1
|
Mahmoud GAE, Rashed NM, El-Ganainy SM, Salem SH. Unveiling the Neem ( Azadirachta indica) Effects on Biofilm Formation of Food-Borne Bacteria and the Potential Mechanism Using a Molecular Docking Approach. PLANTS (BASEL, SWITZERLAND) 2024; 13:2669. [PMID: 39339644 PMCID: PMC11434743 DOI: 10.3390/plants13182669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Biofilms currently represent the most prevalent bacterial lifestyle, enabling them to resist environmental stress and antibacterial drugs. Natural antibacterial agents could be a safe solution for controlling bacterial biofilms in food industries without affecting human health and environmental safety. A methanolic extract of Azadirachta indica (neem) leaves was prepared and analyzed using gas chromatography-mass spectrometry for the identification of its phytochemical constituents. Four food-borne bacterial pathogens (Bacillus cereus, Novosphingobium aromaticivorans, Klebsiella pneumoniae, and Serratia marcescens) were tested for biofilm formation qualitatively and quantitatively. The antibacterial and antibiofilm properties of the extract were estimated using liquid cultures and a microtiter plate assay. The biofilm inhibition mechanisms were investigated using a light microscope and molecular docking technique. The methanolic extract contained 45 identified compounds, including fatty acids, ester, phenols, flavonoids, terpenes, steroids, and antioxidants with antimicrobial, anticancer, and anti-inflammatory properties. Substantial antibacterial activity in relation to the extract was recorded, especially at 100 μg/mL against K. pneumoniae and S. marcescens. The extract inhibited biofilm formation at 100 μg/mL by 83.83% (S. marcescens), 73.12% (K. pneumoniae), and 54.4% (N. aromaticivorans). The results indicate efficient biofilm formation by the Gram-negative bacteria S. marcescens, K. pneumoniae, and N. aromaticivorans, giving 0.74, 0.292, and 0.219 OD at 595 nm, respectively, while B. cereus was found to have a low biofilm formation potential, i.e., 0.14 OD at 595 nm. The light microscope technique shows the antibiofilm activities with the biofilm almost disappearing at 75 μg/mL and 100 μg/mL concentrations. This antibiofilm property was attributed to DNA gyrase inhibition as illustrated by the molecular docking approach.
Collapse
Affiliation(s)
| | - Nahed M Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Damietta University, Damietta 34519, Egypt
| | - Sherif M El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Shimaa H Salem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
2
|
Kawka A, Nowak D, Koenig H, Pospieszny T. Exploring Triazole-Connected Steroid-Pyrimidine Hybrids: Synthesis, Spectroscopic Characterization, and Biological Assessment. ACS OMEGA 2024; 9:37995-38014. [PMID: 39281893 PMCID: PMC11391466 DOI: 10.1021/acsomega.4c04800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Molecules originating from natural sources are physicochemically and biologically diverse. The conjugation of two active biomolecules has become the foundation for medical and pharmaceutical sciences. An effective synthesis of 11 new steroid-pyrimidine conjugates containing 1,2,3-triazole rings was carried out. The group of 3α-OH bile acids (lithocholic, deoxycholic, cholic) and 3β-OH sterols (cholesterol, cholestanol) were respectively modified to azidoacetates. 2-thiouracil was converted into N(1)S and N(3)S dipropargyl derivatives. Azide-alkyne cycloaddition in the presence of copper(I) of the obtained compounds led to the preparation of 1,2,3-triazole derivatives. Based on a series of spectroscopic (1H NMR, 13C NMR, Fourier-transform infrared (FT-IR)), spectrometric analyses (Electrospray ionization-mass spectrometry (ESI-MS), electron impact-mass spectrometry (EI-MS)), and semiempirical calculations, the structures of all compounds were confirmed. In silico biological tests and molecular docking (for domain 1KZN, 2H94, 5V5Z, 1EZF, 2Q85) were performed for selected compounds. The tests performed indicate the theoretical antimicrobial potential of the obtained ligands.
Collapse
Affiliation(s)
- Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Damian Nowak
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Chandrika KVSM, V P. An in silico molecular docking, ADMET and molecular dynamics simulations studies of azolyl-2H-chroman-4-ones as potential inhibitors against pathogenic fungi and bacteria. J Biomol Struct Dyn 2024; 42:7667-7685. [PMID: 37526222 DOI: 10.1080/07391102.2023.2241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Antimicrobial resistance is a major global threat. In an attempt to discover new compounds with improved efficiency and to overcome drug resistance, a library of 3960 compounds was designed as conformationally rigid analogues of oxiconazole with 2H-chroman-4-one, azole and substituted phenyl fragments. The antifungal and antibacterial activity of the compounds was evaluated using molecular docking studies in the active site of six fungal and four bacterial proteins to establish the binding affinity of the designed ligands. In-silico ADME and Lipinski's rule were used to establish the drug-likeness properties of the compounds. This study revealed that all the designed compounds had a high binding affinity with the target proteins and formed H-bond and π-π interactions. The identified hits have been subjected to molecular dynamics simulations to study protein-ligand complex stability. This study has led to the identification of important compounds that can be developed further as therapeutic agents against pathogenic fungi and bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| | - Prathyusha V
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur, Andhra Pradesh, India
| |
Collapse
|
4
|
Sharma K, Lal B, Kumar Tittal R, Lal K, Vats L, Vikas D G. Two Step One-Pot Synthesis of 7-Azaindole Linked 1,2,3-Triazole Hybrids: In-Vitro and In-Silico Antimicrobial Evaluation. ChemMedChem 2024:e202400451. [PMID: 39155530 DOI: 10.1002/cmdc.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Herein, we report design, synthesis and characterization of a new library of 7-azaindole N-ethyl linked 1,2,3-triazoles containing ethylene as a spacer unit, and evaluation of all the synthesized compounds for their antimicrobial properties. Antibacterial potential was checked against two Gram positive (B. subtilis and S. aureus) and two Gram negative (E. coli and P. aeruginosa) bacterial strains while antifungal potential was assayed against two fungal strains (C. albicans and A. niger). All the tested compounds showed satisfactory antibacterial potency in comparison to reference drug ciprofloxacin with MIC values ranging from 0.0108 to 0.0432 μmol/mL. Interestingly, except two, all the target compounds showed better antifungal property as compared to the reference drug fluconazole with MIC values less than 0.0408 μmol/mL. One of the compounds exhibited two-fold better antifungal potential in comparison to fluconazole. Furthermore, in-silico ADMET and DFT studies reported drug likeness behavior and chemical reactivity parameters, respectively. The cytotoxicity results on substrate azide 3 and most potent 1,2,3-triazoles (5 d and 5 l) were found to be non-toxic.
Collapse
Affiliation(s)
- Kanika Sharma
- Department of Chemistry, National Institute of Technology, Kurukshetra, 136119, Haryana, India
| | - Bajrang Lal
- Department of Chemistry, National Institute of Technology, Kurukshetra, 136119, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, 136119, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, GJUS&T, Hisar, 12500, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, 136128, Hr, India
| | - Ghule Vikas D
- Department of Chemistry, National Institute of Technology, Kurukshetra, 136119, Haryana, India
| |
Collapse
|
5
|
Hayakawa D, Watanabe Y, Gouda H. Molecular Interaction Fields Describing Halogen Bond Formable Areas on Protein Surfaces. J Chem Inf Model 2024; 64:6003-6013. [PMID: 39012240 PMCID: PMC11323840 DOI: 10.1021/acs.jcim.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Molecular interaction fields (MIFs) are three-dimensional interaction maps that describe the intermolecular interactions expected to be formed around target molecules. In this paper, a method for the fast computation of MIFs using the approximation functions of quantum mechanics-level MIFs of small model molecules is proposed. MIF functions of N-methylacetamide with chlorobenzene, bromobenzene, and iodobenzene probes were precisely approximated and used to calculate the MIFs on protein surfaces. This method appropriately reproduced halogen-bond-formable areas around the ligand-binding sites of proteins, where halogen bond formation was suggested in a previous study.
Collapse
Affiliation(s)
- Daichi Hayakawa
- Division of Biophysical
Chemistry,
Department of Pharmaceutical Sciences, Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yurie Watanabe
- Division of Biophysical
Chemistry,
Department of Pharmaceutical Sciences, Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- Division of Biophysical
Chemistry,
Department of Pharmaceutical Sciences, Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
6
|
Kanzouai Y, Laghmari M, Yamari I, Bouzammit R, Bahsis L, Benali T, Chtita S, Bakhouch M, Akhazzane M, El Kouali M, Hammani K, Al Houari G. Chromone-isoxazole hybrids molecules: synthesis, spectroscopic, MEDT, ELF, antibacterial, ADME-Tox, molecular docking and MD simulation investigations. J Biomol Struct Dyn 2024; 42:6410-6424. [PMID: 37817499 DOI: 10.1080/07391102.2023.2266022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 10/12/2023]
Abstract
A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youssra Kanzouai
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Mustapha Laghmari
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Département de Chimie, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
- Environment and Health Team, Polydisciplinary Faculty of Safi, Department of Biology, Cadi Ayyad University, Safi, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Bakhouch
- Bioorganic Chemistry Team, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, El Jadida, Morocco
| | - Mohamed Akhazzane
- Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - M'hammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
7
|
Heena, Kaushal S, Kaur V, Panwar H, Sharma P, Jangra R. Isolation of quinic acid from dropped Citrus reticulata Blanco fruits: its derivatization, antibacterial potential, docking studies, and ADMET profiling. Front Chem 2024; 12:1372560. [PMID: 38698937 PMCID: PMC11064019 DOI: 10.3389/fchem.2024.1372560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Citrus reticulata dropped fruits are generally discarded as waste, causing environmental pollution and losses to farmers. In the present study, column chromatography has been used to isolate quinic acid (1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid) from the ethyl acetate fraction of a methanol extract of citrus fruits dropped in April. Quinic acid is a ubiquitous plant metabolite found in various plants and microorganisms. It is an important precursor in the biosynthesis of aromatic natural compounds. It was further derivatized into 3,4-o-isopropylidenequinic acid 1,5-lactone (QA1), 1,3,4,5-tetraacetoxycyclohexylaceticanhydride (QA2), and cyclohexane-1,2,3,5-tetraone (QA3). These compounds were further tested for their antibacterial potential against the foodborne pathogens Staphylococcus aureus, Bacillus spp., Yersinia enterocolitica, and Escherichia coli. QA1 exhibited maximum antibacterial potential (minimum inhibitory concentration; 80-120 μg/mL). QA1 revealed synergistic behavior with streptomycin against all the tested bacterial strains having a fractional inhibitory concentration index ranging from 0.29 to 0.37. It also caused a significant increase in cell constituent release in all the tested bacteria compared to the control, along with prominent biofilm reduction. The results obtained were further checked with computational studies that revealed the best docking score of QA1 (-6.30 kcal/mol, -5.8 kcal/mol, and -4.70 kcal/mol) against β-lactamase, DNA gyrase, and transpeptidase, respectively. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis revealed that the drug-like properties of QA1 had an ideal toxicity profile, making it a suitable candidate for the development of antimicrobial drugs.
Collapse
Affiliation(s)
- Heena
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sonia Kaushal
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vishaldeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Harsh Panwar
- Department of Dairy Microbiology, Guru Angad Dev Veterinary University, Ludhiana, Punjab, India
| | - Purshotam Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Raman Jangra
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Soliman AM, El-Sagheir AMK, Thabet MM, Abdel Hakiem AF, Aboraia AS. Synthesis, characterization, molecular modeling studies, and biological evaluation of metal piroxicam complexes (M = Ni(II), Pt(IV), Pd(II), Ag(I)) as antibacterial and anticancer agents. Drug Dev Res 2024; 85:e22156. [PMID: 38355931 DOI: 10.1002/ddr.22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/01/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Four piroxicam metal complexes; NiL2 , PtL2 , PdL2 , and AgL were synthesized and characterized by different techniques with enhanced antibacterial and anticancer activity. Regarding in vitro antimicrobial activity, complex NiL2 displayed potent antibacterial effect against Escherichia coli and Pseudomonas aeruginosa that was 1.9-folds higher than piroxicam (minimum inhibitory concentration [MIC] = 31.85, 65.32 µM), respectively. In case of G+ve bacteria, complex PtL2 had potent activity on Staphylococcus aureus which was 2.1-folds higher than piroxicam (MIC = 43.12 µM), while activity of complex AgL against Enterococcus faecalis was threefolds higher than piroxicam (MIC = 74.57 µM. Complexes PtL2 and PdL2 exhibited higher inhibition of DNA gyrase than piroxicam (IC50 = 6.21 µM) in the range of 1.9-1.7-folds. The in vitro antiproliferative activity depicted that all investigated complexes showed better cytotoxic effect than piroxicam, specifically Pt and Pd complexes which had lower IC50 values than piroxicam on human liver cancer cell line HepG2 by 1.8 and 1.7-folds, respectively. While Pd and Ag complexes showed 2 and 1.6-folds better effect on human colon cancer cell line HT-29 compared with piroxicam. Molecular modeling studies including docking on Stranded DNA Duplex (1juu) and DNA gyrase enzyme (1kzn) that gave good insight about interaction of complexes with target molecules, calculation of electrostatic potential map and global reactivity descriptors were performed.
Collapse
Affiliation(s)
- Aya M Soliman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed M K El-Sagheir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Momen M Thabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | | | - Ahmed S Aboraia
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Khatoon H, Abdul Malek E, Faudzi SM, Rukayadi Y. Synthesis of a Series of Quinoxaline Derivatives and Their Antibacterial Effectiveness Against Pathogenic Bacteria. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202305073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 08/18/2024]
Abstract
AbstractThe pharmacological importance of quinoxaline derivatives in antibacterial research is well recognized. This study focuses on the synthesis of new 2,3‐dichloroquinoxaline derivatives containing thioether/ether groups to explore their potential as potent antibacterial agents against various pathogenic bacteria. Most of the compounds exhibited significant antibacterial properties comparable to the standard drug chlorhexidine (CHX). The derivatives of 2‐chloro‐3‐(arylthiol)quinoxaline demonstrated efficacy against Escherichia coli with minimum inhibitory concentrations (MIC) of 2.5 mg/mL and minimum bactericidal concentrations (MBC) of 2.5 to 5.0 mg/mL. These derivatives also showed similar sensitivity to Bacillus pumilus. In addition, molecular docking simulations were performed to investigate the interaction between the synthesized compounds and the DNA gyrase protein (PDB ID: 1KZN), a target for antibiotics. Among the synthesized compounds, 2,3‐bis(3‐nitrophenoxy)quinoxaline exhibited the most favourable docking score of −8.36 kcal/mol, with a binding affinity comparable to that of the reference ligand clorobiocin (−9.3 kcal/mol).
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Integrated Chemical BioPhysics Research Faculty of Science Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| | - Siti Munirah Faudzi
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
| | - Yaya Rukayadi
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
- Natural Medicines and Product Research Laboratory Institute of Bioscience Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| |
Collapse
|
10
|
Parveen S, Shehzadi S, Shafiq N, Rashid M, Naz S, Mehmood T, Riaz R, S Almaary K, Nafidi HA, Bourhia M. A discovery of potent kaempferol derivatives as multi-target medicines against diabetes as well as bacterial infections: an in silico approach. J Biomol Struct Dyn 2024:1-23. [PMID: 38334277 DOI: 10.1080/07391102.2024.2308773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Flavonoids demonstrate beneficial effects on human health because flavonoids contain important biological properties. Kaempferol is a flavonol, type of flavonoid found in eatable plants and in plants usually employed in ancient drugs (Moringa oleifera, Tilia spp., fern genus spp. and gingko etc.). Some medicinal studies have shown that the use of foods full of kaempferol decreases the risk of many (cancer, vascular) diseases. All the data of 50 kaempferol derivatives were collected from PubChem database. Through Schrödinger software, 3D-QSAR study was performed for 50 compounds by using method of field base. Conformer of kaempferol derivatives was docked against anti-diabetic, anti-microbial co-crystal structures and protein. To monitor the best anti-diabetic and antibacterial agent, particular kaempferol derivatives were downloaded from PubChem database. Virtual screening by molecular docking provided four lead compounds with four different proteins. These hit compounds were found to be potent inhibitor for diabetic enzymes alpha-amylase and DPP IV and had the potential to suppress DNA gyrase and dihydrofolate reductase synthesis. Molecular dynamic simulation of docked complexes evaluates the value of root mean square fluctuation by iMOD server. Kaempferol 3-O-alpha-L-(2, 3-di-Z-p-coumaroyl) rhamnoside (42) compound used as anti-diabetic and kaempferol 3-O-gentiobioside (3) as antibacterial with good results can be used for drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Saman Shehzadi
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Sadaf Naz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Punjab, Pakistan
| | - Rabia Riaz
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
11
|
Akpınar R, Yıldırım Baştemur G, Bıçak B, Sanli NO, Mertoğlu Kamalı E, Pekmez M, Kecel Gündüz S, Perçin Özkorucuklu S. Phytochemical profiling, in vitro biological activities, and in silico (molecular docking and absorption, distribution, metabolism, excretion, toxicity) studies of Polygonum cognatum Meissn. J Sep Sci 2024; 47:e2300750. [PMID: 38066395 DOI: 10.1002/jssc.202300750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Polygonum cognatum Meissn, a perennial herbaceous belonging to the Polygonaceae family, is an aromatic plant. High-performance liquid chromatography/diode array detector method was developed and validated for the phytochemical analysis of the plant. Also, various methods were used to investigate the antioxidant, antimicrobial, and cytotoxic activities of the methanolic extracts. Antioxidant activities were researched by 2,2'-diphenyl-1-picrylhydrazyl and cupric reducing antioxidant capacity methods. Among the tested standard microbial strains, Candida albicans was found to be more sensitive with a 24.60 ± 0.55 mm inhibition zone according to the diffusion tests. In the microdilution tests, the minimum inhibitory concentration and minimum bactericidal/fungicidal concentration values were 4.75 and ≥ 4.75 mg/mL, respectively, for all tested pathogens. Human colon carcinoma cells were used to investigate cytotoxicity by using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide analysis (IC50 = 2891 μg/mL for Plant A, IC50 = 3291 μg/mL for Plant B). Molecular docking and absorption, distribution, metabolism, excretion, and toxicity analysis were used to explain inhibition mechanisms of major phenolic compounds of plants against Tankyrase 1, Tankyrase 2 enzymes, and deoxyribonucleic acid gyrase subunit B and found compatible with experimental results.
Collapse
Affiliation(s)
- Reyhan Akpınar
- Programme of Molecular Biotechnology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
| | - Gizem Yıldırım Baştemur
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Bilge Bıçak
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Nazmiye Ozlem Sanli
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Elif Mertoğlu Kamalı
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Serda Kecel Gündüz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
12
|
Arı E, Şahin N, Üstün E, Dündar M, Karcı H, Özdemir İ, Koç A, Gürbüz N, Özdemir İ. Synthesis, antimicrobial activity and molecular docking study of benzyl functionalized benzimidazole silver(I) complexes. J Biol Inorg Chem 2023; 28:725-736. [PMID: 37934281 DOI: 10.1007/s00775-023-02024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/10/2023] [Indexed: 11/08/2023]
Abstract
In this study, a series of N-functionalized benzimidazole silver(I) complexes were prepared and characterized by FT-IR, 1H, 13C{1H} NMR spectroscopy, and elemental analysis. Synthesized N-benzylbenzimidazole silver(I) complexes were evaluated for their antimicrobial activities against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and the fungal strains Candida albicans and Candida glabrata. The results indicated that N-alkylbenzimidazole silver(I) complexes exhibited good antimicrobial activity compared to N-alkylbenzimidazole derivatives. Especially, complex 2e presented perfect antimicrobial activity than the other complexes. The characterized molecules were optimized by DFT-based calculation methods and the optimized molecules were analyzed in detail by molecular docking methods against bacterial DNA-gyrase and CYP51. The amino acid residues detected for both target molecules are consistent with expectations, and the calculated binding affinities and inhibition constants are promising for further studies. A series of N-alkylbenzimidazole silver(I) complexes were synthesized and fully characterized by means of 1H NMR, 13C NMR, and FT-IR spectroscopies. Synthesized N-alkylbenzimidazole silver(I) complexes were investigated for their antimicrobial activities against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and the fungal strains Candida albicans and Candida glabrata. All complexes showed better activity according to Ampicilin against Pseudomonas aeruginosa. The molecules which were firstly optimized by DFT-based calculation methods were also analyzed by molecular docking methods against DNA gyrase of E. Coli and CYP51. 338 × 190 mm (96 × 96 DPI).
Collapse
Affiliation(s)
- Erkan Arı
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280, Malatya, Turkey
| | - Neslihan Şahin
- Department of Science Education, Faculty of Education, Cumhuriyet University, 58040, Sivas, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200, Ordu, Turkey
| | - Muhammed Dündar
- Department of Molecular Biology and Genetics, Faculty of Science and Art, İnönü University, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| | - Hüseyin Karcı
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| | - İlknur Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280, Malatya, Turkey.
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey.
| | - Ahmet Koç
- Department of Genetics, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| |
Collapse
|
13
|
Khagar P, Wankhade AV, Sabarathinam S. Synthesis of quercetin-iron (Fe) complex and its in silico and in vitro confirmation towards antibacterial activity. Future Med Chem 2023; 15:1743-1756. [PMID: 37814818 DOI: 10.4155/fmc-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: In this study quercetin-iron complex (QFC) was synthesized, and the structural characterizations such as x-ray diffraction, field emission-scanning electron microscopy, energy-dispersive x-ray and Brunner-Emmitt-Teller adsorption-desorption isotherm analysis revealed the crystallinity state, surface morphology and nature of the adsorbing surface with surface area value. Methodology: Functional characterizations such as UV-visible spectrometric and Fourier transform infrared analysis collectively indicated the chemical changes that appeared after complex formation in terms of characteristic change in the spectrum and band position, respectively. Results: The in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus has shown a dose-dependent decrease in colony count and achieved significant removal at 15 mg/ml concentration of QFC. Conclusion: The molecular docking study supports the therapeutic application of QFC.
Collapse
Affiliation(s)
- Prerna Khagar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010 (MS), India
| | - Atul V Wankhade
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur, 440010 (MS), India
| | - Sarvesh Sabarathinam
- Drug Testing Laboratory (DTL), Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India
| |
Collapse
|
14
|
Tahmasebi B, Iraji A, Sherafati M, Moazzam A, Akhlagh SA, Adib M, Mahdavi M. Structure-based drug discovery and antimicrobial activity of ciprofloxacin-grafted Ugi adducts. J Biomol Struct Dyn 2023; 41:8165-8174. [PMID: 36214687 DOI: 10.1080/07391102.2022.2130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
A new series of ciprofloxacin-derived Ugi adducts were rationally designed and synthesized. The synthesized molecules were explored for their potential antimicrobial activities against four pathogenic microorganisms. Among these derivatives, compound 7h with a 4-nitrophenyl substituent at R2 exhibited significant activity against two tested Gram-positive bacteria with a minimum inhibitory concentration value of 0.097 µg/mL while 7i bearing 4-chlorophenyl pendant demonstrated the best antimicrobial activities against Gram-negative bacteria. Furthermore, the analysis of the structure-activity relationships disclosed that types of substitutions differently affect the bacteria so the most potent derivative against Gram-negative infections was the least active one in Gram-positive microorganisms. Also, the molecular docking and molecular dynamic simulations were executed on 7i as the most potent Gram-negative anti-bacterial agent against ATP-binding sites of DNA gyrase B. Accordingly, our findings suggest that ciprofloxacin-based Ugi adducts are an interesting precursor for the design of potent antimicrobial agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behnam Tahmasebi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Sherafati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Üstün E, Şahin N, Özdemir İ, Günal S, Gürbüz N, Özdemir İ, Sémeril D. Design, synthesis, antimicrobial activity and molecular docking study of cationic bis-benzimidazole-silver(I) complexes. Arch Pharm (Weinheim) 2023; 356:e2300302. [PMID: 37541657 DOI: 10.1002/ardp.202300302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Two series of bis(1-alkylbenzimidazole)silver(I) nitrate and bis(1-alkyl-5,6-dimethylbenzimidazole)silver(I) nitrate complexes, in which the alkyl substituent is either an allyl, a 2-methylallyl, an isopropyl or a 3-methyloxetan-3-yl-methyl chain, were synthesized and fully characterized. The eight N-coordinated silver(I) complexes were screened for both antimicrobial activities against Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii) and Gram-positive (Staphylococcus aureus, Staphylococcus aureus MRSA, and Enterococcus faecalis) bacteria and antifungal activities against Candida albicans and Candida glabrata strains. Moderate minimal inhibitory concentrations (MIC) of 0.087 μmol/mL were found when the Gram-negative and Gram-positive bacteria were treated with the silver complexes. Nevertheless, MIC values of 0.011 μmol/mL, twice lower than for the well-known fluconazole, against the two fungi were measured. In addition, molecular docking was carried out with the structure of Escherichia coli DNA gyrase and CYP51 from the pathogen Candida glabrata with the eight organometallic complexes, and molecular reactivity descriptors were calculated with the density functional theory-based calculation methods.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, Ordu, Türkiye
| | - Neslihan Şahin
- Department of Mathematics and Science Education, Cumhuriyet University, Sivas, Türkiye
| | - İlknur Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
- Drug Application and Research Center, İnönü University, Malatya, Türkiye
| | - Selami Günal
- Department of Microbiology, Faculty of Pharmacy, İnönü University, Malatya, Türkiye
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
- Drug Application and Research Center, İnönü University, Malatya, Türkiye
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
- Drug Application and Research Center, İnönü University, Malatya, Türkiye
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, University of Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Loukili EH, Ouahabi S, Elbouzidi A, Taibi M, Yahyaoui MI, Asehraou A, Azougay A, Saleh A, Al Kamaly O, Parvez MK, El Guerrouj B, Touzani R, Ramdani M. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:3376. [PMID: 37836118 PMCID: PMC10574104 DOI: 10.3390/plants12193376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.
Collapse
Affiliation(s)
- El Hassania Loukili
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Safae Ouahabi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Mohamed Taibi
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Meryem Idrissi Yahyaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdellah Azougay
- Laboratory of Applied Geosciences (LGA), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 3660, Riyadh 11481, Saudi Arabia;
| | - Bouchra El Guerrouj
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Mohammed Ramdani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| |
Collapse
|
17
|
Hussien MA, Ashour GR, Albukhari SM, Saleh TS, Hussein MA. Favorable Heteroaromatic Thiazole-Based Polyurea Derivatives as Interesting Biologically Active Products. Polymers (Basel) 2023; 15:2662. [PMID: 37376308 DOI: 10.3390/polym15122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This research sought to synthesize a new set of heteroaromatic thiazole-based polyurea derivatives with sulfur links in the polymers' main chains, which were denoted by the acronyms PU1-5. Using pyridine as a solvent, a diphenylsulfide-based aminothiazole monomer (M2) was polymerized via solution polycondensation with varied aromatic, aliphatic, and cyclic diisocyanates. Typical characterization methods were used to confirm the structures of the premonomer, monomer, and fully generated polymers. The XRD results revealed that aromatic-based polymers had higher crystallinity than aliphatic and cyclic derivatives. SEM was used to visualize the surfaces of PU1, PU4, and PU5, revealing spongy and porous shapes, shapes resembling wooden planks and sticks, and shapes resembling coral reefs with floral shapes at various magnifications. The polymers demonstrated thermal stability. The numerical results for PDTmax are listed in the following order, ranked from lowest to highest: PU1 < PU2 < PU3 < PU5 < PU4. The FDT values for the aliphatic-based derivatives (PU4 and PU5) were lower than those for the aromatic-based ones (616, 655, and 665 °C). PU3 showed the greatest inhibitory impact against the bacteria and fungi under investigation. In addition, PU4 and PU5 demonstrated antifungal activities that, in contrast with the other products, were on the lower end of the spectrum. Furthermore, the intended polymers were also tested for the presence of the proteins 1KNZ, 1JIJ, and 1IYL, which are frequently utilized as model organisms for E. coli (Gram-negative bacteria), S. aureus (Gram-positive bacteria), and C. albicans (fungal pathogens). This study's findings are consistent with the outcomes of the subjective screening.
Collapse
Affiliation(s)
- Mostafa A Hussien
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Gadeer R Ashour
- Department of Chemistry, Faculty of Applied Sciences, Umm Al Qura University, P.O. Box 24451, Makkah 21955, Saudi Arabia
| | - Soha M Albukhari
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Chemistry Department, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Nayab S, Alam A, Ahmad N, Khan SW, Khan W, Shams DF, Shah MI, Ateeq M, Shah SK, Lee H. Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS OMEGA 2023; 8:17620-17633. [PMID: 37251197 PMCID: PMC10210233 DOI: 10.1021/acsomega.2c08266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Novel thiophene-derived Schiff base ligand DE, where DE is (E)-N1,N1-diethyl-N2-(thiophen-2-ylmethylene)ethane-1,2-diamine, and the corresponding M(II) complexes, [M(DE)X2] (M = Cu or Zn, X = Cl; M = Cd, X = Br), were prepared and structurally characterized. X-ray diffraction studies revealed that the geometry around the center of the M(II) complexes, [Zn(DE)Cl2] and [Cd(DE)Br2], could be best described as a distorted tetrahedral. In vitro antimicrobial screening of DE and its corresponding M(II) complexes, [M(DE)X2], was performed. The complexes were more potent and showed higher activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, fungi Candida albicans, and protozoa Leishmania major compared to the ligand. Among the studied complexes, [Cd(DE)Br2] exhibited the most promising antimicrobial activity against all the tested microbes compared to its analogs. These results were further supported by molecular docking studies. We believe that these complexes may significantly contribute to the efficient designing of metal-derived agents to treat microbial infections.
Collapse
Affiliation(s)
- Saira Nayab
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Aftab Alam
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Nasir Ahmad
- Department
of Chemistry Islamia College University
Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Waliullah Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Dilawar Farhan Shams
- Department
of Environmental Sciences, Abdul Wali Khan
University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ishaq
Ali Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ateeq
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Said Karim Shah
- Department
of Physics, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
19
|
Benatto VG, de Jesus JPA, de Castro AA, Assis LC, Ramalho TC, La Porta FA. Prospects of ZnS and ZnO as smart semiconductor materials in light-activated antimicrobial coatings for mitigation of severe acute respiratory syndrome coronavirus-2 infection. MATERIALS TODAY. COMMUNICATIONS 2023; 34:105192. [PMID: 36570033 PMCID: PMC9758762 DOI: 10.1016/j.mtcomm.2022.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
We carried out theoretical and experimental analyses of ZnO and ZnS nanoparticles as smart semiconductor materials in light-activated antimicrobial coating for application in masks. We used low-cost hydrothermally processable precursors to direct the growth of the coatings on cotton fabric. Both ZnO and ZnS coatings had high reactivities as disinfection agents in photocatalysis reactions for the degradation of a methylene blue dye solution. Also, these coatings showed excellent UV protection properties. For understanding at the molecular level, the broad-spectrum biological activities of the ZnO and ZnS coatings against Fusarium Oxysporum fungi, Escherichia coli bacteria, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus and their variants, were investigated computationally. Hexagonal Zn6O6 and Zn6S6 clusters were used as models for the simulations through excited- and ground-state calculations. The theoretical findings show that changes in the local chemical environment in these excited systems have a profound impact on their physical and chemical properties and thus, can provide a better understanding to engineer new functional materials in light-activated antimicrobial coatings for the mitigation of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- V G Benatto
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| | - J P A de Jesus
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| | - A A de Castro
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - L C Assis
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - T C Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, Brazil
| | - F A La Porta
- Laboratory of Nanotechnology and Computational Chemistry, Federal University of Technology - Paraná, Londrina 86036-370, Brazil
| |
Collapse
|
20
|
Patel PJ, Vala RM, Patel SG, Upadhyay DB, Rajani DP, Damiri F, Berrada M, Patel HM. Catalyst-free synthesis of imidazo[5,1-b]quinazolines and their antimicrobial activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Hamed MM, Sayed M, Abdel-Mohsen SA, Saddik AA, Ibrahim OA, El-Dean AMK, Tolba MS. Synthesis, biological evaluation, and molecular docking studies of novel diclofenac derivatives as antibacterial agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Zala AR, Rajani DP, Kumari P. Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. J Biochem Mol Toxicol 2023; 37:e23231. [PMID: 36181335 DOI: 10.1002/jbt.23231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
A series of novel piperazine based cinnamic acid bearing coumarin derivatives were designed and synthesized by piperazine based cinnamic acids esterification with 4-hydroxycoumarin and characterized by various spectral techniques like infrared, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass. The novel bioactive compounds (7a-7m) screen their potential against different bacterial and fungal strains. Compound 7g (minimum inhibitory concentration [MIC] = 12.5 µg/ml) exhibited potent antibacterial activity against Escherichia coli strain. Compounds 7d, 7f, 7g, 7k, 7l, and 7m showed potent antibacterial activity against all bacterial strains. Compounds 7a, 7g, 7h, 7k, 7l, and 7m exhibited potent antifungal activity against all fungal strains. Furthermore, a molecular docking study revealed that compounds 7d, 7f, 7g, and 7k could bind to the active site of E. coli DNA gyrase subunit B protein and form hydrogen bonding with crucial amino acid residues Arg136 in the active sites. Comprehensively, our study recommends that 7d, 7f, 7g, and 7k could be a promising lead for developing more efficient antimicrobial drug candidates and DNA gyrase inhibitors.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat, India
| | | | - Premlata Kumari
- Department of Chemistry, S. V. National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
23
|
Behera S, Behera A, Mekap SK, Behera CC, Kadam A, Mohanty PK. Periplaneta americana L . a potential source of traditional medicine: chemometric analysis, in vitro and in silico study. J Biomol Struct Dyn 2022; 40:9931-9947. [PMID: 34151747 DOI: 10.1080/07391102.2021.1938681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
'Mayurbhanj is the ethnic dominant tribal population district in Odisha, India. The triabl's of Mayurbhanj depends on traditional medicines since time immemorial for health-related issues. Due to the imperative ethnic claim of traditional healers, the financial stringency of the patient community and the necessity to produce a better therapeutic effect has led to investigate ethno zoological sources and to find out the biochemical moiety responsible for the healing process. Considering the ethnic communities' acceptability of the zoological source as traditional medicine, the current evidence-based research study is conducted to investigate the biochemical moiety present in Periplaneta americana, responsible for therapeutic activity. The whole powdered Periplaneta americana was extracted using maceration techniques with n-hexane and methanol as solvent. The obtained extracts were subjected to GC-MS analysis to identify the biochemical moiety. To check the potential biological activity, an in-vitro antimicrobial test was carried out in both turbidimetry and a viable count method against E. coli. Moreover, the obtained biochemical molecules were exposed to in silico studies for their binding modes and their affinity using Discovery studio software. The major compounds were found to be hexadecanoic acid, methyl ester, n-hexadecanoic acid, oleic acid, octadecanoic acid along with other minor constituents. The maximum inhibitory activity of n-hexane and methanol extract against S. aureus at a concentration of 400 µg/mL was found to be 89 and 87%, respectively. The binding models of almost all identified compounds confer very good binding affinities with some key and strong non-covalent interactions with various amino acid residues of receptor active site pocket, which predict the compounds to be potent inhibitors of various infectious bacteria. These findings suggested that the hexane extract of P. americana could be exploited as a potential natural source. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suchismeeta Behera
- Postgraduate Department of Zoology, Utkal University, Bhubaneswar, India.,State Forensic Science Laboratory, Bhubaneswar, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Suman Kumar Mekap
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Chinmaya Chidananda Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India
| | - Atul Kadam
- Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon, India
| | - Prafulla K Mohanty
- Postgraduate Department of Zoology, Utkal University, Bhubaneswar, India
| |
Collapse
|
24
|
Phytochemical, Antimicrobial, Antioxidant, and In Vitro Cytotoxicity Evaluation of Echinops erinaceus Kit Tan. SEPARATIONS 2022. [DOI: 10.3390/separations9120447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wild plants are used by many cultures for the treatment of diverse ailments. However, they are formed from mixtures of many wanted and unwanted phytochemicals. Thus, there is a necessity to separate the bioactive compounds responsible for their biological activity. In this study, the chemical composition as well as antimicrobial and cytotoxic activities of Echinops erinaceus Kit Tan (Asteraceae) were investigated. This led to the isolation and identification of seven compounds, two of which are new (erinaceosin C3 and erinaceol C5), in addition to methyl oleate (C1) and ethyl oleate (C2), loliolide (C4), (E)-p-coumaric acid (C6), and 5,7,3`,5`-tetrahydroxy flavanone (C7). The structures of the isolated compounds were elucidated by 1D, 2D NMR, and HR-ESI-MS. The methanol extract showed the highest antimicrobial activity among the tested extracts and fractions. The n-hexane and EtOAc extracts showed remarkable antimicrobial activity against B. subtilus, P. aeruginosa, E. coli, and C. albicans. A cytotoxicity-guided fractionation of the most bioactive chloroform extract resulted in the isolation of bioactive compounds C1/C2, which showed significant cytotoxicity against HCT-116 and CACO2 cell lines (IC50 24.95 and 19.74 µg/mL, respectively), followed by compounds C3 (IC50 82.82 and 76.70 µg/mL) and C5 (IC50 99.09 and 87.27 µg/mL), respectively. The antioxidant activity of the bioactive chloroform fractions was screened. Molecular docking was used to explain the results of the antimicrobial and anticancer activities against five protein targets, including DNA gyrase topoisomerase II, enoyl-acyl carrier protein reductase of S. aureus (FabI), dihydrofolate reductase (DHFR), β-catenin, and human P-glycoprotein (P-gp).
Collapse
|
25
|
Chemical composition, antibacterial activity and antioxidant activity of Citrus bergamia essential oil: Molecular docking simulations. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones. Pharmaceuticals (Basel) 2022; 15:ph15101232. [PMID: 36297343 PMCID: PMC9611066 DOI: 10.3390/ph15101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-methyl-furo [3,2-g]chromene-6-carbonitrile (4a,b) via reduction using sodium borohydride in methanol. The same compounds of (4a,b) were used as starting materials for the synthesis of new furochromone derivatives such as furochromeno [2,3-d]pyrimidines, N- (6-cyano- 5-methyl-furochromene) acetamide, N-(6-cyano-5-methyl-furo chromene)-2-phenyl acetamide, N- (6-cyano-5-methyl-furochromene) formimidate, furochromeno[1,2,4]triazepin-5-amine, furochrom ene-6-carboxamide, furochromeno[1,2,4]triazolopyrimidines, and furochromeno[2,3-b]quinolin- 6-amine. The structures of the new compounds were determined using spectroscopy: Nuclear Magnetic Resonance (1H, 13C), Mass spectra, Infrared, and elemental analysis. Molecular docking studies were conducted to investigate the binding patterns of the prepared compounds against DNA-gyrase (PDB 1HNJ). The results displayed that compounds furochromenotriazolopyrimidine (20a,b), furochromenoquinolin-6-amine (21a,b), furochromenotriazepin-amine (9a,b), and furo- chromenopyrimidine-amine (19a,b) were excellent antimicrobials.
Collapse
|
27
|
Salman M, Sharma P, Kumar M, Ethayathulla AS, Kaur P. Targeting novel sites in DNA gyrase for development of anti-microbials. Brief Funct Genomics 2022; 22:180-194. [PMID: 36064602 DOI: 10.1093/bfgp/elac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance in bacteria poses major challenges in selection of the therapeutic regime for managing the infectious disease. There is currently an upsurge in the appearance of multiple drug resistance in bacterial pathogens and a decline in the discovery of novel antibiotics. DNA gyrase is an attractive target used for antibiotic discovery due to its vital role in bacterial DNA replication and segregation in addition to its absence in mammalian organisms. Despite the presence of successful antibiotics targeting this enzyme, there is a need to bypass the resistance against this validated drug target. Hence, drug development in DNA gyrase is a highly active research area. In addition to the conventional binding sites for the novobiocin and fluoroquinolone antibiotics, several novel sites are being exploited for drug discovery. The binding sites for novel bacterial type II topoisomerase inhibitor (NBTI), simocyclinone, YacG, Thiophene and CcdB are structurally and biochemically validated active sites, which inhibit the supercoiling activity of topoisomerases. The novel chemical moieties with varied scaffolds have been identified to target DNA gyrase. Amongst them, the NBTI constitutes the most advanced DNA gyrase inhibitor which are in phase III trial of drug development. The present review aims to classify the novel binding sites other than the conventional novobiocin and quinolone binding pocket to bypass the resistance due to mutations in the DNA gyrase enzyme. These sites can be exploited for the identification of new scaffolds for the development of novel antibacterial compounds.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
28
|
Üstün E, Şakar D, Çol Ayvaz M, Sönmez Çelebi M, Ertürk Ö. CO-Releasing, Antioxidant, Antibacterial, Zeta Potential, Theoretical, and Electrochemical Analysis of [Mn(CO)3(bpy)L]OTf Type Complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Muhammed MT, Kuyucuklu G, Kaynak-Onurdag F, Aki-Yalcin E. Synthesis, Antimicrobial Activity, and Molecular Modeling Studies of
Some Benzoxazole Derivatives. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220408133643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The need to develop novel antimicrobial agents is apparent as infectious diseases
are increasing and resistance is rapidly developing against the drugs used in the treatment.
Objective:
This study aimed at the synthesis, antimicrobial susceptibility testing, and computational elucidation
of the mechanism of action of benzoxazole derivatives. It also aimed to compare the results obtained
in this study with the previous studies by our group. This would pave the way for designing novel
molecules with better antimicrobial activity. The other goal was pharmacophore analysis and in silico
ADMET analysis of them.
Methods:
In this study, synthesis, antimicrobial susceptibility testing, molecular docking, pharmacophore
analysis, and ADMET prediction were carried out.
Results:
The antimicrobial activity studies demonstrated that the synthesized compounds were active
against standard strains and clinical isolates at high concentrations. Then, the antimicrobial testing results
were compared to similar benzoxazoles tested by our group previously. Benzoxazole derivatives without
a methylene bridge between oxazole and phenyl ring were found to be more active than those with the
methylene bridge. This was also confirmed by molecular modeling undertaken in this study. The computational
results indicated that the antibacterial activity could be achieved by DNA gyrase inhibition.
Pharmacophore analysis showed that hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and
hydrophobicity features would contribute to the inhibition. In addition, in silico ADMET property investigation
of the compounds exhibited that they had the desired pharmacokinetics.
Conclusion:
Although antibacterial activity by inhibiting DNA gyrase is selective, the synthesized compounds
were active at much higher concentrations than the standards. Therefore, in prospective antimicrobial
studies, it is better to focus on benzoxazole derivatives without the methylene bridge. Since the
compounds had suitable in silico ADMET properties, screening them against the other pharmacologic
activities should be carried out. It is recommended to support the molecular modeling results with in vitro
or in vivo studies.
Collapse
Affiliation(s)
- Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
- Department of Basic Biotechnology, Institute of Biotechnology, Ankara University, Ankara, Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fatma Kaynak-Onurdag
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - Esin Aki-Yalcin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Saqallah FG, Hamed WM, Talib WH, Dianita R, Wahab HA. Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (snapdragon) aerial parts. Heliyon 2022; 8:e10391. [PMID: 36072262 PMCID: PMC9441312 DOI: 10.1016/j.heliyon.2022.e10391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Antirrhinum majus (Snapdragon) is a perennial Mediterranean-native plant that is commonly used for mass display. Few reports acknowledged the traditional use of A. majus for its medicinal and therapeutic effects. Herein, we assess the impact of A. majus’s sample preparation and extraction methods on the plant-aerial parts’ phytochemical contents and antimicrobial activity. Furthermore, the microbial targets of the extracts’ secondary metabolites are inspected using molecular docking simulations. Methods The leaves and flowers of A. majus were prepared as fresh and air-dried samples, then extracted using cold maceration and hot reflux, respectively. Extracts with the best phytochemical profiles were selected to test their antimicrobial activities against Bacillus subtilis, Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli and Candida albicans. Besides, molecular docking of 66 reported isolated compounds was conducted against various microbial targets. Results The dried-refluxed samples revealed a massive deterioration in their phytochemical profiles, whereas the macerated flowers extract exhibited the highest total phenolic content and antimicrobial activity against all tested bacterial strains. However, both flowers and leaves extracts showed similar minimum inhibitory and lethal concentrations against C. albicans. Molecular docking studies revealed that chlorogenic acid, chalcononaringenin 4’-glucoside, 3,4,2’,4’,6’-pentahydroxy-chalcone 4’-glucoside, apigenin-7-glucuronide, and luteolin-7-glucuronide were the lead compounds in expressing the antimicrobial activity. Yet, A. majus’s compounds could neither inhibit the 30S ribosomal subunit nor muramyl ligase E. Conclusion Our results suggest that cold maceration of A. majus fresh aerial parts gave higher flavonoid and phenolic content contributing to its antimicrobial properties. These flavonoids and phenolic compounds are predicted to have a crucial role in inhibiting fungal sterol 14-demethylase, and bacterial dihydropteroate synthase and gyrase B subunit proteins. Air-drying of A. majus’s aerial parts deteriorates its phytochemical composition, affecting its antimicrobial activity. A. majus’s fresh-flowers macerate exhibited the highest total phenolic content and antibacterial activity. The antimycotic activity of A. majus was the same for flowers and leaves macerates. In-silico results showed that some phenolics, chalcones, and flavonoids are responsible for the antimicrobial activity. A.majus’s components act on fungal sterol 14-demethylase, and bacterial dihydropteroate synthase and gyrase B enzymes.
Collapse
Affiliation(s)
- Fadi G. Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Faculty of Pharmacy, Applied Science Private University, 11931, Amman, Jordan
| | - Wafaa M. Hamed
- Pharmacy Department, Al-Noor University College, 41019, Mosul, Iraq
- Corresponding author.
| | - Wamidh H. Talib
- Faculty of Pharmacy, Applied Science Private University, 11931, Amman, Jordan
| | - Roza Dianita
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Habibah A. Wahab
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Corresponding author.
| |
Collapse
|
31
|
Ahsan MJ, Yusuf M, Salahuddin, Bakht MA, Taleuzzaman M, Vashishtha B, Thiriveedhi A. Green Synthesis, Biological Evaluation, and Molecular Docking of 4'-(Substituted Phenyl)Spiro[Indoline-3,3'-[1,2,4]Triazolidine]-2,5'-Diones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, India
| | - Mohammad Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Md. Afroz Bakht
- Department of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, India
| | - Bharat Vashishtha
- Department of Pharmacology, Sardar Patel College of Pharmacy, Anand, India
| | - Arunkumar Thiriveedhi
- Vignan's Foundation for Science, Technology and Research Deemed to Be University Guntur, Andhra Pradesh, India
| |
Collapse
|
32
|
Exploring the Binding Interaction of Active Compound of Pineapple against Foodborne Bacteria and Novel Coronavirus (SARS-CoV-2) Based on Molecular Docking and Simulation Studies. Nutrients 2022; 14:nu14153045. [PMID: 35893899 PMCID: PMC9332411 DOI: 10.3390/nu14153045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022] Open
Abstract
Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of −9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.
Collapse
|
33
|
Desai NC, Mehta HK, Jethawa AM, Monapara JD, Khedkar VM, Dave BP. “Design, synthesis, antimicrobial evaluation, and
in‐silico
studies of some 4‐thiazolidinone hybrids bearing coumarin and pyridine moieties”. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nisheeth C. Desai
- Division of Medicinal Chemistry, Department of Chemistry Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| | - Harsh K. Mehta
- Division of Medicinal Chemistry, Department of Chemistry Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| | - Aratiba M. Jethawa
- Division of Medicinal Chemistry, Department of Chemistry Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| | - Jahnvi D. Monapara
- Division of Medicinal Chemistry, Department of Chemistry Maharaja Krishnakumarsinhji Bhavnagar University Bhavnagar Gujarat India
| | - Vijay M. Khedkar
- School of Pharmacy Vishwakarma University Pune Maharashtra India
| | - Bharti P. Dave
- School of Science Indrashil University Rajpur Gujarat India
| |
Collapse
|
34
|
Palladium(II) Complexes of Substituted Salicylaldehydes: Synthesis, Characterization and Investigation of Their Biological Profile. Pharmaceuticals (Basel) 2022; 15:ph15070886. [PMID: 35890184 PMCID: PMC9323974 DOI: 10.3390/ph15070886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Five palladium(II) complexes of substituted salicylaldehydes (X-saloH, X = 4-Et2N (for 1), 3,5-diBr (for 2), 3,5-diCl (for 3), 5-F (for 4) or 4-OMe (for 5)) bearing the general formula [Pd(X-salo)2] were synthesized and structurally characterized. The crystal structure of complex [Pd(4-Et2N-salo)2] was determined by single-crystal X-ray crystallography. The complexes can scavenge 1,1-diphenyl-picrylhydrazyl and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals and reduce H2O2. They are active against two Gram-positive (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative (Escherichia coli and Xanthomonas campestris) bacterial strains. The complexes interact strongly with calf-thymus DNA via intercalation, as deduced by diverse techniques and via the determination of their binding constants. Complexes interact reversibly with bovine and human serum albumin. Complementary insights into their possible mechanisms of bioactivity at the molecular level were provided by molecular docking calculations, exploring in silico their ability to bind to calf-thymus DNA, Escherichia coli and Staphylococcus aureus DNA-gyrase, 5-lipoxygenase, and membrane transport lipid protein 5-lipoxygenase-activating protein, contributing to the understanding of the role complexes 1–5 can play both as antioxidant and antibacterial agents. Furthermore, in silico predictive tools have been employed to study the chemical reactivity, molecular properties and drug-likeness of the complexes, and also the drug-induced changes of gene expression profile (as protein- and mRNA-based prediction results), the sites of metabolism, the substrate/metabolite specificity, the cytotoxicity for cancer and non-cancer cell lines, the acute rat toxicity, the rodent organ-specific carcinogenicity, the anti-target interaction profiles, the environmental ecotoxicity, and finally the activity spectra profile of the compounds.
Collapse
|
35
|
Halevas E, Matsia S, Hatzidimitriou A, Geromichalou E, Papadopoulos T, Katsipis G, Pantazaki A, Litsardakis G, Salifoglou A. A unique ternary Ce(III)-quercetin-phenanthroline assembly with antioxidant and anti-inflammatory properties. J Inorg Biochem 2022; 235:111947. [DOI: 10.1016/j.jinorgbio.2022.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
|
36
|
Varna D, Geromichalou E, Hatzidimitriou AG, Papi R, Psomas G, Dalezis P, Aslanidis P, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Silver(I) complexes bearing heterocyclic thioamide ligands with NH 2 and CF 3 substituents: effect of ligand group substitution on antibacterial and anticancer properties. Dalton Trans 2022; 51:9412-9431. [PMID: 35674362 DOI: 10.1039/d2dt00793b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(μ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(μ-atdzt)(DPEphos)]2 (4), and [Ag(μ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 μM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
37
|
Anomaly of Pyrano[2,3‐c]pyrazole Synthesis towards Pyrazolyl‐aryl‐methyl‐malononitrile Derivatives and Their Antimicrobial Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Konda Y, Ankireddy AR, Velavalapalli VM, Paidikondala K, Pasula A, Gundla R. Synthesis, Alpha-Glucosidase Inhibition and Antibacterial Activities of the New Chiral (R)-3,3′-Disubstituted BINOL-Phosphates. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Frejat FOA, Cao Y, Wang L, Zhai H, Abdelazeem AH, Gomaa HAM, Youssif BGM, Wu C. New 1,2,4-oxadiazole/pyrrolidine hybrids as topoisomerase IV and DNA gyrase inhibitors with promising antibacterial activity. Arch Pharm (Weinheim) 2022; 355:e2100516. [PMID: 35363388 DOI: 10.1002/ardp.202100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
A series of hybridized pyrrolidine compounds with a 1,2,4-oxadiazole moiety were synthesized to develop effective molecules against the enzymes DNA gyrase and topoisomerase IV (Topo IV). Compounds 8-20 were developed based on a previously disclosed series of compounds from our lab, but with small structural modifications in the hopes of increasing the compounds' biological activity. In comparison to novobiocin, with IC50 = 170 nM, the findings of the DNA gyrase inhibitory assay revealed that compounds 16 and 17 were the most potent of all synthesized derivatives, with IC50 values of 180 and 210 nM, respectively. Compound 17 had the strongest inhibitory effect against Escherichia coli Topo IV of all the synthesized compounds, with an IC50 value of 13 µM, which was comparable to novobiocin (IC50 = 11 µM). Therefore, hybrids 16 and 17 appeared to be potential dual-target inhibitors. In the minimal inhibitory concentration (MIC) assays, compound 17 outperformed ciprofloxacin against E. coli, with an MIC of 55 ng/ml, compared to 60 ng/ml for ciprofloxacin. Finally, the docking study, along with the in vitro experiments, supports our promising approach to effectively develop potent leads for further optimization as dual DNA gyrase and Topo IV inhibitors.
Collapse
Affiliation(s)
- Firas O A Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Hongjin Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Pharmacy Department, College of Pharmacy, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.,Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, People's Republic of China
| |
Collapse
|
40
|
Türker D, Üstün E, Günal S, Yıldız H, D Düşünceli S, Özdemir İ. Cyanopropyl functionalized benzimidazolium salts and their silver N-heterocyclic carbene complexes: Synthesis, antimicrobial activity, and theoretical analysis. Arch Pharm (Weinheim) 2022; 355:e2200041. [PMID: 35352839 DOI: 10.1002/ardp.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
The reaction of N-substituted benzimidazole with 4-bromobutyronitrile gives the corresponding benzimidazolium salts as N-heterocyclic carbene (NHC) precursors. Silver(I) carbene complexes are synthesized by the reaction of the corresponding benzimidazolium salts with Ag2 O in dichloromethane. These new NHC precursors and Ag-NHC complexes were characterized by spectroscopy techniques and also screened for their antibacterial activities against the standard bacterial strains Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Enterococcus faecalis, and the standard fungal strains Candida albicans and Candida glabrata, and promising results were achieved. The compounds were also analyzed by density functional theory (DFT)/time-dependent DFT and docking methods.
Collapse
Affiliation(s)
- Dilek Türker
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Elvan Üstün
- Inorganic Chemistry, Department of Chemistry, Faculty of Science and Art, Ordu University, Ordu, Turkey
| | - Selami Günal
- Pharmaceutical Chemistry, Department of Microbiology, Faculty of Medicine, İnonu University, Malatya, Turkey
| | - Hatice Yıldız
- Pharmaceutical Chemistry, Department of Microbiology, Faculty of Medicine, İnonu University, Malatya, Turkey
| | - Serpil D Düşünceli
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Inorganic Chemistry, Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Inorganic Chemistry, Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| |
Collapse
|
41
|
Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Gas Chromatography-Mass Spectroscopic, high performance liquid chromatographic and In-silico characterization of antimicrobial and antioxidant constituents of Rhus longipes(Engl). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
43
|
Ragunathan V, K C. Sequential microwave-ultrasound-assisted silver nanoparticles synthesis: A swift approach, their antioxidant, antimicrobial, and in-silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Synthesis, antimicrobial and antioxidant evaluation with in silico studies of new thiazole Schiff base derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
45
|
Zianna A, Geromichalos G, Psoma E, Kalogiannis S, Hatzidimitriou AG, Psomas G. Structure and in vitro and in silico biological activity of zinc(II) complexes with 3,5–dichloro–salicylaldehyde. J Inorg Biochem 2022; 229:111727. [DOI: 10.1016/j.jinorgbio.2022.111727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022]
|
46
|
Gong L, Lu P, Lu C, Li M, Wan H, Wang Y. Design, Synthesis and Biological Evaluation of Coumarin Derivatives as NEDD8 Activating Enzyme Inhibitors in Pancreatic Cancer Cells. Med Chem 2022; 18:679-693. [PMID: 34895126 DOI: 10.2174/1573406418666211210163817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is one of the ubiquitin-like proteins which is activated by the NEDD8 activating enzyme (NAE). The overexpressed NAE can cause a variety of diseases such as numerous cancer types and inflammatory diseases. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. OBJECTIVE In this article, we decided to study the synthesis and screening of coumarin scaffold derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. METHODS Twenty-four targeted compounds were synthesized, and their anti-proliferative activity against three cancer cell lines, cytotoxicity against three normal cell lines through CCK-8 and MTT assay were evaluated to screen out the candidate compound. Then the target was further confirmed by both enzyme and cell-based experiments, as well as cell apoptosis research. RESULTS Several new 4-position substituted coumarin derivatives (12a~x) were synthesized and most of them exhibit antiproliferative activity in three cancer cell lines. A series of experiments were performed to identify the best candidate compound 12v. This compound displayed the highest potency against BxPC-3 with an IC50 value of 0.28 μM. It can also inhibit NAE activity in enzyme and cellbased assay, and induce CRLs-mediated accumulation of the substrate and apoptosis in BxPC-3 cells. Meanwhile, it exhibited relatively low toxicity in three normal cells. CONCLUSION Based on these results, we found that compound 12v inhibited NAE activity in enzyme and cell-based systems and induced apoptosis in BxPC-3 cells. Additionally, it also had a low toxicity. These results suggested that 12v may be promising lead compounds for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Lei Gong
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Peng Lu
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Mengli Li
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Huiyang Wan
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| |
Collapse
|
47
|
Zheng J, Meng SY, Wang QR, Wang JM. Synthesis of Antimicrobial Benzo[1,2,4]triazoloazepinium Salts and Tetrahydronaphtho[1,2- e][1,2,4]triazines by Polar [3 + + 2] and [4 + 2]-Cycloaddition Reactions. J Org Chem 2021; 87:464-478. [PMID: 34962786 DOI: 10.1021/acs.joc.1c02484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel annulated azaheterocycles of benzo[1,2,4]triazoloazepine and tetrahydronaphtho[1,2-e][1,2,4]triazine derivatives have been synthesized. Treatment of 2-diazenyl-1,2,3,4-tetrahydronaphthalen-2-yl acetates with BF3·Et2O generates 1-aza-2-azoniaallenium cation intermediates (or azocarbenium ions), which are intercepted by nitriles via cascade polar [3+ + 2]-cycloaddition/rearrangement reactions to afford benzo[1,2,4]triazoloazepinium salts. These literature unprecedented fused tricycle compounds have been shown to exhibit antimicrobial activity against Gram-positive Staphylococcus aureus with in silico docking studies, suggesting that they may exhibit their antibiotic activity through inhibition of DNA gyrase. Additionally, when ethyl 2-(1-acetoxy-1,2,3,4-tetrahydronaphthalen-2-yl)diazene-1-carboxylate is employed, the reaction with BF3·Et2O produces 1,2-diaza-1,3-diene, which reacts with nitriles via a diaza-Diels-Alder reaction with inverse electron demand, leading to ethyl tetrahydronaphtho[1,2-e][1,2,4]triazine carboxylates. The DFT calculation has been performed to further prove the D-A reaction speculation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Shu-Yu Meng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Quan-Rui Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Jing-Mei Wang
- Research Centre for Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
48
|
Chemical Profile of Ruta graveolens, Evaluation of the Antioxidant and Antibacterial Potential of Its Essential Oil, and Molecular Docking Simulations. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The research aimed to investigate the chemical composition and antioxidant and antibacterial potential of the essential oil (EO) isolated from the aerial parts (flowers, leaves, and stems) of Ruta graveolens L., growing in western Romania. Ruta graveolens L. essential oil (RGEO) was isolated by steam distillation (0.29% v/w), and the content was assessed by gas chromatography-mass spectrometry (GC-MS). Findings revealed that 2-Undecanone (76.19%) and 2-Nonanone (7.83%) followed by 2-Undecanol (1.85%) and 2-Tridecanone (1.42%) are the main detected compounds of the oil. The RGEO exerted broad-spectrum antibacterial and antifungal effects, S. pyogenes, S. aureus, and S. mutans being the most susceptible tested strains. The antioxidant activity of RGEO was assessed by peroxide and thiobarbituric acid value, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and β-carotene/linoleic acid bleaching testing. The results indicated moderate radical scavenging and relative antioxidative activity in DPPH and β-carotene bleaching tests. However, between the 8th and 16th days of the incubation period, the inhibition of primary oxidation compounds induced by the RGEO was significantly stronger (p < 0.001) than butylated hydroxyanisole (BHA). Molecular docking analysis highlighted that a potential antimicrobial mechanism of the RGEO could be exerted through the inhibition of D-Alanine-d-alanine ligase (DDl) by several RGEO components. Docking analysis also revealed that a high number RGEO components could exert a potential in vitro protein-targeted antioxidant effect through xanthine oxidase and lipoxygenase inhibition. Consequently, RGEO could be a new natural source of antiseptics and antioxidants, representing an option for the use of synthetic additives in the food and pharmaceutical industry.
Collapse
|
49
|
Tolba MS, Sayed AM, Sayed M, Ahmed M. Design, synthesis, biological evaluation, and molecular docking of some new Thieno[2,3-d] pyrimidine derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
GyrB inhibitors as potential antibacterial agents: a review. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|