1
|
De Simone G, di Masi A, Tundo GR, Coletta M, Ascenzi P. Nitrite Reductase Activity of Ferrous Nitrobindins: A Comparative Study. Int J Mol Sci 2023; 24:ijms24076553. [PMID: 37047528 PMCID: PMC10094804 DOI: 10.3390/ijms24076553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Nitrobindins (Nbs) are all-β-barrel heme proteins spanning from bacteria to Homo sapiens. They inactivate reactive nitrogen species by sequestering NO, converting NO to HNO2, and promoting peroxynitrite isomerization to NO3−. Here, the nitrite reductase activity of Nb(II) from Mycobacterium tuberculosis (Mt-Nb(II)), Arabidopsis thaliana (At-Nb(II)), Danio rerio (Dr-Nb(II)), and Homo sapiens (Hs-Nb(II)) is reported. This activity is crucial for the in vivo production of NO, and thus for the regulation of blood pressure, being of the utmost importance for the blood supply to poorly oxygenated tissues, such as the eye retina. At pH 7.3 and 20.0 °C, the values of the second-order rate constants (i.e., kon) for the reduction of NO2− to NO and the concomitant formation of nitrosylated Mt-Nb(II), At-Nb(II), Dr-Nb(II), and Hs-Nb(II) (Nb(II)-NO) were 7.6 M−1 s−1, 9.3 M−1 s−1, 1.4 × 101 M−1 s−1, and 5.8 M−1 s−1, respectively. The values of kon increased linearly with decreasing pH, thus indicating that the NO2−-based conversion of Nb(II) to Nb(II)-NO requires the involvement of one proton. These results represent the first evidence for the NO2 reductase activity of Nbs(II), strongly supporting the view that Nbs are involved in NO metabolism. Interestingly, the nitrite reductase reactivity of all-β-barrel Nbs and of all-α-helical globins (e.g., myoglobin) was very similar despite the very different three-dimensional fold; however, differences between all-α-helical globins and all-β-barrel Nbs suggest that nitrite reductase activity appears to be controlled by distal steric barriers, even though a more complex regulatory mechanism can be also envisaged.
Collapse
Affiliation(s)
| | | | - Grazia R. Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, 00133 Roma, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, 00146 Roma, Italy
| |
Collapse
|
2
|
Zhang M, Tai H, Yanagisawa S, Yamanaka M, Ogura T, Hirota S. Resonance Raman Studies on Heme Ligand Stretching Modes in Methionine80-Depleted Cytochrome c: Fe-His, Fe-O 2, and O-O Stretching Modes. J Phys Chem B 2023; 127:2441-2449. [PMID: 36919258 PMCID: PMC10041640 DOI: 10.1021/acs.jpcb.3c00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The peroxidase activity of cytochrome (cyt) c increases when Met80 dissociates from the heme iron, which is related to the initial cyt c membrane permeation step of apoptosis. Met80-dissociated cyt c can form an oxygenated species. Herein, resonance Raman spectra of Met80-depleted horse cyt c (M80A cyt c) were analyzed to elucidate the heme ligand properties of Met80-dissociated cyt c. The Fe-His stretching (νFe-His) mode of ferrous M80A cyt c was observed at 236 cm-1, and this frequency decreased by 1.5 cm-1 for the 15N-labeled protein. The higher νFe-His frequency of M80A cyt c than of other His-ligated heme proteins indicates strong heme coordination and the imidazolate character of His18. Peaks attributed to the Fe-O2 stretching (νFe-O2) and O-O stretching (νO-O) modes of the oxygenated species of M80A cyt c were observed at 576 and 1148 cm-1, respectively, under an 16O2 atmosphere, whereas the frequencies decreased to 544 and 1077 cm-1, respectively, under an 18O2 atmosphere. The νFe-O2 mode of Hydrogenobacter thermophilus (HT) M59A cyt c552 was observed at 580 cm-1 under an 16O2 atmosphere, whereas the frequency decreased to 553 cm-1 under an 18O2 atmosphere, indicating that relatively high νFe-O2 frequencies are characteristic of c-type cyt proteins. By comparison of the simultaneously observed νFe-O2 and νO-O frequencies of oxygenated cyt c and other oxygenated His-ligated heme proteins, the frequencies tend to have a positive linear relationship; the νFe-O2 frequency increases when the νO-O frequency increases. The imidazolate character of the heme-coordinated His and strong Fe-O and O-O bonds are characteristic of cyt c and apparently related to the peroxidase activity when Met80 dissociates from the heme iron.
Collapse
Affiliation(s)
- Mohan Zhang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Hulin Tai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
3
|
Chhaya A, Sharma A, Dattu Hade M, Kaur J, Dikshit KL. Transcript analysis and expression of the glbO gene, encoding truncated hemoglobin,O, of M. smegmatis implicate its role under hypoxia and oxidative stress. Gene X 2022; 841:146759. [PMID: 35933051 DOI: 10.1016/j.gene.2022.146759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although truncated hemoglobin O, (trHbO), is ubiquitous among mycobacteria, its physiological function is not very obvious and may be diverse. In an attempt to understand role of trHbO in cellular metabolism of a non-pathogenic mycobacterium, we analysed expression profile of the glbO gene, encoding trHbO, in M. smegmatis and studied implications of its overexpression on physiology of its host under different environmental conditions. Quantitative RT-PCR indicated that transcript level of the glbO gene remains low at a basal level under aerobic growth cycle of M. smegmatis but its level gets induced significantly during low oxygen, oxidative stress and macrophage infection. Overexpression of the glbO gene enhanced growth of M. smegmatis under hypoxia, promoted pellicle biofilm formation and provided resistance towards oxidative stress. Additionally, glbO gene overexpressing M. smegmatis exhibited enhanced cell survival over isogenic control cells and altered the level of pro- and anti- inflammatory cytokines during intracellular infection. These results suggested important role of trHbO, in supporting the cellular metabolism and survival of M, smegmatis both under low oxygen and oxidative stress.
Collapse
Affiliation(s)
- Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Aashish Sharma
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Mangesh Dattu Hade
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Kanak L Dikshit
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
4
|
Hydroxylamine-induced oxidation of ferrous nitrobindins. J Biol Inorg Chem 2022; 27:443-453. [PMID: 35543759 DOI: 10.1007/s00775-022-01940-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Hemoglobin and myoglobin are generally taken as molecular models of all-α-helical heme-proteins. On the other hand, nitrophorins and nitrobindins (Nb), which are arranged in 8 and 10 β-strands, respectively, represent the molecular models of all-β-barrel heme-proteins. Here, kinetics of the hydroxylamine- (HA-) mediated oxidation of ferrous Mycobacterium tuberculosis, Arabidopsis thaliana, and Homo sapiens nitrobindins (Mt-Nb(II), At-Nb(II), and Hs-Nb(II), respectively), at pH 7.0 and 20.0 °C, are reported. Of note, HA displays antibacterial properties and is a good candidate for the treatment and/or prevention of reactive nitrogen species- (RNS-) linked aging-related pathologies, such as macular degeneration. Under anaerobic conditions, mixing the Mt-Nb(II), At-Nb(II), and Hs-Nb(II) solutions with the HA solutions brings about absorbance spectral changes reflecting the formation of the ferric derivative (i.e., Mt-Nb(III), At-Nb(III), and Hs-Nb(III), respectively). Values of the second order rate constant for the HA-mediated oxidation of Mt-Nb(II), At-Nb(II), and Hs-Nb(II) are 1.1 × 104 M-1 s-1, 6.5 × 104 M-1 s-1, and 2.2 × 104 M-1 s-1, respectively. Moreover, the HA:Nb(II) stoichiometry is 1:2 as reported for ferrous deoxygenated and carbonylated all-α-helical heme-proteins. A comparative look of the HA reduction kinetics by several ferrous heme-proteins suggests that an important role might be played by residues (such as His or Tyr) in the proximity of the heme-Fe atom either coordinating it or not. In this respect, Nbs seem to exploit somewhat different structural aspects, indicating that redox mechanisms for the heme-Fe(II)-to-heme-Fe(III) conversion might differ between all-α-helical and all-β-barrel heme-proteins.
Collapse
|
5
|
Hade MD, Sethi D, Datta H, Singh S, Thakur N, Chhaya A, Dikshit KL. Truncated Hemoglobin O Carries an Autokinase Activity and Facilitates Adaptation of Mycobacterium tuberculosis Under Hypoxia. Antioxid Redox Signal 2020; 32:351-362. [PMID: 31218881 DOI: 10.1089/ars.2018.7708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Although the human pathogen, Mycobacterium tuberculosis (Mtb), is strictly aerobic and requires efficient supply of oxygen, it can survive long stretches of severe hypoxia. The mechanism responsible for this metabolic flexibility is unknown. We have investigated a novel mechanism by which hemoglobin O (HbO), operates and supports its host under oxygen stress. Results: We discovered that the HbO exists in a phospho-bound state in Mtb and remains associated with the cell membrane under hypoxia. Deoxy-HbO carries an autokinase activity that disrupts its dimeric assembly into monomer and facilitates its association with the cell membrane, supporting survival and adaptation of Mtb under low oxygen conditions. Consistent with these observations, deletion of the glbO gene in Mycobacterium bovis bacillus Calmette-Guerin, which is identical to the glbO gene of Mtb, attenuated its survival under hypoxia and complementation of the glbO gene of Mtb rescued this inhibition, but phosphorylation-deficient mutant did not. These results demonstrated that autokinase activity of the HbO modulates its physiological function and plays a vital role in supporting the survival of its host under hypoxia. Innovation and Conclusion: Our study demonstrates that the redox-dependent autokinase activity regulates oligomeric state and membrane association of HbO that generates a reservoir of oxygen in the proximity of respiratory membranes to sustain viability of Mtb under hypoxia. These results thus provide a novel insight into the physiological function of the HbO and demonstrate its pivotal role in supporting the survival and adaptation of Mtb under hypoxia.
Collapse
Affiliation(s)
| | - Deepti Sethi
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Himani Datta
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Naveen Thakur
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ajay Chhaya
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Kanak L Dikshit
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
7
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Feis A, Howes BD, Milazzo L, Coppola D, Smulevich G. Structural determinants of ligand binding in truncated hemoglobins: Resonance Raman spectroscopy of the native states and their carbon monoxide and hydroxide complexes. Biopolymers 2018; 109:e23114. [DOI: 10.1002/bip.23114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Barry D. Howes
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| | - Daniela Coppola
- Dipartimento di Scienze bio-agroalimentari del CNR (DiSBA-CNR), CNR, Via Pietro Castellino 111; Naples I-80131 Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff,”; Università di Firenze, Via della Lastruccia 3-13; Sesto Fiorentino 50019 Italy
| |
Collapse
|
9
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
10
|
Ascenzi P, Ciaccio C, Gasperi T, Pesce A, Caporaso L, Coletta M. Hydroxylamine-induced oxidation of ferrous carbonylated truncated hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni is limited by carbon monoxide dissociation. J Biol Inorg Chem 2017. [PMID: 28646425 DOI: 10.1007/s00775-017-1476-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydroxylamine (HA) is an oxidant of ferrous globins and its action has been reported to be inhibited by CO, even though this mechanism has not been clarified. Here, kinetics of the HA-mediated oxidation of ferrous carbonylated Mycobacterium tuberculosis truncated hemoglobin N and O (Mt-trHbN(II)-CO and Mt-trHbO(II)-CO, respectively) and Campylobacter jejuni truncated hemoglobin P (Cj-trHbP(II)-CO), at pH 7.2 and 20.0 °C, are reported. Mixing Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO solution with the HA solution brings about absorption spectral changes reflecting the disappearance of the ferrous carbonylated derivatives with the concomitant formation of the ferric species. HA oxidizes irreversibly Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO with the 1:2 stoichiometry. The dissociation of CO turns out to be the rate-limiting step for the oxidation of Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO by HA. Values of the second-order rate constant for HA-mediated oxidation of Mt-trHbN(II)-CO, Mt-trHbO(II)-CO, and Cj-trHbP(II)-CO range between 8.8 × 104 and 8.6 × 107 M-1 s-1, reflecting different structural features of the heme distal pocket. This study (1) demonstrates that the inhibitory effect of CO is linked to the dissociation of this ligand, giving a functional basis to previous studies, (2) represents the first comparative investigation of the oxidation of ferrous carbonylated bacterial 2/2 globins belonging to the N, O, and P groups by HA, (3) casts light on the correlation between kinetics of HA-mediated oxidation and carbonylation of globins, and (4) focuses on structural determinants modulating the HA-induced oxidation process.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, 00146, Rome, Italy.
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", 00133, Rome, Italy.,Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, 70126, Bari, Italy
| | - Tecla Gasperi
- Department of Sciences, Roma Tre University, 00146, Rome, Italy
| | - Alessandra Pesce
- Department of Physics, University of Genova, 16146, Genoa, Italy
| | - Lucia Caporaso
- Department of Mathematics and Physics, Roma Tre University, 00146, Rome, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", 00133, Rome, Italy.,Interuniversity Consortium for the Research on Chemistry of Metals in Biological Systems, 70126, Bari, Italy
| |
Collapse
|
11
|
Giordano D, Pesce A, Boechi L, Bustamante JP, Caldelli E, Howes BD, Riccio A, di Prisco G, Nardini M, Estrin D, Smulevich G, Bolognesi M, Verde C. Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. FEBS J 2015; 282:2948-65. [PMID: 26040838 DOI: 10.1111/febs.13335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022]
Abstract
Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two-on-two α-helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group-II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO), a cold-adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph-2/2HbO aquo-met crystal structure (at 2.21 Å resolution) shows typical features of group-II truncated hemoglobins, namely the two-on-two α-helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal-site hydrogen-bonded network that includes water molecules and several distal-site residues, including His(58)CD1. Analysis of Ph-2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph-2/2HbO can access diverse heme ligation states. Among these, detection of a low-spin heme hexa-coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme-Fe ligand. Altogether, the results show that Ph-2/2HbO maintains the general structural features of group-II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | | | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Juan Pablo Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Elena Caldelli
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Barry D Howes
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Alessia Riccio
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| | - Dario Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Argentina
| | - Giulietta Smulevich
- Department of Chemistry 'Ugo Schiff', University of Firenze, Sesto Fiorentino, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milano, Italy.,CNR-Institute of Biophysics and CIMAINA, University of Milano, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, National Research Council, Napoli, Italy.,Department of Biology, Roma 3 University, Italy
| |
Collapse
|
12
|
Peroxidase activity and involvement in the oxidative stress response of roseobacter denitrificans truncated hemoglobin. PLoS One 2015; 10:e0117768. [PMID: 25658318 PMCID: PMC4319818 DOI: 10.1371/journal.pone.0117768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry.
Collapse
|
13
|
Wang Y, Zhang S, Luo M, Li Y. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury. Neural Regen Res 2015; 9:2182-8. [PMID: 25657740 PMCID: PMC4316452 DOI: 10.4103/1673-5374.147951] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 12/18/2022] Open
Abstract
Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Shuquan Zhang
- Department of Orthopedics, Nankai Hospital, Tianjin, China
| | - Min Luo
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Yajun Li
- School of Mathematics, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
14
|
Howes BD, Boechi L, Boffi A, Estrin DE, Smulevich G. Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins: Insights from Thermobifida fusca HbO. Adv Microb Physiol 2015; 67:85-126. [PMID: 26616516 DOI: 10.1016/bs.ampbs.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, Università "Sapienza", Rome, Italy
| | - Dario E Estrin
- Departamento de Química Inorgánica, Analítica y Química Física and Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
15
|
Hough MA, Andrew CR. Cytochromes c': Structure, Reactivity and Relevance to Haem-Based Gas Sensing. Adv Microb Physiol 2015; 67:1-84. [PMID: 26616515 DOI: 10.1016/bs.ampbs.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins.
Collapse
|
16
|
Ascenzi P, di Masi A, Tundo GR, Pesce A, Visca P, Coletta M. Nitrosylation mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni truncated hemoglobins N, O, and P. PLoS One 2014; 9:e102811. [PMID: 25051055 PMCID: PMC4106858 DOI: 10.1371/journal.pone.0102811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tubertulosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- * E-mail:
| | - Alessandra di Masi
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Grazia R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| | | | - Paolo Visca
- Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Bari, Italy
| |
Collapse
|
17
|
Jamil F, Teh AH, Schadich E, Saito JA, Najimudin N, Alam M. Crystal structure of truncated haemoglobin from an extremely thermophilic and acidophilic bacterium. J Biochem 2014; 156:97-106. [PMID: 24733432 DOI: 10.1093/jb/mvu023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A truncated haemoglobin (tHb) has been identified in an acidophilic and thermophilic methanotroph Methylacidiphilium infernorum. Hell's Gate Globin IV (HGbIV) and its related tHbs differ from all other bacterial tHbs due to their distinctively large sequence and polar distal haem pocket residues. Here we report the crystal structure of HGbIV determined at 1.96 Å resolution. The HGbIV structure has the distinctive 2/2 α-helical structure with extensions at both termini. It has a large distal site cavity in the haem pocket surrounded by four polar residues: His70(B9), His71(B10), Ser97(E11) and Trp137(G8). This cavity can bind bulky ligands such as a phosphate ion. Conformational shifts of His71(B10), Leu90(E4) and Leu93(E7) can also provide more space to accommodate larger ligands than the phosphate ion. The entrance/exit of such bulky ligands might be facilitated by positional flexibility in the CD1 loop, E helix and haem-propionate A. Therefore, the large cavity in HGbIV with polar His70(B9) and His71(B10), in contrast to the distal sites of other bacterial tHbs surrounded by non-polar residues, suggests its distinct physiological functions.
Collapse
Affiliation(s)
- Farrukh Jamil
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Ermin Schadich
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Jennifer A Saito
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Nazalan Najimudin
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Maqsudul Alam
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USACentre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand; Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822, USA; School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; and Department of Microbiology, University of Hawaii, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| |
Collapse
|
18
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
19
|
Abstract
Small size globins that have been defined as 'truncated haemoglobins' or as '2/2 haemoglobins' have increasingly been discovered in microorganisms since the early 1990s. Analysis of amino acid sequences allowed to distinguish three groups that collect proteins with specific and common structural properties. All three groups display 3D structures that are based on four main α-helices, which are a subset of the conventional eight-helices globin fold. Specific features, such as the presence of protein matrix tunnels that are held to promote diffusion of functional ligands to/from the haem, distinguish members of the three groups. Haem distal sites vary for their accessibility, local structures, polarity, and ligand stabilization mechanisms, suggesting functional roles that are related to O2/NO chemistry. In a few cases, such activities have been proven in vitro and in vivo through deletion mutants. The issue of 2/2 haemoglobin varied biological functions throughout the three groups remains however fully open.
Collapse
|
20
|
Abstract
The genus Mycobacterium is comprised of Gram-positive bacteria occupying a wide range of natural habitats and includes species that range from severe intracellular pathogens to economically useful and harmless microbes. The recent upsurge in the availability of microbial genome data has shown that genes encoding haemoglobin-like proteins are ubiquitous among Mycobacteria and that multiple haemoglobins (Hbs) of different classes may be present in pathogenic and non-pathogenic species. The occurrence of truncated haemoglobins (trHbs) and flavohaemoglobins (flavoHbs) showing distinct haem active site structures and ligand-binding properties suggests that these Hbs may be playing diverse functions in the cellular metabolism of Mycobacteria. TrHbs and flavoHbs from some of the severe human pathogens such as Mycobacterium tuberculosis and Mycobacterium leprae have been studied recently and their roles in effective detoxification of reactive nitrogen and oxygen species, electron cycling, modulation of redox state of the cell and facilitation of aerobic respiration have been proposed. This multiplicity in the function of Hbs may aid these pathogens to cope with various environmental stresses and survive during their intracellular regime. This chapter provides recent updates on genomic, structural and functional aspects of Mycobacterial Hbs to address their role in Mycobacteria.
Collapse
|
21
|
Sharma RD, Kanwal R, Lynn AM, Singh P, Pasha ST, Fatma T, Jawaid S. High temperature unfolding of a truncated hemoglobin by molecular dynamics simulation. J Mol Model 2013; 19:3993-4002. [PMID: 23839248 DOI: 10.1007/s00894-013-1919-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/09/2013] [Indexed: 11/27/2022]
Abstract
Heme containing proteins are associated with peroxidase activity. The proteins like hemoglobin, myoglobins, cytochrome c and micro-peroxidase other than peroxidases have been shown to exhibit weak peroxidase-like activity. This weak peroxidase-like activity in hemoglobin-like molecules is due to heme moiety. We conducted molecular dynamics (MD) studies to decipher the unfolding path of Ba-Glb (a truncated hemoglobin from Bacillus anthracis) and the role of heme moiety to its unfolding path. The similar unfolding path is also observed in vitro by UV/VIS spectroscopy. The data confirmed that the unfolding of Ba-Glb follows a three state process with a meta-stable (intermediate) state between the native and unfolded conformations. The present study is supported by several unfolding parameters like root-mean-square-deviation (RMSD), dictionary of protein secondary structure (DSSP), and free energy landscape. Understanding the structure of hemoglobin like proteins in unicellular dreaded pathogens like B. anthracis will pave way for newer drug discovery targets and in the disease management of anthrax.
Collapse
|
22
|
Soldatova AV, Ibrahim M, Spiro TG. Electronic structure and ligand vibrations in FeNO, CoNO, and FeOO porphyrin adducts. Inorg Chem 2013; 52:7478-86. [PMID: 23763617 PMCID: PMC3766410 DOI: 10.1021/ic400364x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gaseous ligands, CO, NO, and O2 interact with the Fe ion in heme proteins largely via backbonding of Fe electrons to the π* orbitals of the XO (X = C, N, O) ligands. In these FeXO adducts, the Fe-X stretching frequency varies inversely with the X-O stretching frequency, since increased backbonding strengthens the Fe-X bond while weakening the X-O bond. Inverse frequency correlations have been observed for all three ligands, despite differing electronic and geometric structures, and despite variable composition of the "FeX" vibrational mode, in which Fe-X stretching and Fe-X-O coordinates are mixed for bent FeXO adducts. We report experimental data for 5-coordinate Co(II)(NO) porphyrin adducts (isoelectronic with Fe(II)(OO) adducts), and the results of density functional theory (DFT) modeling for 5-coordinate Fe(II)(NO), Co(II)(NO), and Fe(II)(OO) adducts. Inverse ν(MX)/ν(XO) correlations are obtained computationally, using model porphyrins with graded electron-donating and -withdrawing substituents to modulate the backbonding. Computed slopes agree satisfactorily with experiment, provided nonhybrid functionals are used, which avoid overemphasizing high-spin states. The BP86 functional gives correct ground states, a closed-shell singlet for Co(II)(NO) and an open-shell singlet for the isoelectronic Fe(II)(OO), as corroborated by structural data for Co(II)(NO), and the ν(MX)/ν(XO) slope agreement with experiment for both adducts. However, for Fe(II)(OO) adducts, the computed inverse ν(MX)/ν(XO) correlation applies only to porphyrins with electron-donating and withdrawing substituents of moderate strength. For substituents more donating than -CH3, a direct correlation is obtained, the Fe-O and O-O bonds weakening in concert. This effect is ascribed to the dominance of σ bonding via the in-plane dxz(+dz(2))-π* orbital, when electron-donating substituents raise the d orbital energies sufficiently to render backbonding (dyz-π*) unimportant.
Collapse
Affiliation(s)
- Alexandra V. Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195
| | | | - Thomas G. Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195
| |
Collapse
|
23
|
Aono S. The Dos family of globin-related sensors using PAS domains to accommodate haem acting as the active site for sensing external signals. Adv Microb Physiol 2013; 63:273-327. [PMID: 24054799 DOI: 10.1016/b978-0-12-407693-8.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sensor proteins play crucial roles in maintaining homeostasis of cells by sensing changes in extra- and intracellular chemical and physical conditions to trigger biological responses. It has recently become clear that gas molecules function as signalling molecules in these biological regulatory systems responsible for transcription, chemotaxis, synthesis/hydrolysis of nucleotide second messengers, and other complex physiological processes. Haem-containing sensor proteins are widely used to sense gas molecules because haem can bind gas molecules reversibly. Ligand binding to the haem in the sensor proteins triggers conformational changes around the haem, which results in their functional regulation. Spectroscopic and crystallographic studies are essential to understand how these sensor proteins function in these biological regulatory systems. In this chapter, I discuss structural and functional relationships of haem-containing PAS and PAS-related families of the sensor proteins.
Collapse
|
24
|
Tsai AL, Martin E, Berka V, Olson JS. How do heme-protein sensors exclude oxygen? Lessons learned from cytochrome c', Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid Redox Signal 2012; 17:1246-63. [PMID: 22356101 PMCID: PMC3430480 DOI: 10.1089/ars.2012.4564] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed to explain the O(2) insensitivity, including lack of a hydrogen bond donor and negative electrostatic fields to selectively destabilize bound O(2), distal steric hindrance of all bound ligands to the heme iron, and restriction of in-plane movements of the iron atom. RECENT ADVANCES Crystallographic structures of the gas sensors, Thermoanaerobacter tengcongensis heme-nitric oxide/oxygen-binding domain (Tt H-NOX(1)) or Nostoc puntiforme (Ns) H-NOX, and measurements of O(2) binding to site-specific mutants of Tt H-NOX and the truncated β subunit of sGC suggest the need for a H-bonding donor to facilitate O(2) binding. CRITICAL ISSUES However, the O(2) insensitivity of full length sGC with a site-specific replacement of isoleucine by a tyrosine on residue 145 and the very slow autooxidation of Ns H-NOX and cytochrome c' suggest that more complex mechanisms have evolved to exclude O(2) but retain high affinity NO binding. A combined graphical analysis of ligand binding data for libraries of heme sensors, globins, and model heme shows that the NO sensors dramatically inhibit the formation of six-coordinated NO, CO, and O(2) complexes by direct distal steric hindrance (cyt c'), proximal constraints of in-plane iron movement (sGC), or combinations of both following a sliding scale rule. High affinity NO binding in H-NOX proteins is achieved by multiple NO binding steps that produce a high affinity five-coordinate NO complex, a mechanism that also prevents NO dioxygenation. FUTURE DIRECTIONS Knowledge advanced by further extensive test of this "sliding scale rule" hypothesis should be valuable in guiding novel designs for heme based sensors.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
| | | | | | | |
Collapse
|
25
|
Comparative analysis of mycobacterial truncated hemoglobin promoters and the groEL2 promoter in free-living and intracellular mycobacteria. Appl Environ Microbiol 2012; 78:6499-506. [PMID: 22773641 DOI: 10.1128/aem.01984-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The success of Mycobacterium tuberculosis depends on its ability to withstand and survive the hazardous environment inside the macrophages that are created by reactive oxygen intermediates, reactive nitrogen intermediates, severe hypoxia, low pH, and high CO(2) levels. Therefore, an effective detoxification system is required for the pathogen to persist in vivo. The genome of M. tuberculosis contains a new family of hemoproteins named truncated hemoglobin O (trHbO) and truncated hemoglobin N (trHbN), encoded by the glbO and glbN genes, respectively, important in the survival of M. tuberculosis in macrophages. Mycobacterial heat shock proteins are known to undergo rapid upregulation under stress conditions. The expression profiles of the promoters of these genes were studied by constructing transcriptional fusions with green fluorescent protein and monitoring the promoter activity in both free-living and intracellular milieus at different time points. Whereas glbN showed an early response to the oxidative and nitrosative stresses tested, glbO gave a lasting response to lower concentrations of both stresses. At all time points and under all stress conditions tested, groEL2 showed higher expression than both trHb promoters and expression of both promoters showed an increase while inside the macrophages. Real-time PCR analysis of trHb and groEL2 mRNAs showed an initial upregulation at 24 h postinfection. The presence of the glbO protein imparted an increased survival to M. smegmatis in THP-1 differentiated macrophages compared to that imparted by the glbN and hsp65 proteins. The comparative upregulation shown by both trHb promoters while grown inside macrophages indicates the importance of these promoters for the survival of M. tuberculosis in the hostile environment of the host.
Collapse
|
26
|
Spiro TG, Soldatova AV. Ambidentate H-bonding of NO and O2 in heme proteins. J Inorg Biochem 2012; 115:204-10. [PMID: 22824153 DOI: 10.1016/j.jinorgbio.2012.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/26/2023]
Abstract
The affinity and reactivity of the gaseous molecules CO, NO and O(2) (XO) in heme protein adducts are controlled by secondary interactions, especially by H-bonds donated from distal protein residues. Vibrational spectroscopy, supported by DFT (Density Functional Theory) modeling, has revealed that for NO and O(2), but not for CO, a critical issue is whether the H-bond is donated to the outer or inner atom of the bound diatomic ligand. DFT modeling shows that bound NO and O(2) are ambidentate, both atoms separately acting as H-bond acceptors. This is not the case for CO, whose π* orbital acts as a delocalized H-bond acceptor. Vibrational spectra of heme-XO adducts reveal a general pattern of backbonding variations, marked by families of negative correlations between frequencies associated with FeX and XO bond stretches. For heme-CO adducts, H-bonding increases backbonding, the νFeX/νXO points moving up the backbonding correlation established with model compounds. For NO and O(2) adducts, however, increased backbonding is only observed when the outer atom is the H-bond acceptor. H-bonding to the inner (X) atom instead produces a positive νFeX/νXO correlation. This effect can be reproduced by DFT modeling. Its mechanism is polarization of the sp(2) orbital on the X atom, on the back side of the bent FeXO unit, drawing electrons from both the FeX and XO bonds and weakening them together. Thus, the positioning of H-bond donors in the protein differentially affects bonding and reactivity in heme adducts of NO and O(2).
Collapse
Affiliation(s)
- Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| | | |
Collapse
|
27
|
Cazade PA, Huang J, Yosa J, Szymczak JJ, Meuwly M. Atomistic simulations of reactive processes in the gas- and condensed-phase. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.694694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Jasaitis A, Ouellet H, Lambry JC, Martin JL, Friedman JM, Guertin M, Vos MH. Ultrafast heme–ligand recombination in truncated hemoglobin HbO from Mycobacterium tuberculosis: A ligand cage. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Garton EM, Pixton DA, Petersen CA, Eady RR, Hasnain SS, Andrew CR. A distal pocket Leu residue inhibits the binding of O2 and NO at the distal heme site of cytochrome c'. J Am Chem Soc 2012; 134:1461-3. [PMID: 22239663 DOI: 10.1021/ja209770p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochromes c' are pentacoordinate heme proteins with sterically hindered distal sites that bind NO and CO but do not form stable complexes with O(2). Removal of distal pocket steric hindrance via a Leu→Ala mutation yields favorable O(2) binding (K(d) ~49 nM) without apparent H-bond stabilization of the Fe-O(2) moiety, as well as an extremely high distal heme-NO affinity (K(d) ~70 fM). The native Leu residue inhibits distal coordination of diatomic ligands by decreasing k(on) as well as increasing k(off). The connection between distal steric constraints, k(off) values, and distal to proximal heme-NO conversion is discussed.
Collapse
Affiliation(s)
- Elizabeth M Garton
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, USA
| | | | | | | | | | | |
Collapse
|
30
|
Mañez PA, Lu C, Boechi L, Martí MA, Shepherd M, Wilson JL, Poole RK, Luque FJ, Yeh SR, Estrin DA. Role of the distal hydrogen-bonding network in regulating oxygen affinity in the truncated hemoglobin III from Campylobacter jejuni. Biochemistry 2011; 50:3946-56. [PMID: 21476539 PMCID: PMC4535342 DOI: 10.1021/bi101137n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygen affinity in heme-containing proteins is determined by a number of factors, such as the nature and conformation of the distal residues that stabilize the heme bound-oxygen via hydrogen-bonding interactions. The truncated hemoglobin III from Campylobacter jejuni (Ctb) contains three potential hydrogen-bond donors in the distal site: TyrB10, TrpG8, and HisE7. Previous studies suggested that Ctb exhibits an extremely slow oxygen dissociation rate due to an interlaced hydrogen-bonding network involving the three distal residues. Here we have studied the structural and kinetic properties of the G8(WF) mutant of Ctb and employed state-of-the-art computer simulation methods to investigate the properties of the O(2) adduct of the G8(WF) mutant, with respect to those of the wild-type protein and the previously studied E7(HL) and/or B10(YF) mutants. Our data indicate that the unique oxygen binding properties of Ctb are determined by the interplay of hydrogen-bonding interactions between the heme-bound ligand and the surrounding TyrB10, TrpG8, and HisE7 residues.
Collapse
Affiliation(s)
- Pau Arroyo Mañez
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| | - Mark Shepherd
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Jayne Louise Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - F. Javier Luque
- Department de Fisicoquimica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica, y Química Fisica, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
31
|
Nicoletti FP, Thompson MK, Franzen S, Smulevich G. Degradation of sulfide by dehaloperoxidase-hemoglobin from Amphitrite ornata. J Biol Inorg Chem 2011; 16:611-9. [DOI: 10.1007/s00775-011-0762-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
32
|
Interactions of Hemoglobin with Vesicles and Tubes Formed from Mixtures of Histidine-Derived Bolaamphiphile and Conventional Surfactants. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9631-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Droghetti E, Nicoletti FP, Bonamore A, Boechi L, Arroyo Mañez P, Estrin DA, Boffi A, Smulevich G, Feis A. Heme pocket structural properties of a bacterial truncated hemoglobin from Thermobifida fusca. Biochemistry 2010; 49:10394-402. [PMID: 21049911 DOI: 10.1021/bi101452k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic surface variant (ASV) of the "truncated" hemoglobin from Thermobifida fusca was designed with the aim of creating a versatile globin scaffold endowed with thermostability and a high level of recombinant expression in its soluble form while keeping the active site unmodified. This engineered protein was obtained by mutating the surface-exposed residues Phe107 and Arg91 to Glu. Molecular dynamics simulations showed that the mutated residues remain solvent-exposed, not affecting the overall protein structure. Thus, the ASV was used in a combinatorial mutagenesis of the distal heme pocket residues in which one, two, or three of the conserved polar residues [TyrB10(54), TyrCD1(67), and TrpG8(119)] were substituted with Phe. Mutants were characterized by infrared and resonance Raman spectroscopy and compared with the wild-type protein. Similar Fe-proximal His stretching frequencies suggest that none of the mutations alters the proximal side of the heme cavity. Two conformers were observed in the spectra of the CO complexes of both wild-type and ASV protein: form 1 with ν(FeC) and ν(CO) at 509 and 1938 cm(-1) and form 2 with ν(FeC) and ν(CO) at 518 and 1920 cm(-1), respectively. Molecular dynamics simulations were performed for the wild-type and ASV forms, as well as for the TyrB10 mutant. The spectroscopic and computational results demonstrate that CO interacts with TrpG8 in form 1 and interacts with both TrpG8 and TyrCD1 in form 2. TyrB10 does not directly interact with the bound CO.
Collapse
Affiliation(s)
- Enrica Droghetti
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bikiel DE, Forti F, Boechi L, Nardini M, Luque FJ, Martí MA, Estrin DA. Role of Heme Distortion on Oxygen Affinity in Heme Proteins: The Protoglobin Case. J Phys Chem B 2010; 114:8536-43. [DOI: 10.1021/jp102135p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damián E. Bikiel
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| | - Flavio Forti
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| | - Marco Nardini
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| | - F. Javier Luque
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| | - Marcelo A. Martí
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina, Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain, Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Milano, Italy, and Departamento de Química
| |
Collapse
|
35
|
Omodeo-Salè F, Cortelezzi L, Vommaro Z, Scaccabarozzi D, Dondorp AM. Dysregulation of L-arginine metabolism and bioavailability associated to free plasma heme. Am J Physiol Cell Physiol 2010; 299:C148-54. [PMID: 20357184 PMCID: PMC2904256 DOI: 10.1152/ajpcell.00405.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Severe Plasmodium falciparum malaria is associated with hypoargininemia, which contributes to impaired systemic and pulmonary nitric oxide (NO) production and endothelial dysfunction. Since intravascular hemolysis is an intrinsic feature of severe malaria, we investigated whether and by which mechanisms free heme [Fe(III)-protoporphyrin IX (FP)] might contribute to the dysregulation of l-arginine (l-Arg) metabolism and bioavailability. Carrier systems “y+” [or cationic amino acid transporter (CAT)] and “y+L” transport l-Arg into red blood cells (RBC), where it is hydrolyzed to ornithine and urea by arginase (isoform I) or converted to NO· and citrulline by endothelial nitric oxide synthase (eNOS). Our results show a significant and dose-dependent impairment of l-Arg transport into RBC pretreated with FP, with a strong inhibition of the system carrier y+L. Despite the impaired l-Arg influx, higher amounts of l-Arg-derived urea are produced by RBC preexposed to FP caused by activation of RBC arginase I. This activation appeared not to be mediated by oxidative modifications of the enzyme. We conclude that l-Arg transport across RBC membrane is impaired and arginase-mediated l-Arg consumption enhanced by free heme. This could contribute to reduced NO production in severe malaria.
Collapse
Affiliation(s)
- F Omodeo-Salè
- Dipartimento di Scienze Molecolari Applicate ai Biosistemi (DISMAB), Facoltà di Farmacia, Università di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
36
|
Nicoletti FP, Comandini A, Bonamore A, Boechi L, Boubeta FM, Feis A, Smulevich G, Boffi A. Sulfide binding properties of truncated hemoglobins. Biochemistry 2010; 49:2269-78. [PMID: 20102180 DOI: 10.1021/bi901671d] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The truncated hemoglobins from Bacillus subtilis (Bs-trHb) and Thermobifida fusca (Tf-trHb) have been shown to form high-affinity complexes with hydrogen sulfide in their ferric state. The recombinant proteins, as extracted from Escherichia coli cells after overexpression, are indeed partially saturated with sulfide, and even highly purified samples still contain a small but significant amount of iron-bound sulfide. Thus, a complete thermodynamic and kinetic study has been undertaken by means of equilibrium and kinetic displacement experiments to assess the relevant sulfide binding parameters. The body of experimental data indicates that both proteins possess a high affinity for hydrogen sulfide (K = 5.0 x 10(6) and 2.8 x 10(6) M(-1) for Bs-trHb and Tf-trHb, respectively, at pH 7.0), though lower with respect to that reported previously for the sulfide avid Lucina pectinata I hemoglobins (2.9 x 10(8) M(-1)). From the kinetic point of view, the overall high affinity resides in the slow rate of sulfide release, attributed to hydrogen bonding stabilization of the bound ligand by distal residue WG8. A set of point mutants in which these residues have been replaced with Phe indicates that the WG8 residue represents the major kinetic barrier to the escape of the bound sulfide species. Accordingly, classical molecular dynamics simulations of SH(-)-bound ferric Tf-trHb show that WG8 plays a key role in the stabilization of coordinated SH(-) whereas the YCD1 and YB10 contributions are negligible. Interestingly, the triple Tf-trHb mutant bearing only Phe residues in the relevant B10, G8, and CD1 positions is endowed with a higher overall affinity for sulfide characterized by a very fast second-order rate constant and 2 order of magnitude faster kinetics of sulfide release with respect to the wild-type protein. Resonance Raman spectroscopy data indicate that the sulfide adducts are typical of a ferric iron low-spin derivative. In analogy with other low-spin ferric sulfide adducts, the strong band at 375 cm(-1) is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen sulfide is thought to have a possible physiological significance as H(2)S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis.
Collapse
Affiliation(s)
- Francesco P Nicoletti
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nieves-Marrero CA, Ruiz-Martínez CR, Estremera-Andújar RA, González-Ramírez LA, López-Garriga J, Gavira JA. Two-step counterdiffusion protocol for the crystallization of haemoglobin II from Lucina pectinata in the pH range 4-9. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:264-8. [PMID: 20208156 PMCID: PMC2833032 DOI: 10.1107/s1744309109053081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 12/09/2009] [Indexed: 11/11/2022]
Abstract
Lucina pectinata haemoglobin II (HbII) transports oxygen in the presence of H(2)S to the symbiotic system in this bivalve mollusc. The composition of the haem pocket at the distal site includes TyrB10 and GlnE7, which are very common in other haem proteins. Obtaining crystals of oxyHbII at various pH values is required in order to elucidate the changes in the conformations of TyrB10 and GlnE7 and structural scenarios induced by changes in pH. Here, the growth of crystals of oxyHbII using the capillary counterdiffusion (CCD) technique at various pH values using a two-step protocol is reported. In the first step, a mini-screen was used to validate sodium formate as the best precipitating reagent for the growth of oxyHbII crystals. The second step, a pH screen typically used for optimization, was used to produce crystals in the pH range 4-9. Very well faceted prismatic ruby-red crystals were obtained at all pH values. X-ray data sets were acquired using synchrotron radiation of wavelength 0.886 A (for the crystals obtained at pH 5) and 0.908 A (for those obtained at pH 4, 8 and 9) to maximum resolutions of 3.30, 1.95, 1.85 and 2.00 A for the crystals obtained at pH 4, 5, 8 and 9, respectively. All of the crystals were isomorphous and belonged to space group P4(2)2(1)2.
Collapse
Affiliation(s)
- Carlos A. Nieves-Marrero
- Chemistry Department, PO Box 9019, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, Puerto Rico
| | - Carlos R. Ruiz-Martínez
- Chemistry Department, PO Box 9019, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, Puerto Rico
| | - Rafael A. Estremera-Andújar
- Chemistry Department, PO Box 9019, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, Puerto Rico
| | - Luis A. González-Ramírez
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Edificio López Neyra, PTCS, Avenida del Conocimiento, s/n 18100 Armilla, Granada, Spain
| | - Juan López-Garriga
- Chemistry Department, PO Box 9019, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, Puerto Rico
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Edificio López Neyra, PTCS, Avenida del Conocimiento, s/n 18100 Armilla, Granada, Spain
| |
Collapse
|
38
|
Coats V, Schwintzer CR, Tjepkema JD. Truncated hemoglobins in Frankia CcI3: effects of nitrogen source, oxygen concentration, and nitric oxide. Can J Microbiol 2009; 55:867-73. [PMID: 19767859 DOI: 10.1139/w09-042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frankia strain CcI3 produces 2 truncated hemoglobins, HbN and HbO. Using ion-exchange chromatography, we characterized the expression of the relative amounts of HbN and HbO in -N (nitrogen-fixing) cultures and +N (nitrogen-supplemented) cultures. The -N cultures maintained an approximately constant ratio of HbO to HbN throughout the life of the culture, with HbO constituting 80%-85% of the total hemoglobin produced. In contrast, in +N cultures, HbN was observed to increase over time and HbO decreased. Total hemoglobin as a fraction of total protein was approximately constant throughout the growth phase in -N cultures, while it decreased somewhat in +N cultures. Subjecting -N cultures to a NO generator resulted in increased production of HbN, relative to the controls. Nitrite accumulated in +N cultures, but not in -N cultures. This suggests that the greater amount of HbN in +N cultures might be due to NO produced by the reduction of nitrite. The effects of O2 concentration were determined in +N cultures. Cultures grown in 1% O2 produced about 4 times more HbO than cultures grown in 20% O2. Overall, these results provide evidence for a role of HbN in NO oxidation and for a role of HbO in adaptation to low oxygen concentrations.
Collapse
Affiliation(s)
- Vanessa Coats
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469-5722, USA
| | | | | |
Collapse
|
39
|
Coghi P, Basilico N, Taramelli D, Chan WC, Haynes R, Monti D. Interaction of Artemisinins with Oxyhemoglobin Hb-FeII, Hb-FeII, CarboxyHb-FeII, Heme-FeII, and Carboxyheme FeII: Significance for Mode of Action and Implications for Therapy of Cerebral Malaria. ChemMedChem 2009; 4:2045-53. [DOI: 10.1002/cmdc.200900342] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Guallar V, Lu C, Borrelli K, Egawa T, Yeh SR. Ligand migration in the truncated hemoglobin-II from Mycobacterium tuberculosis: the role of G8 tryptophan. J Biol Chem 2008; 284:3106-3116. [PMID: 19019831 DOI: 10.1074/jbc.m806183200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resonance Raman studies show that the heme-bound CO in trHbO, a truncated-II hemoglobin from Mycobacterium tuberculosis, is exposed to an environment with a positive electrostatic potential. The mutation of Trp(G8), an absolutely conserved residue in group II and III truncated hemoglobins, to Phe introduces two new Fe-CO conformers, both of which exhibit reduced electrostatic potentials. Computer simulations reveal that the structural perturbation is a result of the increased flexibility of the Tyr(CD1) and Leu(E11) side chains due to the reduction of the size of the G8 residue. Laser flash photolysis studies show that the G8 mutation induces 1) the presence of two new geminate recombination phases, one with a rate faster than the time resolution of our instrument and the other with a rate 13-fold slower than that of the wild type protein, and 2) the reduction of the total geminate recombination yield from 86 to 62% and the increase in the bimolecular recombination rate by a factor of 530. Computer simulations uncover that the photodissociated ligand migrates between three distal temporary docking sites before it subsequently rebinds to the heme iron or ultimately escapes into the solvent via a hydrophobic tunnel. The calculated energy profiles associated with the ligand migration processes are in good agreement with the experimental observations. The results highlight the importance of the Trp(G8) in regulating ligand migration in trHbO, underscoring its pivotal role in the structural and functional properties of the group II and III truncated hemoglobins.
Collapse
Affiliation(s)
- Victor Guallar
- Catalan Institution for Research and Advanced Studies, Life Science Program, Barcelona Supercomputing Center, Edificio Nexus II, Barcelona 08028, Spain.
| | - Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Kenneth Borrelli
- Catalan Institution for Research and Advanced Studies, Life Science Program, Barcelona Supercomputing Center, Edificio Nexus II, Barcelona 08028, Spain
| | - Tsuyoshi Egawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
41
|
Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin. Biochem Biophys Res Commun 2008; 369:686-91. [DOI: 10.1016/j.bbrc.2008.02.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 11/18/2022]
|
42
|
Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions. Appl Environ Microbiol 2008; 74:3512-22. [PMID: 18390674 DOI: 10.1128/aem.02663-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The success of Mycobacterium tuberculosis as one of the dreaded human pathogens lies in its ability to utilize different defense mechanisms in response to the varied environmental challenges during the course of its intracellular infection, latency, and reactivation cycle. Truncated hemoglobins trHbN and trHbO are thought to play pivotal roles in the cellular metabolism of this organism during stress and hypoxia. To delineate the genetic regulation of the M. tuberculosis hemoglobins, transcriptional fusions of the promoters of the glbN and glbO genes with green fluorescent protein were constructed, and their responses were monitored in Mycobacterium smegmatis and M. tuberculosis H37Ra exposed to environmental stresses in vitro and in M. tuberculosis H37Ra after in vivo growth inside macrophages. The glbN promoter activity increased substantially during stationary phase and was nearly 3- to 3.5-fold higher than the activity of the glbO promoter, which remained more or less constant during different growth phases in M. smegmatis, as well as in M. tuberculosis H37Ra. In both mycobacterial hosts, the glbN promoter activity was induced 1.5- to 2-fold by the general nitrosative stress inducer, nitrite, as well as the NO releaser, sodium nitroprusside (SNP). The glbO promoter was more responsive to nitrite than to SNP, although the overall increase in its activity was much less than that of the glbN promoter. Additionally, the glbN promoter remained insensitive to the oxidative stress generated by H(2)O(2), but the glbO promoter activity increased nearly 1.5-fold under similar conditions, suggesting that the trHb gene promoters are regulated differently under nitrosative and oxidative stress conditions. In contrast, transition metal-induced hypoxia enhanced the activity of both the glbN and glbO promoters at all growth phases; the glbO promoter was induced approximately 2.3-fold, which was found to be the highest value for this promoter under all the conditions evaluated. Addition of iron along with nickel reversed the induction in both cases. Interestingly, a concentration-dependent decrease in the activity of both trHb gene promoters was observed when the levels of iron in the growth media were depleted by addition of an iron chelator. These results suggested that an iron/heme-containing oxygen sensor is involved in the modulation of the trHb gene promoter activities directly or indirectly in conjunction with other cellular factors. The modes of promoter regulation under different physiological conditions were found to be similar for the trHbs in both M. smegmatis and M. tuberculosis H37Ra, indicating that the promoters might be regulated by components that are common to the two systems. Confocal microscopy of THP-1 macrophages infected with M. tuberculosis carrying the trHb gene promoter fusions showed that there was a significant level of promoter activity during intracellular growth in macrophages. Time course evaluation of the promoter activity after various times up to 48 h by fluorescence-activated cell sorting analysis of the intracellular M. tuberculosis cells indicated that the glbN promoter was active at all time points assessed, whereas the activity of the glbO promoter remained at a steady-state level up to 24 h postinfection and increased approximately 2-fold after 48 h of infection. Thus, the overall regulation pattern of the M. tuberculosis trHb gene promoters correlates not only with the stresses that the tubercle bacillus is likely to encounter once it is in the macrophage environment but also with our current knowledge of their functions. The in vivo studies that demonstrated for the first time expression of trHbs during macrophage infection of M. tuberculosis strongly indicate that the hemoglobins are required, and thus important, during the intracellular phase of the bacterial cycle. The present study of transcriptional regulation of M. tuberculosis hemoglobins in vitro under various stress conditions and in vivo after macrophage infection supports the hypothesis that biosynthesis of both trHbs (trHbN and trHbO) in the native host is regulated via the environmental signals that the tubercle bacillus receives during macrophage infection and growth in its human host.
Collapse
|
43
|
Bolli A, Ciaccio C, Coletta M, Nardini M, Bolognesi M, Pesce A, Guertin M, Visca P, Ascenzi P. Ferrous Campylobacter jejuni truncated hemoglobin P displays an extremely high reactivity for cyanide - a comparative study. FEBS J 2008; 275:633-45. [DOI: 10.1111/j.1742-4658.2007.06223.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Lu C, Egawa T, Mukai M, Poole RK, Yeh SR. Hemoglobins from Mycobacterium tuberculosis and Campylobacter jejuni: A Comparative Study with Resonance Raman Spectroscopy. Methods Enzymol 2008; 437:255-86. [DOI: 10.1016/s0076-6879(07)37014-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Ascenzi P, Visca P. Scavenging of Reactive Nitrogen Species by Mycobacterial Truncated Hemoglobins. Methods Enzymol 2008; 436:317-37. [DOI: 10.1016/s0076-6879(08)36018-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Lu C, Mukai M, Lin Y, Wu G, Poole RK, Yeh SR. Structural and Functional Properties of a Single Domain Hemoglobin from the Food-borne Pathogen Campylobactor jejuni. J Biol Chem 2007; 282:25917-28. [PMID: 17606611 DOI: 10.1074/jbc.m704415200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni contains two globins, a truncated hemoglobin, Ctb, and a single domain hemoglobin, Cgb. The physiological function of Ctb remains unclear, whereas Cgb has been linked to NO detoxification. With resonance Raman scattering, the iron-histidine stretching mode of Cgb was identified at 251 cm(-1). This frequency is unusually high, suggesting an imidazolate character of the proximal histidine as a result of the H-bonding network linking the catalytic triad involving the F8His, H23Glu, and G5Tyr residues. In the CO-complex, two conformers were identified with the nuC-O/nuFe-CO at 529/1914 cm(-1) and 492/1963 cm(-1). The former is assigned to a "closed" conformation, in which the heme-bound CO is stabilized by the H-bond(s) donated from the B10Tyr-E7Gln residues, whereas the latter is assigned to an "open" conformer, in which the H-bonding interaction is absent. The presence of the two alternative conformations demonstrates the plasticity of the protein matrix. In the O2-complex, the iron-O2 stretching frequency was identified at 554 cm(-1), which is unusually low, indicating that the heme-bound O2 is stabilized by strong H-bond(s) donated by the B10Tyr-E7Gln residues. This scenario is consistent with its low O2 off-rate (0.87 s(-1)). Taken together the data suggest that the NO-detoxifying activity of Cgb is facilitated by the imidazolate character of the proximal F8His and the distal positive polar environment provided by the B10Tyr-E7Gln. They may offer electronic "push" and "pull," respectively, for the O-O bond cleavage reaction required for the isomerization of the presumed peroxynitrite intermediate to the product, nitrate.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
47
|
Chartier FJM, Couture M. Substrate-specific Interactions with the Heme-bound Oxygen Molecule of Nitric-oxide Synthase. J Biol Chem 2007; 282:20877-86. [PMID: 17537725 DOI: 10.1074/jbc.m701800200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the characterization by resonance Raman spectroscopy of the oxygenated complex (Fe(II)O(2)) of nitric-oxide synthases of Staphylococcus aureus (saNOS) and Bacillus subtilis (bsNOS) saturated with N(omega)-hydroxy-l-arginine. The frequencies of the nu(Fe-O) and nu(O-O) modes were 530 and 1135 cm(-), respectively, in both the presence and absence of tetrahydrobiopterin. On the basis of a comparison of these frequencies with those of saNOS and bsNOS saturated with l-arginine (nu(Fe-O) at 517 cm(-1) and nu(O-O) at 1123 cm(-1)) and those of substrate-free saNOS (nu(Fe-O) at 517 and nu(O-O) at 1135 cm(-1)) (Chartier, F. J. M., Blais, S. P., and Couture, M. (2006) J. Biol. Chem. 281, 9953-9962), we propose two models that account for the frequency shift of nu(Fe-O) (but not nu(O-O)) upon N(omega)-hydroxy-l-arginine binding as well as the frequency shift of nu(O-O) (but not nu(Fe-O)) upon l-arginine binding. The implications of these substrate-specific interactions with respect to catalysis by NOSs are discussed.
Collapse
Affiliation(s)
- François J M Chartier
- Département de Biochimie et de Microbiologie and the Centre de Recherche sur la Fonction, la Structure, et l'Ingénierie des Protéines, Université Laval, Quebec City, Quebec G1K 7P4, Canada
| | | |
Collapse
|
48
|
Ascenzi P, Bolognesi M, Visca P. NO dissociation represents the rate limiting step for O2-mediated oxidation of ferrous nitrosylated Mycobacterium leprae truncated hemoglobin O. Biochem Biophys Res Commun 2007; 357:809-14. [PMID: 17451651 DOI: 10.1016/j.bbrc.2007.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Mycobacterium leprae truncated hemoglobin O (trHbO) protects from nitrosative stress and sustains mycobacterial respiration. Here, kinetics of M. leprae trHbO(II)-NO denitrosylation and of O(2)-mediated oxidation of M. leprae trHbO(II)-NO are reported. Values of the first-order rate constant for *NO dissociation from M. leprae trHbO(II)-NO (k(off)) and of the first-order rate constant for O(2)-mediated oxidation of M. leprae trHbO(II)-NO (h) are 1.3 x 10(-4) s(-1) and 1.2 x 10(-4) s(-1), respectively. The coincidence of values of k(off) and h suggests that O(2)-mediated oxidation of M. leprae trHbO(II)-NO occurs with a reaction mechanism in which *NO, that is initially bound to heme(II), is displaced by O(2) but may stay trapped in a protein cavity(ies) close to heme(II). Next, M. leprae trHbO(II)-O(2) reacts with *NO giving the transient Fe(III)-OONO species preceding the formation of the final product M. leprae trHbO(III). *NO dissociation from heme(II)-NO represents the rate limiting step for O(2)-mediated oxidation of M. leprae trHbO(II)-NO.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | | |
Collapse
|
49
|
Lu C, Egawa T, Wainwright LM, Poole RK, Yeh SR. Structural and Functional Properties of a Truncated Hemoglobin from a Food-borne Pathogen Campylobacter jejuni. J Biol Chem 2007; 282:13627-36. [PMID: 17339325 DOI: 10.1074/jbc.m609397200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni contains two hemoglobins, Cgb and Ctb. Cgb has been suggested to perform an NO detoxification reaction to protect the bacterium against NO attack. On the other hand, the physiological function of Ctb, a class III truncated hemoglobin, remains unclear. By using CO as a structural probe, resonance Raman data show that the distal heme pocket of Ctb exhibits a positive electrostatic potential. In addition, two ligand-related vibrational modes, nu(Fe-O(2)) and nu(O-O), were identified in the oxy derivative, with frequencies at 542 and 1132 cm(-1), respectively, suggesting the presence of an intertwined H-bonding network surrounding the heme-bound ligand, which accounts for its unusually high oxygen affinity (222 microm(-1)). Mutagenesis studies of various distal mutants suggest that the heme-bound dioxygen is stabilized by H-bonds donated from the Tyr(B10) and Trp(G8) residues, which are highly conserved in the class III truncated hemoglobins; furthermore, an additional H-bond donated from the His(E7) to the Tyr(B10) further regulates these H-bonding interactions by restricting the conformational freedom of the phenolic side chain of the Tyr(B10). Taken together, the data suggest that it is the intricate balance of the H-bonding interactions that determines the unique ligand binding properties of Ctb. The extremely high oxygen affinity of Ctb makes it unlikely to function as an oxygen transporter; on the other hand, the distal heme environment of Ctb is surprisingly similar to that of cytochrome c peroxidase, suggesting a role of Ctb in performing a peroxidase or P450-type of oxygen chemistry.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
50
|
Ascenzi P, Bolognesi M, Milani M, Guertin M, Visca P. Mycobacterial truncated hemoglobins: from genes to functions. Gene 2007; 398:42-51. [PMID: 17532149 DOI: 10.1016/j.gene.2007.02.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Infections caused by bacteria belonging to genus Mycobacterium are among the most challenging threats for human health. The ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of effective detoxification mechanisms. Mycobacterial truncated hemoglobins (trHbs) have recently been implicated in scavenging of reactive nitrogen species. Individual members from each trHb family (N, O, and P) can be present in the same mycobacterial species. The distinct features of the heme active site structure combined with different ligand binding properties and in vivo expression patterns of mycobacterial trHbs suggest that these globins may accomplish diverse functions. Here, recent genomic, structural and biochemical information on mycobacterial trHbs is reviewed, with the aim of providing further insights into the role of these globins in mycobacterial physiology.
Collapse
Affiliation(s)
- Paolo Ascenzi
- National Institute for Infectious Diseases I.R.C.C.S. Lazzaro Spallanzani, Via Portuense 292, I-00149 Roma, Italy.
| | | | | | | | | |
Collapse
|