Biol Chem 2008; 283:7293-308. [PMID: 18187423 DOI: 10.1074/jbc.m709783200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabbit liver cytochrome P450 (P450) 1A2 was found to catalyze the 5,6-epoxidation of alpha-naphthoflavone (alphaNF), 1-hydroxylation of pyrene, and the subsequent 6-, 8-, and other hydroxylations of 1-hydroxy (OH) pyrene. Plots of steady-state rates of product formation versus substrate concentration were hyperbolic for alphaNF epoxidation but highly cooperative (Hill n coefficients of 2-4) for pyrene and 1-OH pyrene hydroxylation. When any of the three substrates (alphaNF, pyrene, 1-OH pyrene) were mixed with ferric P450 1A2 using stopped-flow methods, the changes in the heme Soret spectra were relatively slow and multiphasic. Changes in the fluorescence of all of the substrates were much faster, consistent with rapid initial binding to P450 1A2 in a manner that does not change the heme spectrum. For binding of pyrene to ferrous P450 1A2, the course of the spectra revealed sequential changes in opposite directions, consistent with P450 1A2 being involved in a series of transitions to explain the kinetic multiphasicity as opposed to multiple, slowly interconverting populations of enzyme undergoing the same event at different rates. Models of rabbit P450 1A2 based on a published crystal structure of a human P450 1A2-alphaNF complex show active site space for only one alphaNF or for two pyrenes. The spectral changes observed for binding and hydroxylation of pyrene and 1-OH pyrene could be fit to a kinetic model in which hydroxylation occurs only when two substrates are bound. Elements of this mechanism may be relevant to other cases of P450 cooperativity.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
23
|
Collom SL, Laddusaw RM, Burch AM, Kuzmic P, Perry MD, Miller GP. CYP2E1 substrate inhibition. Mechanistic interpretation through an effector site for monocyclic compounds. J Biol Chem 2007; 283:3487-3496. [PMID: 18056994 DOI: 10.1074/jbc.m707630200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study we offer a mechanistic interpretation of the previously known but unexplained substrate inhibition observed for CYP2E1. At low substrate concentrations, p-nitrophenol (pNP) was rapidly turned over (47 min(-1)) with relatively low K(m) (24 microM); nevertheless, at concentrations of >100 microM, the rate of pNP oxidation gradually decreased as a second molecule bound to CYP2E1 through an effector site (K(ss) = 260 microm), which inhibited activity at the catalytic site. 4-Methylpyrazole (4MP) was a potent inhibitor for both sites through a mixed inhibition mechanism. The K(i) for the catalytic site was 2.0 microM. Although we were unable to discriminate whether an EIS or ESI complex formed, the respective inhibition constants were far lower than K(ss). Bicyclic indazole (IND) inhibited catalysis through a single CYP2E1 site (K(i) = 0.12 microM). Similarly, 4MP and IND yielded type II binding spectra that reflected the association of either two 4MP or one IND molecule(s) to CYP2E1, respectively. Based on computational docking studies with a homology model for CYP2E1, the two sites for monocyclic molecules, pNP and 4MP, exist within a narrow channel connecting the active site to the surface of the enzyme. Because of the presence of the heme iron, one site supports catalysis, whereas the other more distal effector site binds molecules that can influence the binding orientation and egress of molecules for the catalytic site. Although IND did not bind these sites simultaneously, the presence of IND at the catalytic site blocked binding at the effector site.
Collapse
Affiliation(s)
- Samuel L Collom
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ryan M Laddusaw
- Department of Chemistry, Ouachita Baptist University, Arkadelphia, Arkansas 71998
| | - Amber M Burch
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | - Martin D Perry
- Department of Chemistry, Ouachita Baptist University, Arkadelphia, Arkansas 71998
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
24
|
Muralidhara BK, Halpert JR. Thermodynamics of ligand binding to P450 2B4 and P450eryF studied by isothermal titration calorimetry. Drug Metab Rev 2007; 39:539-56. [PMID: 17786637 DOI: 10.1080/03602530701498182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structural plasticity and cooperativity in ligand recognition are two key aspects of the catalytic diversity of cytochrome P450 enzymes. As more mammalian P450 crystal structures have emerged, computational modeling has become a major tool to predict drug metabolism and interactions. There is a need for real solution thermodynamic data to support modeling and crystallographic observations. Using isothermal titration calorimetry (ITC) we successfully evaluated the conformational flexibility of P450 2B4 in binding imidazole inhibitors of different size and chemistry and dissected the stoichiometry and energetics of ligand binding allostery in P450eryF. Thermodynamic signatures obtained by ITC nicely correlated with structural and modeling results. Thus, ITC is a powerful tool to study structure-function relationships in P450s.
Collapse
Affiliation(s)
- B K Muralidhara
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
25
|
McMasters DR, Torres RA, Crathern SJ, Dooney DL, Nachbar RB, Sheridan RP, Korzekwa KR. Inhibition of recombinant cytochrome P450 isoforms 2D6 and 2C9 by diverse drug-like molecules. J Med Chem 2007; 50:3205-13. [PMID: 17559204 PMCID: PMC2547349 DOI: 10.1021/jm0700060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The affinities of a diverse set of 500 drug-like molecules to cytochrome P450 isoforms 2C9 and 2D6 were measured using recombinant expressed enzyme. The dose-response curve of each compound was fitted with a series of equations representing typical or various types of atypical kinetics. Atypical kinetics was identified where the Akaike Information Criterion, plus other criteria, suggested the kinetics was more complex than expected for a Michaelis-Menten model. Approximately 20% of the compounds were excluded due to poor solubility, and approximately 15% were excluded due to fluorescence interference. Of the remaining compounds, roughly half were observed to bind with an affinity of 200 microM or lower for each of the two isoforms. Atypical kinetics was observed in 18% of the compounds that bind to cytochrome 2C9, but less than 2% for 2D6. The resulting collection of competitive inhibitors and inactive compounds were analyzed for trends in binding affinity. For CYP2D6, a clear relationship between polar surface area and charge was observed, with the most potent inhibitors having a formal positive charge and a low percent polar surface area. For CYP2C9, no clear trend between activity and physicochemical properties could be seen for the group as a whole; however, certain classes of compounds have altered frequencies of activity and atypical kinetics.
Collapse
Affiliation(s)
- Daniel R McMasters
- Department of Molecular Systems, Merck Research Laboratories, Rahway, New Jersey, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fernando H, Davydov DR, Chin CC, Halpert JR. Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W. Arch Biochem Biophys 2007; 460:129-40. [PMID: 17274942 PMCID: PMC2040109 DOI: 10.1016/j.abb.2006.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
The contribution of conformational heterogeneity to cooperativity in cytochrome P450 3A4 was investigated using the mutant L211F/D214E/F304W. Initial spectral studies revealed a loss of cooperativity of the 1-pyrenebutanol (1-PB) induced spin shift (S(50)=5.4 microM, n=1.0) but retained cooperativity of alpha-naphthoflavone binding. Continuous variation (Job's titration) experiments showed the existence of two pools of enzyme with different 1-PB binding characteristics. Monitoring of 1-PB binding by fluorescence resonance energy transfer from the substrate to the heme confirmed that the high-affinity site (K(D)=0.3 microM) is retained in at least some fraction of the enzyme, although cooperativity is masked. Removal of apoprotein on a second column increased the high-spin content and restored cooperativity of 1-PB binding and of progesterone and testosterone 6beta-hydroxylation. The loss of cooperativity in the mutant is, therefore, mediated by the interaction of holo- and apo-P450 in mixed oligomers.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - Dmitri R. Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - Christopher C. Chin
- Sealy Center for Structural Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - James R. Halpert
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| |
Collapse
|
27
|
Tsalkova TN, Davydova NY, Halpert JR, Davydov DR. Mechanism of interactions of alpha-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Biochemistry 2007; 46:106-19. [PMID: 17198380 PMCID: PMC2574515 DOI: 10.1021/bi061944p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into alpha-helix A. The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-(bromoacetyl)-2-(dimethylamino)naphthalene (BADAN), 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and alpha-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of the BADAN-modified enzyme is characterized by an S50 of 18.2 +/- 0.7, compared with the value of 2.2 +/- 0.3 for the ANF-induced spin transition, thus revealing an additional low-affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer.
Collapse
Affiliation(s)
| | | | | | - Dmitri R. Davydov
- Corresponding author: E-mail: . Tel.: (409) 772-9658; Fax: (409) 772-9642
| |
Collapse
|
28
|
Isin EM, Guengerich FP. Multiple Sequential Steps Involved in the Binding of Inhibitors to Cytochrome P450 3A4. J Biol Chem 2007; 282:6863-74. [PMID: 17200113 DOI: 10.1074/jbc.m610346200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 3A4 is an extensively studied human enzyme involved in the metabolism of >50% of drugs. The mechanism of the observed homotropic and heterotropic cooperativity in P450 3A4-catalyzed oxidations is not well understood, and together with the cooperative behavior, a detailed understanding of interaction of drug inhibitors with P450 3A4 is important in predicting clinical drug-drug interactions. The interactions of P450 3A4 with several structurally diverse inhibitors were investigated using both kinetic and thermodynamic approaches to resolve the steps involved in binding of these ligands. The results of pre-steady-state absorbance and fluorescence experiments demonstrate that inhibitor binding is clearly a multistep process, even more complex than the binding of substrates. Based on spectrophotometric equilibrium binding titrations as well as isothermal titration calorimetry experiments, the stoichiometry of binding appears to be 1:1 in the concentration ranges studied. Using a sequential-mixing stopped-flow approach, we were also able to show that the observed multiphasic binding kinetics is the result of sequential events as opposed to the existence of multiple enzyme populations in dynamic equilibrium that interact with ligands at different rates. We propose a three-step minimal model for inhibitor binding, developed with kinetic simulations, consistent with our previously reported model for the binding of substrates, although it is possible that even more steps are involved.
Collapse
Affiliation(s)
- Emre M Isin
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
29
|
Fernando H, Halpert JR, Davydov DR. Resolution of multiple substrate binding sites in cytochrome P450 3A4: the stoichiometry of the enzyme-substrate complexes probed by FRET and Job's titration. Biochemistry 2006; 45:4199-209. [PMID: 16566594 PMCID: PMC2596942 DOI: 10.1021/bi052491b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To explore the mechanism of homotropic cooperativity in human cytochrome P450 3A4 (CYP3A4) we studied the interactions of the enzyme with 1-pyrenebutanol (1-PB), 1-pyrenemethylamine (PMA), and bromocriptine by FRET from the substrate fluorophore to the heme, and by absorbance spectroscopy. These approaches combined with an innovative setup of titration-by-dilution and continuous variation (Job's titration) experiments allowed us to probe the relationship between substrate binding and the subsequent spin transition caused by 1-PB or bromocriptine or the type-II spectral changes caused by PMA. The 1-PB-induced spin shift in CYP3A4 reveals prominent homotropic cooperativity, which is characterized by a Hill coefficient of 1.8 +/- 0.3 (S50 = 8.0 +/- 1.1 microM). In contrast, the interactions of CYP3A4 with bromocriptine or PMA reveal no cooperativity, exhibiting KD values of 0.31 +/- 0.08 microM and 7.1 +/- 2.3 microM, respectively. The binding of all three substrates monitored by FRET in titration-by-dilution experiments at an enzyme:substrate ratio of 1 reveals a simple bimolecular interaction with KD values of 0.16 +/- 0.09, 4.8 +/- 1.4, and 0.18 +/- 0.09 microM for 1-PB, PMA, and bromocriptine, respectively. Correspondingly, Job's titration experiments showed that the 1-PB-induced spin shift reflects the formation of a complex of the enzyme with two substrate molecules, while bromocriptine and PMA exhibit 1:1 binding stoichiometry. Combining the results of Job's titrations with the value of KD obtained in our FRET experiments, we demonstrate that the interactions of CYP3A4 with 1-PB obey a sequential binding mechanism, where the spin transition is triggered by the binding of 1-PB to the low-affinity site, which becomes possible only upon saturation of the high-affinity site.
Collapse
Affiliation(s)
| | | | - Dmitri R. Davydov
- Corresponding author: E-mail: . Tel.: (409) 772-9658; Fax: (409) 772-9642
| |
Collapse
|
30
|
Isin EM, Guengerich FP. Kinetics and Thermodynamics of Ligand Binding by Cytochrome P450 3A4. J Biol Chem 2006; 281:9127-36. [PMID: 16467307 DOI: 10.1074/jbc.m511375200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In this work, we focused on the kinetics of substrate binding, and the fluorescent properties of bromocriptine and alpha-naphthoflavone allowed analysis of an initial ligand-P450 3A4 interaction that does not cause a perturbation of the heme spectrum. The binding stoichiometry for bromocriptine was determined to be unity using isothermal titration calorimetry and equilibrium dialysis methods, suggesting that the ligand bound to the peripheral site during the initial encounter dissociates subsequently. A three-step substrate binding model is proposed, based on absorbance and fluorescence stopped-flow kinetic data and equilibrium binding data obtained with bromocriptine, and evaluated using kinetic modeling. The results are consistent with the substrate molecule binding at a site peripheral to the active site and subsequently moving toward the active site to bind to the heme and resulting in a low to high spin iron shift. The last step is attributed to a conformational change in the enzyme active site. The later steps of binding were shown to have rate constants comparable with the subsequent steps of the catalytic cycle. The P450 3A4 binding process is more complex than a two-state system, and the overlap of rates of some of the events with subsequent steps is proposed to underlie the observed cooperativity.
Collapse
Affiliation(s)
- Emre M Isin
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
31
|
Abstract
The metabolism of a drug can be altered by another drug or foreign chemical, and such interactions can often be clinically significant. Cytochrome P450 (CYP) enzymes, a superfamily of enzymes found mainly in the liver, are involved in the metabolism of a plethora of xenobiotics and have been shown to be involved in numerous interactions between drugs and food, herbs and other drugs. The observed induction and inhibition of CYP enzymes by natural products in the presence of a prescribed drug has (among other reasons) led to the general acceptance that natural therapies can have adverse effects, contrary to the popular beliefs in countries where there is an active practice of ethnomedicine. Herbal medicines such as St. John's wort, garlic, piperine, ginseng, and gingko, which are freely available over the counter, have given rise to serious clinical interactions when co-administered with prescription medicines. Such adversities have spurred various pre-clinical and in vitro investigations on a series of other herbal remedies, with their clinical relevance remaining to be established. Although the presence of numerous active ingredients in herbal medicines, foods and dietary supplements complicate experimentation, the observable interactions with CYP enzymes warrant systematic studies, so that metabolism-based interactions can be predicted and avoided more readily. This article highlights the involvement of CYP enzymes in metabolism-related drug-herb interactions and the importance of gaining a mechanism-based understanding to avoid potential adverse drug reactions, in addition to outlining other contributory factors, such as pharmacogenetics and recreational habits that may compound this important health issue.
Collapse
Affiliation(s)
- Rupika Delgoda
- Natural Products Institute and Faculty of Pure and Applied Sciences, University of the West Indies, Mona, Kingston, Jamaica, West Indies.
| | | |
Collapse
|
32
|
Kim YH, Engesser KH. Inhibition of diethyl ether degradation in Rhodococcus sp. strain DEE5151 by glutaraldehyde and ethyl vinyl ether. FEMS Microbiol Lett 2005; 243:317-22. [PMID: 15686830 DOI: 10.1016/j.femsle.2004.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/13/2004] [Accepted: 12/15/2004] [Indexed: 11/21/2022] Open
Abstract
Abstract
Alkyl ether-degrading Rhodococcus sp. strain DEE5151, isolated from activated sewage sludge, has an activity for the oxidation of a variety of alkyl ethers, aralkyl ethers and dibenzyl ether. The whole cell activity for diethyl ether oxidation was effectively inhibited by 2,3-dihydrofurane, ethyl vinyl ether and glutaraldehyde. Glutaraldehyde of less than 30 μM inhibited the activity by a competitive manner with the inhibition constant, KI of 7.07 ± 1.36 μM. The inhibition type became mixed at higher glutaraldehyde concentrations >30 μM, probably due to the inactivation of the cell activity by the Schiff-base formation. Structurally analogous ethyl vinyl ether inhibited the diethyl ether oxidation activity in a mixed manner with decreasing the apparent maximum oxidation rate, , and icreasing the apparent Michaelis–Menten constant, . The mixed type inhibition by ethyl vinyl ether seemed to be introduced not only by the structure similarity with diethyl ether, but also by the reactivity of the vinyl ether with cellular components in the whole cell system.
Collapse
Affiliation(s)
- Yong-Hak Kim
- Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft, Universität Stuttgart, Abteilung biologische Abluftreinigung, Bandtäle 2, D-70569 Stuttgart (Büsnau), Germany
| | | |
Collapse
|
33
|
Abstract
The cytochrome P450 (P450) field came out of interest in the metabolism of drugs, carcinogens, and steroids, which remain major focal points. Over the years we have come to understand the P450 system components, the multiplicity of P450s, and many aspects of the regulation of the genes and also the catalytic mechanism. Many crystal structures are now becoming available. The significance of P450 in in vivo metabolism is appreciated, particularly in the context of pharmacogenetics. Current scientific issues involve posttranslational modification, gene regulation, component interactions, structures of P450 complexed with ligands, details of high-valent oxygen chemistry, the nature and influence of rate-limiting steps, greater details about some reaction steps, cooperativity, and the relevance of P450 variations to cancer risk. Some emerging research areas involve new methods of analysis of ligand interactions, roles of conformational changes linked to individual reaction steps, functions of orphan P450s, "molecular breeding" of new P450 functions and enhanced activity, and the utilization of P450s in chemical synthesis.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|
34
|
Springer D, Staack RF, Paul LD, Kraemer T, Maurer HH. Identification of cytochrome P450 enzymes involved in the metabolism of 4'-methoxy-alpha-pyrrolidinopropiophenone (MOPPP), a designer drug, in human liver microsomes. Xenobiotica 2004; 33:989-98. [PMID: 14555336 DOI: 10.1080/00498250310001602775] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The metabolism of 4'-methoxy-alpha-pyrrolidinopropiophenone (MOPPP), a novel designer drug, to its demethylated major metabolite 4'-hydroxy-pyrrolidinopropio-phenone (HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes. 2. CYP2C19 catalysed the demethylation with apparent Km and Vmax values of 373.4 +/- 45.1 microM and 6.0 +/- 0.3 pmol min(-1) pmol(-1) CYP, respectively (mean +/- SD). Both CYP2D6 and HLM exhibited clear biphasic profiles with apparent K(m,1) values of 1.3 +/- 0.4 and 22.0 +/- 6.5 microM, respectively, and V(max,1) values of 1.1 +/- 0.1 pmol min(-1) pmol(-1) CYP and 169.1 +/- 20.5 pmol min(-1) mg(-1) protein, respectively. 3. Percentages of intrinsic clearances of MOPPP by particular CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4'-hydroxylation or bufuralol-1'-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively. 4. MOPPP, HO-PPP and the standard 3',4'-methylenedioxy-pyrrolidinopropio-phenone (MDPPP) were separated and analysed by liquid chromatography-mass spectrometry in the selected-ion monitoring (SIM) mode. 5. The CYP2D6 specific chemical inhibitor quinidine (3 microM) significantly (p<0.0001) inhibited HO-PPP formation by 91.8 +/- 0.5% (mean +/- SEM) in incubation mixtures with HLM and 2 microM MOPPP. 6. It can be concluded from the data obtained from kinetic and inhibition studies that polymorphically expressed CYP2D6 is the enzyme mainly responsible for MOPPP demethylation.
Collapse
Affiliation(s)
- D Springer
- Department of Experimental and Clinical Toxicology, University of Saarland, Homburg (Saar), Germany
| | | | | | | | | |
Collapse
|
35
|
Gaudineau C, Beckerman R, Welbourn S, Auclair K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem Biophys Res Commun 2004; 318:1072-8. [PMID: 15147983 DOI: 10.1016/j.bbrc.2004.04.139] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Indexed: 11/22/2022]
Abstract
The Ginkgo biloba extract EGb761 was tested for its ability to inhibit the major human cytochrome P450 enzymes (CYPs). The full extract was found to strongly inhibit CYP2C9 (Ki = 14+/- 4 microg/mL), and to a lesser extent, CYP1A2 (Ki = 106 +/- 24 microg/mL), CYP2E1 (Ki = 127 +/- 42 microg/mL), and CYP3A4 (Ki = 155 +/- 43 microg/mL). The terpenoidic and flavonoidic fractions of the extract were tested separately against the same P450s to identify the source of inhibition by EGb761. The terpenoidic fraction inhibited only CYP2C9 (Ki = 15 +/-6 microg/mL) whereas the flavonoidic fraction of EGb761 showed high inhibition of CYP2C9, CYP1A2, CYP2E1, and CYP3A4 (Ki's between 4.9 and 55 microg/mL). The flavonoidic fraction was further fractionated using extraction and chromatography. Inhibition studies indicated that the majority of these fractions inhibited P450s at a significant level (IC50 < 40 microg/mL).
Collapse
Affiliation(s)
- Cédric Gaudineau
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Que., Canada H3A 2K6
| | | | | | | |
Collapse
|
36
|
Gaudineau C, Auclair K. Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem Biophys Res Commun 2004; 317:950-6. [PMID: 15081432 DOI: 10.1016/j.bbrc.2004.03.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Indexed: 10/26/2022]
Abstract
Nicotinic acid has been used as a cholesterol-lowering agent for a few decades already, whereas the cytoprotective and antiviral properties of nicotinamide are slowly gaining attention. In both cases however, very high doses are needed to achieve a therapeutic effect, resulting in blood concentrations sometimes as high as 15 mM. Based on their common pyridine functionality, we hypothesized that these two molecules could inhibit human P450 enzymes. In vitro inhibition studies demonstrate that, at their therapeutic concentrations, both nicotinic acid and nicotinamide inhibit CYP2D6 (Ki = 3.8 +/- 0.3 and 19 +/- 4 mM, respectively). Nicotinamide also inhibits CYP3A4 (Ki = 13 +/- 3 mM) and CYP2E1 (Ki = 13 +/- 8 mM). As expected for nitrogen-containing heteroaromatic molecules, spectrophotometric analysis indicates that the inhibition occurs via coordination of the pyridine nitrogen atom to the heme iron.
Collapse
Affiliation(s)
- Cédric Gaudineau
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Que., Canada H3A 2K6
| | | |
Collapse
|
37
|
Springer D, Paul LD, Staack RF, Kraemer T, Maurer HH. Identification of cytochrome p450 enzymes involved in the metabolism of 4'-methyl-alpha-pyrrolidinopropiophenone, a novel scheduled designer drug, in human liver microsomes. Drug Metab Dispos 2003; 31:979-82. [PMID: 12867484 DOI: 10.1124/dmd.31.8.979] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
4'-Methyl-alpha-pyrrolidinopropiophenone (MPPP) is a new drug of abuse. It is believed to have an abuse potential similar to that of amphetamines. Previous studies with Wistar rats had shown that MPPP was metabolized mainly by hydroxylation in position 4' followed by dehydrogenation to the corresponding carboxylic acid. The aim of the study presented here was to identify the human hepatic cytochrome p450 (p450) enzymes involved in the biotransformation of MPPP to 4'-hydroxymethyl-pyrrolidinopropiophenone. Baculovirus-infected insect cell microsomes and human liver microsomes were used for this purpose. Only CYP2C19 and CYP2D6 catalyzed this hydroxylation. The apparent Km and Vmax values for the latter were 9.8 +/- 2.5 microM and 13.6 +/- 0.7 pmol/min/pmol p450, respectively. CYP2C19 was not saturable over the tested substrate range (2-1000 microM) and interestingly showed a biphasic kinetic profile with apparent Km,1 and Vmax,1 values of 47.2 +/- 12.5 microM and 8.1 +/- 1.4 pmol/min/pmol p450, respectively. Experiments with pooled human liver microsomes also revealed biphasic nonsaturable kinetics with apparent Km,1 and Vmax,1 values of 57.0 +/- 20.9 microM and 199.7 +/- 59.7 pmol/min/mg of protein for the high affinity enzyme, respectively. Incubation of 2 microM MPPP with 3 microM of the CYP2D6-specific inhibitor quinidine resulted in significant (p < 0.01) turnover inhibition (11.8 +/- 1.6% of control). Based on kinetic data corrected for the relative activity factors, CYP2D6 is the enzyme mainly responsible for MPPP hydroxylation, confirmed by CYP2D6 inhibition studies.
Collapse
Affiliation(s)
- Dietmar Springer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, Building 46, D-66421 Homburg (Saar), Germany
| | | | | | | | | |
Collapse
|
38
|
Rock DA, Perkins BNS, Wahlstrom J, Jones JP. A method for determining two substrates binding in the same active site of cytochrome P450BM3: an explanation of high energy omega product formation. Arch Biochem Biophys 2003; 416:9-16. [PMID: 12859976 DOI: 10.1016/s0003-9861(03)00228-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A number of enzymes from the cytochrome P450 family show atypical (non-Michaelis-Menten) kinetic behavior resulting from substrate activation, inhibition, partial inhibition, biphasic saturation, or autoactivation. Herein, we provide a technique that can identify multiple substrate occupancy in the same active site of a P450 as a result of an altered kinetic profile. Using an isotope effect on product ratios confirms that the enzyme-substrate (ES) complex responsible for omega hydroxylation of palmitic acid (palmitate) is in rapid equilibrium with the ES complex that leads to omega-1 hydroxylation of palmitate. Co-incubation of a second substrate, lauric acid (laurate), results in a change in the ratio of omega to omega-1 hydroxylated palmitate. Furthermore, an isotope effect on palmitate is observed when deuterated laurate is co-incubated with non-deuterated palmitate. These results are only consistent with both substrates being in the same active site simultaneously. This mode of binding explains how the F87A mutant of P450BM3 is able to produce the omega alcohol, a product that arises from the high-energy primary radical.
Collapse
Affiliation(s)
- Dan A Rock
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
39
|
Cho US, Park EY, Dong MS, Park BS, Kim K, Kim KH. Tight-binding inhibition by alpha-naphthoflavone of human cytochrome P450 1A2. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:195-202. [PMID: 12758162 DOI: 10.1016/s1570-9639(03)00148-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cytochrome P450 (P450) enzymes exhibit remarkable diversity in their substrate specificities, participating in oxidation reactions of a wide range of xenobiotic drugs. Previously, we reported that alpha-naphthoflavone (ANF) is bound to the recombinant P450 1A2 tightly and stabilizes an overall enzyme conformation. The present study is designed to determine the type of P450 1A2 inhibition exerted by ANF, using two different substrates of P450 1A2, 7-ethoxycoumarin (EOC) and 7-ethoxyresorufin (EOR). ANF is generally known as a competitive inhibitor of the enzyme. However, in our tight-binding enzyme kinetics study, ANF acts as noncompetitive inhibitor in 7-ethoxycoumarin O-deethylation (ECOD) (K(i)=55.0 nM), but as competitive inhibitor in 7-ethoxyresorufin O-deethylation (EROD) (K(i)=1.4 nM). Based on homology modeling studies, ANF is positioned to bind to a hydrophobic cavity next to the active site where it may cause a direct effect on substrate binding. It is agreed with the predicted binding site of ANF in P450 3A4, in which ANF is rather known as a stimulating modulator. Our results suggest that ANF binds near the active site of P450 1A2 and exhibits differential inhibition mechanisms, possibly depending on the molecular structure of the substrate.
Collapse
Affiliation(s)
- Uhn Soo Cho
- Graduate School of Biotechnology, Korea University, 5-1 Anam dong, Sungbuk-gu, Seoul 136-701, South Korea
| | | | | | | | | | | |
Collapse
|
40
|
Shou M. Kinetic analysis for multiple substrate interaction at the active site of cytochrome P450. Methods Enzymol 2003; 357:261-76. [PMID: 12424916 DOI: 10.1016/s0076-6879(02)57684-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Magang Shou
- Department of Drug Metabolism, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| |
Collapse
|
41
|
Atkins WM, Lu WD, Cook DL. Is there a toxicological advantage for non-hyperbolic kinetics in cytochrome P450 catalysis? Functional allostery from "distributive catalysis". J Biol Chem 2002; 277:33258-66. [PMID: 12082118 DOI: 10.1074/jbc.m204425200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome P450s (CYPs) are the major enzymatic detoxification and drug metabolism system. Recently, it has become clear that several CYP isoforms exhibit positive and negative homotropic cooperativity. However, the toxicological implications of allosteric kinetics have not been considered, nor understood. The allosteric kinetics are particularly enigmatic in several respects. In many cases, CYPs bioactivate substrates to more toxic products, thus making it difficult to rationalize a functional advantage for positive cooperativity. Also, CYPs exhibit cooperativity with many structurally diverse ligands, in marked contrast to the specificity observed with other allosteric systems. Here, kinetic simulations are used to compare the probabilistic time- and concentration-dependent integrated toxicity function during conversion of substrate to product for CYP models exhibiting Michaelis-Menten (non-cooperative) kinetics, positive cooperativity, or negative cooperativity. The results demonstrate that, at low substrate concentrations, the slower substrate turnover afforded by cooperative CYPs compared with Michaelis-Menten enzymes can be a significant toxicological advantage, when toxic thresholds exist. When present, the advantage results from enhanced "distribution" of toxin in two pools, substrate and product, for an extended period, thus minimizing the chance that either exceeds its toxic threshold. At intermediate concentrations, the allosteric kinetics can be a modest advantage or modest disadvantage, depending on the kinetic parameters. However, at high substrate concentrations associated with a high probability of toxicity, fast turnover is desirable, and this advantage is provided also by the cooperative enzymes. For the positive homotropic cooperativity, the allosteric kinetics minimize the probability of toxicity over the widest range of system parameters. Furthermore, this apparent functional cooperativity is achieved without specific molecular recognition that is the hallmark of "traditional" allostery.
Collapse
Affiliation(s)
- William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, USA.
| | | | | |
Collapse
|
42
|
Affiliation(s)
- J Matthew Hutzler
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
43
|
Hanna IH, Krauser JA, Cai H, Kim MS, Guengerich FP. Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity. J Biol Chem 2001; 276:39553-61. [PMID: 11509577 DOI: 10.1074/jbc.m106841200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.
Collapse
Affiliation(s)
- I H Hanna
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 23rd and Pierce Avenues, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|