1
|
Peña-Guerrero J, Fernández-Rubio C, García-Sosa AT, Nguewa PA. BRCT Domains: Structure, Functions, and Implications in Disease-New Therapeutic Targets for Innovative Drug Discovery against Infections. Pharmaceutics 2023; 15:1839. [PMID: 37514027 PMCID: PMC10386641 DOI: 10.3390/pharmaceutics15071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new therapeutic targets and their implications in drug development remains an emerging scientific topic. BRCT-bearing proteins are found in Archaea, Bacteria, Eukarya, and viruses. They are traditionally involved in DNA repair, recombination, and cell cycle control. To carry out these functions, BRCT domains are able to interact with DNA and proteins. Moreover, such domains are also implicated in several pathogenic processes and malignancies including breast, ovarian, and lung cancer. Although these domains exhibit moderately conserved folding, their sequences show very low conservation. Interestingly, sequence variations among species are considered positive traits in the search for suitable therapeutic targets, since non-specific drug interactions might be reduced. These main characteristics of BRCT, as well as its critical implications in key biological processes in the cell, have prompted the study of these domains as therapeutic targets. This review explores the possible roles of BRCT domains as therapeutic targets for drug discovery. We describe their common structural features and relevant interactions and pathways, as well as their implications in pathologic processes. Drugs commonly used to target these domains are also presented. Finally, based on their structures, we describe new drug design possibilities using modern and innovative techniques.
Collapse
Affiliation(s)
- José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Alfonso T García-Sosa
- Chair of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Paul A Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| |
Collapse
|
2
|
Botto M, Murthy S, Lamers MH. High-Throughput Exonuclease Assay Based on the Fluorescent Base Analogue 2-Aminopurine. ACS OMEGA 2023; 8:8285-8292. [PMID: 36910963 PMCID: PMC9996622 DOI: 10.1021/acsomega.2c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Exonucleases are essential enzymes that remove nucleotides from free DNA ends during DNA replication, DNA repair, and telomere maintenance. Due to their essential role, they are potential targets for novel anticancer and antimicrobial drugs but have so far been little exploited. Here, we present a simple and versatile real-time exonuclease assay based on 2-aminopurine, an intrinsically fluorescent nucleotide that is quenched by neighboring bases when embedded in DNA. We show that our assay is applicable to different eukaryotic and bacterial exonucleases acting on both 3' and 5' DNA ends over a wide range of protein activities and suitable for a high-throughput inhibitor screening campaign. Using our assay, we discover a novel inhibitor of the Mycobacterium tuberculosis PHP-exonuclease that is part of the replicative DNA polymerase DnaE1. Hence, our novel assay will be a useful tool for high-throughput screening for novel exonuclease inhibitors that may interfere with DNA replication or DNA maintenance.
Collapse
|
3
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Paudel BP, Xu ZQ, Jergic S, Oakley AJ, Sharma N, Brown SHJ, Bouwer JC, Lewis PJ, Dixon NE, van Oijen AM, Ghodke H. Mechanism of transcription modulation by the transcription-repair coupling factor. Nucleic Acids Res 2022; 50:5688-5712. [PMID: 35641110 PMCID: PMC9177983 DOI: 10.1093/nar/gkac449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/27/2022] Open
Abstract
Elongation by RNA polymerase is dynamically modulated by accessory factors. The transcription-repair coupling factor (TRCF) recognizes paused/stalled RNAPs and either rescues transcription or initiates transcription termination. Precisely how TRCFs choose to execute either outcome remains unclear. With Escherichia coli as a model, we used single-molecule assays to study dynamic modulation of elongation by Mfd, the bacterial TRCF. We found that nucleotide-bound Mfd converts the elongation complex (EC) into a catalytically poised state, presenting the EC with an opportunity to restart transcription. After long-lived residence in this catalytically poised state, ATP hydrolysis by Mfd remodels the EC through an irreversible process leading to loss of the RNA transcript. Further, biophysical studies revealed that the motor domain of Mfd binds and partially melts DNA containing a template strand overhang. The results explain pathway choice determining the fate of the EC and provide a molecular mechanism for transcription modulation by TRCF.
Collapse
Affiliation(s)
- Bishnu P Paudel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Simon H J Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peter J Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,ARC Industrial Transformation Training Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Chen Y, Khazina E, Izaurralde E, Weichenrieder O. Crystal structure and functional properties of the human CCR4-CAF1 deadenylase complex. Nucleic Acids Res 2021; 49:6489-6510. [PMID: 34038562 PMCID: PMC8216464 DOI: 10.1093/nar/gkab414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/07/2023] Open
Abstract
The CCR4 and CAF1 deadenylases physically interact to form the CCR4-CAF1 complex and function as the catalytic core of the larger CCR4-NOT complex. Together, they are responsible for the eventual removal of the 3′-poly(A) tail from essentially all cellular mRNAs and consequently play a central role in the posttranscriptional regulation of gene expression. The individual properties of CCR4 and CAF1, however, and their respective contributions in different organisms and cellular environments are incompletely understood. Here, we determined the crystal structure of a human CCR4-CAF1 complex and characterized its enzymatic and substrate recognition properties. The structure reveals specific molecular details affecting RNA binding and hydrolysis, and confirms the CCR4 nuclease domain to be tethered flexibly with a considerable distance between both enzyme active sites. CCR4 and CAF1 sense nucleotide identity on both sides of the 3′-terminal phosphate, efficiently differentiating between single and consecutive non-A residues. In comparison to CCR4, CAF1 emerges as a surprisingly tunable enzyme, highly sensitive to pH, magnesium and zinc ions, and possibly allowing distinct reaction geometries. Our results support a picture of CAF1 as a primordial deadenylase, which gets assisted by CCR4 for better efficiency and by the assembled NOT proteins for selective mRNA targeting and regulation.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
6
|
Novel Antibiotics Targeting Bacterial Replicative DNA Polymerases. Antibiotics (Basel) 2020; 9:antibiotics9110776. [PMID: 33158178 PMCID: PMC7694242 DOI: 10.3390/antibiotics9110776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance is a worldwide problem that is an increasing threat to global health. Therefore, the development of new antibiotics that inhibit novel targets is of great urgency. Some of the most successful antibiotics inhibit RNA transcription, RNA translation, and DNA replication. Transcription and translation are inhibited by directly targeting the RNA polymerase or ribosome, respectively. DNA replication, in contrast, is inhibited indirectly through targeting of DNA gyrases, and there are currently no antibiotics that inhibit DNA replication by directly targeting the replisome. This contrasts with antiviral therapies where the viral replicases are extensively targeted. In the last two decades there has been a steady increase in the number of compounds that target the bacterial replisome. In particular a variety of inhibitors of the bacterial replicative polymerases PolC and DnaE have been described, with one of the DNA polymerase inhibitors entering clinical trials for the first time. In this review we will discuss past and current work on inhibition of DNA replication, and the potential of bacterial DNA polymerase inhibitors in particular as attractive targets for a new generation of antibiotics.
Collapse
|
7
|
Dodd T, Botto M, Paul F, Fernandez-Leiro R, Lamers MH, Ivanov I. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nat Commun 2020; 11:5379. [PMID: 33097731 PMCID: PMC7584608 DOI: 10.1038/s41467-020-19165-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3'-5' exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states of E. coli replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.
Collapse
Affiliation(s)
- Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Margherita Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabian Paul
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Trobo-Maseda L, H Orrego A, Guisan JM, Rocha-Martin J. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. Int J Biol Macromol 2020; 157:510-521. [PMID: 32344088 DOI: 10.1016/j.ijbiomac.2020.04.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023]
Abstract
Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-β-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 2020; 579:141-145. [PMID: 32076262 DOI: 10.1038/s41586-020-2018-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 01/08/2023]
Abstract
CRISPR-Cas immunity protects prokaryotes against invading genetic elements1. It uses the highly conserved Cas1-Cas2 complex to establish inheritable memory (spacers)2-5. How Cas1-Cas2 acquires spacers from foreign DNA fragments (prespacers) and integrates them into the CRISPR locus in the correct orientation is unclear6,7. Here, using the high spatiotemporal resolution of single-molecule fluorescence, we show that Cas1-Cas2 selects precursors of prespacers from DNA in various forms-including single-stranded DNA and partial duplexes-in a manner that depends on both the length of the DNA strand and the presence of a protospacer adjacent motif (PAM) sequence. We also identify DnaQ exonucleases as enzymes that process the Cas1-Cas2-loaded prespacer precursors into mature prespacers of a suitable size for integration. Cas1-Cas2 protects the PAM sequence from maturation, which results in the production of asymmetrically trimmed prespacers and the subsequent integration of spacers in the correct orientation. Our results demonstrate the kinetic coordination of prespacer precursor selection and PAM trimming, providing insight into the mechanisms that underlie the integration of functional spacers in the CRISPR loci.
Collapse
|
10
|
A Novel Alkaline Phosphatase/Phosphodiesterase, CamPhoD, from Marine Bacterium Cobetia amphilecti KMM 296. Mar Drugs 2019; 17:md17120657. [PMID: 31766749 PMCID: PMC6950083 DOI: 10.3390/md17120657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
A novel extracellular alkaline phosphatase/phosphodiesterase from the structural protein family PhoD that encoded by the genome sequence of the marine bacterium Cobetia amphilecti KMM 296 (CamPhoD) has been expressed in Escherichia coli cells. The calculated molecular weight, the number of amino acids, and the isoelectric point (pI) of the mature protein’s subunit are equal to 54832.98 Da, 492, and 5.08, respectively. The salt-tolerant, bimetal-dependent enzyme CamPhoD has a molecular weight of approximately 110 kDa in its native state. CamPhoD is activated by Co2+, Mg2+, Ca2+, or Fe3+ at a concentration of 2 mM and exhibits maximum activity in the presence of both Co2+ and Fe3+ ions in the incubation medium at pH 9.2. The exogenous ions, such as Zn2+, Cu2+, and Mn2+, as well as chelating agents EDTA and EGTA, do not have an appreciable effect on the CamPhoD activity. The temperature optimum for the CamPhoD activity is 45 °C. The enzyme catalyzes the cleavage of phosphate mono- and diester bonds in nucleotides, releasing inorganic phosphorus from p-nitrophenyl phosphate (pNPP) and guanosine 5′-triphosphate (GTP), as determined by the Chen method, with rate approximately 150- and 250-fold higher than those of bis-pNPP and 5′-pNP-TMP, respectively. The Michaelis–Menten constant (Km), Vmax, and efficiency (kcat/Km) of CamPhoD were 4.2 mM, 0.203 mM/min, and 7988.6 S−1/mM; and 6.71 mM, 0.023 mM/min, and 1133.0 S−1/mM for pNPP and bis-pNPP as the chromogenic substrates, respectively. Among the 3D structures currently available, in this study we found only the low identical structure of the Bacillus subtilis enzyme as a homologous template for modeling CamPhoD, with a new architecture of the phosphatase active site containing Fe3+ and two Ca2+ ions. It is evident that the marine bacterial phosphatase/phosphidiesterase CamPhoD is a new structural member of the PhoD family.
Collapse
|
11
|
Foster BM, Rosenberg D, Salvo H, Stephens KL, Bintz BJ, Hammel M, Ellenberger T, Gainey MD, Wallen JR. Combined Solution and Crystal Methods Reveal the Electrostatic Tethers That Provide a Flexible Platform for Replication Activities in the Bacteriophage T7 Replisome. Biochemistry 2019; 58:4466-4479. [PMID: 31659895 DOI: 10.1021/acs.biochem.9b00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent structural studies of the bacteriophage T7 DNA replication system have shed light on how multiple proteins assemble to copy two antiparallel DNA strands. In T7, acidic C-terminal tails of both the primase-helicase and single-stranded DNA binding protein bind to two basic patches on the DNA polymerase to aid in replisome assembly, processivity, and coordinated DNA synthesis. Although these electrostatic interactions are essential for DNA replication, the molecular details for how these tails bind the polymerase are unknown. We have determined an X-ray crystal structure of the T7 DNA polymerase bound to both a primer/template DNA and a peptide that mimics the C-terminal tail of the primase-helicase. The structure reveals that the essential C-terminal phenylalanine of the tail binds to a hydrophobic pocket that is surrounded by positive charge on the surface of the polymerase. We show that alterations of polymerase residues that engage the tail lead to defects in viral replication. In the structure, we also observe dTTP bound in the exonuclease active site and stacked against tryptophan 160. Using both primer/extension assays and high-throughput sequencing, we show how mutations in the exonuclease active site lead to defects in mismatch repair and an increase in the level of mutagenesis of the T7 genome. Finally, using small-angle X-ray scattering, we provide the first solution structures of a complex between the single-stranded DNA binding protein and the DNA polymerase and show how a single-stranded DNA binding protein dimer engages both one and two copies of DNA polymerase.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Daniel Rosenberg
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Graduate Group in Biophysics , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Henry Salvo
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Kasie L Stephens
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Brittania J Bintz
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Maria D Gainey
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| | - Jamie R Wallen
- Department of Chemistry & Physics , Western Carolina University , Cullowhee , North Carolina 28723 , United States
| |
Collapse
|
12
|
Piotrowski Y, Berg K, Klebl DP, Leiros I, Larsen AN. Characterization of an intertidal zone metagenome oligoribonuclease and the role of the intermolecular disulfide bond for homodimer formation and nuclease activity. FEBS Open Bio 2019; 9:1674-1688. [PMID: 31420950 PMCID: PMC6768110 DOI: 10.1002/2211-5463.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/05/2022] Open
Abstract
The gene encoding MG Orn has been identified from a metagenomic library created from the intertidal zone in Svalbard and encodes a protein of 184 amino acid residues. The mg orn gene has been cloned, recombinantly expressed in Escherichia coli, and purified to homogeneity. Biochemical characterization of the enzyme showed that it efficiently degrades short RNA oligonucleotide substrates of 2mer to 10mer of length and has an absolute requirement for divalent cations for optimal activity. The enzyme is more heat‐labile than its counterpart from E. coli and exists as a homodimer in solution. The crystal structure of the enzyme has been determined to a resolution of 3.15 Å, indicating an important role of a disulfide bridge for the homodimer formation and as such for the function of MG Orn. Substitution of the Cys110 residue with either Gly or Ala hampered the dimer formation and severely affected the enzyme's ability to act on RNA. A conserved loop containing His128‐Tyr129‐Arg130 in the neighboring monomer is probably involved in efficient binding and processing of longer RNA substrates than diribonucleotides.
Collapse
Affiliation(s)
- Yvonne Piotrowski
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kristel Berg
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - David Paul Klebl
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingar Leiros
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Atle Noralf Larsen
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Lee CW, Park SH, Jeong CS, Cha SS, Park H, Lee JH. Structural basis of small RNA hydrolysis by oligoribonuclease (CpsORN) from Colwellia psychrerythraea strain 34H. Sci Rep 2019; 9:2649. [PMID: 30804410 PMCID: PMC6390093 DOI: 10.1038/s41598-019-39641-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Cells regulate their intracellular mRNA levels by using specific ribonucleases. Oligoribonuclease (ORN) is a 3'-5' exoribonuclease for small RNA molecules, important in RNA degradation and re-utilisation. However, there is no structural information on the ligand-binding form of ORNs. In this study, the crystal structures of oligoribonuclease from Colwellia psychrerythraea strain 34H (CpsORN) were determined in four different forms: unliganded-structure, thymidine 5'-monophosphate p-nitrophenyl ester (pNP-TMP)-bound, two separated uridine-bound, and two linked uridine (U-U)-bound forms. The crystal structures show that CpsORN is a tight dimer, with two separated active sites and one divalent metal cation ion in each active site. These structures represent several snapshots of the enzymatic reaction process, which allowed us to suggest a possible one-metal-dependent reaction mechanism for CpsORN. Moreover, the biochemical data support our suggested mechanism and identified the key residues responsible for enzymatic catalysis of CpsORN.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Chang-Sook Jeong
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
14
|
Park J, Jergic S, Jeon Y, Cho WK, Lee R, Dixon NE, Lee JB. Dynamics of Proofreading by the E. coli Pol III Replicase. Cell Chem Biol 2017; 25:57-66.e4. [PMID: 29104063 DOI: 10.1016/j.chembiol.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/09/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023]
Abstract
The αɛθ core of Escherichia coli DNA polymerase III (Pol III) associates with the β2 sliding clamp to processively synthesize DNA and remove misincorporated nucleotides. The α subunit is the polymerase while ɛ is the 3' to 5' proofreading exonuclease. In contrast to the polymerase activity of Pol III, dynamic features of proofreading are poorly understood. We used single-molecule assays to determine the excision rate and processivity of the β2-associated Pol III core, and observed that both properties are enhanced by mutational strengthening of the interaction between ɛ and β2. Thus, the ɛ-β2 contact is maintained in both the synthesis and proofreading modes. Remarkably, single-molecule real-time fluorescence imaging revealed the dynamics of transfer of primer-template DNA between the polymerase and proofreading sites, showing that it does not involve breaking of the physical interaction between ɛ and β2.
Collapse
Affiliation(s)
- Jonghyun Park
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Yongmoon Jeon
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Won-Ki Cho
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong & Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 37673, Korea; School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea.
| |
Collapse
|
15
|
Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017; 30:1922-1935. [PMID: 28877429 PMCID: PMC5696005 DOI: 10.1021/acs.chemrestox.7b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Genetic information is vital in the
cell cycle of DNA-based organisms.
DNA polymerases (DNA Pols) are crucial players in transactions dealing
with these processes. Therefore, the detailed understanding of the
structure, function, and mechanism of these proteins has been the
focus of significant effort. Computational simulations have been applied
to investigate various facets of DNA polymerase structure and function.
These simulations have provided significant insights over the years.
This perspective presents the results of various computational studies
that have been employed to research different aspects of DNA polymerases
including detailed reaction mechanism investigation, mutagenicity
of different metal cations, possible factors for fidelity synthesis,
and discovery/functional characterization of cancer-related mutations
on DNA polymerases.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
16
|
Naufer MN, Murison DA, Rouzina I, Beuning PJ, Williams MC. Single-molecule mechanochemical characterization of E. coli pol III core catalytic activity. Protein Sci 2017; 26:1413-1426. [PMID: 28263430 PMCID: PMC5477539 DOI: 10.1002/pro.3152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Pol III core is the three‐subunit subassembly of the E. coli replicative DNA polymerase III holoenzyme. It contains the catalytic polymerase subunit α, the 3′ → 5′ proofreading exonuclease ε, and a subunit of unknown function, θ. We employ optical tweezers to characterize pol III core activity on a single DNA substrate. We observe polymerization at applied template forces F < 25 pN and exonucleolysis at F > 30 pN. Both polymerization and exonucleolysis occur as a series of short bursts separated by pauses. For polymerization, the initiation rate after pausing is independent of force. In contrast, the exonucleolysis initiation rate depends strongly on force. The measured force and concentration dependence of exonucleolysis initiation fits well to a two‐step reaction scheme in which pol III core binds bimolecularly to the primer‐template junction, then converts at rate k2 into an exo‐competent conformation. Fits to the force dependence of kinit show that exo initiation requires fluctuational opening of two base pairs, in agreement with temperature‐ and mismatch‐dependent bulk biochemical assays. Taken together, our results support a model in which the pol and exo activities of pol III core are effectively independent, and in which recognition of the 3′ end of the primer by either α or ε is governed by the primer stability. Thus, binding to an unstable primer is the primary mechanism for mismatch recognition during proofreading, rather than an alternative model of duplex defect recognition.
Collapse
Affiliation(s)
- M Nabuan Naufer
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| | - David A Murison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, 43210
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
17
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
18
|
Lapenta F, Montón Silva A, Brandimarti R, Lanzi M, Gratani FL, Vellosillo Gonzalez P, Perticarari S, Hochkoeppler A. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication. PLoS One 2016; 11:e0152915. [PMID: 27050298 PMCID: PMC4822814 DOI: 10.1371/journal.pone.0152915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.
Collapse
Affiliation(s)
- Fabio Lapenta
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Montón Silva
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Renato Brandimarti
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Massimiliano Lanzi
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Fabio Lino Gratani
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | | | - Sofia Perticarari
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
19
|
Gu S, Li W, Zhang H, Fleming J, Yang W, Wang S, Wei W, Zhou J, Zhu G, Deng J, Hou J, Zhou Y, Lin S, Zhang XE, Bi L. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity. Sci Rep 2016; 6:18418. [PMID: 26822057 PMCID: PMC4731781 DOI: 10.1038/srep18418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb.
Collapse
Affiliation(s)
- Shoujin Gu
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Joy Fleming
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqiang Yang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Wei
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhou
- The Fourth People's Hospital, Foshan 528000, China
| | - Guofeng Zhu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Hou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiqiang Lin
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-En Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Bi
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Kath JE, Chang S, Scotland MK, Wilbertz JH, Jergic S, Dixon NE, Sutton MD, Loparo JJ. Exchange between Escherichia coli polymerases II and III on a processivity clamp. Nucleic Acids Res 2015; 44:1681-90. [PMID: 26657641 PMCID: PMC4770218 DOI: 10.1093/nar/gkv1375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.
Collapse
Affiliation(s)
- James E Kath
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle K Scotland
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Johannes H Wilbertz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Slobodan Jergic
- Centre for Medical & Molecular Bioscience, Illawarra Health & Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Centre for Medical & Molecular Bioscience, Illawarra Health & Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| | - Mark D Sutton
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14214, USA Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14214, USA Genetics, Genomics and Bioinformatics Program, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
A Genetic Selection for dinB Mutants Reveals an Interaction between DNA Polymerase IV and the Replicative Polymerase That Is Required for Translesion Synthesis. PLoS Genet 2015; 11:e1005507. [PMID: 26352807 PMCID: PMC4564189 DOI: 10.1371/journal.pgen.1005507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis (TLS) by specialized DNA polymerases (Pols) is a conserved mechanism for tolerating replication blocking DNA lesions. The actions of TLS Pols are managed in part by ring-shaped sliding clamp proteins. In addition to catalyzing TLS, altered expression of TLS Pols impedes cellular growth. The goal of this study was to define the relationship between the physiological function of Escherichia coli Pol IV in TLS and its ability to impede growth when overproduced. To this end, 13 novel Pol IV mutants were identified that failed to impede growth. Subsequent analysis of these mutants suggest that overproduced levels of Pol IV inhibit E. coli growth by gaining inappropriate access to the replication fork via a Pol III-Pol IV switch that is mechanistically similar to that used under physiological conditions to coordinate Pol IV-catalyzed TLS with Pol III-catalyzed replication. Detailed analysis of one mutant, Pol IV-T120P, and two previously described Pol IV mutants impaired for interaction with either the rim (Pol IVR) or the cleft (Pol IVC) of the β sliding clamp revealed novel insights into the mechanism of the Pol III-Pol IV switch. Specifically, Pol IV-T120P retained complete catalytic activity in vitro but, like Pol IVR and Pol IVC, failed to support Pol IV TLS function in vivo. Notably, the T120P mutation abrogated a biochemical interaction of Pol IV with Pol III that was required for Pol III-Pol IV switching. Taken together, these results support a model in which Pol III-Pol IV switching involves interaction of Pol IV with Pol III, as well as the β clamp rim and cleft. Moreover, they provide strong support for the view that Pol III-Pol IV switching represents a vitally important mechanism for regulating TLS in vivo by managing access of Pol IV to the DNA. Bacterial DNA polymerase IV (Pol IV) is capable of replicating damaged DNA via a process termed translesion DNA synthesis (TLS). Pol IV-mediated TLS can be accurate or error-prone, depending on the type of DNA damage. Errors made by Pol IV contribute to antibiotic resistance and adaptation of bacterial pathogens. In addition to catalyzing TLS, overproduction of Escherichia coli Pol IV impedes growth. In the current work, we demonstrate that both of these functions rely on the ability of Pol IV to bind the β sliding processivity clamp and switch places on DNA with the replicative Pol, Pol III. This switch requires that Pol IV contact both Pol III as well as two discrete sites on the β clamp protein. Taken together, these results provide a deeper understanding of how E. coli manages the actions of Pol III and Pol IV to coordinate high fidelity replication with potentially error-prone TLS.
Collapse
|
22
|
Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Proc Natl Acad Sci U S A 2015. [PMID: 26195759 DOI: 10.1073/pnas.1504926112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.
Collapse
|
23
|
Montón Silva A, Lapenta F, Stefan A, Dal Piaz F, Ceccarelli A, Perrone A, Hochkoeppler A. Simultaneous ternary extension of DNA catalyzed by a trimeric replicase assembled in vivo. Biochem Biophys Res Commun 2015; 462:14-20. [PMID: 25918025 DOI: 10.1016/j.bbrc.2015.04.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
According to current models, dimeric DNA Polymerases coordinate the replication of DNA leading and lagging strands. However, it was recently shown that trimeric DNA Polymerases, assembled in vitro, replicate the lagging strand more efficiently than dimeric replicases. Here we show that the τ, α, ε, and θ subunits of Escherichia coli DNA Polymerase III can be assembled in vivo, yielding the trimeric τ3α3ε3θ3 complex. Further, we propose a molecular model of this complex, whose catalytic action was investigated using model DNA substrates. Our observations indicate that trimeric DNA replicases reduce the gap between leading and lagging strand synthesis.
Collapse
Affiliation(s)
- Alejandro Montón Silva
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Fabio Lapenta
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Alessandro Ceccarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alessandro Perrone
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy; CSGI, University of Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
24
|
Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity. J Virol 2015; 89:6418-26. [PMID: 25855750 DOI: 10.1128/jvi.00110-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/02/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Coronaviruses (CoVs) are unique in encoding a 3'→5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication, likely via proofreading. nsp14 associates with the CoV RNA-dependent RNA polymerase (nsp12-RdRp), and nsp14-ExoN activity is enhanced by binding nsp10, a small nonenzymatic protein. However, it is not known whether nsp10 functions in the regulation of CoV replication fidelity. To test this, we engineered single and double alanine substitution mutations into the genome of murine hepatitis virus (MHV-A59) containing ExoN activity [ExoN(+)] at positions within nsp10 known to disrupt the nsp10-nsp14 interaction in vitro. We show that an nsp10 mutant, R80A/E82A-ExoN(+), was five to ten times more sensitive to treatment with the RNA mutagen 5-fluorouracil (5-FU) than wild-type (WT)-ExoN(+), suggestive of decreased replication fidelity. This decreased-fidelity phenotype was confirmed using two additional nucleoside analogs, 5-azacytidine and ribavirin. R80A/E82A-ExoN(+) reached a peak titer similar to and demonstrated RNA synthesis kinetics comparable to those seen with WT-ExoN(+). No change in 5-FU sensitivity was observed for R80A/E82A-ExoN(-) relative to MHV-ExoN(-), indicating that the decreased-fidelity phenotype of R80A/E82A-ExoN(-) is linked to the presence of ExoN activity. Our results demonstrate that nsp10 is important for CoV replication fidelity and support the hypothesis that nsp10 functions to regulate nsp14-ExoN activity during virus replication. IMPORTANCE The adaptive capacity of CoVs, as well as all other RNA viruses, is partially attributed to the presence of extensive population genetic diversity. However, decreased fidelity is detrimental to CoV replication and virulence; mutant CoVs with decreased replication fidelity are attenuated and more sensitive to inhibition by RNA mutagens. Thus, identifying the viral protein determinants of CoV fidelity is important for understanding CoV replication, pathogenesis, and virulence. In this report, we show that nsp10, a small, nonenzymatic viral protein, contributes to CoV replication fidelity. Our data support the hypothesis that CoVs have evolved multiple proteins, in addition to nsp14-ExoN, that are responsible for maintaining the integrity of the largest known RNA genomes.
Collapse
|
25
|
Stefan A, Ceccarelli A, Conte E, Montón Silva A, Hochkoeppler A. The multifaceted benefits of protein co-expression in Escherichia coli. J Vis Exp 2015. [PMID: 25742393 DOI: 10.3791/52431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We report here that the expression of protein complexes in vivo in Escherichia coli can be more convenient than traditional reconstitution experiments in vitro. In particular, we show that the poor solubility of Escherichia coli DNA polymerase III ε subunit (featuring 3'-5' exonuclease activity) is highly improved when the same protein is co-expressed with the α and θ subunits (featuring DNA polymerase activity and stabilizing ε, respectively). We also show that protein co-expression in E. coli can be used to efficiently test the competence of subunits from different bacterial species to associate in a functional protein complex. We indeed show that the α subunit of Deinococcus radiodurans DNA polymerase III can be co-expressed in vivo with the ε subunit of E. coli. In addition, we report on the use of protein co-expression to modulate mutation frequency in E. coli. By expressing the wild-type ε subunit under the control of the araBAD promoter (arabinose-inducible), and co-expressing the mutagenic D12A variant of the same protein, under the control of the lac promoter (inducible by isopropyl-thio-β-D-galactopyranoside, IPTG), we were able to alter the E. coli mutation frequency using appropriate concentrations of the inducers arabinose and IPTG. Finally, we discuss recent advances and future challenges of protein co-expression in E. coli.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna; CSGI, Department of Chemistry, University of Firenze
| | | | - Emanuele Conte
- Department of Pharmacy and Biotechnology, University of Bologna
| | | | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna; CSGI, Department of Chemistry, University of Firenze;
| |
Collapse
|
26
|
Evidence for moonlighting functions of the θ subunit of Escherichia coli DNA polymerase III. J Bacteriol 2013; 196:1102-12. [PMID: 24375106 DOI: 10.1128/jb.01448-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex.
Collapse
|
27
|
Barros T, Guenther J, Kelch B, Anaya J, Prabhakar A, O'Donnell M, Kuriyan J, Lamers MH. A structural role for the PHP domain in E. coli DNA polymerase III. BMC STRUCTURAL BIOLOGY 2013; 13:8. [PMID: 23672456 PMCID: PMC3666897 DOI: 10.1186/1472-6807-13-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/07/2013] [Indexed: 12/05/2022]
Abstract
Background In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Results Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. Conclusions While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.
Collapse
Affiliation(s)
- Tiago Barros
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M, Oakley AJ, Otting G, Huber T, Dixon NE. Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, epsilon, θ and β reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Res 2013; 41:5354-67. [PMID: 23580545 PMCID: PMC3664792 DOI: 10.1093/nar/gkt162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022] Open
Abstract
A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data.
Collapse
Affiliation(s)
- Kiyoshi Ozawa
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nicholas P. Horan
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Andrew Robinson
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Hiromasa Yagi
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Flynn R. Hill
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Slobodan Jergic
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Zhi-Qiang Xu
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Karin V. Loscha
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nan Li
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Moeava Tehei
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Aaron J. Oakley
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Gottfried Otting
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Thomas Huber
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nicholas E. Dixon
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia and Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
29
|
Standish AJ, Salim AA, Capon RJ, Morona R. Dual inhibition of DNA polymerase PolC and protein tyrosine phosphatase CpsB uncovers a novel antibiotic target. Biochem Biophys Res Commun 2012. [PMID: 23194664 DOI: 10.1016/j.bbrc.2012.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increasing antibiotic resistance is making the identification of novel antimicrobial targets critical. Recently, we discovered an inhibitor of protein tyrosine phosphatase CpsB, fascioquinol E (FQE), which unexpectedly inhibited the growth of Gram-positive pathogens. CpsB is a member of the polymerase and histidinol phosphate phosphatase (PHP) domain family. Another member of this family found in a variety of Gram-positive pathogens is DNA polymerase PolC. We purified the PHP domain from PolC (PolC(PHP)), and showed that this competes away FQE inhibition of CpsB phosphatase activity. Furthermore, we showed that this domain hydrolyses the 5'-p-nitrophenyl ester of thymidine-5'-monophosphate (pNP-TMP), which has been used as a measure of exonuclease activity. Finally, we showed that FQE not only inhibits the phosphatase activity of CpsB, but also ability of PolC(PHP) to catalyse the hydrolysis of pNP-TMP. This suggests that PolC may be the essential target of FQE, and that the PHP domain may represent an as yet untapped target for the development of novel antibiotics.
Collapse
Affiliation(s)
- Alistair J Standish
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
30
|
Continuous enzyme-coupled assay of phosphate- or pyrophosphate-releasing enzymes. Biotechniques 2012; 53:99-103. [DOI: 10.2144/000113905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/28/2012] [Indexed: 11/23/2022] Open
Abstract
A coupled enzyme assay able to monitor the kinetics of reactions catalyzed by phosphate- or pyrophosphate-releasing enzymes is presented here. The assay is based on the concerted action of inorganic pyrophosphatase (PPase), purine nucleoside phosphorylase (PNPase), and xanthine oxidase (XOD). In the presence of phosphate, PNPase catalyzes the phosphorolysis of inosine, generating hypoxanthine, which is oxidized to uric acid by XOD. The uric acid accordingly formed can be spectrophotometrically monitored at 293 nm, taking advantage of a molar extinction coefficient which is independent of pH between 6 and 9. The coupled assay was tested using DNA polymerases as a model system. The activity of Klenow enzyme was quantitatively determined, and it was found in agreement with the corresponding activity determined by traditional methods. Moreover, the continuous coupled assay was used to determine Km and Vmax of Klenow enzyme, yielding values in good agreement with previous observations. Finally, the coupled assay was also used to determine the activity of partially purified DNA polymerases, revealing its potential use to monitor purification of phosphate- or pyrophosphate-releasing enzymes.
Collapse
|
31
|
Kato K, Nishimasu H, Mihara E, Ishitani R, Takagi J, Aoki J, Nureki O. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of Enpp1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:778-82. [PMID: 22750863 PMCID: PMC3388920 DOI: 10.1107/s1744309112019306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
Enpp1 is an extracellular membrane-bound glycoprotein that regulates bone mineralization by hydrolyzing ATP to generate pyrophosphate. The extracellular region of mouse Enpp1 was expressed in HEK293S GnT1(-) cells, purified using the TARGET tag/P20.1-Sepharose system and crystallized. An X-ray diffraction data set was collected to 3.0 Å resolution. The crystal belonged to space group P3(1), with unit-cell parameters a = b = 105.3, c = 173.7 Å. A single-wavelength anomalous dispersion (SAD) data set was also collected to 2.7 Å resolution using a selenomethionine-labelled crystal. The experimental phases determined by the SAD method produced an interpretable electron-density map.
Collapse
Affiliation(s)
- Kazuki Kato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Nishimasu
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emiko Mihara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuichiro Ishitani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Conte E, Vincelli G, Schaaper RM, Bressanin D, Stefan A, Dal Piaz F, Hochkoeppler A. Stabilization of the Escherichia coli DNA polymerase III ε subunit by the θ subunit favors in vivo assembly of the Pol III catalytic core. Arch Biochem Biophys 2012; 523:135-43. [PMID: 22546509 DOI: 10.1016/j.abb.2012.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 10/28/2022]
Abstract
Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α (polymerase), ε (3'-5' exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation.
Collapse
Affiliation(s)
- Emanuele Conte
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Moreau MJJ, Morin I, Askin SP, Cooper A, Moreland NJ, Vasudevan SG, Schaeffer PM. Rapid determination of protein stability and ligand binding by differential scanning fluorimetry of GFP-tagged proteins. RSC Adv 2012. [DOI: 10.1039/c2ra22368f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
34
|
pGOODs: new plasmids for the co-expression of proteins in Escherichia coli. Biotechnol Lett 2011; 33:1815-21. [DOI: 10.1007/s10529-011-0624-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
35
|
Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2011; 405:272-7. [DOI: 10.1016/j.bbrc.2011.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
|
36
|
Batra J, Xu K, Qin S, Zhou HX. Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys J 2009; 97:906-11. [PMID: 19651049 DOI: 10.1016/j.bpj.2009.05.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 11/15/2022] Open
Abstract
Macromolecular crowding has long been known to significantly affect protein oligomerization, and yet no direct quantitative measurements appear to have been made of its effects on the binding free energy of the elemental step of adding a single subunit. Here, we report the effects of two crowding agents on the binding free energy of two subunits in the Escherichia coli polymerase III holoenzyme. The crowding agents are found, paradoxically, to have only a modest stabilizing effect, of the order of 1 kcal/mol, on the binding of the two subunits. Systematic variations in the level of stabilization with crowder size are nevertheless observed. The data are consistent with theoretical predictions based on atomistic modeling of excluded-volume interactions with crowders. We reconcile the apparent paradox presented by our data by noting that the modest effects of crowding on elemental binding steps are cumulative, and thus lead to substantial stabilization of higher oligomers. Correspondingly, the effects of small variations in the level of crowding during the lifetime of a cell may be magnified, suggesting that crowding may play a role in increased susceptibility to protein aggregation-related diseases with aging.
Collapse
Affiliation(s)
- Jyotica Batra
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | | | | | | |
Collapse
|
37
|
Proteolysis of the proofreading subunit controls the assembly of Escherichia coli DNA polymerase III catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1606-15. [PMID: 19635595 DOI: 10.1016/j.bbapap.2009.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/28/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
Abstract
The C-terminal region of the proofreading subunit (epsilon) of Escherichia coli DNA polymerase III is shown here to be labile and to contain the residues (identified between F187 and R213) responsible for association with the polymerase subunit (alpha). We also identify two alpha-helices of the polymerase subunit (comprising the residues E311-M335 and G339-D353, respectively) as the determinants of binding to epsilon. The C-terminal region of epsilon is degraded by the ClpP protease assisted by the GroL molecular chaperone, while other factors control the overall concentration in vivo of epsilon. Among these factors, the chaperone DnaK is of primary importance for preserving the integrity of epsilon. Remarkably, inactivation of DnaK confers to Escherichia coli inviable phenotype at 42 degrees C, and viability can be restored over-expressing epsilon. Altogether, our observations indicate that the association between epsilon and alpha subunits of DNA polymerase III depends on small portions of both proteins, the association of which is controlled by proteolysis of epsilon. Accordingly, the factors catalysing (ClpP, GroL) or preventing (DnaK) this proteolysis exert a crucial checkpoint of the assembly of Escherichia coli DNA polymerase III core.
Collapse
|
38
|
Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site. J Mol Biol 2009; 391:797-807. [PMID: 19576228 DOI: 10.1016/j.jmb.2009.06.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/17/2022]
Abstract
Recent crystallographic resolution of varphi29 DNA polymerase complexes with ssDNA at its 3'-5' exonuclease active site has allowed the identification of residues Pro129 and Tyr148 as putative ssDNA ligands, the latter being conserved in the Kx(2)h motif of proofreading family B DNA polymerases. Single substitution of varphi29 DNA polymerase residue Tyr148 to Ala rendered an enzyme with a reduced capacity to stabilize the binding of the primer terminus at the 3'-5' exonuclease active site, not having a direct role in the catalysis of the reaction. Analysis of the 3'-5' exonuclease on primer/template structures showed a critical role for residue Tyr148 in the proofreading of DNA polymerisation errors. In addition, Tyr148 is not involved in coupling polymerisation to strand displacement in contrast to the catalytic residues responsible for the exonuclease reaction, its role being restricted to stabilisation of the frayed 3' terminus at the exonuclease active site. Altogether, the results lead us to extend the consensus sequence of the above motif of proofreading family B DNA polymerases into Kx(2)hxA. The different solutions adopted by proofreading DNA polymerases to stack the 3' terminus at the exonuclease site are discussed. In addition, the results obtained with mutants at varphi29 DNA polymerase residue Pro129 allow us to rule out a functional role as ssDNA ligand for this residue.
Collapse
Affiliation(s)
- Patricia Pérez-Arnaiz
- Instituto de Biología Molecular "Eladio Viñuela", Centro de Biología Molecular "Severo Ochoa", Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G. Metal-Ion Mutagenesis: Conversion of a Purple Acid Phosphatase from Sweet Potato to a Neutral Phosphatase with the Formation of an Unprecedented Catalytically Competent MnIIMnII Active Site. J Am Chem Soc 2009; 131:8173-9. [DOI: 10.1021/ja900797u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nataša Mitić
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Christopher J. Noble
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Graeme R. Hanson
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| |
Collapse
|
40
|
Cisneros GA, Perera L, Schaaper RM, Pedersen LC, London RE, Pedersen LG, Darden TA. Reaction mechanism of the epsilon subunit of E. coli DNA polymerase III: insights into active site metal coordination and catalytically significant residues. J Am Chem Soc 2009; 131:1550-6. [PMID: 19119875 DOI: 10.1021/ja8082818] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The 28 kDa epsilon subunit of Escherichia coli DNA polymerase III is the exonucleotidic proofreader responsible for editing polymerase insertion errors. Here, we study the mechanism by which epsilon carries out the exonuclease activity. We performed quantum mechanics/molecular mechanics calculations on the N-terminal domain containing the exonuclease activity. Both the free-epsilon and a complex epsilon bound to a theta homologue (HOT) were studied. For the epsilon-HOT complex Mg(2+) or Mn(2+) were investigated as the essential divalent metal cofactors, while only Mg(2+) was used for free-epsilon. In all calculations a water molecule bound to the catalytic metal acts as the nucleophile for hydrolysis of the phosphate bond. Initially, a direct proton transfer to H162 is observed. Subsequently, the nucleophilic attack takes place followed by a second proton transfer to E14. Our results show that the reaction catalyzed with Mn(2+) is faster than that with Mg(2+), in agreement with experiment. In addition, the epsilon-HOT complex shows a slightly lower energy barrier compared to free-epsilon. In all cases the catalytic metal is observed to be pentacoordinated. Charge and frontier orbital analyses suggest that charge transfer may stabilize the pentacoordination. Energy decomposition analysis to study the contribution of each residue to catalysis suggests that there are several important residues. Among these, H98, D103, D129, and D146 have been implicated in catalysis by mutagenesis studies. Some of these residues were found to be structurally conserved on human TREX1, the exonuclease domains from E. coli DNA-Pol I, and the DNA polymerase of bacteriophage RB69.
Collapse
Affiliation(s)
- G Andrés Cisneros
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Brucet M, Querol-Audí J, Bertlik K, Lloberas J, Fita I, Celada A. Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases. Protein Sci 2008; 17:2059-69. [PMID: 18780819 DOI: 10.1110/ps.036426.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TREX1 is the major exonuclease in mammalian cells, exhibiting the highest level of activity with a 3'-->5' activity. This exonuclease is responsible in humans for Aicardi-Goutières syndrome and for an autosomal dominant retinal vasculopathy with cerebral leukodystrophy. In addition, this enzyme is associated with systemic lupus erythematosus. TREX1 belongs to the exonuclease DEDDh family, whose members display low levels of sequence identity, while possessing a common fold and active site organization. For these exonucleases, a catalytic mechanism has been proposed that involves two divalent metal ions bound to the DEDD motif. Here we studied the interaction of TREX1 with the monovalent cations lithium and sodium. We demonstrate that these metals inhibit the exonucleolytic activity of TREX1, as measured by the classical gel method, as well as by a new technique developed for monitoring the real-time exonuclease reaction. The X-ray structures of the enzyme in complex with these two cations and with a nucleotide, a product of the exonuclease reaction, were determined at 2.1 A and 2.3 A, respectively. A comparison with the structures of the active complexes (in the presence of magnesium or manganese) explains that the inhibition mechanism is caused by the noncatalytic metals competing with distinct affinities for the two metal-binding sites and inducing subtle rearrangements in active centers. Our analysis also reveals that a histidine residue (His124), highly conserved in the DEDDh family, is involved in the activity of TREX1, as confirmed by mutational studies. Our results shed further light on the mechanism of activity of the DEDEh family of exonucleases.
Collapse
Affiliation(s)
- Marina Brucet
- Macrophage Biology Group, Institute for Research in Biomedicine and University of Barcelona, Barcelona Science Park, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Ozawa K, Jergic S, Park AY, Dixon NE, Otting G. The proofreading exonuclease subunit epsilon of Escherichia coli DNA polymerase III is tethered to the polymerase subunit alpha via a flexible linker. Nucleic Acids Res 2008; 36:5074-82. [PMID: 18663010 PMCID: PMC2528190 DOI: 10.1093/nar/gkn489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the alpha-subunit. The epsilon-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to alpha via a segment of 57 additional C-terminal residues, and also to theta, whose function is less well defined. The present study shows that theta greatly enhances the solubility of epsilon during cell-free synthesis. In addition, synthesis of epsilon in the presence of theta and alpha resulted in a soluble ternary complex that could readily be purified and analyzed by NMR spectroscopy. Cell-free synthesis of epsilon from PCR-amplified DNA coupled with site-directed mutagenesis and selective 15N-labeling provided site-specific assignments of NMR resonances of epsilon that were confirmed by lanthanide-induced pseudocontact shifts. The data show that the proofreading domain of epsilon is connected to alpha via a flexible linker peptide comprising over 20 residues. This distinguishes the alpha : epsilon complex from other proofreading polymerases, which have a more rigid multidomain structure.
Collapse
Affiliation(s)
- Kiyoshi Ozawa
- Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
43
|
Tanner NA, Hamdan SM, Jergic S, Loscha KV, Schaeffer PM, Dixon NE, van Oijen AM. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 2008; 15:170-6. [PMID: 18223657 DOI: 10.1038/nsmb.1381] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/03/2008] [Indexed: 11/09/2022]
Abstract
We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.
Collapse
Affiliation(s)
- Nathan A Tanner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Hydrolysis of the 5'-p-nitrophenyl ester of TMP by oligoribonucleases (ORN) from Escherichia coli, Mycobacterium smegmatis, and human. Protein Expr Purif 2007; 57:180-7. [PMID: 18023590 DOI: 10.1016/j.pep.2007.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/20/2007] [Accepted: 10/06/2007] [Indexed: 11/22/2022]
Abstract
Escherichia coli oligoribonuclease (EcoORN), encoded by the orn gene, is a 3'-5' exonuclease that degrades short single-stranded oligoribonucleotides to rNMPs in the final step of RNA degradation. The orn gene is essential in E. coli, but not in higher organisms, and close homologues are present in other genomes from the beta and gamma subdivisions of the Protobacteriaceae, including many pathogenic species. We report here the expression in E. coli of orn and homologues from Mycobacterium smegmatis and human, and large-scale purification of the three enzymes. All three were found to promote the hydrolysis of the 5'-p-nitrophenyl ester of TMP (pNP-TMP) with similar values of Michaelis-Menten parameters (k(cat)=100-650 min(-1), K(M)=0.4-2.0 mM, at pH 8.00 and 25 degrees C, with 1 mM Mn(2+)). Hydrolysis by pNP-TMP by all three enzymes depended on a divalent metal ion, with Mn(2+) being preferred over Mg(2+) as cofactor, and was inhibited by Ni(2+). The concentration dependency of Mn(2+) was examined, giving K(Mn) values of 0.2-0.6 mM. The availability of large amounts of the purified enzymes and a simple spectrophotometric assay for ORN activity should facilitate large-scale screening for new inhibitors of bacterial oligoribonucleases.
Collapse
|
45
|
Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2007; 106:3338-63. [PMID: 16895331 DOI: 10.1021/cr050318f] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natasa Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
46
|
John M, Headlam MJ, Dixon NE, Otting G. Assignment of paramagnetic (15)N-HSQC spectra by heteronuclear exchange spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2007; 37:43-51. [PMID: 17096205 DOI: 10.1007/s10858-006-9098-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
Paramagnetic metal ions in proteins provide a rich source of structural information, but the resonance assignments required to extract the information can be challenging. Here we demonstrate that paramagnetically shifted (15)N-HSQC cross-peaks can be assigned using N(Z)-exchange spectroscopy under conditions in which the paramagnetic form of the protein is in dynamic equilibrium with its diamagnetic form. Even slow exchange of specifically bound metal ions may be detected within the long lifetime of (15)N longitudinal magnetization of large proteins at high magnetic fields. Alternatively, the exchange can be accelerated using an excess of metal ions. In the resulting exchange spectra, paramagnetic (15)N resonances become visible for residues that are not directly observed in a conventional (15)N-HSQC spectrum due to paramagnetic (1)H(N) broadening. The experiments are illustrated by the 30 kDa lanthanide-binding epsilon186/theta complex of DNA polymerase III in the presence of sub-stoichiometric amounts of Dy(3+) or a mixture of Dy(3+) and La(3+).
Collapse
Affiliation(s)
- Michael John
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
47
|
Arezi B, Hogrefe HH. Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. Anal Biochem 2006; 360:84-91. [PMID: 17107651 DOI: 10.1016/j.ab.2006.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/18/2006] [Accepted: 10/07/2006] [Indexed: 11/21/2022]
Abstract
In an effort to improve reverse transcriptase (RT) fidelity, we measured the error rate of Moloney murine leukemia virus (MMLV) RT in the presence of several autonomous and DNA polymerase-associated 3'-5' exonucleases using a lacZ forward mutation assay. A number of 3'-5' exonucleases were found to lower the error rate of MMLV RT, including p53, Escherichia coli DNA polymerase III epsilon subunit, and the proofreading activities associated with T4, varphi29, and E. coli pol I DNA polymerases. The bacterial epsilon subunit increased RNA-dependent DNA synthesis fidelity by approximately threefold and was the only 3'-5' exonuclease tested that did not deleteriously affect RT-PCR yields. Further testing showed that RT-PCR mutant frequencies were reduced significantly by performing cDNA synthesis in the presence of epsilon subunit, followed by PCR with a high-fidelity proofreading DNA polymerase. DNA sequence analysis was used to show that the combination of MMLV RT/epsilon subunit and PfuUltra DNA polymerase produces approximately eightfold fewer errors compared with the commonly used combination of MMLV RT and a Taq-based high-fidelity blend, consistent with predictions based on experimentally determined polymerase error rates.
Collapse
Affiliation(s)
- Bahram Arezi
- Stratagene Cloning Systems, La Jolla, CA 92037, USA.
| | | |
Collapse
|
48
|
Chikova AK, Schaaper RM. Mutator and antimutator effects of the bacteriophage P1 hot gene product. J Bacteriol 2006; 188:5831-8. [PMID: 16885451 PMCID: PMC1540081 DOI: 10.1128/jb.00630-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Hot (homolog of theta) protein of bacteriophage P1 can substitute for the Escherichia coli DNA polymerase III theta subunit, as evidenced by its stabilizing effect on certain dnaQ mutants that carry an unstable polymerase III epsilon proofreading subunit (antimutator effect). Here, we show that Hot can also cause an increase in the mutability of various E. coli strains (mutator effect). The hot mutator effect differs from the one caused by the lack of theta. Experiments using chimeric theta/Hot proteins containing various domains of Hot and theta along with a series of point mutants show that both N- and C-terminal parts of each protein are important for stabilizing the epsilon subunit. In contrast, the N-terminal part of Hot appears uniquely responsible for its mutator activity.
Collapse
Affiliation(s)
- Anna K Chikova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
49
|
Keniry MA, Park AY, Owen EA, Hamdan SM, Pintacuda G, Otting G, Dixon NE. Structure of the theta subunit of Escherichia coli DNA polymerase III in complex with the epsilon subunit. J Bacteriol 2006; 188:4464-73. [PMID: 16740953 PMCID: PMC1482953 DOI: 10.1128/jb.01992-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits, the alpha, epsilon, and theta subunits. The theta subunit is the smallest and least understood subunit. The three-dimensional structure of theta in a complex with the unlabeled N-terminal domain of the epsilon subunit, epsilon186, was determined by multidimensional nuclear magnetic resonance spectroscopy. The structure was refined using pseudocontact shifts that resulted from inserting a lanthanide ion (Dy3+, Er3+, or Ho3+) at the active site of epsilon186. The structure determination revealed a three-helix bundle fold that is similar to the solution structures of theta in a methanol-water buffer and of the bacteriophage P1 homolog, HOT, in aqueous buffer. Conserved nuclear Overhauser enhancement (NOE) patterns obtained for free and complexed theta show that most of the structure changes little upon complex formation. Discrepancies with respect to a previously published structure of free theta (Keniry et al., Protein Sci. 9:721-733, 2000) were attributed to errors in the latter structure. The present structure satisfies the pseudocontact shifts better than either the structure of theta in methanol-water buffer or the structure of HOT. satisfies these shifts. The epitope of epsilon186 on theta was mapped by NOE difference spectroscopy and was found to involve helix 1 and the C-terminal part of helix 3. The pseudocontact shifts indicated that the helices of theta are located about 15 A or farther from the lanthanide ion in the active site of epsilon186, in agreement with the extensive biochemical data for the theta-epsilon system.
Collapse
Affiliation(s)
- Max A Keniry
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Replication of genomic DNA is a universal process that proceeds in distinct stages, from initiation to elongation and finally to termination. Each stage involves multiple stable or transient interactions between protein subunits with functions that are more or less conserved in all organisms. In Escherichia coli, initiation of bidirectional replication at the origin (oriC) occurs through the concerted actions of the DnaA replication initiator protein, the hexameric DnaB helicase, the DnaC?helicase loading partner and the DnaG primase, leading to establishment of two replication forks. Elongation of RNA primers at each fork proceeds simultaneously on both strands by actions of the multimeric replicase, DNA polymerase III holoenzyme. The fork that arrives first in the terminus region is halted by its encounter with a correctly-oriented complex of the Tus replication terminator protein bound at one of several Ter sites, where it is trapped until the other fork arrives. We summarize current understanding of interactions among the various proteins that act in the different stages of replication of the chromosome of E. coli, and make some comparisons with the analogous proteins in Bacillus subtilis and the coliphages T4 and T7.
Collapse
Affiliation(s)
- Patrick M Schaeffer
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | |
Collapse
|