1
|
Duan M, Wang Y, Zang J, Lv C, Du M, Zhao G, Zhang T. Construction of An Artificial Photosynthesis System with A Single CdS QDs-Ferritin Hybrid Molecule. SMALL METHODS 2024:e2400915. [PMID: 39205541 DOI: 10.1002/smtd.202400915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Establishing artificial photosynthesis systems in a simple but effective manner to mitigate the greenhouse effect and address the energy crisis remains challenging. The combination of photocatalysis technology with bioengineering is an emerging field with great potential to construct such artificial photosynthesis systems, but so far, it has barely been explored in this area. Herein, an artificial photocatalysis platform is constructed with high CO2 conversion and H2O splitting capability by integration of CdS QDs into the intra-subunit interface of H-type ferritin (Marsupenaeus japonicus), a natural ferroxidase through protein interface redesign. The crystal structure of the synthesized CdS QDs with engineered ferritin molecules as bio-templates confirmed the design at an atomic level. Notably, upon absorbing desirable visible light (≈420 nm), such a single CdS-ferritin hybrid molecule is able to selectively catalyze the reduction of CO2 into HCOOH (≈90%), meanwhile catalyzing the oxidation of H2O into O2 in an aqueous environment. The O2 production rate reached to 180 µmol g-1 h-1, and the HCOOH output hit almost 800 µmol g-1 h-1. This work advances the utilization of the four-helix bundle structure for crafting artificial photosynthesis systems, facilitating the seamless integration of bioengineering and photocatalysis technology.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yingjie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Bou‐Abdallah F, Fish J, Terashi G, Zhang Y, Kihara D, Arosio P. Unveiling the stochastic nature of human heteropolymer ferritin self-assembly mechanism. Protein Sci 2024; 33:e5104. [PMID: 38995055 PMCID: PMC11241160 DOI: 10.1002/pro.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Collapse
Affiliation(s)
- Fadi Bou‐Abdallah
- Department of ChemistryState University of New YorkPotsdamNew YorkUSA
| | - Jeremie Fish
- Department of Electrical & Computer EngineeringCoulter School of Engineering, Clarkson UniversityPotsdamNew YorkUSA
| | - Genki Terashi
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuanyuan Zhang
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Daisuke Kihara
- Department of Biological Sciences and Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Paolo Arosio
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| |
Collapse
|
3
|
Jiao R, Zhao G, Zhang T. Structural Insights into the Reaction between Hydrogen Peroxide and Di-iron Complexes at the Ferroxidase Center of Ferritin. Inorg Chem 2024; 63:3359-3365. [PMID: 38315811 DOI: 10.1021/acs.inorgchem.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The Fe(II) oxidation mechanism in the ferroxidase center of heavy chain ferritin has been studied extensively. However, the actual production of H2O2 was found to be substantially lower than expected at low flux of Fe(II) to ferritin subunits. Here, we demonstrated that H2O2 could interact with the di-iron nuclear center, leading to the production of hydroxyl radicals and oxygen. Two reaction intermediates were captured in the ferroxidase center by using the time-lapse crystallographic techniques in a shellfish ferritin. The crystal structures revealed the binding of H2O2 as a μ -1,2-peroxo-diferric species and the binding of O2 to the diferric structure. This investigation sheds light on the reaction between the di-iron nuclear center and H2O2 and provides insights for the exploitation of metalloenzymes.
Collapse
Affiliation(s)
- Ruonan Jiao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tuo Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Masison J, Mendes P. Modeling the iron storage protein ferritin reveals how residual ferrihydrite iron determines initial ferritin iron sequestration kinetics. PLoS One 2023; 18:e0281401. [PMID: 36745660 PMCID: PMC9901743 DOI: 10.1371/journal.pone.0281401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Computational models can be created more efficiently by composing them from smaller, well-defined sub-models that represent specific cellular structures that appear often in different contexts. Cellular iron metabolism is a prime example of this as multiple cell types tend to rely on a similar set of components (proteins and regulatory mechanisms) to ensure iron balance. One recurrent component, ferritin, is the primary iron storage protein in mammalian cells and is necessary for cellular iron homeostasis. Its ability to sequester iron protects cells from rising concentrations of ferrous iron limiting oxidative cell damage. The focus of the present work is establishing a model that tractably represents the ferritin iron sequestration kinetics such that it can be incorporated into larger cell models, in addition to contributing to the understanding of general ferritin iron sequestration dynamics within cells. The model's parameter values were determined from published kinetic and binding experiments and the model was validated against independent data not used in its construction. Simulation results indicate that FT concentration is the most impactful on overall sequestration dynamics, while the FT iron saturation (number of iron atoms sequestered per FT cage) fine tunes the initial rates. Finally, because this model has a small number of reactions and species, was built to represent important details of FT kinetics, and has flexibility to include subtle changes in subunit composition, we propose it to be used as a building block in a variety of specific cell type models of iron metabolism.
Collapse
Affiliation(s)
- Joseph Masison
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States of America
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
6
|
Parida A, Behera RK. Iron Accumulation in Ferritin. Methods Mol Biol 2023; 2671:121-134. [PMID: 37308642 DOI: 10.1007/978-1-0716-3222-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the iron accumulation process in ferritin protein nanocages has remained a centerpiece in the field of iron biochemistry/biomineralization, which ultimately has implications in health and diseases. Although mechanistic differences of iron acquisition and mineralization exist in the superfamily of ferritins, we describe the techniques that can be used to investigate the accumulation of iron in all the ferritin proteins by in vitro iron mineralization process. In this chapter, we report that the non-denaturing polyacrylamide gel electrophoresis coupled with Prussian blue staining (in-gel assay) can be useful to investigate the iron-loading efficiency in ferritin protein nanocage, by estimating the relative amount of iron incorporated inside it. Similarly, the absolute size of the iron mineral core and the amount of total iron accumulated inside its nanocavity can be determined by using transmission electron microscopy and spectrophotometry, respectively.
Collapse
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
7
|
Morphological difference of Escherichia coli non-heme ferritin iron cores reconstituted in the presence and absence of inorganic phosphate. J Biol Inorg Chem 2022; 27:583-594. [DOI: 10.1007/s00775-022-01952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
|
8
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
9
|
Smith GL, Srivastava AK, Reutovich AA, Hunter NJ, Arosio P, Melman A, Bou-Abdallah F. Iron Mobilization from Ferritin in Yeast Cell Lysate and Physiological Implications. Int J Mol Sci 2022; 23:ijms23116100. [PMID: 35682778 PMCID: PMC9181690 DOI: 10.3390/ijms23116100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.
Collapse
Affiliation(s)
- Gideon L. Smith
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Ayush K. Srivastava
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Aliaksandra A. Reutovich
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Nathan J. Hunter
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
| | - Paolo Arosio
- Department of Molecular & Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Artem Melman
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA; (G.L.S.); (A.K.S.); (A.A.R.); (N.J.H.)
- Correspondence:
| |
Collapse
|
10
|
Zhang C, Tan X, Lv C, Zang J, Zhao G. Shrimp ferritin greatly improves the physical and chemical stability of astaxanthin. J Food Sci 2021; 86:5295-5306. [PMID: 34716591 DOI: 10.1111/1750-3841.15945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/28/2023]
Abstract
The low stability of trans-astaxanthin (AX) not only limits its applications as a functional factor in food systems, but also affects the sensor quality of most shrimp products. Therefore, it is important to find an easy, effective way to improve the physical and chemical stability of AX. In this study, by taking advantage of the co-existence of AX and shrimp ferritin (Marsupenaeus japonicus ferritin, MjF), we investigated the interaction of AX with MjF. Results showed that AX molecules are able to bind on the outer surface of MjF to form complexes, and quantitative analyses demonstrated that one ferritin molecule is bound to ∼48 AX molecules. Consequently, such binding not only greatly enhances the water solubility, thermal stability, and photo stability of AX, but also protects AX from Fe2+ -induced oxidative damage, as compared to free AX. Thus, MjF could be used as a protective molecule to improve the physical and chemical stability of AX. PRACTICAL APPLICATION: Our study opens up a new avenue for improving the physicochemical properties of bioactive molecules by interacting with protein, and shrimp ferritin could be explored as a protective system for the bioactive molecules.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
A Novel Approach for the Synthesis of Human Heteropolymer Ferritins of Different H to L Subunit Ratios. J Mol Biol 2021; 433:167198. [PMID: 34391801 DOI: 10.1016/j.jmb.2021.167198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/18/2023]
Abstract
Mammalian ferritins are predominantly heteropolymeric species consisting of 24 structurally similar, but functionally different subunit types, named H and L, that co-assemble in different proportions. Despite their discovery more than 8 decades ago, recombinant human heteropolymer ferritins have never been synthesized, owing to the lack of a good expression system. Here, we describe for the first time a unique approach that uses a novel plasmid design that enables the synthesis of these complex ferritin nanostructures. Our study reveals an original system that can be easily tuned by altering the concentrations of two inducers, allowing the synthesis of a full spectrum of heteropolymer ferritins, from H-rich to L-rich ferritins and any combinations in-between (isoferritins). The H to L subunit composition of purified ferritin heteropolymers was analyzed by SDS-PAGE and capillary gel electrophoresis, and their iron handling properties characterized by light absorption spectroscopy. Our novel approach allows future investigations of the structural and functional differences of isoferritin populations, which remain largely obscure. This is particularly exciting since a change in the ferritin H- to L-subunit ratio could potentially lead to new iron core morphologies for various applications in bio-nanotechnologies.
Collapse
|
12
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
13
|
Melman A, Bou-Abdallah F. Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochim Biophys Acta Gen Subj 2020; 1864:129700. [DOI: 10.1016/j.bbagen.2020.129700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023]
|
14
|
Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. SCIENCE CHINA. LIFE SCIENCES 2020; 64:352-362. [PMID: 32974854 DOI: 10.1007/s11427-020-1795-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
Ferritin, an iron-storage protein, regulates cellular iron metabolism and oxidative stress. The ferritin structure is characterized as a spherical cage, inside which large amounts of iron are deposited in a safe, compact and bioavailable form. All ferritins readily catalyze Fe(II) oxidation by peroxides at the ferroxidase center to prevent free Fe(II) from participating in oxygen free radical formation via Fenton chemistry. Thus, ferritin is generally recognized as a cytoprotective stratagem against intracellular oxidative damage The expression of cytosolic ferritins is usually regulated by iron status and oxidative stress at both the transcriptional and post-transcriptional levels. The mechanism of ferritin-mediated iron recycling is far from clarified, though nuclear receptor co-activator 4 (NCOA4) was recently identified as a cargo receptor for ferritin-based lysosomal degradation. Cytosolic ferritins are heteropolymers assembled by H- and L-chains in different proportions. The mitochondrial ferritins are homopolymers and distributed in restricted tissues. They play protective roles in mitochondria where heme- and Fe/S-enzymes are synthesized and high levels of ROS are produced. Genetic ferritin disorders are mainly related to the L-chain mutations, which generally cause severe movement diseases. This review is focused on the biochemistry and function of mammalian intracellular ferritin as the major iron-storage and anti-oxidation protein.
Collapse
|
15
|
Smith MJ, Fowler M, Naftalin RJ, Siow RCM. UVA irradiation increases ferrous iron release from human skin fibroblast and endothelial cell ferritin: Consequences for cell senescence and aging. Free Radic Biol Med 2020; 155:49-57. [PMID: 32387586 DOI: 10.1016/j.freeradbiomed.2020.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
UVA irradiation of human dermal fibroblasts and endothelial cells induces an immediate transient increase in cytosolic Fe(II), as monitored by the fluorescence Fe(II) reporters, FeRhonox1 in cytosol and MitoFerroGreen in mitochondria. Both superoxide dismutase (SOD) inhibition by tetrathiomolybdate (ATM) and catalase inhibition by 3-amino-1, 2, 4-triazole (ATZ) increase and prolong the cytosolic Fe(II) signal after UVA irradiation. SOD inhibition with ATM also increases mitochondrial Fe(II). Thus, mitochondria do not source the UV-dependent increase in cytosolic Fe(II), but instead reflect and amplify raised cytosolic labile Fe(II) concentration. Hence control of cytosolic ferritin iron release is key to preventing UVA-induced inflammation. UVA irradiation also increases dermal endothelial cell H2O2, as monitored by the adenovirus vector Hyper-DAAO-NES(HyPer). These UVA-dependent changes in intracellular Fe(II) and H2O2 are mirrored by increases in cell superoxide, monitored with the luminescence probe L-012. UV-dependent increases in cytosolic Fe(II), H2O2 and L-012 chemiluminescence are prevented by ZnCl2 (10 μM), an effective inhibitor of Fe(II) transport via ferritin's 3-fold channels. Quercetin (10 μM), a potent membrane permeable Fe(II) chelator, abolishes the cytosolic UVA-dependent FeRhonox1, Fe(II) and HyPer, H2O2 and increase in MitoFerroGreen Fe(II) signals. The time course of the quercetin-dependent decrease in endothelial H2O2 correlates with the decrease in FeRhox1 signal and both signals are fully suppressed by preloading cells with ZnCl2. These results confirm that antioxidant enzyme activity is the key factor in controlling intracellular iron levels, and hence maintenance of cell antioxidant capacity is vitally important in prevention of skin aging and inflammation initiated by labile iron and UVA.
Collapse
Affiliation(s)
- Matthew J Smith
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK
| | - Mark Fowler
- Unilever Colworth Science Park, Bedfordshire, UK
| | - Richard J Naftalin
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK.
| | - Richard C M Siow
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
16
|
McNally JR, Mehlenbacher MR, Luscieti S, Smith GL, Reutovich AA, Maura P, Arosio P, Bou-Abdallah F. Mutant L-chain ferritins that cause neuroferritinopathy alter ferritin functionality and iron permeability. Metallomics 2020; 11:1635-1647. [PMID: 31513212 DOI: 10.1039/c9mt00154a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the iron storage and detoxification protein ferritin is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light). The two subunits co-assemble in various ratios, with a tissue specific distribution, to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunits possess ferroxidase centers that catalyze the rapid oxidation of ferrous ions, whereas the L-subunit does not have such centers and is believed to play an important role in electron transfer reactions that occur during the uptake and release of iron. Pathogenic mutations on the L-chain lead to neuroferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin inclusion bodies and iron in the central nervous system. Here, we have characterized the thermal stability, iron loading capacity, iron uptake, and iron release properties of ferritin heteropolymers carrying the three pathogenic L-ferritin mutants (L154fs, L167fs, and L148fs, which for simplicity we named Ln1, Ln2 and Ln3, respectively), and a non-pathogenic variant (L135P) bearing a single substitution on the 3-fold axes of L-subunits. The UV-Vis data show a similar iron loading capacity (ranging between 1800 to 2400 Fe(iii)/shell) for all ferritin samples examined in this study, with Ln2 holding the least amount of iron (i.e. 1800 Fe(iii)/shell). The three pathogenic L-ferritin mutants revealed higher rates of iron oxidation and iron release, suggesting that a few mutated L-chains on the heteropolymer have a significant effect on iron permeability through the ferritin shell. DSC thermograms showed a strong destabilization effect, the severity of which depends on the location of the frameshift mutations (i.e. wt heteropolymer ferritin ≅ homopolymer H-chain > L135P > Ln2 > Ln1 > Ln3). Variant L135P had only minor effects on the protein functionality and stability, suggesting that local melting of the 3-fold axes in this variant may not be responsible for neuroferritinopathy-like disorders. The data support the hypothesis that hereditary neuroferritinopathies are due to alterations of ferritin functionality and lower physical stability which correlate with the frameshifts introduced at the C-terminal sequence and explain the dominant transmission of the disorder.
Collapse
Affiliation(s)
- Justin R McNally
- Department of Chemistry, State University of New York, Potsdam, New York 13676, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bou-Abdallah F, Flint N, Wilkinson T, Salim S, Srivastava AK, Poli M, Arosio P, Melman A. Ferritin exhibits Michaelis-Menten behavior with oxygen but not with iron during iron oxidation and core mineralization. Metallomics 2020; 11:774-783. [PMID: 30720039 DOI: 10.1039/c9mt00001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The excessively high and inconsistent literature values for Km,Fe and Km,O2 prompted us to examine the iron oxidation kinetics in ferritin, the major iron storage protein in mammals, and to determine whether a traditional Michaelis-Menten enzymatic behavior is obeyed. The kinetics of Fe(ii) oxidation and mineralization catalyzed by three different types of ferritins (recombinant human homopolymer 24H, HuHF, human heteropolymer ∼21H:3L, HL, and horse spleen heteropolymer ∼3.3H:20.7L, HosF) were therefore studied under physiologically relevant O2 concentrations, but also in the presence of excess Fe(ii) and O2 concentrations. The observed iron oxidation kinetics exhibited two distinct phases (phase I and phase II), neither of which obeyed Michaelis-Menten kinetics. While phase I was very rapid and corresponded to the oxidation of approximately 2 Fe(ii) ions per H-subunit, phase II was much slower and varied linearly with the concentration of iron(ii) cations in solution, independent of the size of the iron core. Under low oxygen concentration close to physiological, the iron uptake kinetics revealed a Michaelis-Menten behavior with Km,O2 values in the low μM range (i.e. ∼1-2 μM range). Our experimental Km,O2 values are significantly lower than typical cellular oxygen concentration, indicating that iron oxidation and mineralization in ferritin should not be affected by the oxygenation level of cells, and should proceed even under hypoxic events. A kinetic model is proposed in which the inhibition of the protein's activity is caused by bound iron(iii) cations at the ferroxidase center, with the rate limiting step corresponding to an exchange or a displacement reaction between incoming Fe(ii) cations and bound Fe(iii) cations.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Parida A, Mohanty A, Kansara BT, Behera RK. Impact of Phosphate on Iron Mineralization and Mobilization in Nonheme Bacterioferritin B from Mycobacterium tuberculosis. Inorg Chem 2019; 59:629-641. [DOI: 10.1021/acs.inorgchem.9b02894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bharat T. Kansara
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Rabindra K. Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
19
|
Plan Sangnier A, Van de Walle AB, Curcio A, Le Borgne R, Motte L, Lalatonne Y, Wilhelm C. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells. NANOSCALE 2019; 11:16488-16498. [PMID: 31453605 DOI: 10.1039/c9nr05624f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic nanoparticles (MNPs) internalized within stem cells have paved the way for remote magnetic cell manipulation and imaging in regenerative medicine. A full understanding of their interactions with stem cells and of their fate in the intracellular environment is then required, in particular with respect to their surface coatings. Here, we investigated the biological interactions of MNPs composed of an identical magnetic core but coated with different molecules: phosphonoacetic acid, polyethylene glycol phosphonic carboxylic acid, caffeic acid, citric acid, and polyacrylic acid. These coatings vary in the nature of the chelating function, the number of binding sites, and the presence or absence of a polymer. The nanoparticle magnetism was systematically used as an indicator of their internalization within human stem cells and of their structural long-term biodegradation in a 3D stem cell spheroid model. Overall, we evidence that the coating impacts the aggregation status of the nanoparticles and subsequently their uptake within stem cells, but it has little effect on their intracellular degradation. Only a high number of chelating functions (polyacrylic acid) had a significant protective effect. Interestingly, when the nanoparticles aggregated prior to cellular internalization, less degradation was also observed. Finally, for all coatings, a robust dose-dependent intracellular degradation rate was demonstrated, with higher doses of internalized nanoparticles leading to a lower degradation extent.
Collapse
Affiliation(s)
- Anouchka Plan Sangnier
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France. and Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Aurore B Van de Walle
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| | - Alberto Curcio
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France. and Services de Biochimie et de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes, Complexes MSC, UMR 7057, CNRS & University Paris Diderot, 75205, Paris Cedex 13, France.
| |
Collapse
|
20
|
Mohanty A, Subhadarshanee B, Barman P, Mahapatra C, Aishwarya B, Behera RK. Iron Mineralizing Bacterioferritin A from Mycobacterium tuberculosis Exhibits Unique Catalase-Dps-like Dual Activities. Inorg Chem 2019; 58:4741-4752. [DOI: 10.1021/acs.inorgchem.8b02758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Biswamaitree Subhadarshanee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar 751024, Odisha, India
| | - Pallavi Barman
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Chinmayee Mahapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - B. Aishwarya
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rabindra K. Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
21
|
Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019; 133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 μM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard J Naftalin
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
22
|
Reductive Mobilization of Iron from Intact Ferritin: Mechanisms and Physiological Implication. Pharmaceuticals (Basel) 2018; 11:ph11040120. [PMID: 30400623 PMCID: PMC6315955 DOI: 10.3390/ph11040120] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023] Open
Abstract
Ferritins are highly conserved supramolecular protein nanostructures composed of two different subunit types, H (heavy) and L (light). The two subunits co-assemble into a 24-subunit heteropolymer, with tissue specific distributions, to form shell-like protein structures within which thousands of iron atoms are stored as a soluble inorganic ferric iron core. In-vitro (or in cell free systems), the mechanisms of iron(II) oxidation and formation of the mineral core have been extensively investigated, although it is still unclear how iron is loaded into the protein in-vivo. In contrast, there is a wide spread belief that the major pathway of iron mobilization from ferritin involves a lysosomal proteolytic degradation of ferritin, and the dissolution of the iron mineral core. However, it is still unclear whether other auxiliary iron mobilization mechanisms, involving physiological reducing agents and/or cellular reductases, contribute to the release of iron from ferritin. In vitro iron mobilization from ferritin can be achieved using different reducing agents, capable of easily reducing the ferritin iron core, to produce soluble ferrous ions that are subsequently chelated by strong iron(II)-chelating agents. Here, we review our current understanding of iron mobilization from ferritin by various reducing agents, and report on recent results from our laboratory, in support of a mechanism that involves a one-electron transfer through the protein shell to the iron mineral core. The physiological significance of the iron reductive mobilization from ferritin by the non-enzymatic FMN/NAD(P)H system is also discussed.
Collapse
|
23
|
Dashtestani F, Ghourchian H, Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:831-840. [PMID: 30423769 DOI: 10.1016/j.msec.2018.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) cause oxidative stress, which involves in the pathogenesis of many serious diseases. Apoferittin containing gold-silver nanoparticles (Au-Ag-AFT) was designed and evaluated as a nanozyme for scavenging the ROS. The nanozyme consisting of silver-gold nanohybrid in apoferittin cage represents superoxide dismutase, catalase and peroxidase mimetic activities. The Au-Ag-AFT nanozyme was characterized by spectroscopy, FESEM, TEM and dynamic light scattering. The inhibition process for pyrogallol autoxidation was used for assaying the superoxide dismutase mimetic activity and measuring the kinetic parameters of Au-Ag-AFT nanozyme. Additionally, Aebi method and standard protocol was used for evaluating the catalase and peroxidase mimetic activity. The kcat values for superoxide dismutase, catalase and peroxidase mimetics activity were 1.4 × 106, 0.1 and 9 × 103 s-1 respectively. These values indicated that Au-Ag-AFT nanozyme could act as a suitable ROS scavenger. Additionally, Au-Ag-AFT nanozyme was examined as a protective agent for human sperm against oxidative stress induced during the cryopreservation process. Presence of the nanozyme in the sperm media significantly increased the motility and viability of the cells and also decreased the ROS, apoptosis and necrosis (P < 0.05) compare to the control group.
Collapse
Affiliation(s)
- Fariba Dashtestani
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran.
| | - Atefeh Najafi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran, Iran
| |
Collapse
|
24
|
Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives. Pharmaceuticals (Basel) 2018; 11:ph11020039. [PMID: 29734693 PMCID: PMC6027379 DOI: 10.3390/ph11020039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/15/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022] Open
Abstract
Plant ferritin represents a novel class of iron supplement, which widely co-exists with phenolic acids in a plant diet. However, there are few reports on the effect of these phenolic acids on function of ferritin. In this study, we demonstrated that cinnamic acid derivatives, as widely occurring phenolic acids, can induce iron release from holo soybean seed ferritin (SSF) in a structure-dependent manner. The ability of the iron release from SSF by five cinnamic acids follows the sequence of Cinnamic acid > Chlorogenic acid > Ferulic acid > p-Coumaric acid > Trans-Cinnamic acid. Fluorescence titration in conjunction with dialysis results showed that all of these five compounds have a similar, weak ability to bind with protein, suggesting that their protein-binding ability is not related to their iron release activity. In contrast, both Fe2+-chelating activity and reducibility of these cinnamic acid derivatives are in good agreement with their ability to induce iron release from ferritin. These studies indicate that cinnamic acid and its derivatives could have a negative effect on iron stability of holo soybean seed ferritin in diet, and the Fe2+-chelating activity and reducibility of cinnamic acid and its derivatives have strong relations to the iron release of soybean seed ferritin.
Collapse
|
25
|
Moglia I, Santiago M, Olivera-Nappa Á, Soler M. An optimized low-cost protocol for standardized production of iron-free apoferritin nanocages with high protein recovery and suitable conformation for nanotechnological applications. J Inorg Biochem 2017; 183:184-190. [PMID: 29279245 DOI: 10.1016/j.jinorgbio.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
Ferritin is a globular protein that consists of 24 subunits forming a hollow nanocage structure that naturally stores iron oxyhydroxides. Elimination of iron atoms to obtain the empty protein called apoferritin is the first step to use this organic shell as a nanoreactor for different nanotechnological applications. Different protocols have been reported for apoferritin formation, but some are time consuming, others are difficult to reproduce and protein recovery yields are seldom reported. Here we tested several protocols and performed a complete material characterization of the apoferritin products using size exclusion chromatography, UV-vis spectroscopy, inductively coupled plasma optical emission spectrometry and dynamic light scattering. Our best method removes more than 99% of the iron from loaded holoferritin, recovering 70-80% of the original protein as monomeric apoferritin nanocages. Our work shows that pH conditions of the reduction step and the presence and nature of chelating agents affect the efficiency of iron removal. Furthermore, process conditions also seem to have an influence on the monomer:aggregate proportion present in the product. We also demonstrate that iron contents markedly increase ferritin absorbance at 280nm. The influence of iron contents on absorbance at 280nm precludes using this simple spectrophotometric measure for protein determination in ferritin‑iron complexes. Apoferritin produced following our protocol only requires readily-available, cheap and biocompatible reagents, which makes this process standardizable, scalable and applicable to be used for in vivo applications of ferritin derivatives as well as nanotechnological and biotechnological uses.
Collapse
Affiliation(s)
- Italo Moglia
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile
| | - Margarita Santiago
- Center for Biotechnology and Bioengineering - CeBiB, FCFM, University of Chile, Beauchef 851, Santiago, Chile
| | - Álvaro Olivera-Nappa
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile; Center for Biotechnology and Bioengineering - CeBiB, FCFM, University of Chile, Beauchef 851, Santiago, Chile.
| | - Mónica Soler
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
26
|
Ebrahimi KH, Bill E, Hagedoorn PL, Hagen WR. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation. MOLECULAR BIOSYSTEMS 2017; 12:3576-3588. [PMID: 27722502 DOI: 10.1039/c6mb00235h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.
Collapse
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
27
|
Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S, Chasteen ND, Bou-Abdallah F. Iron Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins. Biochemistry 2017. [PMID: 28636371 DOI: 10.1021/acs.biochem.7b00024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In animals, the iron storage and detoxification protein, ferritin, is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light), which co-assemble in various ratios with tissue specific distributions to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunit possesses a ferroxidase center (FC) that catalyzes Fe(II) oxidation, whereas the L-subunit does not. To assess the role of the L-subunit in iron oxidation and core formation, two human recombinant heteropolymeric ferritins, designated H-rich and L-rich with ratios of ∼20H:4L and ∼22L:2H, respectively, were employed and compared to the human homopolymeric H-subunit ferritin (HuHF). These heteropolymeric ferritins have a composition similar to the composition of those found in hearts and brains (i.e., H-rich) and in livers and spleens (i.e., L-rich). As for HuHF, iron oxidation in H-rich ferritin was found to proceed with a 2:1 Fe(II):O2 stoichiometry at an iron level of 2 Fe(II) atoms/H-subunit with the generation of H2O2. The H2O2 reacted with additional Fe(II) in a 2:1 Fe(II):H2O2 ratio, thus avoiding the production of hydroxyl radical. A μ-1,2-peroxo-diFe(III) intermediate was observed at the FC of H-rich ferritin as for HuHF. Importantly, the H-rich protein regenerated full ferroxidase activity more rapidly than HuHF did and additionally formed larger iron cores, indicating dual roles for the L-subunit in facilitating iron turnover at the FC and in mineralization of the core. The L-rich ferritin, while also facilitating iron oxidation at the FC, additionally promoted oxidation at the mineral surface once the iron binding capacity of the FC was exceeded.
Collapse
Affiliation(s)
- Matthew Mehlenbacher
- Department of Chemistry, State University of New York , Potsdam, New York 13676, United States
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia , 25121 Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia , 25121 Brescia, Italy
| | | | | | - N Dennis Chasteen
- Department of Chemistry, University of New Hampshire , Durham, New Hampshire 03824, United States
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York , Potsdam, New York 13676, United States
| |
Collapse
|
28
|
Genetically encoded iron-associated proteins as MRI reporters for molecular and cellular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [DOI: 10.1002/wnan.1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/18/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
|
29
|
Badu-Boateng C, Pardalaki S, Wolf C, Lajnef S, Peyrot F, Naftalin RJ. Labile iron potentiates ascorbate-dependent reduction and mobilization of ferritin iron. Free Radic Biol Med 2017; 108:94-109. [PMID: 28336129 DOI: 10.1016/j.freeradbiomed.2017.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/29/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
Abstract
Ascorbate mobilizes iron from equine spleen ferritin by two separate processes. Ascorbate alone mobilizes ferritin iron with an apparent Km (ascorbate) ≈1.5mM. Labile iron >2μM, complexed with citrate (10mM), synergises ascorbate-dependent iron mobilization by decreasing the apparent Km (ascorbate) to ≈270μM and raising maximal mobilization rate by ≈5-fold. Catalase reduces the apparent Km(ascorbate) for both ascorbate and ascorbate+iron dependent mobilization by ≈80%. Iron mobilization by ascorbate alone has a higher activation energy (Ea=45.0±5.5kJ/mole) than when mediated by ascorbate with labile iron (10μM) (Ea=13.7±2.2kJ/mole); also mobilization by iron-ascorbate has a three-fold higher pH sensitivity (pH range 6.0-8.0) than with ascorbate alone. Hydrogen peroxide inhibits ascorbate's iron mobilizing action. EPR and autochemiluminescence studies show that ascorbate and labile iron within ferritin enhances radical formation, whereas ascorbate alone produces negligible radicals. These findings suggest that iron catalysed single electron transfer reactions from ascorbate, involving ascorbate or superoxide and possibly ferroxidase tyrosine radicals, accelerate iron mobilization from the ferroxidase centre more than EPR silent, bi-dentate two-electron transfers. These differing modes of electron transference from ascorbate mirror the known mono and bidentate oxidation reactions of dioxygen and hydrogen peroxide with di-ferrous iron at the ferroxidase centre. This study implies that labile iron, at physiological pH, complexed with citrate, synergises iron mobilization from ferritin by ascorbate (50-4000μM). This autocatalytic process can exacerbate oxidative stress in ferritin-containing inflamed tissue.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence and Physiology Department, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Sofia Pardalaki
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence and Physiology Department, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | | | - Sonia Lajnef
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR CNRS 8601), Université Paris Descartes, 75006 Paris, France
| | - Fabienne Peyrot
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR CNRS 8601), Université Paris Descartes, 75006 Paris, France; ESPE de l'académie de Paris, Université Paris Sorbonne, 75016 Paris, France
| | - Richard J Naftalin
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence and Physiology Department, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
30
|
Zanzoni S, Pagano K, D'Onofrio M, Assfalg M, Ciambellotti S, Bernacchioni C, Turano P, Aime S, Ragona L, Molinari H. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization. Chemistry 2017; 23:9879-9887. [PMID: 28489257 DOI: 10.1002/chem.201701164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Ferritin is a ubiquitous nanocage protein, which can accommodate up to thousands of iron atoms inside its cavity. Aside from its iron storage function, a new role as a fatty acid binder has been proposed for this protein. The interaction of apo horse spleen ferritin (HoSF) with a variety of lipids has been here investigated through NMR spectroscopic ligand-based experiments, to provide new insights into the mechanism of ferritin-lipid interactions, and the link with iron mineralization. 1D 1 H, diffusion (DOSY) and saturation-transfer difference (STD) NMR experiments provided evidence for a stronger interaction of ferritin with unsaturated fatty acids compared to saturated fatty acids, detergents, and bile acids. Mineralization assays showed that oleate c aused the most efficient increase in the initial rate of iron oxidation, and the highest formation of ferric species in HoSF. The comprehension of the factors inducing a faster biomineralization is an issue of the utmost importance, given the association of ferritin levels with metabolic syndromes, such as insulin resistance and diabetes, characterized by fatty acid concentration dysregulation. The human ferritin H-chain homopolymer (HuHF), featuring ferroxidase activity, was also tested for its fatty acid binding capabilities. Assays show that oleate can bind with high affinity to HuHF, without altering the reaction rates at the ferroxidase site.
Collapse
Affiliation(s)
- Serena Zanzoni
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Mariapina D'Onofrio
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Silvio Aime
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy.,IBB-CNR-UOS, Università di Torino, Torino, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| |
Collapse
|
31
|
Diversity of Fe 2+ entry and oxidation in ferritins. Curr Opin Chem Biol 2017; 37:122-128. [DOI: 10.1016/j.cbpa.2017.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
|
32
|
Chemistry at the protein-mineral interface in L-ferritin assists the assembly of a functional (μ 3-oxo)Tris[(μ 2-peroxo)] triiron(III) cluster. Proc Natl Acad Sci U S A 2017; 114:2580-2585. [PMID: 28202724 DOI: 10.1073/pnas.1614302114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
X-ray structures of homopolymeric L-ferritin obtained by freezing protein crystals at increasing exposure times to a ferrous solution showed the progressive formation of a triiron cluster on the inner cage surface of each subunit. After 60 min exposure, a fully assembled (μ3-oxo)Tris[(μ2-peroxo)(μ2-glutamato-κO:κO')](glutamato-κO)(diaquo)triiron(III) anionic cluster appears in human L-ferritin. Glu60, Glu61, and Glu64 provide the anchoring of the cluster to the protein cage. Glu57 shuttles incoming iron ions toward the cluster. We observed a similar metallocluster in horse spleen L-ferritin, indicating that it represents a common feature of mammalian L-ferritins. The structures suggest a mechanism for iron mineral formation at the protein interface. The functional significance of the observed patch of carboxylate side chains and resulting metallocluster for biomineralization emerges from the lower iron oxidation rate measured in the E60AE61AE64A variant of human L-ferritin, leading to the proposal that the observed metallocluster corresponds to the suggested, but yet unobserved, nucleation site of L-ferritin.
Collapse
|
33
|
Nandwana V, Ryoo SR, Kanthala S, Kumar A, Sharma A, Castro FC, Li Y, Hoffman B, Lim S, Dravid VP. Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Adv 2017. [DOI: 10.1039/c7ra05681h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the development of a “natural” MRI contrast agent with tunable Fe loading and a magnetic core for magnetic resonance imaging.
Collapse
|
34
|
Abstract
Iron is very important in many biological processes and the ferritin protein family has evolved to store iron and to maintain cellular iron homeostasis. The deletion of the coding gene for the H subunit of ferritin leads to early embryonic death in mice and mutations in the gene for the L subunits in humans has been observed in neurodegenerative diseases, such as neuroferritinopathy. Thus, understanding how ferritin works is imperative and many studies have been conducted to delineate the molecular mechanism of ferritins and bacterioferritins. In the ferritin protein family, it is clear that a catalytic center for iron oxidation, the routes for iron to reach this center and the ability to nucleate an iron core, are common requirements for all ferritins. However, there are differences in the structural and mechanistic details of iron oxidation and mineralization. Although a common mechanism has been proposed for all ferritins, this mechanism needs to be further explored. There is a mechanistic diversity related to structural variation in the ferritin protein family. It is clear that other factors appear to affect the mechanism of iron oxidation and mineralization. This review focusses on the structural features of the ferritin protein family and its role in the mechanism of iron mineralization.
Collapse
Affiliation(s)
- Alejandro Yévenes
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
35
|
Kim S, Lee JH, Seok JH, Park YH, Jung SW, Cho AE, Lee C, Chung MS, Kim KH. Structural Basis of Novel Iron-Uptake Route and Reaction Intermediates in Ferritins from Gram-Negative Bacteria. J Mol Biol 2016; 428:5007-5018. [PMID: 27777002 DOI: 10.1016/j.jmb.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Iron and oxygen chemistry is mediated by iron proteins for many biological functions. Carboxylate-bridged diiron enzymes including ferritin have the common mechanism of oxygen activation via peroxodiferric intermediates. However, the route for iron uptake and the structural identification of intermediates still remain incomplete. The 4-fold symmetry channel of Helicobacter pylori ferritin was previously proposed as the iron-uptake route in eubacteria, but the amino acid residues at the 4-fold channel are not highly conserved. Here, we show evidence for a short path for iron uptake from His93 on the surface to the ferroxidase center in H. pylori ferritin and Escherichia coli ferritin. The amino acid residues along this path are highly conserved in Gram-negative bacteria and some archaea, and the mutants containing S20A and H93L showed significantly decreased iron oxidation. Surprisingly, the E. coli ferritin S20A crystal structure showed oxygen binding and side-on, symmetric μ-η2:η2 peroxodiferric and oxodiferric intermediates. The results provide the structural basis for understanding the chemical nature of intermediates in iron oxidation in bacteria and some of archaea.
Collapse
Affiliation(s)
- Sella Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Yi-Ho Park
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Sang Won Jung
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Art E Cho
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Cheolju Lee
- Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul 132-714, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea.
| |
Collapse
|
36
|
Qiu R, Kan Y, Li D. Ferritin from the Pacific abalone Haliotis discus hannai: Analysis of cDNA sequence, expression, and activity. FISH & SHELLFISH IMMUNOLOGY 2016; 49:315-323. [PMID: 26766182 DOI: 10.1016/j.fsi.2015.12.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Ferritin plays an important role in iron homeostasis due to its ability to bind and sequester large amounts of iron. In this study, the gene encoding a ferritin (HdhFer2) was cloned from Pacific abalone (Haliotis discus hannai). The full-length cDNA of HdhFer2 contains a 5'-UTR of 121 bp, an ORF of 516 bp, and a 3'-UTR of 252 bp with a polyadenylation signal sequence of AATAAA and a poly(A) tail. It also contains a 31 bp iron-responsive element (IRE) in the 5'-UTR position, which is conserved in many ferritins. HdhFer2 consists of 171 amino acid residues with a predicted molecular weight (MW) ∼19.8 kDa and a theoretical isoelectric point (PI) of 4.84. The deduced amino acid sequence of HdhFer2 contains two ferritin iron-binding region signatures (IBRSs). HdhFer2 mRNA was detected in a wide range of tissues and was dominantly expressed in the gill. Infection with the bacterial pathogen Vibrio anguillarum significantly upregulated HdhFer2 expression in a time-dependent manner. Recombinant HdhFer2 (rHdhFer2) purified from Escherichia coli was able to bind ferrous iron in a concentration-dependent manner. In summary, these results suggest that HdhFer2 is a crucial protein in the iron-withholding defense system, and plays an important role in the innate immune response of abalone.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China.
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
37
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 535] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
38
|
Sana B, Johnson E, Lim S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim Biophys Acta Gen Subj 2015; 1850:2544-51. [PMID: 26341788 DOI: 10.1016/j.bbagen.2015.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND In conventional in vitro encapsulation of molecular cargo, the multi-subunit ferritin protein cages are disassembled in extremely acidic pH and re-assembled in the presence of highly concentrated cargo materials, which results in poor yields due to the low-pH treatment. In contrast, Archaeoglobus fulgidus open-pore ferritin (AfFtn) and its closed-pore mutant (AfFtn-AA) are present as dimeric species in neutral buffers that self-assemble into cage-like structure upon addition of metal ions. METHODS To understand the iron-mediated self-assembly and ascorbate-mediated disassembly properties, we studied the iron binding and release profile of the AfFtn and AfFtn-AA, and the corresponding oligomerization of their subunits. RESULTS Fe(2+) binding and conversion to Fe(3+) triggered the self-assembly of cage-like structures from dimeric species of AfFtn and AfFtn-AA subunits, while disassembly was induced by dissolving the iron core with reducing agents. The closed-pore AfFtn-AA has identical iron binding kinetics but lower iron release rates when compared to AfFtn. While the iron binding rate is proportional to Fe(2+) concentration, the iron release rate can be controlled by varying ascorbate concentrations. CONCLUSION The AfFtn and AfFtn-AA cages formed by iron mineralization could be disassembled by dissolving the iron core. The open-pores of AfFtn contribute to enhanced reductive iron release while the small channels located at the 3-fold symmetry axis (3-fold channels) are used for iron uptake. GENERAL SIGNIFICANCE The iron-mediated self-assembly/disassembly property of AfFtn offers a new set of molecular trigger for formation and dissociation of the protein cage, which can potentially regulate uptake and release of molecular cargo from protein cages.
Collapse
Affiliation(s)
- Barindra Sana
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore
| | - Eric Johnson
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sierin Lim
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore.
| |
Collapse
|
39
|
Wang JJ, Sun L. Ferritin M of Paralichthys olivaceus possesses antimicrobial and antioxidative properties. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:951-959. [PMID: 25981106 DOI: 10.1007/s10695-015-0060-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Ferritin is an evolutionarily conserved protein that plays a vital role in maintaining iron homeostasis. In this study, we identified a ferritin M (PoFerM) from Japanese flounder (Paralichthys olivaceus) and analyzed its biological property. PoFerM is composed of 176 amino acid residues and contains the conserved ferroxidase diiron center and the ferrihydrite nucleation center typical of M ferritins. Expression of PoFerM occurred in multiple tissues and was most abundant in blood. Bacterial infection upregulated PoFerM expression in head kidney, spleen, and liver in a time-dependent manner. Recombinant PoFerM (rPoFerM) purified from Escherichia coli exhibited iron-chelating activity and inhibited bacterial growth, whereas rPoFerMM, the mutant protein that bears alanine substitution at two conserved residues of the ferroxidase center and the ferrihydrite nucleation center, failed to do so. Oxidative protection analysis showed that rPoFerM, but not rPoFerMM, was able to alleviate the deleterious effect of H2O2-induced free radicals on plasmid DNA and primary flounder cells. Together these results indicate that PoFerM is an iron chelator with antimicrobial and antioxidative properties, all which depend on the conserved ferroxidase center and the ferrihydrite nucleation site.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | | |
Collapse
|
40
|
Yang R, Zhou Z, Sun G, Gao Y, Xu J. Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Yao H, Rui H, Kumar R, Eshelman K, Lovell S, Battaile KP, Im W, Rivera M. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Biochemistry 2015; 54:1611-27. [PMID: 25640193 DOI: 10.1021/bi501255r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.
Collapse
Affiliation(s)
- Huili Yao
- Department of Chemistry, ‡Del Shankel Structural Biology Center, and §Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Biology of ferritin in mammals: an update on iron storage, oxidative damage and neurodegeneration. Arch Toxicol 2014; 88:1787-802. [PMID: 25119494 DOI: 10.1007/s00204-014-1329-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022]
Abstract
Iron is an abundant transition metal that is essential for life, being associated with many enzyme and oxygen carrier proteins involved in a variety of fundamental cellular processes. At the same time, the metal is potentially toxic due to its capacity to engage in the catalytic production of noxious reactive oxygen species. The control of iron availability in the cells is largely dependent on ferritins, ubiquitous proteins with storage and detoxification capacity. In mammals, cytosolic ferritins are composed of two types of subunits, the H and the L chain, assembled to form a 24-mer spherical cage. Ferritin is present also in mitochondria, in the form of a complex with 24 identical chains. Even though the proteins have been known for a long time, their study is a very active and interesting field yet. In this review, we will focus our attention to mammalian cytosolic and mitochondrial ferritins, describing the most recent advancement regarding their storage and antioxidant function, the effects of their genetic mutations in human pathology, and also the possible involvement in non-iron-related activities. We will also discuss recent evidence connecting ferritins and the toxicity of iron in a set of neurodegenerative disorder characterized by focal cerebral siderosis.
Collapse
|
43
|
Lv C, Liu W, Zhao G. A novel homopolymeric phytoferritin from chickpea seeds with high stability. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2270-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Identification and Characterization of a Ferritin Gene and Its Product from the Multicellular Green AlgaUlva pertusa. Biosci Biotechnol Biochem 2014; 76:1913-9. [DOI: 10.1271/bbb.120400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Bradley JM, Moore GR, Le Brun NE. Mechanisms of iron mineralization in ferritins: one size does not fit all. J Biol Inorg Chem 2014; 19:775-85. [PMID: 24748222 DOI: 10.1007/s00775-014-1136-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022]
Abstract
Significant progress has been made in recent years toward understanding the processes by which an iron mineral is deposited within members of the ferritin family of 24mer iron storage proteins, enabled by high-resolution structures together with spectroscopic and kinetic studies. These suggest common characteristics that are shared between ferritins, namely, a highly symmetric arrangement of subunits that provides a protein coat around a central cavity in which the mineral is formed, channels through the coat that facilitate ingress and egress of ions, and catalytic sites, called ferroxidase centers, that drive Fe(2+) oxidation. They also reveal significant variations in both structure and mechanism amongst ferritins. Here, we describe three general types of structurally distinct ferroxidase center and the mechanisms of mineralization that they are associated with. The highlighted variation leads us to conclude that there is no universal mechanism by which ferritins function, but instead there exists several distinct mechanisms of ferritin iron mineralization.
Collapse
Affiliation(s)
- Justin M Bradley
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|
46
|
Lv C, Zhang S, Zang J, Zhao G, Xu C. Four-fold channels are involved in iron diffusion into the inner cavity of plant ferritin. Biochemistry 2014; 53:2232-41. [PMID: 24678690 DOI: 10.1021/bi500066m] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From an evolutionary point of view, plant and animal ferritins arose from a common ancestor, but plant ferritin exhibits different features as compared with the animal analogue. One major difference is that the 4-fold channels naturally occurring in plant ferritin are hydrophilic, whereas the 4-fold channels in animal ferritin are hydrophobic. Prior to this study, however, the function of the 4-fold channels in oxidative deposition of iron in phytoferritin remained unknown. To elucidate the role of the 4-fold channels in iron oxidative deposition in ferritin, three mutants of recombinant soybean seed H-2 ferritin (rH-2) were prepared by site-directed mutagenesis, which contained H193A/H197A, a 4-fold channel mutant, E165I/E167A/E171A, a 3-fold channel mutant, and E165I/E167A/E171A/H193A/H197A, where both 3- and 4-channels were mutated. Stopped-flow, electrode oximetry, and transmission electron microscopy (TEM) results showed that H193A/H197A and E165I/E167A/E171A exhibited a similar catalyzing activity of iron oxidation with each other, but a pronounced low activity compared to rH-2, demonstrating that both the 4-fold and 3-fold hydrophilic channels are necessary for iron diffusion in ferritin, followed by oxidation. Indeed, among all tested ferritin, the catalyzing activity of E165I/E167A/E171A/H193A/H197A was weakest because its 3- and 4- fold channels were blocked. These findings advance our understanding of the function of 4-fold channels of plant ferritin and the relationship of the structure and function of ferritin.
Collapse
Affiliation(s)
- Chenyan Lv
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing 100083, China
| | | | | | | | | |
Collapse
|
47
|
Liao X, Yun S, Zhao G. Structure, Function, and Nutrition of Phytoferritin: A Newly Functional Factor for Iron Supplement. Crit Rev Food Sci Nutr 2014; 54:1342-52. [DOI: 10.1080/10408398.2011.635914] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Bou-Abdallah F, Yang H, Awomolo A, Cooper B, Woodhall MR, Andrews SC, Chasteen ND. Functionality of the three-site ferroxidase center of Escherichia coli bacterial ferritin (EcFtnA). Biochemistry 2014; 53:483-95. [PMID: 24380371 DOI: 10.1021/bi401517f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
At least three ferritins are found in the bacterium Escherichia coli : the heme-containing bacterioferritin (EcBFR) and two nonheme bacterial ferritins (EcFtnA and EcFtnB). In addition to the conserved A and B sites of the diiron ferroxidase center, EcFtnA has a third iron-binding site (the C site) of unknown function that is nearby the diiron site. In the present work, the complex chemistry of iron oxidation and deposition in EcFtnA was further defined through a combination of oximetry, pH stat, stopped-flow and conventional kinetics, UV-vis, fluorescence, and EPR spectroscopic measurements on both the wild-type protein and site-directed variants of the A, B, and C sites. The data reveal that although H2O2 is a product of dioxygen reduction in EcFtnA and oxidation occurs with a stoichiometry of Fe(2+)/O2 ∼ 3:1 most of the H2O2 produced is consumed in subsequent reactions with a 2:1 Fe(2+)/H2O2 stoichiometry, thus suppressing hydroxyl-radical formation. Although the A and B sites are essential for rapid iron oxidation, the C site slows oxidation and suppresses iron turnover at the ferroxidase center. A tyrosyl radical, assigned to Tyr24 near the ferroxidase center, is formed during iron oxidation, and its possible significance to the function of the protein is discussed. Taken as a whole, the data indicate that there are multiple iron-oxidation pathways in EcFtnA with O2 and H2O2 as oxidants. Furthermore, our data do not support a universal mechanism for iron oxidation in all ferritins whereby the C site acts as transit site, as has been recently proposed.
Collapse
Affiliation(s)
- F Bou-Abdallah
- Department of Chemistry, State University of New York , Potsdam, New York 13676, United States
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhang T, Liao X, Yang R, Xu C, Zhao G. Different effects of iron uptake and release by phytoferritin on starch granules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8215-23. [PMID: 23909493 DOI: 10.1021/jf402826p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytoferritin from legume seeds is naturally compartmentalized in amyloplasts, where iron is takem up and released by ferritin during seed formation and germination. However, the effect of these two processes on starch granules remains unknown. No starch damage was visualized by SEM during iron uptake by apo soybean seed ferritin (SSF). In contrast, great damage was observed with the starch granules during iron release from holoSSF induced by ascorbic acid. Such a difference stems from different strategies to control HO(•) chemistry during these two processes. HO(•) is hardly formed during iron uptake by apoSSF, whereas a significant amount of HO(•) is generated during iron release due to the Fenton reaction. As a result, starch granules are kept intact during iron uptake, which might beneficial to the storage of the starch granules during seed formation. In contrast, these starch granules are dramatically hydrolyzed during the iron release process, which might favor seed germination.
Collapse
Affiliation(s)
- Tuo Zhang
- CAU and ACC Joint-Laboratory of Space Food, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | | | | | | | | |
Collapse
|
50
|
Cozzi A, Santambrogio P, Privitera D, Broccoli V, Rotundo LI, Garavaglia B, Benz R, Altamura S, Goede JS, Muckenthaler MU, Levi S. Human L-ferritin deficiency is characterized by idiopathic generalized seizures and atypical restless leg syndrome. ACTA ACUST UNITED AC 2013; 210:1779-91. [PMID: 23940258 PMCID: PMC3754865 DOI: 10.1084/jem.20130315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human L-ferritin deficiency causes reduced cellular iron availability and increased ROS production with enhanced oxidized proteins, which results in idiopathic generalized seizures and atypical restless leg syndrome. The ubiquitously expressed iron storage protein ferritin plays a central role in maintaining cellular iron homeostasis. Cytosolic ferritins are composed of heavy (H) and light (L) subunits that co-assemble into a hollow spherical shell with an internal cavity where iron is stored. The ferroxidase activity of the ferritin H chain is critical to store iron in its Fe3+ oxidation state, while the L chain shows iron nucleation properties. We describe a unique case of a 23-yr-old female patient affected by a homozygous loss of function mutation in the L-ferritin gene, idiopathic generalized seizures, and atypical restless leg syndrome (RLS). We show that L chain ferritin is undetectable in primary fibroblasts from the patient, and thus ferritin consists only of H chains. Increased iron incorporation into the FtH homopolymer leads to reduced cellular iron availability, diminished levels of cytosolic catalase, SOD1 protein levels, enhanced ROS production and higher levels of oxidized proteins. Importantly, key phenotypic features observed in fibroblasts are also mirrored in reprogrammed neurons from the patient’s fibroblasts. Our results demonstrate for the first time the pathophysiological consequences of L-ferritin deficiency in a human and help to define the concept for a new disease entity hallmarked by idiopathic generalized seizure and atypical RLS.
Collapse
Affiliation(s)
- Anna Cozzi
- San Raffaele Scientific Institute, Division of Neuroscience and 2 University Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|