1
|
Mishra S, Chakraborty H. Dengue Virus Fusion Peptide Promotes Hemifusion Formation by Disordering the Interfacial Region of the Membrane. J Membr Biol 2025:10.1007/s00232-025-00336-5. [PMID: 39825135 DOI: 10.1007/s00232-025-00336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.4 with varying cholesterol concentrations. We have demonstrated that the DENV FP promotes hemifusion formation during the fusion of small unilamellar vesicles (SUVs) mainly at pH 5.0. Moreover, the fusion process demonstrates a strong correlation between fusogenicity and the amount of membrane cholesterol. We have further evaluated the partitioning ability of the peptide in three different membranes at pH 5.0 and pH 7.4. The fusogenic ability of the peptide at pH 5.0 is associated with the composition-dependent binding affinity of the peptide to the membrane. The depth-dependent fluorescence probes are used to evaluate membrane organization and dynamics utilizing steady-state and time-resolved fluorescence spectroscopic techniques. Our results show that the DENV FP promotes hemifusion formation by fluidizing the interfacial region of the membrane.
Collapse
Affiliation(s)
- Smruti Mishra
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
| |
Collapse
|
2
|
Panda MS, Qazi B, Vishwakarma V, Pattnaik GP, Haldar S, Chakraborty H. Developing peptide-based fusion inhibitors as an antiviral strategy utilizing coronin 1 as a template. RSC Med Chem 2024; 16:d4md00523f. [PMID: 39399312 PMCID: PMC11467784 DOI: 10.1039/d4md00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30-40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC50 of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.
Collapse
Affiliation(s)
- Manbit Subhadarsi Panda
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Bushra Qazi
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Vaishali Vishwakarma
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
| | - Gourab Prasad Pattnaik
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| | - Sourav Haldar
- Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute Lucknow Uttar Pradesh 226031 India +91 858 287 0349
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University Jyoti Vihar Burla Odisha 768 019 India +91 800 871 6419
| |
Collapse
|
3
|
Pandia S, Chakraborty H. Strategic Design of Tryptophan-Aspartic Acid-Containing Peptide Inhibitors Using Coronin 1 as a Template: Inhibition of Fusion by Enhancing Acyl Chain Order. J Phys Chem B 2024; 128:9163-9171. [PMID: 39268813 DOI: 10.1021/acs.jpcb.4c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Enveloped viruses enter the host cell by fusing at the cell membrane or entering the cell via endocytosis and fusing at the endosome. Conventional inhibitors target the viral fusion protein to inactivate it for inducing fusion. These target-specific vis-à-vis virus-specific inhibitors fail to display their inhibitory efficacy against emerging and remerging viral infections. This necessitates the need to develop broad-spectrum entry inhibitors that are effective irrespective of the virus. Using a broad range of targeting techniques, the fusion inhibitors can modify the physical characteristics of the viral membrane, making it less prone to fusion. We have previously shown that two tryptophan-aspartic acid (WD)-containing hydrophobic peptides, TG-23 and GG-21, from coronin 1, a phagosomal protein, inhibit membrane fusion by modulating membrane organization and dynamics. In the present work, we designed two WD-containing hydrophilic peptides, QG-22 and AG-22, using coronin 1 as a template and evaluated their fusion inhibitory efficacies in the absence and presence of membrane cholesterol. Our results demonstrate that QG-22 and AG-22 inhibit membrane fusion irrespective of the concentration of membrane cholesterol. Our measurements of depth-dependent membrane organization and dynamics reveal that they impede fusion by enhancing the acyl chain order. Overall, our results validate the hypothesis of designing fusion inhibitors by modulating the membrane's physical properties. In addition, it demonstrates that chain hydrophobicity might not be a critical determinant for the development of peptide-based fusion inhibitors.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
4
|
Pandia S, Mahapatra A, Chakraborty H. A Coronin 1-Derived Peptide Inhibits Membrane Fusion by Modulating Membrane Organization and Dynamics. J Phys Chem B 2024; 128:4986-4995. [PMID: 38739415 DOI: 10.1021/acs.jpcb.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.
Collapse
Affiliation(s)
- Swaratmika Pandia
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar 752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai 400094, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| |
Collapse
|
5
|
Chaudhury A, Swarnakar S, Pattnaik GP, Varshney GK, Chakraborty H, Basu JK. Peptide-Induced Fusion of Dynamic Membrane Nanodomains: Implications in a Viral Entry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17713-17722. [PMID: 38031897 DOI: 10.1021/acs.langmuir.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Enveloped viruses infect host cells via protein-mediated membrane fusion. However, insights into the microscopic rearrangement induced by the viral proteins and peptides have not yet emerged. Here, we report a new methodology to extract viral fusion peptide (FP)-mediated biomembrane dynamical nanodomain fusion parameter, λ, based on stimulated emission depletion microscopy coupled with fluorescence correlation spectroscopy. We also define another dynamical parameter membrane gradient, defined in terms of the ratio of average lipid diffusion coefficients across dynamic crossover length scales, ξ. Significantly, we observe that λ as well as these mobility gradients are larger in the stiffer liquid-ordered (Lo) phase compared to the liquid-disordered phase and are more effective at the smaller nanodomain interfaces, which are only present in the Lo phase. The results could possibly help to resolve a long-standing puzzle about the enhanced fusogenicity of FP in the Lo phase. Results obtained from the diffusion results have been correlated with the human immunodeficiency virus gp41 FP-induced membrane fusion.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Shovon Swarnakar
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | | | - Gopal K Varshney
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
6
|
Meher G, Bhattacharjya S, Chakraborty H. Membrane cholesterol regulates the oligomerization and fusogenicity of SARS-CoV fusion peptide: implications in viral entry. Phys Chem Chem Phys 2023; 25:7815-7824. [PMID: 36857640 DOI: 10.1039/d2cp04741a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
N-terminal residues (770-788) of the S2 glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) have been recognized as a potential fusion peptide that can be involved in the entry of the virus into the host cell. Membrane composition plays an important role in lipid-peptide interaction and the oligomeric status of the peptide. SARS-CoV fusion peptide (S2 fusion peptide) is known to undergo cholesterol-dependent oligomerization in the membrane; however, its significance in membrane fusion is still speculative. This study aimed to investigate the oligomerization of SARS-CoV fusion peptide in a membrane containing phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol, with varying concentrations of cholesterol, and to evaluate peptide-induced membrane fusion to correlate the importance of peptide oligomerization with membrane fusion. Peptide-induced modulation of membrane organization and dynamics was explored by steady-state and time-resolved fluorescence spectroscopic measurements using depth-dependent probes. The results clearly demonstrated the induction of S2 fusion peptide oligomerization by membrane cholesterol and the higher efficiency of the oligomer in promoting membrane fusion compared to its monomeric counterpart. Cholesterol-dependent peptide oligomerization and membrane fusion are important aspects of viral infection since the cholesterol level can change with age as well as with the onset of various pathophysiological conditions.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India. .,Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| |
Collapse
|
7
|
Rice A, Haldar S, Wang E, Blank PS, Akimov SA, Galimzyanov TR, Pastor RW, Zimmerberg J. Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration. Nat Commun 2022; 13:7336. [PMID: 36470871 PMCID: PMC9722698 DOI: 10.1038/s41467-022-34576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
To infect, enveloped viruses employ spike protein, spearheaded by its amphipathic fusion peptide (FP), that upon activation extends out from the viral surface to embed into the target cellular membrane. Here we report that synthesized influenza virus FPs are membrane active, generating pores in giant unilamellar vesicles (GUV), and thus potentially explain both influenza virus' hemolytic activity and the liposome poration seen in cryo-electron tomography. Experimentally, FPs are heterogeneously distributed on the GUV at the time of poration. Consistent with this heterogeneous distribution, molecular dynamics (MD) simulations of asymmetric bilayers with different numbers of FPs in one leaflet show FP aggregation. At the center of FP aggregates, a profound change in the membrane structure results in thinning, higher water permeability, and curvature. Ultimately, a hybrid bilayer nanodomain forms with one lipidic leaflet and one peptidic leaflet. Membrane elastic theory predicts a reduced barrier to water pore formation when even a dimer of FPs thins the membrane as above, and the FPs of that dimer tilt, to continue the leaflet bending initiated by the hydrophobic mismatch between the FP dimer and the surrounding lipid.
Collapse
Affiliation(s)
- Amy Rice
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Sourav Haldar
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA ,grid.418363.b0000 0004 0506 6543Present Address: Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, UP India
| | - Eric Wang
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Paul S. Blank
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Sergey A. Akimov
- grid.4886.20000 0001 2192 9124A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Timur R. Galimzyanov
- grid.4886.20000 0001 2192 9124A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia ,grid.35043.310000 0001 0010 3972National University of Science and Technology “MISiS”, 4 Leninskiy Prospect, Moscow, Russia
| | - Richard W. Pastor
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Joshua Zimmerberg
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
8
|
Joardar A, Pattnaik GP, Chakraborty H. Combination of Oleic Acid and the gp41 Fusion Peptide Switches the Phosphatidylethanolamine-Induced Membrane Fusion Mechanism from a Nonclassical to a Classical Stalk Model. J Phys Chem B 2022; 126:3673-3684. [PMID: 35580344 DOI: 10.1021/acs.jpcb.2c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane fusion is considered to be one of the crucial processes for the existence of eukaryotes and the entry of enveloped viruses into host cells. The fusion mechanism depends on the lipid composition of the membrane as well as the properties of fusion proteins or peptides. The gp41 fusion peptide from the human immunodeficiency virus (HIV) is known to catalyze membrane fusion by altering the physical properties of the membrane. Earlier, we demonstrated that a membrane containing 30 mol % phosphatidylethanolamine (PE) circumvents the classical stalk model because of its intrinsic negative curvature. In this work, we demonstrated how the gp41 fusion peptide influences the fusion mechanism of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phos-pho¬ethanolamine (DOPE) (70/30 mol %) membranes. We further evaluated the effect of the same peptide on the mechanism of fusion for membranes containing 30 mol % PE and a fatty acid with an intrinsic positive curvature (oleic acid (OA)). Our results show that gp41 switches the fusion mechanism from a nonclassical to a classical stalk model when membranes contain OA, but fails to do so for DOPC/DOPE membranes. This could be due to the extreme influence of the intrinsic negative curvature of PE, which is partially downregulated in the presence of OA.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
9
|
Michalski M, Setny P. Membrane-Bound Configuration and Lipid Perturbing Effects of Hemagglutinin Subunit 2 N-Terminus Investigated by Computer Simulations. Front Mol Biosci 2022; 9:826366. [PMID: 35155580 PMCID: PMC8830744 DOI: 10.3389/fmolb.2022.826366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023] Open
Abstract
Hemagglutinin (HA) mediated fusion of influenza virus envelope with host lipid membrane is a critical step warrantying virus entry to the cell. Despite tremendous advances in structural biology methods, the knowledge concerning the details of HA2 subunit insertion into the target membrane and its subsequent bilayer perturbing effect is still rather limited. Herein, based on a set of molecular dynamics simulations, we investigate the structure and interaction with lipid membrane of the N-terminal HA2 region comprising a trimer of fusion peptides (HAfps) tethered by flexible linkers to a fragment of coiled-coil stem structure. We find that, prior to insertion into the membrane, HAfps within the trimers do not sample space individually but rather associate into a compact hydrophobic aggregate. Once within the membrane, they fold into tight helical hairpins, which remain at the lipid-water interface. However, they can also assume stable, membrane-spanning configurations of significantly increased membrane-perturbing potential. In this latter case, HAfps trimers centre around the well-hydrated transmembrane channel-forming distinct, symmetric assemblies, whose wedge-like shape may play a role in promoting membrane curvature. We also demonstrate that, following HAfps insertion, the coiled-coil stem spontaneously tilts to almost membrane-parallel orientation, reflecting experimentally observed configuration adopted in the course of membrane fusion by complete HA2 units at the rim of membrane contact zones.
Collapse
|
10
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
11
|
François-Martin C, Bacle A, Rothman JE, Fuchs PFJ, Pincet F. Cooperation of Conical and Polyunsaturated Lipids to Regulate Initiation and Processing of Membrane Fusion. Front Mol Biosci 2021; 8:763115. [PMID: 34746239 PMCID: PMC8566721 DOI: 10.3389/fmolb.2021.763115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The shape of lipids has long been suspected to be a critical determinant for the control of membrane fusion. To experimentally test this assertion, we used conical and malleable lipids and measured their influence on the fusion kinetics. We found that, as previously suspected, both types of lipids accelerate fusion. However, the implicated molecular mechanisms are strikingly different. Malleable lipids, with their ability to change shape with low energy cost, favor fusion by decreasing the overall activation energy. On the other hand, conical lipids, with their small polar head relative to the area occupied by the hydrophobic chains, tend to make fusion less energetically advantageous because they tend to migrate towards the most favorable lipid leaflet, hindering fusion pore opening. They could however facilitate fusion by generating hydrophobic defects on the membranes; this is suggested by the similar trend observed between the experimental rate of fusion nucleation and the surface occupied by hydrophobic defects obtained by molecular simulations. The synergy of dual-process, activation energy and nucleation kinetics, could facilitate membrane fusion regulation in vivo.
Collapse
Affiliation(s)
- Claire François-Martin
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| | - Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies-ConicMeds", Université de Poitiers, Poitiers, France
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale School of Medicine, West Haven, CT, United States
| | - Patrick F J Fuchs
- Laboratoire des Biomolécules (LBM), CNRS, Ecole Normale Supérieure, Sorbonne Université, PSL Research University, Paris, France.,UFR Sciences Du Vivant, Université de Paris, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
12
|
Pattnaik GP, Chakraborty H. Fusogenic Effect of Cholesterol Prevails over the Inhibitory Effect of a Peptide-Based Membrane Fusion Inhibitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3477-3489. [PMID: 33689373 DOI: 10.1021/acs.langmuir.1c00319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane fusion is the primary step in the entry of enveloped viruses into the host cell. Membrane composition modulates the membrane fusion by changing the organization dynamics of the fusion proteins, peptides, and membranes. The asymmetric lipid compositions of the viral envelope and the host cell influence the membrane fusion. Cholesterol is an important constituent of mammalian cells and plays a vital role in the entry of several viruses. In our pursuit of developing peptide-based general fusion inhibitors, we have previously shown that a coronin 1-derived peptide, TG-23, inhibited polyethylene glycol-induced fusion between symmetric membranes without cholesterol. In this work, we have studied the effect of TG-23 on the polyethylene glycol-mediated fusion between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (50/30/10/10 mol %) membranes and between DOPC/DOPE/DOPG (60/30/10 mol %) and DOPC/DOPE/DOPG/CH (40/30/10/20 mol %) membranes. Our results demonstrate that the TG-23 peptide inhibited the fusion between membranes containing 0 and 10 mol % cholesterol though the efficacy is less than that of symmetric fusion between membranes devoid of cholesterol, and the inhibitory efficacy becomes negligible in the fusion between membranes containing 0 and 20 mol % cholesterol. Several steady-state and time-resolved fluorescence spectroscopic techniques have been successfully utilized to evaluate the organization, dynamics, and membrane penetration of the TG-23 peptide. Taken together, our results demonstrate that the reduction of the inhibitory effect of TG-23 in asymmetric membrane fusion containing cholesterol of varying concentrations is not due to the altered peptide structure, organization, and dynamics, rather owing to the intrinsic negative curvature-inducing property of cholesterol. Therefore, the membrane composition is an added complexity in the journey of developing peptide-based membrane fusion inhibitors.
Collapse
Affiliation(s)
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
- Centre of Excellence in Natural Products and Therapeutics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
13
|
Cholesterol alters the inhibitory efficiency of peptide-based membrane fusion inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183056. [DOI: 10.1016/j.bbamem.2019.183056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022]
|
14
|
Meher G, Sinha S, Pattnaik GP, Ghosh Dastidar S, Chakraborty H. Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide To Promote Membrane Fusion. J Phys Chem B 2019; 123:7113-7122. [PMID: 31345037 DOI: 10.1021/acs.jpcb.9b04577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An envelope glycoprotein, gp41, is crucial for the entry of human immunodeficiency virus (HIV) into the host cell. The 20-23 N-terminal amino acid sequence of gp41 plays an important role in promoting fusion between viral and host cells. Interestingly, the structure and function of the fusion peptide are extremely sensitive to the characteristics of the lipid environment. In this present work, we have extensively utilized steady-state and time-resolved fluorescence spectroscopy in tandem with molecular dynamics simulation to elucidate peptide binding and peptide-induced perturbation to the membrane. We have used two depth-dependent fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and its trimethylammonium derivative (TMA-DPH), to monitor the effect of peptide binding along the bilayer normal and have reconciled the experimental observation with the insights from the simulated molecular events. We have further monitored the effect of membrane cholesterol on peptide-induced membrane perturbation. The molecular dynamics simulation data show that the peptide alters the membrane properties in the vicinity of the peptide and it penetrates to a larger extent into the bilayer when the membrane contains cholesterol. Our results clearly elucidate that cholesterol alters the membrane physical properties in favor of membrane fusion and interaction pattern of the fusion peptide with the membrane in a concentration-dependent fashion. The role of cholesterol is specifically important as the host eukaryotic cells contain a decent amount of cholesterol that might be critical for the entry of HIV into the host cells.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| | - Souvik Sinha
- Division of Bioinformatics , Bose Institute , P-1/12 C.I.T. Scheme VII M , Kolkata 700054 , India
| | - Gourab Prasad Pattnaik
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics , Bose Institute , P-1/12 C.I.T. Scheme VII M , Kolkata 700054 , India
| | - Hirak Chakraborty
- School of Chemistry , Sambalpur University , Jyoti Vihar, Burla , Odisha 768 019 , India
| |
Collapse
|
15
|
Pattnaik GP, Chakraborty H. Coronin 1 derived tryptophan-aspartic acid containing peptides inhibit membrane fusion. Chem Phys Lipids 2018; 217:35-42. [DOI: 10.1016/j.chemphyslip.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022]
|
16
|
Chakraborty H, Tarafdar PK, Klapper DG, Lentz BR. Wild-type and mutant hemagglutinin fusion peptides alter bilayer structure as well as kinetics and activation thermodynamics of stalk and pore formation differently: mechanistic implications. Biophys J 2014; 105:2495-506. [PMID: 24314080 DOI: 10.1016/j.bpj.2013.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 10/04/2013] [Accepted: 10/09/2013] [Indexed: 02/02/2023] Open
Abstract
Viral fusion peptides are short N-terminal regions of type-1 viral fusion proteins that are critical for virus entry. Although the importance of viral fusion peptides in virus-cell membrane fusion is established, little is known about how they function. We report the effects of wild-type (WT) hemagglutinin (HA) fusion peptide and its G1S, G1V, and W14A mutants on the kinetics of poly(ethylene glycol)(PEG)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, and cholesterol (molar ratio of 35:30:15:20). Time courses of lipid mixing, content mixing, and content leakage were obtained using fluorescence assays at multiple temperatures and analyzed globally using either a two-step or three-step sequential ensemble model of the fusion process to obtain the rate constant and activation thermodynamics of each step. We also monitored the influence of peptides on bilayer interfacial order, acyl chain order, bilayer free volume, and water penetration. All these data were considered in terms of a recently published mechanistic model for the thermodynamic transition states for each step of the fusion process. We propose that WT peptide catalyzes Step 1 by occupying bilayer regions vacated by acyl chains that protrude into interbilayer space to form the Step 1 transition state. It also uniquely contributes a positive intrinsic curvature to hemi-fused leaflets to eliminate Step 2 and catalyzes Step 3 by destabilizing the highly stressed edges of the hemi-fused microstructures that dominate the ensemble of the intermediate state directly preceding fusion pore formation. Similar arguments explain the catalytic and inhibitory properties of the mutant peptides and support the hypothesis that the membrane-contacting fusion peptide of HA fusion protein is key to its catalytic activity.
Collapse
Affiliation(s)
- Hirak Chakraborty
- Department of Biochemistry and Biophysics & Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, North Carolina 27599-7260
| | | | | | | |
Collapse
|
17
|
Chakraborty H, Tarafdar PK, Lentz BR. A novel assay for detecting fusion pore formation: implications for the fusion mechanism. Biochemistry 2013; 52:8510-7. [PMID: 24164461 DOI: 10.1021/bi401369j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Membrane fusion is broadly envisioned as a two- or three-step process proceeding from contacting bilayers through one or two semistable, nonlamellar lipidic intermediate structures to a fusion pore. A true fusion event requires mixing of contents between compartments and is monitored by the movement of soluble molecules between trapped compartments. We have used poly(ethylene glycol) (PEG) to rapidly generate an ensemble aggregated state A that proceeds sequentially through intermediates (I₁ and/or I₂) to a final fusion pore state (FP) with rate constants k₁, k₂, and k₃. Movement of moderately sized solutes (e.g., Tb³⁺/dipicolinic acid) has been used to detect pores assigned to intermediate states as well as to the final state (FP). Analysis of ensemble kinetic data has required that mixing of contents occurs with defined probabilities (αi) in each ensemble state, although it is unclear whether pores that form in different states are different. We introduce here a simple new assay that employs fluorescence resonance energy transfer (FRET) between a 6-carboxyfluorescein (donor) and tetramethylrhodamine (acceptor), which are covalently attached to complementary sequences of 10 bp oligonucleotides. Complementary sequences of fluorophore-labeled oligonucleotides were incorporated in vesicles separately, and the level of FRET increased in a simple exponential fashion during PEG-mediated fusion. The resulting rate constant corresponded closely to the slow rate constant of FP formation (k₃) derived from small molecule assays. Additionally, the total extent of oligonucleotide mixing corresponded to the fraction of content mixing that occurred in state FP in the small molecule assay. The results show that both large "final pores" and small (presumably transient) pores can form between vesicles throughout the fusion process. The implications of this result for the mechanism of membrane fusion are discussed.
Collapse
Affiliation(s)
- Hirak Chakraborty
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7260, United States
| | | | | |
Collapse
|
18
|
Tenchov BG, MacDonald RC, Lentz BR. Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. An x-ray diffraction study. Biophys J 2013; 104:1029-37. [PMID: 23473485 DOI: 10.1016/j.bpj.2012.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/08/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022] Open
Abstract
Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the L(α)-H(II) transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, Q(II), which becomes inserted between the L(α) and H(II) phases on the temperature scale. Peptide-induced Q(II) had strongly reduced lattice constants in comparison to the Q(II) phases that form in pure lipids. Q(II) formation was favored at the expense of both L(α) and H(II) phases. The wild-type fusion peptide, WT-20, was distinguished from G1E and G13L by the markedly greater magnitude of its effect. WT-20 disordered the L(α) phase and completely abolished the HII phase in DOPE-Me/WT-20 50:1 dispersions, converted the Q(II) phase type from Im3m to Pn3m and reduced the unit cell size from ∼38 nm for the Im3m phase of DOPE-Me dispersions to ∼15 nm for the Pn3m phase in DOPE-Me/WT-20 peptide mixtures. The strong reduction of the cubic phase lattice parameter suggests that the fusion-promoting WT-20 peptide may function by favoring bilayer states of more negative gaussian curvature and promoting fusion along pathways involving Pn3m phase-like fusion pore intermediates rather than pathways involving H(II) phase-like intermediates.
Collapse
Affiliation(s)
- Boris G Tenchov
- Department of Medical Physics and Biophysics, Medical University Sofia, Sofia, Bulgaria.
| | | | | |
Collapse
|
19
|
Chakraborty H, Tarafdar PK, Bruno MJ, Sengupta T, Lentz BR. Activation thermodynamics of poly(ethylene glycol)-mediated model membrane fusion support mechanistic models of stalk and pore formation. Biophys J 2012; 102:2751-60. [PMID: 22735525 DOI: 10.1016/j.bpj.2012.04.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/21/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022] Open
Abstract
Membrane fusion, essential to eukaryotic life, is broadly envisioned as a three-step process proceeding from contacting bilayers through two semistable, nonlamellar lipidic intermediate states to a fusion pore. Here, we introduced a new, to our knowledge, experimental approach to gain insight into the nature of the transition states between initial, intermediate, and final states. Recorded time courses of lipid-mixing, content-mixing, and content-leakage associated with fusion of 23 nm vesicles in the presence of poly(ethylene glycol) at multiple temperatures were fitted globally to a three-step sequential model to yield rate constants and thereby activation thermodynamics for each step of the process, as well as probabilities of occurrence of lipid-mixing, content-mixing, or content-leakage in each state. Experiments with membranes containing hexadecane, known to reduce interstice energy in nonlamellar structures, provided additional insight into the nature of fusion intermediates and transition states. The results support a hypothesis for the mechanism of stalk formation (step-1) that involves acyl chain protrusions into the interbilayer contact region, a hypothesis for a step-2 mechanism involving continuous interconversion of semistable nonlamellar intermediates, and a hypothesis for step-3 (pore formation) mechanism involving correlated movement of whole lipid molecules into hydrophobic spaces created by geometry mismatch between intermediate structures.
Collapse
Affiliation(s)
- Hirak Chakraborty
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
20
|
Haque ME, Chakraborty H, Koklic T, Komatsu H, Axelsen PH, Lentz BR. Hemagglutinin fusion peptide mutants in model membranes: structural properties, membrane physical properties, and PEG-mediated fusion. Biophys J 2011; 101:1095-104. [PMID: 21889446 DOI: 10.1016/j.bpj.2011.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/23/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022] Open
Abstract
While the importance of viral fusion peptides (e.g., hemagglutinin (HA) and gp41) in virus-cell membrane fusion is established, it is unclear how these peptides enhance membrane fusion, especially at low peptide/lipid ratios for which the peptides are not lytic. We assayed wild-type HA fusion peptide and two mutants, G1E and G13L, for their effects on the bilayer structure of 1,2-dioleoyl-3-sn-phosphatidylcholine/1,2-dioleoyl-3-sn-phosphatidylethanolamine/Sphingomyelin/Cholesterol (35:30:15:20) membranes, their structures in the lipid bilayer, and their effects on membrane fusion. All peptides bound to highly curved vesicles, but fusion was triggered only in the presence of poly(ethylene glycol). At low (1:200) peptide/lipid ratios, wild-type peptide enhanced remarkably the extent of content mixing and leakage along with the rate constants for these processes, and significantly enhanced the bilayer interior packing and filled the membrane free volume. The mutants caused no change in contents mixing or interior packing. Circular dichroism, polarized-attenuated total-internal-reflection Fourier-transform infrared spectroscopy measurements, and membrane perturbation measurements all conform to the inverted-V model for the structure of wild-type HA peptide. Similar measurements suggest that the G13L mutant adopts a less helical conformation in which the N-terminus moves closer to the bilayer interface, thus disrupting the V-structure. The G1E peptide barely perturbs the bilayer and may locate slightly above the interface. Fusion measurements suggest that the wild-type peptide promotes conversion of the stalk to an expanded trans-membrane contact intermediate through its ability to occupy hydrophobic space in a trans-membrane contact structure. While wild-type peptide increases the rate of initial intermediate and final pore formation, our results do not speak to the mechanisms for these effects, but they do leave open the possibility that it stabilizes the transition states for these events.
Collapse
Affiliation(s)
- Md Emdadul Haque
- Department of Biochemistry and Biophysics and Program in Cellular and Molecular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tarahovsky YS, Yagolnik EA, Muzafarov EN, Abdrasilov BS, Kim YA. Calcium-dependent aggregation and fusion of phosphatidylcholine liposomes induced by complexes of flavonoids with divalent iron. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:695-702. [PMID: 22179037 DOI: 10.1016/j.bbamem.2011.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/20/2022]
Abstract
It was found that complexes of the flavonoids quercetin, taxifolin, catechin and morin with divalent iron initiated an increase in light scattering in a suspension of unilamellar 100nm liposomes. The concentration of divalent iron in the suspension was 10μM. Liposomes were prepared from 1-palmitoyl-2-oleoylglycero-3-phoshpatidylcholine. The fluorescent resonance energy transfer (FRET) analysis of liposomes labeled with NBD-PE and lissamine rhodamine B dyes detected a slow lipid exchange in liposomes treated with flavonoid-iron complexes and calcium, while photon correlation spectroscopy and freeze-fracture electron microscopy revealed the aggregation and fusion of liposomes to yield gigantic vesicles. Such processes were not found in liposomes treated with phloretin because this flavonoid is unable to interact with iron. Rutin was also unable to initiate any marked changes because this water-soluble flavonoid cannot interact with the lipid bilayer. The experimental data and computer calculations of lipophilicity (cLogP) as well as the charge distribution on flavonoid-iron complexes indicate that the adhesion of liposomes is provided by an iron link between flavonoid molecules integrated in adjacent bilayers. It is supposed that calcium cations facilitate the aggregation and fusion of liposomes because they interact with the phosphate moieties of lipids.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, Russia.
| | | | | | | | | |
Collapse
|
22
|
Read JA, Duncan R. Biophysical and functional assays for viral membrane fusion peptides. Methods 2011; 55:122-6. [PMID: 21958986 DOI: 10.1016/j.ymeth.2011.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/26/2022] Open
Abstract
Membrane fusion is a protein catalyzed biophysical reaction that involves the simultaneous intermixing of two phospholipid bilayers and of the aqueous compartments bound by their respective bilayers. In the case of enveloped virus fusogens, short hydrophobic or amphipathic fusion peptides that are components of the larger fusion complex are essential for the membrane merger event. The process of cell-cell membrane fusion and syncytium formation induced by the nonenveloped fusogenic orthoreoviruses is driven by the Fusion-Associated Small Transmembrane (FAST) proteins, which are similarly dependent on the action of fusion peptides. In this article, we describe some simple methods for the biophysical characterization of viral membrane fusion peptides. Liposomes serve as an ideal model system for characterizing peptide-membrane interactions because their size, shape and composition can be readily manipulated. We present details of fluorescence assays used to elucidate the kinetics of membrane fusion as well as complimentary assays used to characterize peptide-induced liposome binding and aggregation.
Collapse
Affiliation(s)
- Jolene A Read
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H4R2
| | | |
Collapse
|
23
|
Ge M, Freed JH. Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study. Biophys J 2009; 96:4925-34. [PMID: 19527651 DOI: 10.1016/j.bpj.2009.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/27/2009] [Accepted: 04/06/2009] [Indexed: 11/29/2022] Open
Abstract
A spin-labeling study of interactions of a fusion peptide from the hemagglutinin of the influenza virus, wt20, and a fusion-inactive mutant DeltaG1 with dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-phosphatdylcholine bilayers was performed. We found that upon binding of wt20, the ordering of headgroups and the ordering of acyl chains near the headgroup increased significantly, in a manner consistent with a cooperative phenomenon. However, changes in the order at the end of the acyl chains were negligible. The ordering effect of wt20 on the headgroup was much stronger at pH 5 than at pH 7. No effect of DeltaG1 binding on the order of bilayers was evident. We also found that 1-palmitoyl-2-hydroxyl phosphatidylcholine, a membrane-fusion inhibitor, decreased the ordering of DMPC headgroups, whereas arachidonic acid, a membrane-fusion promoter, increased the ordering of DMPC headgroups. These results suggest that increases in headgroup ordering may be important for membrane fusion. We propose that upon binding of wt20, which is known to affect only the outer leaflet of the bilayer, this outer leaflet becomes more ordered, and thus more solid-like. Then the coupling between the hardened outer leaflet and the softer inner leaflet generates bending stresses in the bilayer, which tend to increase the negative curvature of the bilayer. We suggest that the increased ordering in the headgroup region enhances dipolar interactions and lowers electrostatic energy, which may provide an energy source for membrane fusion. Possible roles of bending stresses in promoting membrane fusion are discussed.
Collapse
Affiliation(s)
- Mingtao Ge
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 15853, USA
| | | |
Collapse
|
24
|
Sammalkorpi M, Lazaridis T. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:30-8. [PMID: 16999933 DOI: 10.1016/j.bbamem.2006.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/01/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The 20 N-terminal residues of the HA2 subunit of influenza hemagglutinin (HA), known as the fusion peptide, play a crucial role in membrane fusion. Molecular dynamics simulations with implicit solvation are employed here to study the structure and orientation of the fusion peptide in membranes. As a monomer the alpha-helical peptide adopts a shallow, slightly tilted orientation along the lipid tail-head group interface. The average angle of the peptide with respect to membrane plane is 12.4 degrees . We find that the kinked structure proposed on the basis of NMR data is not stable in our model because of the high energy cost related to the membrane insertion of polar groups. Because hemagglutinin-mediated membrane fusion is promoted by low pH, we examined the effect of protonation of the Glu and Asp residues. The configurations of the protonated peptides were slightly deeper in the membrane but at similar angles. Finally, because HA is a trimer, we modeled helical fusion peptide trimers. We find that oligomerization affects the insertion depth of the peptide and its orientation with respect to the membrane: a trimer exhibits equally favorable configurations in which some or all of the helices in the bundle insert obliquely deep into the membrane.
Collapse
Affiliation(s)
- M Sammalkorpi
- Department of Chemistry, City College of the City University of New York, NY 10031, USA
| | | |
Collapse
|
25
|
Lentz BR. PEG as a tool to gain insight into membrane fusion. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:315-26. [PMID: 17039359 DOI: 10.1007/s00249-006-0097-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 07/30/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Thirty years ago, Klaus Arnold and others showed that the action of PEG in promoting cell-cell fusion was not due to such effects as surface absorption, cross-linking, solubilization, etc. Instead PEG acted simply by volume exclusion, resulting in an osmotic force driving membranes into close contact in a dehydrated region. This simple observation, based on a number of physical measurements and the use of PEG-based detergents that insert into membranes, spawned several important areas of research. One such area is the use of PEG to bring membranes into contact so that the role of different lipids and fusion proteins in membrane fusion can be examined in detail. We have summarized here insights into the fusion mechanism that have been obtained by this approach. This evidence indicates that fusion of model membranes (and probably cell membranes) occurs via severely bent lipidic structures formed at the point of sufficiently close contact between membranes of appropriate lipid composition. This line of research has also suggested that fusion proteins seem to catalyze fusion in part by reducing the free energy of hydrophobic interstices inherent to the lipidic fusion intermediate structures.
Collapse
Affiliation(s)
- Barry R Lentz
- Department of Biochemistry and Biophysics, Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| |
Collapse
|
26
|
Haque ME, Koppaka V, Axelsen PH, Lentz BR. Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion. Biophys J 2005; 89:3183-94. [PMID: 16183890 PMCID: PMC1366814 DOI: 10.1529/biophysj.105.063032] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 07/26/2005] [Indexed: 11/18/2022] Open
Abstract
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.
Collapse
Affiliation(s)
- Md Emdadul Haque
- Department of Biochemistry and Program in Molecular/Cell Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | |
Collapse
|
27
|
Karinaga R, Koumoto K, Mizu M, Anada T, Shinkai S, Sakurai K. PEG-appended beta-(1-->3)-D-glucan schizophyllan to deliver antisense-oligonucleotides with avoiding lysosomal degradation. Biomaterials 2005; 26:4866-73. [PMID: 15763266 DOI: 10.1016/j.biomaterials.2004.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Accepted: 11/16/2004] [Indexed: 11/16/2022]
Abstract
Schizophyllan is a natural beta-(1-->3)-d-glucan existing as a triple helix in water and as a single chain in dimethylsulfoxide (DMSO). As we already reported, when a homo-polynucleotide [e.g., poly(dA) or poly(C)] is added to the schizophyllan/DMSO solution and subsequently DMSO is exchanged for water, the single chain of schizophyllan forms a complex with the polynucleotide. One of the potential applications for this novel complex is an antisense-oligonucleotide (AS ODN) carrier. The present paper describes a modification technique that enabled us to introduce PEG only to the side chain of schizophyllan. This technique consisted of periodate oxidation of the glucose side chain and subsequent reaction between methoxypolyethylene glycol amine and the formyl terminate, followed by reduction with NaBH4. Subsequently, we made a complex from PEG-appended schizophyllan and an AS ODN sequence, and carried out an in vitro antisense assay, administrating the AS ODN complex to depress A375 c-myb mRNA of A375 melanoma cell lines. The PEG-SPG/AS ODN complex showed more enhanced antisnese effect than naked AS ODN dose, i.e., the same level as that of RGD-appended SPG. Here, the RGD system has been shown one on the most effective AS ODN carrier (Science 261 (1993) 1004-1012). When we added nigericin to the assay system, the antisense effect was not affected in the PEG-SPG system, on the other hand, it was almost eliminated in the RGD system. Nigericin is well known to interrupt transport from endosome to lysosome. Therefore, the difference between the PEG and RGD complexes indicates that, in the PEG system, AS ODN was able to escape from lysosomal degradation. The present work has thus proposed a new strategy to delivery AS ODN using schizophyllan as a new carrier.
Collapse
Affiliation(s)
- Ryouji Karinaga
- Department of Chemical Process & Environments, The University of Kitakyushu, 1-1, Hibikino, Wakamatu-ku, Kitakyushu, Fukuoka 808 0135, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Mata NL, Moghrabi WN, Lee JS, Bui TV, Radu RA, Horwitz J, Travis GH. Rpe65 Is a Retinyl Ester Binding Protein That Presents Insoluble Substrate to the Isomerase in Retinal Pigment Epithelial Cells. J Biol Chem 2004; 279:635-43. [PMID: 14532273 DOI: 10.1074/jbc.m310042200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photon capture by a rhodopsin pigment molecule induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. To restore light sensitivity, the all-trans-retinaldehyde must be chemically re-isomerized by an enzyme pathway called the visual cycle. Rpe65, an abundant protein in retinal pigment epithelial (RPE) cells and a homolog of beta-carotene dioxygenase, appears to play a role in this pathway. Rpe65-/- knockout mice massively accumulate all-trans-retinyl esters but lack 11-cis-retinoids and rhodopsin visual pigment in their retinas. Mutations in the human RPE65 gene cause a severe recessive blinding disease called Leber's congenital amaurosis. The function of Rpe65, however, is unknown. Here we show that Rpe65 specifically binds all-trans-retinyl palmitate but not 11-cis-retinyl palmitate by a spectral-shift assay, by co-elution during gel filtration, and by co-immunoprecipitation. Using a novel fluorescent resonance energy transfer (FRET) binding assay in liposomes, we demonstrate that Rpe65 extracts all-trans-retinyl esters from phospholipid membranes. Assays of isomerase activity reveal that Rpe65 strongly stimulates the enzymatic conversion of all-trans-retinyl palmitate to 11-cis-retinol in microsomes from bovine RPE cells. Moreover, we show that addition of Rpe65 to membranes from rpe65-/- mice, which possess no detectable isomerase activity, restores isomerase activity to wild-type levels. Rpe65 by itself, however, has no intrinsic isomerase activity. These observations suggest that Rpe65 presents retinyl esters as substrate to the isomerase for synthesis of visual chromophore. This proposed function explains the phenotype in mice and humans lacking Rpe65.
Collapse
Affiliation(s)
- Nathan L Mata
- Jules Stein Eye Institute, University of California School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tamm LK, Crane J, Kiessling V. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Opin Struct Biol 2003; 13:453-66. [PMID: 12948775 DOI: 10.1016/s0959-440x(03)00107-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fusion of biological membranes is governed by the carefully orchestrated interplay of membrane proteins and lipids. Recently determined structures of fusion proteins, individual domains of fusion proteins and their complexes with regulatory proteins and membrane lipids have yielded much suggestive insight into how viral and intracellular membrane fusion might proceed. These structures may be combined with new knowledge on the fusion of pure lipid bilayer membranes in an attempt to begin to piece together the complex puzzle of how biological membrane fusion machines operate on membranes.
Collapse
Affiliation(s)
- Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 800736, Charlottesville, VA 22908-0736, USA.
| | | | | |
Collapse
|
30
|
Nieva JL, Agirre A. Are fusion peptides a good model to study viral cell fusion? BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:104-15. [PMID: 12873771 DOI: 10.1016/s0005-2736(03)00168-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusion peptides are hydrophobic and conserved sequences located within glycoprotein ectodomains that protrude from the virion surface. Direct participation of fusion peptides in the viral membrane fusion phenomenon has been inferred from genetic analyses showing that even a single residue substitution or a deletion within these sequences may completely block the process. However, the specific fusion peptide activities associated to the multi-step fusion mechanism are not well defined. Based on the assumption that fusion peptides are transferred into target membranes, biophysical methodologies have been applied to study integration into model membranes of synthetic fragments representing functional and non-functional sequences. From these studies, it is inferred that, following insertion, functional sequences generate target membrane perturbations and adopt specific structural arrangements within. Further characterization of these artificial systems may help in understanding the molecular processes that bring initial bilayer destabilizations to the eventual opening of a fusion pore.
Collapse
Affiliation(s)
- José L Nieva
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|
31
|
Abstract
Segments of viral fusion proteins play an important role in viral fusion. They are defined by a number of criteria, including the sensitivity of this region of the viral fusion protein to loss of function as a consequence of mutation. In addition, small model peptides designed to mimic this segment of viral fusion proteins often have some membrane perturbing activity. The properties of viral fusion peptides are quite varied. Many are found at the amino terminus of viral fusion proteins. As isolated peptides, they have been found to form both alpha-helical as well as beta-structure. In addition, some viruses have internal fusion peptides. Just as there are several structural motifs for viral fusion peptides, there are also several mechanisms by which they accelerate the process of membrane fusion. These include the promotion of negative curvature, lowering the rupture tension of the lipid monolayer, acting as an anchor to join the fusion membranes, transmitting a force to the membrane or imparting energy to the system by other means. It is not likely that the fusion peptide can fulfill all of these diverse roles and future studies will elucidate which of these mechanisms is most important for the action of individual viral fusion peptides.
Collapse
Affiliation(s)
- Richard M Epand
- Health Science Centre, Department of Biochemistry, McMaster University, 1200 Main Street West, ON, Hamilton, Canada L8N 3Z5.
| |
Collapse
|