1
|
Bergman MT, Zhang W, Liu Y, Jang H, Nussinov R. Binding Modalities and Phase-Specific Regulation of Cyclin/Cyclin-Dependent Kinase Complexes in the Cell Cycle. J Phys Chem B 2024; 128:9315-9326. [PMID: 39314090 DOI: 10.1021/acs.jpcb.4c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cyclin-dependent kinases (CDKs) are activated upon cyclin-binding to enable progression through the cell cycle. Dominant CDKs and cyclins in mammalian cells include CDK1, CDK2, CDK4, and CDK6 and corresponding cyclins A, B, D, and E. While only certain, "typical" cyclin/CDK complexes are primarily responsible for cell cycle progression, "atypical" cyclin/CDK complexes can form and sometimes perform the same roles as typical complexes. We asked what structural features of cyclins and CDKs favor the formation of typical complexes, a vital yet not fully explored question. We use computational docking and biophysical analyses to exhaustively evaluate the structure and stability of all CDK and cyclin complexes listed above. We find that binding of the complexes is generally stronger for typical than for atypical complexes, especially when the CDK is in an active conformation. Typical complexes have denser clusters, indicating that they have more defined cyclin-binding sites than atypical complexes. Our results help explain three notable features of cyclin/CDK function in the cell cycle: (i) why CDK4 and cyclin-D have exceptionally high specificity for each other; (ii) why both cyclin-A and cyclin-B strongly activate CDK1, whereas CDK2 is only strongly activated by cyclin-A; and (iii) why cyclin-E normally activates CDK2 but not CDK1. Overall, this work reveals the binding modalities of cyclin/CDK complexes, how the modalities lead to the preference for typical complexes versus atypical complexes, and how binding modalities differ between typical complexes. Our observations suggest targeting CDK catalytic actions through destabilizing their native differential cyclin interfaces.
Collapse
Affiliation(s)
- Michael T Bergman
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Wu X, Qin Y, Li C, Zhang X, Tan X, Liu Y, Chen Y, Zhang D. A novel antifungal peptide, SP1.2, from Rhodopseudomonas palustris against the rice blast pathogen. PEST MANAGEMENT SCIENCE 2024. [PMID: 39180165 DOI: 10.1002/ps.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Rice blast has a significant detrimental impact on rice yields, so developing efficient biological control technologies is an effective means for rice blast prevention and control. The GroEL protein has proven to be effective at preventing and managing the pathogenicity of rice blast. RESULTS Here, we analyzed the amino acid sequence of the GroEL protein and synthesized the '60 kDa chaperonin signature' (350-373 amino acids) peptide SP1.2, which has potent antifungal activity. Notably, the SP1.2 peptide exhibited potent fungicidal activity against Magnaporthe oryzae, effectively inhibiting appressorium germination. Electron microscopy revealed that SP1.2 disrupted the fungal plasma membrane and bound to multiple bioactive phosphoinositides in vitro, triggering the production of reactive oxygen species. Furthermore, it also caused an increase in the acetylation of M. oryzae and induced autophagy in cells. The spray application of SP1.2 significantly reduced the number of disease spots caused by the fungal pathogen M. oryzae in rice, enhancing the defense response of rice plants. Field trials showed that the control effect was 64.59% after spraying SP1.2. CONCLUSION Our study illustrates the antifungal activity of the structurally unique SP1.2 peptide against plant fungal pathogens and paves the way for the future development of this class of peptides as antifungal agents. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiyang Wu
- Long Ping Branch, College of Biology, Hunan University, Changsha, China
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yingfei Qin
- Long Ping Branch, College of Biology, Hunan University, Changsha, China
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chenggang Li
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Zhang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xinqiu Tan
- Long Ping Branch, College of Biology, Hunan University, Changsha, China
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Long Ping Branch, College of Biology, Hunan University, Changsha, China
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yue Chen
- Long Ping Branch, College of Biology, Hunan University, Changsha, China
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Deyong Zhang
- Long Ping Branch, College of Biology, Hunan University, Changsha, China
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
3
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
4
|
Yu J, Ramirez LM, Lin Q, Burz DS, Shekhtman A. Ribosome External Electric Field Regulates Metabolic Enzyme Activity: The RAMBO Effect. J Phys Chem B 2024; 128:7002-7021. [PMID: 39012038 DOI: 10.1021/acs.jpcb.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ribosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates. NMR spectroscopy was used to determine the interaction surface of TPI binding to ribosomes and to measure the corresponding kinetic rates in the absence and presence of intact ribosome particles. Chemical cross-linking and mass spectrometry revealed potential ribosomal protein binding partners of TPI. Structural results and related changes in TPI energetics and activity show that the interaction between TPI and ribosomal protein L11 mediate the RAMBO effect.
Collapse
Affiliation(s)
- Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
5
|
Lim LZ, Song J. NMR Dynamic View of the Destabilization of WW4 Domain by Chaotropic GdmCl and NaSCN. Int J Mol Sci 2024; 25:7344. [PMID: 39000450 PMCID: PMC11242413 DOI: 10.3390/ijms25137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
6
|
Furuita K, Kojima C. Improved analysis of NMR chemical shift perturbations through an error estimation method. Biophys Chem 2024; 310:107255. [PMID: 38728808 DOI: 10.1016/j.bpc.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
In solution NMR, chemical shift perturbation (CSP) experiments are widely employed to study intermolecular interactions. However, excluding the nonsignificant peak shift is difficult because little is known about errors in CSP. Here, to address this issue, we introduce a method for estimating errors in CSP based on the noise level. First, we developed a technique that involves line shape fitting to estimate errors in peak position via Monte Carlo simulations. Second, this technique was applied to estimate errors in CSP. In intermolecular interaction analysis of VAP-A with SNX2, error estimation of CSP enabled the evaluation of small but significant changes in peak position and yielded detailed insights that are unattainable with conventional CSP analysis. Third, this technique was successfully applied to estimate errors in residual dipolar couplings. In conclusion, our error estimation method improves CSP analysis by excluding the nonsignificant peak shift.
Collapse
Affiliation(s)
- Kyoko Furuita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Engineering Science, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
7
|
Gooran N, Kopra K. Fluorescence-Based Protein Stability Monitoring-A Review. Int J Mol Sci 2024; 25:1764. [PMID: 38339045 PMCID: PMC10855643 DOI: 10.3390/ijms25031764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.
Collapse
Affiliation(s)
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland;
| |
Collapse
|
8
|
Czerczak-Kwiatkowska K, Kaminska M, Fraczyk J, Majsterek I, Kolesinska B. Searching for EGF Fragments Recreating the Outer Sphere of the Growth Factor Involved in Receptor Interactions. Int J Mol Sci 2024; 25:1470. [PMID: 38338748 PMCID: PMC10855902 DOI: 10.3390/ijms25031470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The aims of this study were to determine whether it is possible to use peptide microarrays obtained using the SPOT technique (immobilized on cellulose) and specific polyclonal antibodies to select fragments that reconstruct the outer sphere of proteins and to ascertain whether the selected peptide fragments can be useful in the study of their protein-protein and/or peptide-protein interactions. Using this approach, epidermal growth factor (EGF) fragments responsible for the interaction with the EGF receptor were searched. A library of EGF fragments immobilized on cellulose was obtained using triazine condensing reagents. Experiments on the interactions with EGFR confirmed the high affinity of the selected peptide fragments. Biological tests on cells showed the lack of cytotoxicity of the EGF fragments. Selected EGF fragments can be used in various areas of medicine.
Collapse
Affiliation(s)
- Katarzyna Czerczak-Kwiatkowska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland;
| | - Justyna Fraczyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland;
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| |
Collapse
|
9
|
Nithya C, Kiran M, Nagarajaram HA. Hubs and Bottlenecks in Protein-Protein Interaction Networks. Methods Mol Biol 2024; 2719:227-248. [PMID: 37803121 DOI: 10.1007/978-1-0716-3461-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Protein-protein interaction networks (PPINs) represent the physical interactions among proteins in a cell. These interactions are critical in all cellular processes, including signal transduction, metabolic regulation, and gene expression. In PPINs, centrality measures are widely used to identify the most critical nodes. The two most commonly used centrality measures in networks are degree and betweenness centralities. Degree centrality is the number of connections a node has in the network, and betweenness centrality is the measure of the extent to which a node lies on the shortest paths between pairs of other nodes in the network. In PPINs, proteins with high degree and betweenness centrality are referred to as hubs and bottlenecks respectively. Hubs and bottlenecks are topologically and functionally essential proteins that play crucial roles in maintaining the network's structure and function. This article comprehensively reviews essential literature on hubs and bottlenecks, including their properties and functions.
Collapse
Affiliation(s)
- Chandramohan Nithya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | |
Collapse
|
10
|
Mondal A, Dolui S, Dhabal S, Kundu S, Das L, Bhattacharjee A, Maiti NC. Structure specific neuro-toxicity of α-synuclein oligomer. Int J Biol Macromol 2023; 253:126683. [PMID: 37666396 DOI: 10.1016/j.ijbiomac.2023.126683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is linked to α-synuclein (aS) aggregation and deposition of amyloid in the substantia nigra region of the brain tissues. In the current investigation we produced two distinct classes of aS oligomer of differed protein conformation, stability and compared their toxic nature to cultured neuronal cells. Lyophilized oligomer (LO) was produced in storage of aS at-20 °C for 7 days and it was enriched with loosely hold molten globule like structure with residues having preferences for α-helical conformational space. The size of the oligomer was 4-5.5 nm under AFM. This kind of oligomer exhibited potential toxicity towards neuronal cell lines and did not transform into compact β-sheet rich amyloid fiber even after incubation at 37 °C for several days. Formation of another type of oligomer was often observed in the lag phase of aS fibrillation that often occurred at an elevated temperature (37 °C). This kind of heat induced oligomer (IO) was more hydrophobic and relatively less toxic to neuronal cells compared to lyophilized oligomer (LO). Importantly, initiation of hydrophobic zipping of aS caused the transformation of IO into thermodynamically stable β-sheet rich amyloid fibril. On the other hand, the presence of molten globule like conformation in LO, rendered greater toxicity to cultured neuronal cells.
Collapse
Affiliation(s)
- Animesh Mondal
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Department of Zoology, Government General Degree College-Mangalkote, Purba Bardhaman, West Bengal 713132, India.
| | - Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Lopamudra Das
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
11
|
Kolonko-Adamska M, Zawadzka-Kazimierczuk A, Bartosińska-Marzec P, Koźmiński W, Popowicz G, Krężel A, Ożyhar A, Greb-Markiewicz B. Interaction patterns of methoprene-tolerant and germ cell-expressed Drosophila JH receptors suggest significant differences in their functioning. Front Mol Biosci 2023; 10:1215550. [PMID: 37654797 PMCID: PMC10465699 DOI: 10.3389/fmolb.2023.1215550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Methoprene-tolerant (Met) and germ cell-expressed (Gce) proteins were shown to be juvenile hormone (JH) receptors of Drosophila melanogaster with partially redundant functions. We raised the question of where the functional differentiation of paralogs comes from. Therefore, we tested Met and Gce interaction patterns with selected partners. In this study, we showed the ability of Gce and its C-terminus (GceC) to interact with 14-3-3 in the absence of JH. In contrast, Met or Met C-terminus (MetC) interactions with 14-3-3 were not observed. We also performed a detailed structural analysis of Met/Gce interactions with the nuclear receptor fushi tarazu factor-1 (Ftz-F1) ligand-binding domain. We showed that GceC comprising an Ftz-F1-binding site and full-length protein interacts with Ftz-F1. In contrast to Gce, only MetC (not full-length Met) can interact with Ftz-F1 in the absence of JH. We propose that the described differences result from the distinct tertiary structure and accessibility of binding sites in the full-length Met/Gce. Moreover, we hypothesize that each interacting partner can force disordered MetC and GceC to change the structure in a partner-specific manner. The observed interactions seem to determine the subcellular localization of Met/Gce by forcing their translocation between the nucleus and the cytoplasm, which may affect the activity of the proteins. The presented differences between Met and Gce can be crucial for their functional differentiation during D. melanogaster development and indicate Gce as a more universal and more active paralog. It is consistent with the theory indicating gce as an ancestor gene.
Collapse
Affiliation(s)
- M. Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - A. Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - P. Bartosińska-Marzec
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - W. Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - G. Popowicz
- Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - A. Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - A. Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - B. Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
12
|
Kerber PJ, Nuñez R, Jensen DR, Zhou AL, Peterson FC, Hill RB, Volkman BF, Smith BC. Fragment-based screening by protein-detected NMR spectroscopy. Methods Enzymol 2023; 690:285-310. [PMID: 37858532 PMCID: PMC10657026 DOI: 10.1016/bs.mie.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Fragment-based drug discovery (FBDD) identifies low molecular weight compounds that can be developed into ligands with high affinity and selectivity for therapeutic targets. Screening fragment libraries (<10,000 molecules) with biophysical techniques against macromolecules provides information about novel chemical spaces that bind the macromolecule and scaffolds that can be modified to increase potency. A fragment-screening pipeline requires a standardized protocol for target selection, library assembly and maintenance, library screening, and hit validation to ensure hit integrity. Herein, the fundamental aspects of a fragment screening pipeline-focusing on protein-detected NMR data collection and analysis-are discussed in detail for researchers to use as a resource in their FBDD projects. Selected screening targets must undergo rigorous stability and buffer testing by NMR spectroscopy to ensure the protein structure is stable for the entire screen. Biophysical instrumentation that rapidly measures protein thermostability is helpful in buffer screening. Molecules in fragment libraries are analyzed computationally and physically, stored at appropriate temperatures, and multiplexed in well plates for library conservation. The screening protocol is streamlined using liquid handling robotics for sample preparation and customized Python scripts for protein-detected NMR data analysis. Molecules identified from the screen are titrated to determine their binding site(s) and Kd values and confirmed with an orthogonal biophysical assay. This detailed FBDD screening pipeline developed by the Program in Chemical Biology at the Medical College of Wisconsin has successfully screened many unrelated target proteins to identified novel molecules that selectively bind to these target proteins.
Collapse
Affiliation(s)
- Paul J Kerber
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - Angela L Zhou
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States.
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States.
| |
Collapse
|
13
|
Calisto F, Todorovic S, Louro RO, Pereira MM. Exploring substrate interaction in respiratory alternative complex III from Rhodothermus marinus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148983. [PMID: 37127243 DOI: 10.1016/j.bbabio.2023.148983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Rhodothermus marinus is a thermohalophilic organism that has optimized its microaerobic metabolism at 65 °C. We have been exploring its respiratory chain and observed the existence of a quinone:cytochrome c oxidoreductase complex, named Alternative Complex III, structurally different from the bc1 complex. In the present work, we took profit from nanodiscs and liposomes technology to investigate ACIII activity in membrane-mimicking systems. In addition, we studied the interaction of ACIII with menaquinone, its potential electron acceptors (HiPIP and cytochrome c) and the caa3 oxygen reductase.
Collapse
Affiliation(s)
- Filipa Calisto
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
14
|
Gu Y, Liu M, Staker BL, Buchko GW, Quinn RJ. Drug-Repurposing Screening Identifies a Gallic Acid Binding Site on SARS-CoV-2 Non-structural Protein 7. ACS Pharmacol Transl Sci 2023; 6:578-586. [PMID: 37082753 PMCID: PMC10111621 DOI: 10.1021/acsptsci.2c00225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 03/09/2023]
Abstract
SARS-CoV-2 is the agent responsible for acute respiratory disease COVID-19 and the global pandemic initiated in early 2020. While the record-breaking development of vaccines has assisted the control of COVID-19, there is still a pressing global demand for antiviral drugs to halt the destructive impact of this disease. Repurposing clinically approved drugs provides an opportunity to expediate SARS-CoV-2 treatments into the clinic. In an effort to facilitate drug repurposing, an FDA-approved drug library containing 2400 compounds was screened against the SARS-CoV-2 non-structural protein 7 (nsp7) using a native mass spectrometry-based assay. Nsp7 is one of the components of the SARS-CoV-2 replication/transcription complex essential for optimal viral replication, perhaps serving to off-load RNA from nsp8. From this library, gallic acid was identified as a compound that bound tightly to nsp7, with an estimated K d of 15 μM. NMR chemical shift perturbation experiments were used to map the ligand-binding surface of gallic acid on nsp7, indicating that the compound bound to a surface pocket centered on one of the protein's four α-helices (α2). The identification of the gallic acid-binding site on nsp7 may allow development of a SARS-CoV-2 therapeutic via artificial-intelligence-based virtual docking and other strategies.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Bart L. Staker
- Seattle
Children’s Research Institute, Seattle, Washington 98101, United States
| | - Garry W. Buchko
- Earth
and Biological Sciences Directorate, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
- School of
Molecular Biosciences, Washington State
University, Pullman, Washington 99164, United States
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| |
Collapse
|
15
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Picchianti L, Sánchez de Medina Hernández V, Zhan N, Irwin NA, Groh R, Stephani M, Hornegger H, Beveridge R, Sawa-Makarska J, Lendl T, Grujic N, Naumann C, Martens S, Richards TA, Clausen T, Ramundo S, Karagöz GE, Dagdas Y. Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy. EMBO J 2023; 42:e112053. [PMID: 36762703 PMCID: PMC10183829 DOI: 10.15252/embj.2022112053] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
UFMylation involves the covalent modification of substrate proteins with UFM1 (Ubiquitin-fold modifier 1) and is important for maintaining ER homeostasis. Stalled translation triggers the UFMylation of ER-bound ribosomes and activates C53-mediated autophagy to clear toxic polypeptides. C53 contains noncanonical shuffled ATG8-interacting motifs (sAIMs) that are essential for ATG8 interaction and autophagy initiation. However, the mechanistic basis of sAIM-mediated ATG8 interaction remains unknown. Here, we show that C53 and sAIMs are conserved across eukaryotes but secondarily lost in fungi and various algal lineages. Biochemical assays showed that the unicellular alga Chlamydomonas reinhardtii has a functional UFMylation pathway, refuting the assumption that UFMylation is linked to multicellularity. Comparative structural analyses revealed that both UFM1 and ATG8 bind sAIMs in C53, but in a distinct way. Conversion of sAIMs into canonical AIMs impaired binding of C53 to UFM1, while strengthening ATG8 binding. Increased ATG8 binding led to the autoactivation of the C53 pathway and sensitization of Arabidopsis thaliana to ER stress. Altogether, our findings reveal an ancestral role of sAIMs in UFMylation-dependent fine-tuning of C53-mediated autophagy activation.
Collapse
Affiliation(s)
- Lorenzo Picchianti
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ni Zhan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Nicholas At Irwin
- Department of Zoology, University of Oxford, Oxford, UK.,Merton College, University of Oxford, Oxford, UK
| | - Roan Groh
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Madlen Stephani
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Harald Hornegger
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Justyna Sawa-Makarska
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Nenad Grujic
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Christin Naumann
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Sascha Martens
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | | | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Silvia Ramundo
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
17
|
Haque HME, Mantis NJ, Weis DD. High-Throughput Epitope Mapping by Hydrogen Exchange-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:123-127. [PMID: 36449379 DOI: 10.1021/jasms.2c00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper, we introduce a screening protocol for epitope mapping by hydrogen exchange mass spectrometry (HX-MS) that has higher throughput than a traditional HX-MS epitope mapping. In the screening protocol, three HX labeling times (20, 1000, and 86400 s) are each measured without replicates. The experimental protocol is anchored on a single epitope mapping experiment conducted using the traditional complete protocol (five HX times measured in triplicate) that is used to define HX times and define significance limits. Previously, we reported traditional epitope mapping results on the Borrelia burgdorferi outer surface protein A (OspA) antigen that are in excellent agreement with the X-ray crystallography results. Here, we show that the screening protocol and complete HX-MS identify identical epitopes of OspA but that the screening protocol has a 5-fold higher throughput.
Collapse
Affiliation(s)
- H M Emranul Haque
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
18
|
NMR Titration Studies in Z-DNA Dynamics. Methods Mol Biol 2023; 2651:69-83. [PMID: 36892760 DOI: 10.1007/978-1-0716-3084-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Chemical shift perturbation (CSP) is a simple NMR technique for studying the DNA binding of proteins. Titration of the unlabeled DNA into the 15N-labeled protein is monitored by acquiring a two-dimensional (2D) heteronuclear single-quantum correlation (HSQC) spectrum at each step of the titration. CSP can also provide information on the DNA-binding dynamics of proteins, as well as protein-induced conformational changes in DNA. Here, we describe the titration of DNA for the 15N-labeled Z-DNA-binding protein, monitored via 2D HSQC spectra. NMR titration data can be analyzed with the active B-Z transition model to provide the protein-induced B-Z transition dynamics of DNA.
Collapse
|
19
|
Grondin JM, Langelaan DN, Smith SP. Qualitative and Quantitative Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy. Methods Mol Biol 2023; 2657:115-128. [PMID: 37149526 DOI: 10.1007/978-1-0716-3151-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1H-15N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate-binding partners, to quantify the dissociation constant (Kd) of any identified interactions, and to the map the carbohydrate-binding site on the structure of a protein. Here, we describe the titration of a family 32 carbohydrate-binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction and map the GalNAc binding site onto the structure of CpCBM32. This approach can be applied to other CBM- and protein-ligand systems.
Collapse
Affiliation(s)
- Julie M Grondin
- Department of Education, Simon Fraser University, Burnaby, AB, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
20
|
Fenton M, Borcherds W, Chen L, Anbanandam A, Levy R, Chen J, Daughdrill G. The MDMX Acidic Domain Uses Allovalency to Bind Both p53 and MDMX. J Mol Biol 2022; 434:167844. [PMID: 36181774 PMCID: PMC9644833 DOI: 10.1016/j.jmb.2022.167844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023]
Abstract
Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.
Collapse
Affiliation(s)
- Malissa Fenton
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Wade Borcherds
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Lihong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Asokan Anbanandam
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Robin Levy
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, United States
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
21
|
Barnhart MD, Yang Y, Nakagaki-Silva EE, Hammond TH, Pizzinga M, Gooding C, Stott K, Smith CWJ. Phosphorylation of the smooth muscle master splicing regulator RBPMS regulates its splicing activity. Nucleic Acids Res 2022; 50:11895-11915. [PMID: 36408906 PMCID: PMC9723635 DOI: 10.1093/nar/gkac1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
We previously identified RBPMS as a master regulator of alternative splicing in differentiated smooth muscle cells (SMCs). RBPMS is transcriptionally downregulated during SMC dedifferentiation, but we hypothesized that RBPMS protein activity might be acutely downregulated by post-translational modifications. Publicly available phosphoproteomic datasets reveal that Thr113 and Thr118 immediately adjacent to the RRM domain are commonly both phosphorylated. An RBPMS T113/118 phosphomimetic T/E mutant showed decreased splicing regulatory activity both in transfected cells and in a cell-free in vitro assay, while a non-phosphorylatable T/A mutant retained full activity. Loss of splicing activity was associated with a modest reduction in RNA affinity but significantly reduced RNA binding in nuclear extract. A lower degree of oligomerization of the T/E mutant might cause lower avidity of multivalent RNA binding. However, NMR analysis also revealed that the T113/118E peptide acts as an RNA mimic which can loop back and antagonize RNA-binding by the RRM domain. Finally, we identified ERK2 as the most likely kinase responsible for phosphorylation at Thr113 and Thr118. Collectively, our data identify a potential mechanism for rapid modulation of the SMC splicing program in response to external signals during the vascular injury response and atherogenesis.
Collapse
Affiliation(s)
- Michael D Barnhart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Yi Yang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - Thomas H Hammond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | |
Collapse
|
22
|
Opdensteinen P, Sperl LE, Mohamadi M, Kündgen‐Redding N, Hagn F, Buyel JF. The transient expression of recombinant proteins in plant cell packs facilitates stable isotope labelling for NMR spectroscopy. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1928-1939. [PMID: 35702941 PMCID: PMC9491462 DOI: 10.1111/pbi.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the structure, dynamics and interactions of proteins. However, protein NMR requires stable isotope labelling for signal detection. The cells used for the production of recombinant proteins must therefore be grown in medium containing isotopically labelled substrates. Stable isotope labelling is well established in Escherichia coli, but bacteria are only suitable for the production of simple proteins without post-translational modifications. More complex proteins require eukaryotic production hosts, but their growth can be impaired by labelled media, thus reducing product yields and increasing costs. To address this limitation, we used media supplemented with isotope-labelled substrates to cultivate the tobacco-derived cell line BY-2, which was then cast into plant cell packs (PCPs) for the transient expression of a labelled version of the model protein GB1. Mass spectrometry confirmed the feasibility of isotope labelling with 15 N and 2 H using this approach. The resulting NMR spectrum featured a signal dispersion comparable to recombinant GB1 produced in E. coli. PCPs therefore offer a rapid and cost-efficient alternative for the production of isotope-labelled proteins for NMR analysis, especially suitable for complex proteins that cannot be produced in microbial systems.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Laura E. Sperl
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Mariam Mohamadi
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Johannes Felix Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
23
|
Hobbs B, Drant J, Williamson MP. The measurement of binding affinities by NMR chemical shift perturbation. JOURNAL OF BIOMOLECULAR NMR 2022; 76:153-163. [PMID: 35921001 PMCID: PMC9427925 DOI: 10.1007/s10858-022-00402-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
We have carried out chemical shift perturbation titrations on three contrasting proteins. The resulting chemical shifts have been analysed to determine the best way to fit the data, and it is concluded that a simultaneous fitting of all raw shift data to a single dissociation constant is both the most accurate and the most precise method. It is shown that the optimal weighting of 15N chemical shifts to 1H chemical shifts is protein dependent, but is around the consensus value of 0.14. We show that chemical shift changes of individual residues can be fit to give residue-specific affinities. Residues with affinities significantly stronger than average are found in close contact with the ligand and are suggested to form a rigid contact surface, but only when the binding involves little conformational change. This observation may be of value in analysing binding and conformational change.
Collapse
Affiliation(s)
- Billy Hobbs
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jack Drant
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mike P Williamson
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
24
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
25
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
26
|
Hidden Multivalency in Phosphatase Recruitment by a Disordered AKAP Scaffold. J Mol Biol 2022; 434:167682. [PMID: 35697294 DOI: 10.1016/j.jmb.2022.167682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Disordered scaffold proteins provide multivalent landing pads that, via a series of embedded Short Linear Motifs (SLiMs), bring together the components of a complex to orchestrate precise spatial and temporal regulation of cellular processes. One such protein is AKAP5 (previously AKAP79), which contains SLiMs that anchor PKA and Calcineurin, and recruit substrate (the TRPV1 receptor). Calcineurin is anchored to AKAP5 by a well-characterised PxIxIT SLiM. Here we show, using a combination of biochemical and biophysical approaches, that the Calcineurin PxIxIT-binding groove also recognises several hitherto unknown lower-affinity SLiMs in addition to the PxIxIT motif. We demonstrate that the assembly is in reality a complex system with conserved SLiMs spanning a wide affinity range. The capture is analogous to that seen for many DNA-binding proteins that have a weak non-specific affinity for DNA outside the canonical binding site, but different in that it involves (i) two proteins, and (ii) hydrophobic rather than electrostatic interactions. It is also compatible with the requirement for both stable anchoring of the enzyme and responsive downstream signalling. We conclude that the AKAP5 C-terminus is enriched in lower-affinity/mini-SLiMs that, together with the canonical SLiM, maintain a structurally disordered but tightly regulated signalosome.
Collapse
|
27
|
Laurents DV. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front Mol Biosci 2022; 9:906437. [PMID: 35655760 PMCID: PMC9152297 DOI: 10.3389/fmolb.2022.906437] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The artificial intelligence program AlphaFold 2 is revolutionizing the field of protein structure determination as it accurately predicts the 3D structure of two thirds of the human proteome. Its predictions can be used directly as structural models or indirectly as aids for experimental structure determination using X-ray crystallography, CryoEM or NMR spectroscopy. Nevertheless, AlphaFold 2 can neither afford insight into how proteins fold, nor can it determine protein stability or dynamics. Rare folds or minor alternative conformations are also not predicted by AlphaFold 2 and the program does not forecast the impact of post translational modifications, mutations or ligand binding. The remaining third of human proteome which is poorly predicted largely corresponds to intrinsically disordered regions of proteins. Key to regulation and signaling networks, these disordered regions often form biomolecular condensates or amyloids. Fortunately, the limitations of AlphaFold 2 are largely complemented by NMR spectroscopy. This experimental approach provides information on protein folding and dynamics as well as biomolecular condensates and amyloids and their modulation by experimental conditions, small molecules, post translational modifications, mutations, flanking sequence, interactions with other proteins, RNA and virus. Together, NMR spectroscopy and AlphaFold 2 can collaborate to advance our comprehension of proteins.
Collapse
|
28
|
Kraus J, Russell RW, Kudryashova E, Xu C, Katyal N, Perilla JR, Kudryashov DS, Polenova T. Magic angle spinning NMR structure of human cofilin-2 assembled on actin filaments reveals isoform-specific conformation and binding mode. Nat Commun 2022; 13:2114. [PMID: 35440100 PMCID: PMC9018683 DOI: 10.1038/s41467-022-29595-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022] Open
Abstract
Actin polymerization dynamics regulated by actin-binding proteins are essential for various cellular functions. The cofilin family of proteins are potent regulators of actin severing and filament disassembly. The structural basis for cofilin-isoform-specific severing activity is poorly understood as their high-resolution structures in complex with filamentous actin (F-actin) are lacking. Here, we present the atomic-resolution structure of the muscle-tissue-specific isoform, cofilin-2 (CFL2), assembled on ADP-F-actin, determined by magic-angle-spinning (MAS) NMR spectroscopy and data-guided molecular dynamics (MD) simulations. We observe an isoform-specific conformation for CFL2. This conformation is the result of a unique network of hydrogen bonding interactions within the α2 helix containing the non-conserved residue, Q26. Our results indicate F-site interactions that are specific between CFL2 and ADP-F-actin, revealing mechanistic insights into isoform-dependent F-actin disassembly.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544-1014, United States
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Nidhi Katyal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States.
| |
Collapse
|
29
|
Sarnowski CP, Bikaki M, Leitner A. Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure 2022; 30:441-461. [PMID: 35366400 DOI: 10.1016/j.str.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Cross-linking and mass spectrometry (XL-MS) workflows represent an increasingly popular technique for low-resolution structural studies of macromolecular complexes. Cross-linking reactions take place in the solution state, capturing contact sites between components of a complex that represent the native, functionally relevant structure. Protein-protein XL-MS protocols are widely adopted, providing precise localization of cross-linking sites to single amino acid positions within a pair of cross-linked peptides. In contrast, protein-RNA XL-MS workflows are evolving rapidly and differ in their ability to localize interaction regions within the RNA sequence. Here, we review protein-protein and protein-RNA XL-MS workflows, and discuss their applications in studies of protein-RNA complexes. The examples highlight the complementary value of XL-MS in structural studies of protein-RNA complexes, where more established high-resolution techniques might be unable to produce conclusive data.
Collapse
Affiliation(s)
- Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland; Systems Biology PhD Program, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland.
| |
Collapse
|
30
|
Kim M, Ha JH, Choi J, Kim BR, Gapsys V, Lee KO, Jee JG, Chakrabarti KS, de Groot BL, Griesinger C, Ryu KS, Lee D. Repositioning Food and Drug Administration-Approved Drugs for Inhibiting Biliverdin IXβ Reductase B as a Novel Thrombocytopenia Therapeutic Target. J Med Chem 2021; 65:2548-2557. [PMID: 34957824 DOI: 10.1021/acs.jmedchem.1c01664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biliverdin IXβ reductase B (BLVRB) has recently been proposed as a novel therapeutic target for thrombocytopenia through its reactive oxygen species (ROS)-associated mechanism. Thus, we aim at repurposing drugs as new inhibitors of BLVRB. Based on IC50 (<5 μM), we have identified 20 compounds out of 1496 compounds from the Food and Drug Administration (FDA)-approved library and have clearly mapped their binding sites to the active site. Furthermore, we show the detailed BLVRB-binding modes and thermodynamic properties (ΔH, ΔS, and KD) with nuclear magnetic resonance (NMR) and isothermal titration calorimetry together with complex structures of eight water-soluble compounds. We anticipate that the results will serve as a novel platform for further in-depth studies on BLVRB effects for related functions such as ROS accumulation and megakaryocyte differentiation, and ultimately treatments of platelet disorders.
Collapse
Affiliation(s)
- Myeongkyu Kim
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea.,Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation(DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 41061, South Korea
| | - Joonhyeok Choi
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Bo-Ram Kim
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Vytautas Gapsys
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ko On Lee
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Jun-Goo Jee
- Research Institute of Pharmaceutical Sciences College of Pharmacy, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu 41566, South Korea
| | | | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kyoung-Seok Ryu
- Protein Structure Research Team, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, Kentucky 40202, United States
| |
Collapse
|
31
|
Zhu S, Liuni P, Chen T, Houy C, Wilson DJ, James DA. Epitope screening using Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS): An accelerated workflow for evaluation of lead monoclonal antibodies. Biotechnol J 2021; 17:e2100358. [PMID: 34747565 DOI: 10.1002/biot.202100358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Epitope mapping is an increasingly important aspect of biotherapeutic and vaccine development. Recent advances in therapeutic antibody design and production have enabled candidate mAbs to be identified at a rapidly increasing rate, resulting in a significant bottleneck in the characterization of "structural" epitopes, that are challenging to determine using existing high throughput epitope mapping tools. Here, a Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS) epitope screening workflow was introduced that is well suited for accelerated characterization of epitopes with a common antigen. MAIN METHODS AND MAJOR RESULTS The method is demonstrated on set of six candidate mAbs targeting Pertactin (PRN). Using this approach, five of the six epitopes were unambiguously determined using two HDX mixing timepoints in 24 h total run time, which is equivalent to the instrument time required to map a single epitope using the conventional workflow. CONCLUSION An accelerated HDX-MS epitope screening workflow was developed. The "screening" workflow successfully characterized five (out of six attempted) novel epitopes on the PRN antigen; information that can be used to support vaccine antigenicity assays.
Collapse
Affiliation(s)
- Shaolong Zhu
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Peter Liuni
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Tricia Chen
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Camille Houy
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
| | - Derek J Wilson
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - D Andrew James
- Analytical Sciences, Sanofi Pasteur Ltd, Toronto, Ontario, Canada
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Rovera A, Hector M, Anderson P. Parotid saliva 1 H-NMR analysis for colon cancer metabolomics: A case report. SPECIAL CARE IN DENTISTRY 2021; 42:80-85. [PMID: 34293207 DOI: 10.1111/scd.12635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND A key priority in colon cancer research is the identification of molecular biomarkers to improve early diagnosis, guide prognosis, and the design of new therapeutic approaches. Saliva is a powerful diagnostic biofluid that can be used to detect systemic alterations. This study aimed to investigate the parotid saliva (PS) metabolic Proton Nuclear Magnetic Resonance (1 H-NMR) profile of a patient diagnosed with colon cancer, and the subsequent changes 1 year after the end of chemotherapy. CASE REPORT We describe the 1 H-NMR PS spectrum of a 65-year-old woman diagnosed with colon cancer (G3 pT3 pN1c) (T0), and the changes in the spectrum from PS collected 1 year after the end of chemotherapy (XELOX: capecitabine plus oxaliplatin) (T1). The data was co-analyzed with blood test cancer antigens (S-CEA; S-CA19-9) and thyroid peroxidase antibody (TPOAb) measurements obtained simultaneously in order to identify peaks and interpret the spectra. The blood cancer antigens (S-CEA; S-CA19-9) and the PS 1 H-NMR peaks for fatty acids, lactate, acetate, N-acetyl sugars, citrate, tyrosine, saccharides, and formate decreased at T1 compared to T0. Whereas, the thyroid peroxidase antibody (TPOAb) blood values increased at T1 compared to T0 reflecting the changes in the 1 H-NMR spectral window of 1-3.5 ppm. CONCLUSION PS 1 H-NMR profiling identified modified metabolites that revealed cancer cells metabolism disturbances that subsequently decreased with time throughout treatment. These altered metabolites are potential biomarkers, providing a molecular diagnostic approach for clinical diagnosis, and prognosis of human colon cancer.
Collapse
Affiliation(s)
- Angela Rovera
- Dental Physical Sciences Unit, Centre for Oral Bioengineering, Institute of Dentistry, Queen Mary University of London, London, UK
| | - Mark Hector
- School of Dentistry, University of Dundee, Dundee, UK
| | - Paul Anderson
- Dental Physical Sciences Unit, Centre for Oral Bioengineering, Institute of Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Yu J, Ramirez LM, Premo A, Busch DB, Lin Q, Burz DS, Shekhtman A. Ribosome-Amplified Metabolism, RAMBO, Measured by NMR Spectroscopy. Biochemistry 2021; 60:1885-1895. [PMID: 34081430 PMCID: PMC11299219 DOI: 10.1021/acs.biochem.1c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR spectroscopy was used to investigate the phenomenon of ribosome-amplified metabolism or RAMBO between pyruvate kinase and ribosomes. Because the concentration of ribosomes increases as the cell grows, ribosome binding interactions may regulate metabolic fluxes by altering the distribution of bound and free enzymes. Pyruvate kinase (PK) catalyzes the last step of glycolysis and represents a major drug target for controlling bacterial infections. The binding of metabolic enzymes to ribosomes creates protein quinary structures with altered catalytic activities. NMR spectroscopy and chemical cross-linking combined with high-resolution mass spectrometry were used to establish that PK binds to ribosome at three independent sites, the L1 stalk, the A site, and the mRNA entry pore. The bioanalytical methodology described characterizes the altered kinetics and confirms the specificity of pyruvate kinase-ribosome interaction, affording an opportunity to investigate the ribosome dependence of metabolic reactions under solution conditions that closely mimic the cytosol. Expanding on the concept of ribosomal heterogeneity, which describes variations in ribosomal constituents that contribute to the specificity of cellular processes, this work firmly establishes the reciprocal process by which ribosome-dependent quinary interactions affect metabolic activity.
Collapse
Affiliation(s)
- JianChao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Aaron Premo
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Devin B Busch
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
34
|
Chen KH, Hu YJ. Residue-Residue Interaction Prediction via Stacked Meta-Learning. Int J Mol Sci 2021; 22:ijms22126393. [PMID: 34203772 PMCID: PMC8232778 DOI: 10.3390/ijms22126393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions (PPIs) are the basis of most biological functions determined by residue-residue interactions (RRIs). Predicting residue pairs responsible for the interaction is crucial for understanding the cause of a disease and drug design. Computational approaches that considered inexpensive and faster solutions for RRI prediction have been widely used to predict protein interfaces for further analysis. This study presents RRI-Meta, an ensemble meta-learning-based method for RRI prediction. Its hierarchical learning structure comprises four base classifiers and one meta-classifier to integrate predictive strengths from different classifiers. It considers multiple feature types, including sequence-, structure-, and neighbor-based features, for characterizing other properties of a residue interaction environment to better distinguish between noninteracting and interacting residues. We conducted the same experiments using the same data as previously reported in the literature to demonstrate RRI-Meta's performance. Experimental results show that RRI-Meta is superior to several current prediction tools. Additionally, to analyze the factors that affect the performance of RRI-Meta, we conducted a comparative case study using different protein complexes.
Collapse
Affiliation(s)
- Kuan-Hsi Chen
- College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan;
| | - Yuh-Jyh Hu
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Correspondence: ; Tel.: +886-3-571-2121
| |
Collapse
|
35
|
Erv1 and Cytochrome c Mediate Rapid Electron Transfer via A Collision-Type Interaction. J Mol Biol 2021; 433:167045. [PMID: 33971209 DOI: 10.1016/j.jmb.2021.167045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Being essential for oxidative protein folding in the mitochondrial intermembrane space, the mitochondrial disulfide relay relies on the electron transfer (ET) from the sulfhydryl oxidase Erv1 to cytochrome c (Cc). Using solution NMR spectroscopy, we demonstrate that while the yeast Cc-Erv1 system is functionally active, no observable binding of the protein partners takes place. The transient interaction between Erv1 and Cc can be rationalized by molecular modeling, suggesting that a large surface area of Erv1 can sustain a fast ET to Cc via a collision-type mechanism, without the need for a canonical protein complex formation. We suggest that, by preventing the direct ET to molecular oxygen (O2), the collision-type Cc-Erv1 interaction plays a role in protecting the organism against reactive oxygen species.
Collapse
|
36
|
Figueroa-Villar JD, Petronilho EC, Kuca K, Franca TCC. Review about Structure and Evaluation of Reactivators of Acetylcholinesterase Inhibited with Neurotoxic Organophosphorus Compounds. Curr Med Chem 2021; 28:1422-1442. [PMID: 32334495 DOI: 10.2174/0929867327666200425213215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurotoxic chemical warfare agents can be classified as some of the most dangerous chemicals for humanity. The most effective of those agents are the Organophosphates (OPs) capable of restricting the enzyme Acetylcholinesterase (AChE), which in turn, controls the nerve impulse transmission. When AChE is inhibited by OPs, its reactivation can be usually performed through cationic oximes. However, until today, it has not been developed one universal defense agent, with complete effective reactivation activity for AChE inhibited by any of the many types of existing neurotoxic OPs. For this reason, before treating people intoxicated by an OP, it is necessary to determine the neurotoxic compound that was used for contamination, in order to select the most effective oxime. Unfortunately, this task usually requires a relatively long time, raising the possibility of death. Cationic oximes also display a limited capacity of permeating the Blood-Brain Barrier (BBB). This fact compromises their capacity to reactivating AChE inside the nervous system. METHODS We performed a comprehensive search on the data about OPs available on the scientific literature today in order to cover all the main drawbacks still faced in the research for the development of effective antidotes against those compounds. RESULTS Therefore, this review about neurotoxic OPs and the reactivation of AChE, provides insights for the new agents' development. The most expected defense agent is a molecule without toxicity and effective to reactivate AChE inhibited by all neurotoxic OPs. CONCLUSION To develop these new agents, the application of diverse scientific areas of research, especially theoretical procedures as computational science (computer simulation, docking and dynamics), organic synthesis, spectroscopic methodologies, biology, biochemical and biophysical information, medicinal chemistry, pharmacology and toxicology, is necessary.
Collapse
Affiliation(s)
- José Daniel Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Elaine C Petronilho
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| |
Collapse
|
37
|
Alphonse S, Banerjee A, Dantuluri S, Shuman S, Ghose R. NMR solution structures of Runella slithyformis RNA 2'-phosphotransferase Tpt1 provide insights into NAD+ binding and specificity. Nucleic Acids Res 2021; 49:9607-9624. [PMID: 33880546 PMCID: PMC8464070 DOI: 10.1093/nar/gkab241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Ankan Banerjee
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Swathi Dantuluri
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.,Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA.,Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
38
|
Gómez-Redondo M, Delgado S, Núñez-Franco R, Jiménez-Osés G, Ardá A, Jiménez-Barbero J, Gimeno A. The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. RSC Chem Biol 2021; 2:932-941. [PMID: 34179785 PMCID: PMC8190895 DOI: 10.1039/d1cb00051a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interaction of human galectin-8 and its two separate N-terminal and C-terminal carbohydrate recognition domains (CRD) to their natural ligands has been analysed using a synergistic combination of experimental NMR and ITC methods, and molecular dynamics simulations. Both domains bind the minimal epitopes N-acetyllactosamine (1) and Galβ1–3GalNAc (2) in a similar manner. However, the N-terminal and C-terminal domains show exquisite and opposing specificity to bind either Neu5Ac- or Fuc-containing ligands, respectively. Moreover, the addition of the high-affinity ligands specific for one of the CRDs does not make any effect on the binding at the alternative one. Thus, the two CRDs behave independently and may simultaneously target different molecular entities to promote clustering through the generation of supramolecular assemblies. NMR, ITC, and MD data show that the two domains of human galectin-8 independently recognize sialyl- and fucosyl-containing glycans.![]()
Collapse
Affiliation(s)
- Marcos Gómez-Redondo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain .,lkerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain.,Departament of Organic Chemistry ll, Faculty of Science & Technology, University of the Basque Country 48940 Leioa Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park Building 800 48160 Derio Spain
| |
Collapse
|
39
|
Buchko GW, Zhou M, Craig JK, Van Voorhis WC, Myler PJ. Backbone chemical shift assignments for the SARS-CoV-2 non-structural protein Nsp9: intermediate (ms - μs) dynamics in the C-terminal helix at the dimer interface. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:107-116. [PMID: 33392924 PMCID: PMC7779335 DOI: 10.1007/s12104-020-09992-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 05/28/2023]
Abstract
The Betacoronavirus SARS-CoV-2 non-structural protein Nsp9 is a 113-residue protein that is essential for viral replication, and consequently, a potential target for the development of therapeutics against COVID19 infections. To capture insights into the dynamics of the protein's backbone in solution and accelerate the identification and mapping of ligand-binding surfaces through chemical shift perturbation studies, the backbone 1H, 13C, and 15N NMR chemical shifts for Nsp9 have been extensively assigned. These assignments were assisted by the preparation of an ~ 70% deuterated sample and residue-specific, 15N-labelled samples (V, L, M, F, and K). A major feature of the assignments was the "missing" amide resonances for N96-L106 in the 1H-15N HSQC spectrum, a region that comprises almost the complete C-terminal α-helix that forms a major part of the homodimer interface in the crystal structure of SARS-CoV-2 Nsp9, suggesting this region either undergoes intermediate motion in the ms to μs timescale and/or is heterogenous. These "missing" amide resonances do not unambiguously appear in the 1H-15N HSQC spectrum of SARS-CoV-2 Nsp9 collected at a concentration of 0.0007 mM. At this concentration, at the detection limit, native mass spectrometry indicates the protein is exclusively in the monomeric state, suggesting the intermediate motion in the C-terminal of Nsp9 may be due to intramolecular dynamics. Perhaps this intermediate ms to μs timescale dynamics is the physical basis for a previously suggested "fluidity" of the C-terminal helix that may be responsible for homophilic (Nsp9-Nsp9) and postulated heterophilic (Nsp9-Unknown) protein-protein interactions.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA.
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - Mowei Zhou
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Justin K Craig
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Department of Medical Education and Biomedical Informatics, Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Bartholow TG, Sztain T, Patel A, Lee DJ, Young MA, Abagyan R, Burkart MD. Elucidation of transient protein-protein interactions within carrier protein-dependent biosynthesis. Commun Biol 2021; 4:340. [PMID: 33727677 PMCID: PMC7966745 DOI: 10.1038/s42003-021-01838-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This technique describes and compares the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways.
Collapse
Affiliation(s)
- Thomas G Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Terra Sztain
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan A Young
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Robinson EA, Wilks A, Xue F. Repurposing Acitretin as an Antipseudomonal Agent Targeting the Pseudomonas aeruginosa Iron-Regulated Heme Oxygenase. Biochemistry 2021; 60:689-698. [PMID: 33621054 DOI: 10.1021/acs.biochem.0c00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron is an essential micronutrient for the survival and virulence of the bacterial pathogen Pseudomonas aeruginosa. To overcome iron withholding and successfully colonize a host, P. aeruginosa uses a variety of mechanisms to acquire iron, including the secretion of high-affinity iron chelators (siderophores) or the uptake and utilization of heme. P. aeruginosa heme oxygenase (HemO) plays pivotal roles in heme sensing, uptake, and utilization and has emerged as a therapeutic target for the development of antipseudomonal agents. Using a high-throughput fluorescence quenching assay combined with minimum inhibitory concentration measurements, we screened the Selleck Bioactive collection of 2100 compounds and identified acitretin, a Food and Drug Administration-approved oral retinoid, as a potent and selective inhibitor of HemO. Acitretin binds to HemO with a KD value of 0.10 ± 0.02 μM and inhibits the growth of P. aeruginosa PAO1 with an IC50 of 70 ± 18 μg/mL. In addition, acitretin showed good selectivity for HemO, which uniquely generates BVIXβ/δ, over human heme oxygenase (hHO1) and other BVIXα-producing homologues such as the heme oxygenases from Neisseria meningitidis (nmHO) and Acinetobacter baumannii (abHO). The binding of acitretin within the HemO active site was confirmed by 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance, and molecular modeling provided further insight into potential interactions of acitretin with residues specific for orienting heme in the β/δ selective HemO. Moreover, at 20 μM, acitretin inhibited the enzymatic activity of HemO in P. aeruginosa cells by >60% and effectively blocked the ability of P. aeruginosa to sense and acquire heme as demonstrated in the β-galactosidase transcriptional reporter assay.
Collapse
Affiliation(s)
- Elizabeth A Robinson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
42
|
Sheedlo MJ, Kenny S, Podkorytov IS, Brown K, Ma J, Iyer S, Hewitt CS, Arbough T, Mikhailovskii O, Flaherty DP, Wilson MA, Skrynnikov NR, Das C. Insights into Ubiquitin Product Release in Hydrolysis Catalyzed by the Bacterial Deubiquitinase SdeA. Biochemistry 2021; 60:584-596. [PMID: 33583181 DOI: 10.1021/acs.biochem.0c00760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the co-crystal structure of the (catalytic Cys)-to-Ala mutant of the deubiquitinase domain of the Legionella pneumophila effector SdeA (SdeADUB) with its ubiquitin (Ub) product. Most of the intermolecular interactions are preserved in this product-bound structure compared to that of the previously characterized complex of SdeADUB with the suicide inhibitor ubiquitin vinylmethyl ester (Ub-VME), whose structure models the acyl-enzyme thioester intermediate. Nuclear magnetic resonance (NMR) titration studies show a chemical shift perturbation pattern that suggests that the same interactions also exist in solution. Isothermal titration calorimetry and NMR titration data reveal that the affinity of wild-type (WT) SdeADUB for Ub is significantly lower than that of the Cys-to-Ala mutant. This is potentially due to repulsive interaction between the thiolate ion of the catalytic Cys residue in WT SdeADUB and the carboxylate group of the C-terminal Gly76 residue in Ub. In the context of SdeADUB catalysis, this electrostatic repulsion arises after the hydrolysis of the scissile isopeptide bond in the acyl-enzyme intermediate and the consequent formation of the C-terminal carboxylic group in the Ub fragment. We hypothesize that this electrostatic repulsion may expedite the release of the Ub product by SdeADUB. We note that similar repulsive interactions may also occur in other deubiquitinases and hydrolases of ubiquitin-like protein modifiers and may constitute a fairly general mechanism of product release within this family. This is a potentially important feature for a family of enzymes that form extensive protein-protein interactions during enzyme-substrate engagement.
Collapse
Affiliation(s)
- Michael J Sheedlo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sebastian Kenny
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kwame Brown
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jia Ma
- Bindley Bioscience Center, West Lafayette, Indiana 47906, United States
| | - Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Trent Arbough
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Mikhailovskii
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Nikolai R Skrynnikov
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
43
|
Yoshimura Y, Mulder FAA. Sensitive and simplified: a combinatorial acquisition of five distinct 2D constant-time 13C- 1H NMR protein correlation spectra. JOURNAL OF BIOMOLECULAR NMR 2020; 74:695-706. [PMID: 32804297 DOI: 10.1007/s10858-020-00341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
A procedure is presented for the substantial simplification of 2D constant-time 13C-1H heteronuclear single-quantum correlation (HSQC) spectra of 13C-enriched proteins. In this approach, a single pulse sequence simultaneously records eight sub-spectra wherein the phases of the NMR signals depend on spin topology. Signals from different chemical groups are then stratified into different sub-spectra through linear combination based on Hadamard encoding of 13CHn multiplicity (n = 1, 2, and 3) and the chemical nature of neighboring 13C nuclei (aliphatic, carbonyl/carboxyl, aromatic). This results in five sets of 2D NMR spectra containing mutually exclusive signals from: (i) 13Cβ-1Hβ correlations of asparagine and aspartic acid, 13Cγ-1Hγ correlations of glutamine and glutamic acid, and 13Cα-1Hα correlations of glycine, (ii) 13Cα-1Hα correlations of all residues but glycine, and (iii) 13Cβ-1Hβ correlations of phenylalanine, tyrosine, histidine, and tryptophan, and the remaining (iv) aliphatic 13CH2 and (v) aliphatic 13CH/13CH3 resonances. As HSQC is a common element of many NMR experiments, the spectral simplification proposed in this article can be straightforwardly implemented in experiments for resonance assignment and structure determination and should be of widespread utility.
Collapse
Affiliation(s)
- Yuichi Yoshimura
- Lifematics West-Japan Branch, Hirano-machi 4-6-16, Chuo-ku, Osaka, 541-0046, Japan
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka, 565-0871, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Frans A A Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
44
|
Kolonko M, Bystranowska D, Taube M, Kozak M, Bostock M, Popowicz G, Ożyhar A, Greb-Markiewicz B. The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Commun Signal 2020; 18:180. [PMID: 33153474 PMCID: PMC7643343 DOI: 10.1186/s12964-020-00662-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila melanogaster Germ cell-expressed protein (GCE) is a paralog of the juvenile hormone (JH) receptor - Methoprene tolerant protein (MET). Both proteins mediate JH function, preventing precocious differentiation during D. melanogaster development. Despite that GCE and MET are often referred to as equivalent JH receptors, their functions are not fully redundant and show tissue specificity. Both proteins belong to the family of bHLH-PAS transcription factors. The similarity of their primary structure is limited to defined bHLH and PAS domains, while their long C-terminal fragments (GCEC, METC) show significant differences and are expected to determine differences in GCE and MET protein activities. In this paper we present the structural characterization of GCEC as a coil-like intrinsically disordered protein (IDP) with highly elongated and asymmetric conformation. In comparison to previously characterized METC, GCEC is less compacted, contains more molecular recognition elements (MoREs) and exhibits a higher propensity for induced folding. The NMR shifts perturbation experiment and pull-down assay clearly demonstrated that the GCEC fragment is sufficient to form an interaction interface with the ligand binding domain (LBD) of the nuclear receptor Fushi Tarazu factor-1 (FTZ-F1). Significantly, these interactions can force GCEC to adopt more fixed structure that can modulate the activity, structure and functions of the full-length receptor. The discussed relation of protein functionality with the structural data of inherently disordered GCEC fragment is a novel look at this protein and contributes to a better understanding of the molecular basis of the functions of the C-terminal fragments of the bHLH-PAS family. Video abstract.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland
| | - Mark Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Grzegorz Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
45
|
Tokunaga Y, Nagata T, Kondo K, Katahira M, Watanabe T. NMR elucidation of nonproductive binding sites of lignin models with carbohydrate-binding module of cellobiohydrolase I. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:164. [PMID: 33042221 PMCID: PMC7541279 DOI: 10.1186/s13068-020-01805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/27/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Highly efficient enzymatic saccharification of pretreated lignocellulose is a key step in achieving lignocellulosic biorefinery. Cellobiohydrolase I (Cel7A) secreted by Trichoderma reesei is an industrially used cellulase that possesses carbohydrate-binding module 1 (TrCBM1) at the C-terminal domain. The nonproductive binding of TrCBM1 to lignin significantly decreases the enzymatic saccharification efficiency and increases the cost of biomass conversion because of the additionally required enzymes. Understanding the interaction mechanism between lignin and TrCBM1 is essential for realizing a cost-effective biofuel production; however, the binding sites in lignin have not been clearly elucidated. RESULTS Three types of 13C-labeled β-O-4 lignin oligomer models were synthesized and characterized. The 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra of the 13C-labeled lignin models confirmed that the three types of the 13C labels were correctly incorporated in the (1) aromatic rings and β positions, (2) α positions, and (3) methoxy groups, respectively. The TrCBM1-binding sites in lignin were analyzed by observing NMR chemical shift perturbations (CSPs) using the synthetic 13C-labeled β-O-4 lignin oligomer models. Obvious CSPs were observed in signals from the aromatic regions in oligomers bound to TrCBM1, whereas perturbations in the signals from aliphatic regions and methoxy groups were insignificant. These findings indicated that hydrophobic interactions and π-π stacking were dominating factors in nonproductive binding. The synthetic lignin models have two configurations whose terminal units were differently aligned and donated C(I) and C(II). The C(I) ring showed remarkable perturbation compared with the C(II), which indicated that the binding of TrCBM1 was markedly affected by the configuration of the lignin models. The long-chain lignin models (degree of polymerization (DP) 4.16-4.70) clearly bound to TrCBM1. The interactions of TrCBM1 with the short-chain lignin models (DP 2.64-3.12) were insignificant, indicating that a DP greater than 4 was necessary for TrCBM1 binding. CONCLUSION The CSP analysis using 13C-labeled β-O-4 lignin oligomer models enabled the identification of the TrCBM1 binding sites in lignins at the atomic level. This specific interaction analysis will provide insights for new molecular designs of cellulase having a controlled affinity to cellulose and lignin for a cost-effective biorefinery process.
Collapse
Affiliation(s)
- Yuki Tokunaga
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Nagata
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Keiko Kondo
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Masato Katahira
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| |
Collapse
|
46
|
Zhao Z, Roose BW, Zemerov SD, Stringer MA, Dmochowski IJ. Detecting protein-protein interactions by Xe-129 NMR. Chem Commun (Camb) 2020; 56:11122-11125. [PMID: 32814938 PMCID: PMC7511426 DOI: 10.1039/d0cc02988b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Detection of protein-protein interactions (PPIs) is limited by current bioanalytical methods. A protein complementation assay (PCA), split TEM-1 β-lactamase, interacts with xenon at the interface of the TEM-1 fragments. Reconstitution of TEM-1-promoted here by cFos/cJun leucine zipper interaction-gives rise to sensitive 129Xe NMR signal in bacterial cells.
Collapse
Affiliation(s)
- Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Benjamin W Roose
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Madison A Stringer
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
47
|
Iwaya N, Goda N, Matsuzaki M, Narita A, Shigemitsu Y, Tenno T, Abe Y, Hoshi M, Hiroaki H. Principal component analysis of data from NMR titration experiment of uniformly 15N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds. Arch Biochem Biophys 2020; 690:108446. [PMID: 32593678 DOI: 10.1016/j.abb.2020.108446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
A simple NMR method to analyze the data obtained by NMR titration experiment of amyloid formation inhibitors against uniformly 15N-labeled amyloid-β 1-42 peptide (Aβ(1-42)) was described. By using solution nuclear magnetic resonance (NMR) measurement, the simplest method for monitoring the effects of Aβ fibrilization inhibitors is the NMR chemical shift perturbation (CSP) experiment using 15N-labeled Aβ(1-42). However, the flexible and dynamic nature of Aβ(1-42) monomer may hamper the interpretation of CSP data. Here we introduced principal component analysis (PCA) for visualizing and analyzing NMR data of Aβ(1-42) in the presence of amyloid inhibitors including high concentration osmolytes. We measured 1H-15N 2D spectra of Aβ(1-42) at various temperatures as well as of Aβ(1-42) with several inhibitors, and subjected all the data to PCA (PCA-HSQC). The PCA diagram succeeded in differentiating the various amyloid inhibitors, including epigallocatechin gallate (EGCg), rosmarinic acid (RA) and curcumin (CUR) from high concentration osmolytes. We hypothesized that the CSPs reflected the conformational equilibrium of intrinsically disordered Aβ(1-42) induced by weak inhibitor binding rather than the specific molecular interactions.
Collapse
Affiliation(s)
- Naoko Iwaya
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Japan; Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Mizuki Matsuzaki
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshiki Shigemitsu
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuda, 4259, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshito Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Minako Hoshi
- Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan.
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
48
|
Zhou S, Pettersson P, Huang J, Brzezinski P, Pomès R, Mäler L, Ädelroth P. NMR Structure and Dynamics Studies of Yeast Respiratory Supercomplex Factor 2. Structure 2020; 29:275-283.e4. [PMID: 32905793 DOI: 10.1016/j.str.2020.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae respiratory supercomplex factor 2 (Rcf2) is a 224-residue protein located in the mitochondrial inner membrane where it is involved in the formation of supercomplexes composed of cytochrome bc1 and cytochrome c oxidase. We previously demonstrated that Rcf2 forms a dimer in dodecylphosphocholine micelles, and here we report the solution NMR structure of this Rcf2 dimer. Each Rcf2 monomer has two soluble α helices and five putative transmembrane (TM) α helices, including an unexpectedly charged TM helix at the C terminus, which mediates dimer formation. The NOE contacts indicate the presence of inter-monomer salt bridges and hydrogen bonds at the dimer interface, which stabilize the Rcf2 dimer structure. Moreover, NMR chemical shift change mapping upon lipid titrations as well as molecular dynamics analysis reveal possible structural changes upon embedding Rcf2 into a native lipid environment. Our results contribute to the understanding of respiratory supercomplex formation and regulation.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Jingjing Huang
- Molecular Medicine, The Hospital for Sick Children, Toronto, Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Régis Pomès
- Molecular Medicine, The Hospital for Sick Children, Toronto, Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
49
|
Velivelli SLS, Czymmek KJ, Li H, Shaw JB, Buchko GW, Shah DM. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. Proc Natl Acad Sci U S A 2020; 117:16043-16054. [PMID: 32571919 PMCID: PMC7354933 DOI: 10.1073/pnas.2003526117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel β-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.
Collapse
Affiliation(s)
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, MO 63132
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St Louis, MO 63132
| | - Hui Li
- Donald Danforth Plant Science Center, St Louis, MO 63132
| | - Jared B Shaw
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St Louis, MO 63132;
| |
Collapse
|
50
|
Correlation between parotid saliva composition and dental caries using 31P-NMR and ICDAS score. Arch Oral Biol 2020; 111:104651. [DOI: 10.1016/j.archoralbio.2020.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 11/18/2022]
|