1
|
Zou Y, Pan M, Zhou T, Yan L, Chen Y, Yun J, Wang Z, Guo H, Zhang K, Xiong W. Critical COVID-19, Victivallaceae abundance, and celiac disease: A mediation Mendelian randomization study. PLoS One 2024; 19:e0301998. [PMID: 38701071 PMCID: PMC11068179 DOI: 10.1371/journal.pone.0301998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Celiac disease exhibits a higher prevalence among patients with coronavirus disease 2019. However, the potential influence of COVID-19 on celiac disease remains uncertain. Considering the significant association between gut microbiota alterations, COVID-19 and celiac disease, the two-step Mendelian randomization method was employed to investigate the genetic causality between COVID-19 and celiac disease, with gut microbiota as the potential mediators. We employed the genome-wide association study to select genetic instrumental variables associated with the exposure. Subsequently, these variables were utilized to evaluate the impact of COVID-19 on the risk of celiac disease and its potential influence on gut microbiota. Employing a two-step Mendelian randomization approach enabled the examination of potential causal relationships, encompassing: 1) the effects of COVID-19 infection, hospitalized COVID-19 and critical COVID-19 on the risk of celiac disease; 2) the influence of gut microbiota on celiac disease; and 3) the mediating impact of the gut microbiota between COVID-19 and the risk of celiac disease. Our findings revealed a significant association between critical COVID-19 and an elevated risk of celiac disease (inverse variance weighted [IVW]: P = 0.035). Furthermore, we observed an inverse correlation between critical COVID-19 and the abundance of Victivallaceae (IVW: P = 0.045). Notably, an increased Victivallaceae abundance exhibits a protective effect against the risk of celiac disease (IVW: P = 0.016). In conclusion, our analysis provides genetic evidence supporting the causal connection between critical COVID-19 and lower Victivallaceae abundance, thereby increasing the risk of celiac disease.
Collapse
Affiliation(s)
- Yuxin Zou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Manyi Pan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifeng Yan
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntian Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Yun
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaqi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Zhang
- Department of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Banerjee P, Chaudhary R, Singh AK, Parulekar P, Kumar S, Senapati S. Specific Genetic Polymorphisms Contributing in Differential Binding of Gliadin Peptides to HLA-DQ and TCR to Elicit Immunogenicity in Celiac Disease. Biochem Genet 2023; 61:2457-2480. [PMID: 37103600 DOI: 10.1007/s10528-023-10377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/01/2023] [Indexed: 04/28/2023]
Abstract
Immunogenicity of gliadin peptides in celiac disease (CD) is majorly determined by the pattern of molecular interactions with HLA-DQ and T-cell receptors (TCR). Investigation of the interactions between immune-dominant gliadin peptides, DQ protein, and TCR are warranted to unravel the basis of immunogenicity and variability contributed by the genetic polymorphisms. Homology modeling of HLA and TCR done using Swiss Model and iTASSER, respectively. Molecular interactions of eight common deamidated immune-dominant gliadin with HLA-DQ allotypes and specific TCR gene pairs were evaluated. Docking of the three structures was performed with ClusPro2.0 and ProDiGY was used to predict binding energies. Effects of known allelic polymorphisms and reported susceptibility SNPs were predicted on protein-protein interactions. CD susceptible allele, HLA-DQ2.5 was shown to have considerable binding affinity to 33-mer gliadin (ΔG = - 13.9; Kd = 1.5E - 10) in the presence of TRAV26/TRBV7. Higher binding affinity was predicted (ΔG = - 14.3, Kd = 8.9E - 11) when TRBV28 was replaced with TRBV20 paired with TRAV4 suggesting its role in CD predisposition. SNP rs12722069 at HLA-DQ8 that codes Arg76α forms three H-bonds with Glu12 and two H-bonds with Asn13 of DQ2 restricted gliadin in the presence of TRAV8-3/TRBV6. None of the HLA-DQ polymorphisms was found to be in linkage disequilibrium with reported CD susceptibility markers. Haplotypic presentations of rs12722069-G, rs1130392-C, rs3188043-C and rs4193-A with CD reported SNPs were observed in sub-ethnic groups. Highly polymorphic sites of HLA alleles and TCR variable regions could be utilized for better risk prediction models in CD. Therapeutic strategies by identifying inhibitors or blockers targeting specific gliadin:HLA-DQ:TCR binding sites could be investigated.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Ramprasad Chaudhary
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Pratima Parulekar
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
3
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
4
|
Loppinet E, Besser HA, Sewa AS, Yang FC, Jabri B, Khosla C. LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific T cell antigens. Cell Chem Biol 2023; 30:55-68.e10. [PMID: 36608691 PMCID: PMC9868102 DOI: 10.1016/j.chembiol.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder in which gluten-derived antigens trigger inflammation. Antigenic peptides must undergo site-specific deamidation to be presentable to CD4+ T cells in an HLA-DQ2 or -DQ8 restricted manner. While the biochemical basis for this post-translational modification is understood, its localization in the patient's intestine remains unknown. Here, we describe a mechanism by which gluten peptides undergo deamidation and concentration in the lysosomes of antigen-presenting cells, explaining how the concentration of gluten peptides necessary to elicit an inflammatory response in CeD patients is achieved. A ternary complex forms between a gluten peptide, transglutaminase-2 (TG2), and ubiquitous plasma protein α2-macroglobulin, and is endocytosed by LRP-1. The covalent TG2-peptide adduct undergoes endolysosomal decoupling, yielding the expected deamidated epitope. Our findings invoke a pathogenic role for dendritic cells and/or macrophages in CeD and implicate TG2 in the lysosomal clearance of unwanted self and foreign extracellular proteins.
Collapse
Affiliation(s)
- Elise Loppinet
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnele Sylvia Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fu-Chen Yang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Machado MV. New Developments in Celiac Disease Treatment. Int J Mol Sci 2023; 24:ijms24020945. [PMID: 36674460 PMCID: PMC9862998 DOI: 10.3390/ijms24020945] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Celiac disease (CD) is a common autoimmune disease affecting around 1% of the population. It consists of an immune-mediated enteropathy, triggered by gluten exposure in susceptible patients. All patients with CD, irrespective of the presence of symptoms, must endure a lifelong gluten-free diet (GFD). This is not an easy task due to a lack of awareness of the gluten content in foods and the extensive incorporation of gluten in processed foods. Furthermore, a GFD imposes a sense of limitation and might be associated with decreased quality of life in CD patients. This results in gluten contamination in the diet of four out of five celiac patients adhering to a GFD. Furthermore, one in three adult patients will report persistent symptoms and two in three will not achieve full histological recovery when on a GFD. In recent years, there has been extensive research conducted in the quest to find the holy grail of pharmacological treatment for CD. This review will present a concise description of the current rationale and main clinical trials related to CD drug therapy.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Gastroenterology Department, Hospital de Vila Franca de Xira, Estrada Carlos Lima Costa, Nª 2, 2600-009 Vila Franca de Xira, Portugal; ; Tel.: +351-263-006-500
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
6
|
Calado J, Verdelho Machado M. Celiac Disease Revisited. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2022; 29:111-124. [PMID: 35497669 PMCID: PMC8995660 DOI: 10.1159/000514716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/08/2021] [Indexed: 08/30/2023]
Abstract
Celiac disease (CD) is a systemic disease triggered by gluten ingestion in genetically predisposed individuals. It manifests primarily as an autoimmune enteropathy associated with specific circulating autoantibodies and a human leukocyte antigen haplotype (HLA-DQ2 or HLA-DQ8). It afflicts roughly 1% of the population, though the majority of patients remain undiagnosed. Diarrhea and malabsorption are classic manifestations of CD; however, both children and adults can be paucisymptomatic and present extraintestinal manifestations such as anemia, osteoporosis, and abnormal liver tests. CD screening is not recommended for the general population, and it should be focused on high-risk groups. CD diagnosis is challenging and relies on serological tests, duodenal histology, and genetic testing. Particularly difficult presentations to manage are seronegative patients, seropositive patients without villus atrophy, and patients who have started a gluten-free diet before the diagnostic workup. The only proven treatment is a lifelong gluten-free diet. We present an in-depth review on the physiopathology and management of CD, with a particular emphasis on diagnostic challenges.
Collapse
Affiliation(s)
- João Calado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| |
Collapse
|
7
|
A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Proc Natl Acad Sci U S A 2020; 117:3063-3073. [PMID: 31974305 DOI: 10.1073/pnas.1914308117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5-mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance.
Collapse
|
8
|
Høydahl LS, Richter L, Frick R, Snir O, Gunnarsen KS, Landsverk OJB, Iversen R, Jeliazkov JR, Gray JJ, Bergseng E, Foss S, Qiao SW, Lundin KEA, Jahnsen J, Jahnsen FL, Sandlie I, Sollid LM, Løset GÅ. Plasma Cells Are the Most Abundant Gluten Peptide MHC-expressing Cells in Inflamed Intestinal Tissues From Patients With Celiac Disease. Gastroenterology 2019; 156:1428-1439.e10. [PMID: 30593798 PMCID: PMC6441630 DOI: 10.1053/j.gastro.2018.12.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Development of celiac disease is believed to involve the transglutaminase-dependent response of CD4+ T cells toward deamidated gluten peptides in the intestinal mucosa of individuals with specific HLA-DQ haplotypes. We investigated the antigen presentation process during this mucosal immune response. METHODS We generated monoclonal antibodies (mAbs) specific for the peptide-MHC (pMHC) complex of HLA-DQ2.5 and the immunodominant gluten epitope DQ2.5-glia-α1a using phage display. We used these mAbs to assess gluten peptide presentation and phenotypes of presenting cells by flow cytometry and enzyme-linked immune absorbent spot (ELISPOT) in freshly prepared single-cell suspensions from intestinal biopsies from 40 patients with celiac disease (35 untreated and 5 on a gluten-free diet) as well as 18 subjects with confirmed noninflamed gut mucosa (controls, 12 presumed healthy, 5 undergoing pancreatoduodenectomy, and 1 with potential celiac disease). RESULTS Using the mAbs, we detected MHC complexes on cells from intestinal biopsies from patients with celiac disease who consume gluten, but not from patients on gluten-free diets. We found B cells and plasma cells to be the most abundant cells that present DQ2.5-glia-α1a in the inflamed mucosa. We identified a subset of plasma cells that expresses B-cell receptors (BCR) specific for gluten peptides or the autoantigen transglutaminase 2 (TG2). Expression of MHC class II (MHCII) was not restricted to these specific plasma cells in patients with celiac disease but was observed in an average 30% of gut plasma cells from patients and controls. CONCLUSIONS A population of plasma cells from intestinal biopsies of patients with celiac disease express MHCII; this is the most abundant cell type presenting the immunodominant gluten peptide DQ2.5-glia-α1a in the tissues from these patients. These results indicate that plasma cells in the gut can function as antigen-presenting cells and might promote and maintain intestinal inflammation in patients with celiac disease or other inflammatory disorders.
Collapse
Affiliation(s)
- Lene Støkken Høydahl
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway; KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.
| | - Lisa Richter
- Centre for Immune Regulation and Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Present address: Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | - Rahel Frick
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Omri Snir
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kristin Støen Gunnarsen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole JB Landsverk
- Centre for Immune Regulation and Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rasmus Iversen
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Chemical and Biomolecular Engineering and Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Elin Bergseng
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stian Foss
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway
| | - Knut EA Lundin
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Dept of Gastroenterology, Oslo University Hospital-Rikshospitalet Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Centre for Immune Regulation and Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.,KG Jebsen Coeliac Disease Research Centre and Department of Immunology, University of Oslo, Oslo, Norway
| | - Geir Åge Løset
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; Centre for Immune Regulation and Department of Biosciences, University of Oslo, Oslo, Norway; Nextera AS, Oslo, Norway.
| |
Collapse
|
9
|
Ráki M, Dahal-Koirala S, Yu H, Korponay-Szabó IR, Gyimesi J, Castillejo G, Jahnsen J, Qiao SW, Sollid LM. Similar Responses of Intestinal T Cells From Untreated Children and Adults With Celiac Disease to Deamidated Gluten Epitopes. Gastroenterology 2017; 153:787-798.e4. [PMID: 28535873 DOI: 10.1053/j.gastro.2017.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Celiac disease is a chronic small intestinal inflammatory disorder mediated by an immune response to gluten peptides in genetically susceptible individuals. Celiac disease is often diagnosed in early childhood, but some patients receive a diagnosis late in life. It is uncertain whether pediatric celiac disease is distinct from adult celiac disease. It has been proposed that gluten-reactive T cells in children recognize deamidated and native gluten epitopes, whereas T cells from adults only recognize deamidated gluten peptides. We studied the repertoire of gluten epitopes recognized by T cells from children and adults. METHODS We examined T-cell responses against gluten by generating T-cell lines and T-cell clones from intestinal biopsies of adults and children and tested proliferative response to various gluten peptides. We analyzed T cells from 14 children (2-5 years old) at high risk for celiac disease who were followed for celiac disease development. We also analyzed T cells from 6 adults (26-55 years old) with untreated celiac disease. All children and adults were positive for HLA-DQ2.5. Biopsies were incubated with gluten digested with chymotrypsin (modified or unmodified by the enzyme transglutaminase 2) or the peptic-tryptic digest of gliadin (in native and deamidated forms) before T-cell collection. RESULTS Levels of T-cell responses were higher to deamidated gluten than to native gluten in children and adults. T cells from children and adults each reacted to multiple gluten epitopes. Several T-cell clones were cross-reactive, especially clones that recognized epitopes from γ-and ω-gliadin. About half of the generated T-cell clones from children and adults reacted to unknown epitopes. CONCLUSIONS T-cell responses to different gluten peptides appear to be similar between adults and children at the time of diagnosis of celiac disease.
Collapse
Affiliation(s)
- Melinda Ráki
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; PreventCD Project Group.
| | - Shiva Dahal-Koirala
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Hao Yu
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ilma R Korponay-Szabó
- PreventCD Project Group; Department of Paediatrics and Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Heim Pal Children's Hospital, Budapest, Hungary
| | - Judit Gyimesi
- PreventCD Project Group; Heim Pal Children's Hospital, Budapest, Hungary
| | - Gemma Castillejo
- PreventCD Project Group; Paediatric Gastroenterology Unit, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; PreventCD Project Group; Centre for Immune Regulation and Department of Immunology, University of Oslo, Oslo, Norway; KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Candia M, Kratzer B, Pickl WF. On Peptides and Altered Peptide Ligands: From Origin, Mode of Action and Design to Clinical Application (Immunotherapy). Int Arch Allergy Immunol 2016; 170:211-233. [PMID: 27642756 PMCID: PMC7058415 DOI: 10.1159/000448756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
T lymphocytes equipped with clonotypic T cell antigen receptors (TCR) recognize immunogenic peptides only when presented in the context of their own major histocompatibility complex (MHC) molecules. Peptide loading to MHC molecules occurs in intracellular compartments (ER for class I and MIIC for class II molecules) and relies on the interaction of the respective peptides and peptide binding pockets on MHC molecules. Those peptide residues not engaged in MHC binding point towards the TCR screening for possible peptide MHC complex binding partners. Natural or intentional modification of both MHC binding registers and TCR interacting residues of peptides - leading to the formation of altered peptide ligands (APLs) - might alter the way peptides interact with TCRs and hence influence subsequent T cell activation events, and consequently T cell effector functions. This review article summarizes how APLs were detected and first described, current concepts of how APLs modify T cellular signaling, which biological mechanisms might force the generation of APLs in vivo, and how peptides and APLs might be used for the benefit of patients suffering from allergic or autoimmune diseases.
Collapse
Affiliation(s)
- Martín Candia
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| |
Collapse
|
11
|
Liu J, Liu M, Zheng B, Yao Z, Xia J. Affinity Enhancement by Ligand Clustering Effect Inspired by Peptide Dendrimers-Shank PDZ Proteins Interactions. PLoS One 2016; 11:e0149580. [PMID: 26918521 PMCID: PMC4769301 DOI: 10.1371/journal.pone.0149580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/01/2016] [Indexed: 01/28/2023] Open
Abstract
High-affinity binders are desirable tools to probe the function that specific protein−protein interactions play in cell. In the process of seeking a general strategy to design high-affinity binders, we found a clue from the βPIX (p21-activated kinase interacting exchange factor)−Shank PDZ interaction in synaptic assembly: three PDZ-binding sites are clustered by a parallel coiled-coil trimer but bind to Shank PDZ protein with 1:1 stoichiometry (1 trimer/1 PDZ). Inspired by this architecture, we proposed that peptide dendrimer, mimicking the ligand clustering in βPIX, will also show enhanced binding affinity, yet with 1:1 stoichiometry. This postulation has been proven here, as we synthesized a set of monomeric, dimeric and trimeric peptides and measured their binding affinity and stoichiometry with Shank PDZ domains by isothermal titration calorimetry, native mass spectrometry and surface plasmon resonance. This affinity enhancement, best explained by proximity effect, will be useful to guide the design of high-affinity blockers for protein−protein interactions.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Chemistry, Centre of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Miao Liu
- Department of Chemistry, Centre of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bo Zheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhongping Yao
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiang Xia
- Department of Chemistry, Centre of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- * E-mail:
| |
Collapse
|
12
|
Celiac disease: Autoimmunity in response to food antigen. Semin Immunol 2015; 27:343-52. [PMID: 26603490 DOI: 10.1016/j.smim.2015.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Celiac disease (CD) is an increasingly common disease of the small intestine that occurs in genetically susceptible subjects by ingestion of cereal gluten proteins. Gluten is highly abundant in the modern diet and well tolerated by most individuals. In CD, however, an erroneous but highly specific, adaptive immune response is mounted toward certain parts of the gluten proteome. The resulting intestinal destruction is reversible and resolved upon removal of gluten from the diet. Post-translational modification (deamidation) of gluten peptides by transglutaminase 2 (TG2) is essential for the peptides to act as HLA-DQ-restricted T-cell antigens. Characteristically, deamidated gluten and the self-protein TG2 both become targets of highly disease specific B-cell responses. These antibodies share several peculiar characteristics despite being directed against vastly different antigens, which suggests a common mechanism of development. Importantly, no clear function has been ascribed to the antibodies and their contribution to disease may relate to their function as antigen receptors of the B cells rather than as soluble immunoglobulins. Adaptive immunity against gluten and TG2 appears not to be sufficient for establishment of the disease lesion, and it has been suggested that stress responses in the intestinal epithelium are essential for the development of full-blown disease and tissue damage. In this review we will summarize current concepts of the immune pathology of CD with particular focus on recent advances in our understanding of disease specific B-cell responses.
Collapse
|
13
|
du Pré MF, Sollid LM. T-cell and B-cell immunity in celiac disease. Best Pract Res Clin Gastroenterol 2015; 29:413-23. [PMID: 26060106 DOI: 10.1016/j.bpg.2015.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/26/2015] [Indexed: 01/31/2023]
Abstract
Celiac disease is an inflammatory disorder with leukocyte infiltration and changes of tissue architecture of the small intestine. The condition develops in genetically susceptible individuals as the result of an inappropriate immune response to gluten proteins of wheat, barley and rye. The clinical manifestations and the histological changes normalize when gluten is eliminated from the diet. CD4(+) T cells that recognize gluten peptides bound to predisposing HLA-DQ molecules play a key role in the pathogenesis. These T cells recognize better gluten peptides that are deamidated, and this posttranslational modification is mediated by the enzyme transglutaminase 2 (TG2). Another hallmark of celiac disease is the production of antibodies to gluten as well as to TG2. A role for B cells in celiac disease pathogenesis is receiving increased recognition. This review will discuss the main discoveries in the field of T-cell and B-cell biology of celiac disease.
Collapse
Affiliation(s)
- M Fleur du Pré
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
14
|
|
15
|
Unudurthi SD, Hotta K, Kim CY. Engineering the polyproline II propensity of a class II major histocompatibility complex ligand peptide. ACS Chem Biol 2013; 8:2383-7. [PMID: 24001370 DOI: 10.1021/cb400594q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our immune system constantly samples peptides found inside the body as a means to detect foreign pathogens, infected cells, and tumorous cells. T cells, which carry out the critical task of distinguishing self from nonself peptides, can only survey peptides that are presented by the major histocompatibility complex protein. We investigated how the secondary structure of a peptide, namely, the polyproline II helix content, influences major histocompatibility complex binding. We synthesized 12 analogues of the wheat gluten derived α-I-gliadin peptide and tested their binding to the celiac disease associated HLA-DQ2 protein. Our analogue library represents a broad spectrum of polyproline II propensities, ranging from random coil structure to high polyproline II helix content. Overall, there was no noticeable correlation between the peptide polyproline II helix content and HLA-DQ2 binding. One analogue peptide, which has low polyproline II helix content, showed a 4.5-fold superior binding compared to native α-I-gliadin.
Collapse
Affiliation(s)
- Sathya Dev Unudurthi
- Department of Biological
Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Kinya Hotta
- Department of Biological
Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - Chu-Young Kim
- Department of Biological
Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
16
|
Mazzeo MF, Bonavita R, Maurano F, Bergamo P, Siciliano RA, Rossi M. Biochemical modifications of gliadins induced by microbial transglutaminase on wheat flour. Biochim Biophys Acta Gen Subj 2013; 1830:5166-74. [PMID: 23891939 DOI: 10.1016/j.bbagen.2013.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/24/2013] [Accepted: 07/18/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Celiac disease (CD) is an immune-mediated disorder caused by the ingestion of wheat gluten. A lifelong, gluten-free diet is required to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase (mTGase) suppressed the gliadin-specific immune response in intestinal T-cell lines from CD patients and in models of gluten sensitivity. METHODS SDS-PAGE, Western blot, ELISA, tissue transglutaminase (tTGase) assay and nano-HPLC-ESI-MS/MS experiments were used to analyze prolamins isolated from treated wheat flour. RESULTS Gliadin and glutenin yields decreased to 7.6±0.5% and 7.5±0.3%, respectively, after a two-step transamidation reaction that produced a water-soluble protein fraction (spf). SDS-PAGE, Western blot and ELISA analyses confirmed the loss of immune cross-reactivity with anti-native gliadin antibodies in residual transamidated gliadins (K-gliadins) and spf as well as the occurrence of neo-epitopes. Nano-HPLC-ESI-MS/MS experiments identified some native and transamidated forms of celiacogenic peptides including p31-49 and confirmed that mTGase had similar stereo-specificity of tTGase. Those peptides resulted to be 100% and 57% modified in spf and K-gliadins, respectively. In particular, following transamidation p31-49 lost its ability to increase tTGase activity in Caco-2 cells. Finally, bread manufactured with transamidated flour had only minor changes in baking characteristics. CONCLUSIONS The two-step transamidation reaction modified the analyzed gliadin peptides, which are known to trigger CD, without influencing main technological properties. GENERAL SIGNIFICANCE Our data shed further light on a detoxification strategy alternative to the gluten free diet and may have important implications for the management of CD patients.
Collapse
|
17
|
Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 2012; 64:455-60. [PMID: 22322673 PMCID: PMC3349865 DOI: 10.1007/s00251-012-0599-z] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
Celiac disease is caused by an abnormal intestinal T-cell response to gluten proteins of wheat, barley and rye. Over the last few years, a number of gluten T-cell epitopes restricted by celiac disease associated HLA-DQ molecules have been characterized. In this work, we give an overview of these epitopes and suggest a comprehensive, new nomenclature.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
18
|
The adaptive immune response in celiac disease. Semin Immunopathol 2012; 34:523-40. [PMID: 22535446 DOI: 10.1007/s00281-012-0314-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/10/2012] [Indexed: 12/15/2022]
Abstract
Compared to other human leukocyte antigen (HLA)-associated diseases such as type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, fundamental aspects of the pathogenesis in celiac disease are relatively well understood. This is mostly because the causative antigen in celiac disease-cereal gluten proteins-is known and the culprit HLA molecules are well defined. This has facilitated the dissection of the disease-relevant CD4+ T cells interacting with the disease-associated HLA molecules. In addition, celiac disease has distinct antibody responses to gluten and the autoantigen transglutaminase 2, which give strong handles to understand all sides of the adaptive immune response leading to disease. Here we review recent developments in the understanding of the role of T cells, B cells, and antigen-presenting cells in the pathogenic immune response of this instructive disorder.
Collapse
|
19
|
Wang J, Jin X, Liu J, Khosla C, Xia J. Resolving multiple protein-peptide binding events: implication for HLA-DQ2 mediated antigen presentation in celiac disease. Chem Asian J 2012; 7:992-9. [PMID: 22411856 DOI: 10.1002/asia.201101041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/01/2012] [Indexed: 11/09/2022]
Abstract
Techniques that can effectively separate protein-peptide complexes from free peptides have shown great value in major histocompatibility complex (MHC)-peptide binding studies. However, most of the available techniques are limited to measuring the binding of a single peptide to an MHC molecule. As antigen presentation in vivo involves both endogenous ligands and exogenous antigens, the deconvolution of multiple binding events necessitates the implementation of a more powerful technique. Here we show that capillary electrophoresis coupled to fluorescence detection (CE-FL) can resolve multiple MHC-peptide binding events owing to its superior resolution and the ability to simultaneously monitor multiple emission channels. We utilized CE-FL to investigate competition and displacement of endogenous peptides by an immunogenic gluten peptide for binding to HLA-DQ2. Remarkably, this immunogenic peptide could displace CLIP peptides from the DQ2 binding site at neutral but not acidic pH. This unusual ability of the gluten peptide supports a direct loading mechanism of antigen presentation in extracellular environment, a property that could explain the antigenicity of dietary gluten in celiac disease.
Collapse
Affiliation(s)
- Jianhao Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China
| | | | | | | | | |
Collapse
|
20
|
Abstract
Celiac sprue is an inflammatory disease of the small intestine caused by dietary gluten and treated by adherence to a life-long gluten-free diet. The recent identification of immunodominant gluten peptides, the discovery of their cogent properties, and the elucidation of the mechanisms by which they engender immunopathology in genetically susceptible individuals have advanced our understanding of the molecular pathogenesis of this complex disease, enabling the rational design of new therapeutic strategies. The most clinically advanced of these is oral enzyme therapy, in which enzymes capable of proteolyzing gluten (i.e., glutenases) are delivered to the alimentary tract of a celiac sprue patient to detoxify ingested gluten in situ. In this chapter, we discuss the key challenges for discovery and preclinical development of oral enzyme therapies for celiac sprue. Methods for lead identification, assay development, gram-scale production and formulation, and lead optimization for next-generation proteases are described and critically assessed.
Collapse
Affiliation(s)
- Michael T Bethune
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
21
|
Sollid LM, Jabri B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr Opin Immunol 2011; 23:732-8. [PMID: 21917438 DOI: 10.1016/j.coi.2011.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
Posttranslational modification (PTM) of antigen is a way to break T-cell tolerance to self-antigens and promote autoimmunity. However, the precise mechanisms by which modifications would facilitate autoimmune T-cell responses and how they relate to particular autoimmune-associated MHC molecules remain elusive. Celiac disease is a T-cell mediated enteropathy with a strong HLA association where the immune response is directed mainly against deamidated cereal gluten peptides that have been modified by the enzyme transglutaminase 2. The disease is further characterized by autoantibodies to transglutaminase 2 that have extraordinary high disease specificity and sensitivity. There have been important advances in the knowledge of celiac disease pathogenesis, and these insights may be applicable to other autoimmune disorders where PTM plays a role. This insight gives clues for understanding the involvement of PTMs in other autoimmune diseases.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital - Rikshospitalet, Oslo, 0027 Oslo, Norway.
| | | |
Collapse
|
22
|
Huan J, Meza-Romero R, Mooney JL, Vandenbark AA, Offner H, Burrows GG. Single-chain recombinant HLA-DQ2.5/peptide molecules block α2-gliadin-specific pathogenic CD4+ T-cell proliferation and attenuate production of inflammatory cytokines: a potential therapy for celiac disease. Mucosal Immunol 2011; 4:112-20. [PMID: 20736999 PMCID: PMC3012747 DOI: 10.1038/mi.2010.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Celiac disease (CD) is a disorder of the small intestine caused by intolerance to wheat gluten and related proteins in barley and rye. CD4(+) T cells have a central role in CD, recognizing and binding complexes of HLA-DQ2.5 bearing gluten peptides that have survived digestion and that are deamidated by tissue transglutaminase (TG2), propagating a cascade of inflammatory processes that damage and eventually destroy the villous tissue structures of the small intestine. In this study, we present data showing that recombinant DQ2.5-derived molecules bearing covalently tethered α2-gliadin-61-71 peptide have a remarkable ability to block antigen-specific T-cell proliferation and inhibited proinflammatory cytokine secretion in human DQ2.5-restricted α2-gliadin-specific T-cell clones obtained from patients with CD. The results from our in vitro studies suggest that HLA-DQ2.5-derived molecules could significantly inhibit and perhaps reverse the intestinal pathology caused by T-cell-mediated inflammation and the associated production of proinflammatory cytokines.
Collapse
Affiliation(s)
- J Huan
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - R Meza-Romero
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - J L Mooney
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239
| | - A A Vandenbark
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239, Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
| | - H Offner
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239, Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, Neuroimmunology Research, Veterans Affairs Medical Center, Portland, OR 97239
| | - G G Burrows
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, Tykeson MS Research Laboratory, Oregon Health & Science University, Portland, OR 97239, Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
23
|
Bethune MT, Crespo-Bosque M, Bergseng E, Mazumdar K, Doyle L, Sestak K, Sollid LM, Khosla C. Noninflammatory gluten peptide analogs as biomarkers for celiac sprue. ACTA ACUST UNITED AC 2009; 16:868-81. [PMID: 19716477 DOI: 10.1016/j.chembiol.2009.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 02/09/2023]
Abstract
New tools are needed for managing celiac sprue, a lifelong immune disease of the small intestine. Ongoing drug trials are also prompting a search for noninvasive biomarkers of gluten-induced intestinal change. We have synthesized and characterized noninflammatory gluten peptide analogs in which key Gln residues are replaced by Asn or His. Like their proinflammatory counterparts, these biomarkers are resistant to gastrointestinal proteases, susceptible to glutenases, and permeable across enterocyte barriers. Unlike gluten peptides, however, they are not appreciably recognized by transglutaminase, HLA-DQ2, or disease-specific T cells. In vitro and animal studies show that the biomarkers can detect intestinal permeability changes as well as glutenase-catalyzed gastric detoxification of gluten. Accordingly, controlled clinical studies are warranted to evaluate the use of these peptides as probes for abnormal intestinal permeability in celiac patients and for glutenase efficacy in clinical trials and practice.
Collapse
|
24
|
A food-grade enzyme preparation with modest gluten detoxification properties. PLoS One 2009; 4:e6313. [PMID: 19621078 PMCID: PMC2708912 DOI: 10.1371/journal.pone.0006313] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/22/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND AIMS Celiac sprue is a life-long disease characterized by an intestinal inflammatory response to dietary gluten. A gluten-free diet is an effective treatment for most patients, but accidental ingestion of gluten is common, leading to incomplete recovery or relapse. Food-grade proteases capable of detoxifying moderate quantities of dietary gluten could mitigate this problem. METHODS We evaluated the gluten detoxification properties of two food-grade enzymes, aspergillopepsin (ASP) from Aspergillus niger and dipeptidyl peptidase IV (DPPIV) from Aspergillus oryzae. The ability of each enzyme to hydrolyze gluten was tested against synthetic gluten peptides, a recombinant gluten protein, and simulated gastric digests of whole gluten and whole-wheat bread. Reaction products were analyzed by mass spectrometry, HPLC, ELISA with a monoclonal antibody that recognizes an immunodominant gluten epitope, and a T cell proliferation assay. RESULTS ASP markedly enhanced gluten digestion relative to pepsin, and cleaved recombinant alpha2-gliadin at multiple sites in a non-specific manner. When used alone, neither ASP nor DPPIV efficiently cleaved synthetic immunotoxic gluten peptides. This lack of specificity for gluten was especially evident in the presence of casein, a competing dietary protein. However, supplementation of ASP with DPPIV enabled detoxification of moderate amounts of gluten in the presence of excess casein and in whole-wheat bread. ASP was also effective at enhancing the gluten-detoxifying efficacy of cysteine endoprotease EP-B2 under simulated gastric conditions. CONCLUSIONS Clinical studies are warranted to evaluate whether a fixed dose ratio combination of ASP and DPPIV can provide near-term relief for celiac patients suffering from inadvertent gluten exposure. Due to its markedly greater hydrolytic activity against gluten than endogenous pepsin, food-grade ASP may also augment the activity of therapeutically relevant doses of glutenases such as EP-B2 and certain prolyl endopeptidases.
Collapse
|
25
|
Bethune MT, Siegel M, Howles-Banerji S, Khosla C. Interferon-gamma released by gluten-stimulated celiac disease-specific intestinal T cells enhances the transepithelial flux of gluten peptides. J Pharmacol Exp Ther 2009; 329:657-68. [PMID: 19218531 DOI: 10.1124/jpet.108.148007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Celiac sprue is a T-cell-mediated enteropathy elicited in genetically susceptible individuals by dietary gluten proteins. To initiate and propagate inflammation, proteolytically resistant gluten peptides must be translocated across the small intestinal epithelium and presented to DQ2-restricted T cells, but the effectors enabling this translocation under normal and inflammatory conditions are not well understood. We demonstrate that a fluorescently labeled antigenic 33-mer gluten peptide is translocated intact across a T84 cultured epithelial cell monolayer and that preincubation of the monolayer with media from gluten-stimulated, celiac patient-derived intestinal T cells enhances the apical-to-basolateral flux of this peptide in a dose-dependent, saturable manner. The permeability-enhancing activity of activated T-cell media is inhibited by blocking antibodies against either interferon-gamma or its receptor and is recapitulated using recombinant interferon-gamma. At saturating levels of interferon-gamma, activated T-cell media does not further increase transepithelial peptide flux, indicating the primacy of interferon-gamma as an effector of increased epithelial permeability during inflammation. Reducing the assay temperature to 4 degrees C reverses the effect of interferon-gamma but does not reduce basal peptide flux occurring in the absence of interferon-gamma, suggesting active transcellular transport of intact peptides is increased during inflammation. A panel of disease-relevant gluten peptides exhibited an inverse correlation between size and transepithelial flux but no apparent sequence constraints. Anti-interferon-gamma therapy may mitigate the vicious cycle of gluten-induced interferon-gamma secretion and interferon-gamma-mediated enhancement of gluten peptide flux but is unlikely to prevent translocation of gluten peptides in the absence of inflammatory conditions.
Collapse
Affiliation(s)
- Michael T Bethune
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
26
|
Morón B, Bethune MT, Comino I, Manyani H, Ferragud M, López MC, Cebolla A, Khosla C, Sousa C. Toward the assessment of food toxicity for celiac patients: characterization of monoclonal antibodies to a main immunogenic gluten peptide. PLoS One 2008; 3:e2294. [PMID: 18509534 PMCID: PMC2386552 DOI: 10.1371/journal.pone.0002294] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/13/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND AIMS Celiac disease is a permanent intolerance to gluten prolamins from wheat, barley, rye and, in some patients, oats. Partially digested gluten peptides produced in the digestive tract cause inflammation of the small intestine. High throughput, immune-based assays using monoclonal antibodies specific for these immunotoxic peptides would facilitate their detection in food and enable monitoring of their enzymatic detoxification. Two monoclonal antibodies, G12 and A1, were developed against a highly immunotoxic 33-mer peptide. The potential of each antibody for quantifying food toxicity for celiac patients was studied. METHODS Epitope preferences of G12 and A1 antibodies were determined by ELISA with gluten-derived peptide variants of recombinant, synthetic or enzymatic origin. RESULTS The recognition sequences of G12 and A1 antibodies were hexameric and heptameric epitopes, respectively. Although G12 affinity for the 33-mer was superior to A1, the sensitivity for gluten detection was higher for A1. This observation correlated to the higher number of A1 epitopes found in prolamins than G12 epitopes. Activation of T cell from gluten digested by glutenases decreased equivalently to the detection of intact peptides by A1 antibody. Peptide recognition of A1 included gliadin peptides involved in the both the adaptive and innate immunological response in celiac disease. CONCLUSIONS The sensitivity and epitope preferences of the A1 antibody resulted to be useful to detect gluten relevant peptides to infer the potential toxicity of food for celiac patients as well as to monitor peptide modifications by transglutaminase 2 or glutenases.
Collapse
Affiliation(s)
- Belén Morón
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights.
Collapse
|
28
|
Transepithelial transport and enzymatic detoxification of gluten in gluten-sensitive rhesus macaques. PLoS One 2008; 3:e1857. [PMID: 18365012 PMCID: PMC2267209 DOI: 10.1371/journal.pone.0001857] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/21/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate. METHODS Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten. RESULTS Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase. CONCLUSIONS Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness.
Collapse
|
29
|
Tunheim G, Schjetne KW, Rasmussen IB, Sollid LM, Sandlie I, Bogen B. Recombinant antibodies for delivery of antigen: a single loop between -strands in the constant region can accommodate long, complex and tandem T cell epitopes. Int Immunol 2008; 20:295-306. [DOI: 10.1093/intimm/dxm141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
30
|
Siegel M, Xia J, Khosla C. Structure-based design of alpha-amido aldehyde containing gluten peptide analogues as modulators of HLA-DQ2 and transglutaminase 2. Bioorg Med Chem 2007; 15:6253-61. [PMID: 17590341 PMCID: PMC2041840 DOI: 10.1016/j.bmc.2007.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 12/13/2022]
Abstract
Complete, life-long exclusion of gluten containing foods from the diet is the only available treatment for celiac sprue, a widespread immune disease of the small intestine. Investigations into the molecular pathogenesis of celiac sprue have identified the major histocompatibility complex protein HLA-DQ2 and the multi-functional enzyme transglutaminase 2 as potential pharmacological targets. Based upon the crystal structure of HLA-DQ2, we rationally designed an aldehyde-functionalized, gluten peptide analogue as a tight-binding HLA-DQ2 ligand. Aldehyde-bearing gluten peptide analogues were also designed as high-affinity, reversible inhibitors of transglutaminase 2. By varying the side-chain length of the aldehyde-functionalized amino acid, we found that the optimal transglutaminase 2 inhibitor was 5 methylene units in length, 2 carbon atoms longer than its natural glutamine substrate.
Collapse
Affiliation(s)
- Matthew Siegel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
31
|
Xia J, Bergseng E, Fleckenstein B, Siegel M, Kim CY, Khosla C, Sollid LM. Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg Med Chem 2007; 15:6565-73. [PMID: 17681795 PMCID: PMC2034199 DOI: 10.1016/j.bmc.2007.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 01/28/2023]
Abstract
Celiac disease is an immune mediated enteropathy elicited by gluten ingestion. The disorder has a strong association with HLA-DQ2. This HLA molecule is involved in the disease pathogenesis by presenting gluten peptides to T cells. Blocking the peptide-binding site of DQ2 may be a way to treat celiac disease. In this study, two types of peptide analogues, modeled after natural gluten antigens, were studied as DQ2 blockers. (a) Cyclic peptides. Cyclic peptides containing the DQ2-alphaI gliadin epitope LQPFPQPELPY were synthesized with flanking cysteine residues introduced and subsequently crosslinked via a disulfide bond. Alternatively, cyclic peptides were prepared with stable polyethylene glycol bridges across internal lysine residues of modified antigenic peptides such as KQPFPEKELPY and LQLQPFPQPEKPYPQPEKPY. The effect of cyclization as well as the length of the spacer in the cyclic peptides on DQ2 binding and T cell recognition was analyzed. Inhibition of peptide-DQ2 recognition by the T cell receptor was observed in T cell proliferation assays. (b) Dimeric peptides. Previously we developed a new type of peptide blocker with much enhanced affinity for DQ2 by dimerizing LQLQPFPQPEKPYPQPELPY through the lysine side chains. Herein, the effect of linker length on both DQ2 binding and T cell inhibition was investigated. One dimeric peptide analogue with an intermediate linker length was found to be especially effective at inhibiting DQ2 mediated antigen presentation. The implications of these findings for the treatment of celiac disease are discussed.
Collapse
Affiliation(s)
- Jiang Xia
- Department of Chemistry, Stanford University, Stanford, USA
| | - Elin Bergseng
- Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Burkhard Fleckenstein
- Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Matthew Siegel
- Department of Chemical Engineering, Stanford University, Stanford, USA
| | - Chu-Young Kim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, USA
- Department of Chemical Engineering, Stanford University, Stanford, USA
- Department of Biochemistry, Stanford University, Stanford, USA
- * Corresponding authors. Ludvig M. Sollid, Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, N-0027 Oslo, Norway, Tel. +47 23073500; Fax. +47 23073510; E-mail: or Chaitan Khosla, Departments of Chemistry, Chemical Engineering and Biochemistry, Stanford University, Stanford, California 94305-5025, Tel. 650-723-6538; Fax.650-725-7294; E-mail:
| | - Ludvig M. Sollid
- Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
- * Corresponding authors. Ludvig M. Sollid, Institute of Immunology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, N-0027 Oslo, Norway, Tel. +47 23073500; Fax. +47 23073510; E-mail: or Chaitan Khosla, Departments of Chemistry, Chemical Engineering and Biochemistry, Stanford University, Stanford, California 94305-5025, Tel. 650-723-6538; Fax.650-725-7294; E-mail:
| |
Collapse
|
32
|
Bethune MT, Strop P, Tang Y, Sollid LM, Khosla C. Heterologous Expression, Purification, Refolding, and Structural-Functional Characterization of EP-B2, a Self-Activating Barley Cysteine Endoprotease. ACTA ACUST UNITED AC 2006; 13:637-47. [PMID: 16793521 DOI: 10.1016/j.chembiol.2006.04.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 04/04/2006] [Accepted: 04/11/2006] [Indexed: 11/16/2022]
Abstract
We describe the heterologous expression in Escherichia coli of the proenzyme precursor to EP-B2, a cysteine endoprotease from germinating barley seeds. High yields (50 mg/l) of recombinant proEP-B2 were obtained from E. coli inclusion bodies in shake flask cultures following purification and refolding. The zymogen was rapidly autoactivated to its mature form under acidic conditions at a rate independent of proEP-B2 concentration, suggesting a cis mechanism of autoactivation. Mature EP-B2 was stable and active over a wide pH range and efficiently hydrolyzed a recombinant wheat gluten protein, alpha2-gliadin, at sequences with known immunotoxicity in celiac sprue patients. The X-ray crystal structure of mature EP-B2 bound to leupeptin was solved to 2.2 A resolution and provided atomic insights into the observed subsite specificity of the endoprotease. Our findings suggest that orally administered proEP-B2 may be especially well suited for treatment of celiac sprue.
Collapse
Affiliation(s)
- Michael T Bethune
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
33
|
Siegel M, Bethune MT, Gass J, Ehren J, Xia J, Johannsen A, Stuge TB, Gray GM, Lee PP, Khosla C. Rational Design of Combination Enzyme Therapy for Celiac Sprue. ACTA ACUST UNITED AC 2006; 13:649-58. [PMID: 16793522 DOI: 10.1016/j.chembiol.2006.04.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 04/02/2006] [Accepted: 04/11/2006] [Indexed: 01/28/2023]
Abstract
Celiac sprue (also known as celiac disease) is an inheritable, gluten-induced enteropathy of the upper small intestine with an estimated prevalence of 0.5%-1% in most parts of the world. The ubiquitous nature of food gluten, coupled with inadequate labeling regulations in most countries, constantly poses a threat of disease exacerbation and relapse for patients. Here, we demonstrate that a two-enzyme cocktail comprised of a glutamine-specific cysteine protease (EP-B2) that functions under gastric conditions and a PEP, which acts in concert with pancreatic proteases under duodenal conditions, is a particularly potent candidate for celiac sprue therapy. At a gluten:EP-B2:PEP weight ratio of 75:3:1, grocery store gluten is fully detoxified within 10 min of simulated duodenal conditions, as judged by chromatographic analysis, biopsy-derived T cell proliferation assays, and a commercial antigluten antibody test.
Collapse
Affiliation(s)
- Matthew Siegel
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xia J, Siegel M, Bergseng E, Sollid LM, Khosla C. Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin. J Am Chem Soc 2006; 128:1859-67. [PMID: 16464085 PMCID: PMC2597451 DOI: 10.1021/ja056423o] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human leukocyte antigen DQ2 is a class II major histocompatibility complex protein that plays a critical role in the pathogenesis of Celiac Sprue by binding to epitopes derived from dietary gluten and triggering the inflammatory response of disease-specific T cells. Inhibition of DQ2-mediated antigen presentation in the small intestinal mucosa of Celiac Sprue patients therefore represents a potentially attractive mode of therapy for this widespread but unmet medical need. Starting from a pro-inflammatory, proteolytically resistant, 33-residue peptide, LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF, we embarked upon a systematic effort to dissect the relationships between peptide structure and DQ2 affinity and to translate these insights into prototypical DQ2 blocking agents. Three structural determinants within the first 20 residues of this 33-mer peptide, including a PQPELPYPQ epitope, its N-terminal flanking sequence, and a downstream Glu residue, were found to be important for DQ2 binding. Guided by the X-ray crystal structure of DQ2, the L11 and L18 residues in the truncated 20-mer analogue were replaced with sterically bulky groups so as to retain high DQ2 affinity but abrogate T cell recognition. A dimeric ligand, synthesized by regiospecific coupling of the 20-mer peptide with a bifunctional linker, was identified as an especially potent DQ2 binding agent. Two such ligands were able to attenuate the proliferation of disease-specific T cell lines in response to gluten antigens and, therefore, represent prototypical examples of pharmacologically suitable DQ2 blocking agents for the potential treatment of Celiac Sprue.
Collapse
Affiliation(s)
- Jiang Xia
- Department of Chemistry, Stanford University, Stanford, USA
| | - Matthew Siegel
- Department of Chemical Engineering, Stanford University, Stanford, USA
| | - Elin Bergseng
- Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
| | - Ludvig M. Sollid
- Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, USA
- Department of Chemical Engineering, Stanford University, Stanford, USA
- Department of Biochemistry, Stanford University, Stanford, USA
| |
Collapse
|
35
|
Shan L, Qiao SW, Arentz-Hansen H, Molberg Ø, Gray GM, Sollid LM, Khosla C. Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 2006; 4:1732-41. [PMID: 16212427 PMCID: PMC1343496 DOI: 10.1021/pr050173t] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dietary gluten proteins from wheat, rye, and barley are the primary triggers for the immuno-pathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably alpha- and gamma-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from alpha-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here, we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of alpha-2 gliadin confirmed that the DQ2 restricted T cell response to the alpha-2 gliadin are directed toward the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative gamma-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome.
Collapse
Affiliation(s)
- Lu Shan
- Departments of Chemical Engineering
| | - Shuo-Wang Qiao
- Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, N-0027 Oslo, Norway
| | - Helene Arentz-Hansen
- Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, N-0027 Oslo, Norway
| | - Øyvind Molberg
- Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, N-0027 Oslo, Norway
| | | | - Ludvig M. Sollid
- Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, N-0027 Oslo, Norway
| | - Chaitan Khosla
- Departments of Chemical Engineering
- Chemistry and
- Biochemistry, Stanford University, Stanford CA 94305-5025
- Address correspondence to: Chaitan Khosla, Phone/FAX: 650-723-6538,
| |
Collapse
|