1
|
Riziotis IG, Kafas JC, Ong G, Borkakoti N, Ribeiro AJM, Thornton JM. Paradigms of convergent evolution in enzymes. FEBS J 2025; 292:537-555. [PMID: 39578229 PMCID: PMC11796326 DOI: 10.1111/febs.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
There are many occurrences of enzymes catalysing the same reaction but having significantly different structures. Leveraging the comprehensive information on enzymes stored in the Mechanism and Catalytic Site Atlas (M-CSA), we present a collection of 34 cases for which there is sufficient evidence of functional convergence without an evolutionary link. For each case, we compare enzymes which have identical Enzyme Commission numbers (i.e. catalyse the same reaction), but different identifiers in the CATH data resource (i.e. different folds). We focus on similarities between their sequences, structures, active site geometries, cofactors and catalytic mechanisms. These features are then assessed to evaluate whether all the evidence for these structurally diverse proteins supports their independent evolution to catalyse the same chemical reaction. Our approach combines published literature information with knowledge-based computational resources from, amongst others, M-CSA, PDBe and PDBsum, supported by tailor-made software to explore active site structures and assess similarities in mechanism. We find that there are multiple types of convergent functional evolution observed to date, and it is necessary to investigate sequence, structure, active site geometry and enzyme mechanisms to describe such convergence accurately.
Collapse
Affiliation(s)
| | | | - Gabriel Ong
- European Bioinformatics Institute (EMBL‐EBI)CambridgeUK
| | | | | | | |
Collapse
|
2
|
Veillard F, Sztukowska M, Nowakowska Z, Mizgalska D, Thøgersen IB, Enghild JJ, Bogyo M, Potempa B, Nguyen KA, Potempa J. Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis. Biochimie 2019; 166:161-172. [PMID: 31212040 DOI: 10.1016/j.biochi.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
Porphyromonas gingivalis uses a type IX secretion system (T9SS) to deliver more than 30 proteins to the bacterial surface using a conserved C-terminal domain (CTD) as an outer membrane translocation signal. On the surface, the CTD is cleaved and an anionic lipopolysaccharide (A-PLS) is attached by PorU sortase. Among T9SS cargo proteins are cysteine proteases, gingipains, which are secreted as inactive zymogens requiring removal of an inhibiting N-terminal prodomain (PD) for activation. Here, we have shown that the gingipain proRgpB isolated from the periplasm of a T9SS-deficient P. gingivalis strain was stable and did not undergo autocatalytic activation. Addition of purified, active RgpA or RgpB, but not Lys-specific Kgp, efficiently cleaved the PD of proRgpB but catalytic activity remained inhibited because of inhibition of the catalytic domain in trans by the PD. In contrast, active RgpB was generated from the zymogen, although at a slow rate, by gingipain-null P. gingivalis lysate or intact bacterial cell suspension. This activation was dependent on the presence of the PorU sortase. Interestingly, maturation of proRgpB with the catalytic cysteine residues mutated to Ala expressed in the ΔRgpA mutant strain was indistinguishable from that in the parental strain. Cumulatively, this suggests that PorU not only has sortase activity but is also engaged in activation of gingipain zymogens on the bacterial cell surface.
Collapse
Affiliation(s)
- Florian Veillard
- Université de Strasbourg, CNRS, Insect Models of Innate Immunity (M3I; UPR9022), 67084, Strasbourg, France; Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Maryta Sztukowska
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA; University of Information Technology and Management, Rzeszow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ida B Thøgersen
- Interdisciplinary Nanoscience Center (iNANO), and the Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO), and the Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK-8000, Denmark
| | - Matthew Bogyo
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Barbara Potempa
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Ky-Anh Nguyen
- Discipline of Life Sciences, School of Dentistry, University of Sydney, Sydney, NSW, 2006, Australia; Institute of Dental Research, Westmead Centre for Oral Health, Sydney, NSW, 2145, Australia
| | - Jan Potempa
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
3
|
High resolution structure of an M23 peptidase with a substrate analogue. Sci Rep 2015; 5:14833. [PMID: 26437833 PMCID: PMC4594094 DOI: 10.1038/srep14833] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/09/2015] [Indexed: 12/02/2022] Open
Abstract
LytM is a Staphylococcus aureus autolysin and a homologue of the S. simulans lysostaphin. Both enzymes are members of M23 metallopeptidase family (MEROPS) comprising primarily bacterial peptidoglycan hydrolases. LytM occurs naturally in a latent form, but can be activated by cleavage of an inhibitory N-terminal proregion. Here, we present a 1.45 Å crystal structure of LytM catalytic domain with a transition state analogue, tetraglycine phosphinate, bound in the active site. In the electron density, the active site of the peptidase, the phosphinate and the “diglycine” fragment on the P1′ side of the transition state analogue are very well defined. The density is much poorer or even absent for the P1 side of the ligand. The structure is consistent with the involvement of His260 and/or His291 in the activation of the water nucleophile and suggests a possible catalytic role for Tyr204, which we confirmed by mutagenesis. Possible mechanisms of catalysis and the structural basis of substrate specificity are discussed based on the structure analysis.
Collapse
|
4
|
Pustelny K, Zdzalik M, Stach N, Stec-Niemczyk J, Cichon P, Czarna A, Popowicz G, Mak P, Drag M, Salvesen GS, Wladyka B, Potempa J, Dubin A, Dubin G. Staphylococcal SplB serine protease utilizes a novel molecular mechanism of activation. J Biol Chem 2014; 289:15544-53. [PMID: 24713703 DOI: 10.1074/jbc.m113.507616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process.
Collapse
Affiliation(s)
- Katarzyna Pustelny
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Michal Zdzalik
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Natalia Stach
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Justyna Stec-Niemczyk
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Przemyslaw Cichon
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Anna Czarna
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the NMR Group, Max-Planck Institute for Biochemistry, 82 152 Martinsried, Germany
| | - Grzegorz Popowicz
- the NMR Group, Max-Planck Institute for Biochemistry, 82 152 Martinsried, Germany, the Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Pawel Mak
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Malopolska Centre of Biotechnology, 30 387 Krakow, Poland
| | - Marcin Drag
- the Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, 50 370 Wroclaw, Poland, the Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Guy S Salvesen
- the Program in Cell Death Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Benedykt Wladyka
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Malopolska Centre of Biotechnology, 30 387 Krakow, Poland
| | - Jan Potempa
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Center of Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky 40202, and
| | - Adam Dubin
- From the Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland
| | - Grzegorz Dubin
- the Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30 387 Krakow, Poland, the Malopolska Centre of Biotechnology, 30 387 Krakow, Poland
| |
Collapse
|
5
|
Veillard F, Sztukowska M, Mizgalska D, Ksiazek M, Houston J, Potempa B, Enghild JJ, Thogersen IB, Gomis-Rüth FX, Nguyen KA, Potempa J. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases. Biochim Biophys Acta Gen Subj 2013; 1830:4218-28. [PMID: 23583629 DOI: 10.1016/j.bbagen.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/20/2013] [Accepted: 04/02/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments. METHODS Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis. RESULTS PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2nM to 0.85nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex. CONCLUSION Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains. GENERAL SIGNIFICANCE Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.
Collapse
Affiliation(s)
- Florian Veillard
- University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
de Diego I, Veillard FT, Guevara T, Potempa B, Sztukowska M, Potempa J, Gomis-Rüth FX. Porphyromonas gingivalis virulence factor gingipain RgpB shows a unique zymogenic mechanism for cysteine peptidases. J Biol Chem 2013; 288:14287-14296. [PMID: 23558682 DOI: 10.1074/jbc.m112.444927] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zymogenicity is a regulatory mechanism that prevents inadequate catalytic activity in the wrong context. It plays a central role in maintaining microbial virulence factors in an inactive form inside the pathogen until secretion. Among these virulence factors is the cysteine peptidase gingipain B (RgpB), which is the major virulence factor secreted by the periodontopathogen Porphyromonas gingivalis that attacks host vasculature and defense proteins. The structure of the complex between soluble mature RgpB, consisting of a catalytic domain and an immunoglobulin superfamily domain, and its 205-residue N-terminal prodomain, the largest structurally characterized to date for a cysteine peptidase, reveals a novel fold for the prodomain that is distantly related to sugar-binding lectins. It attaches laterally to the catalytic domain through a large concave surface. The main determinant for latency is a surface "inhibitory loop," which approaches the active-site cleft of the enzyme on its non-primed side in a substrate-like manner. It inserts an arginine (Arg(126)) into the S1 pocket, thus matching the substrate specificity of the enzyme. Downstream of Arg(126), the polypeptide leaves the cleft, thereby preventing cleavage. Moreover, the carbonyl group of Arg(126) establishes a very strong hydrogen bond with the co-catalytic histidine, His(440), pulling it away from the catalytic cysteine, Cys(473), and toward Glu(381), which probably plays a role in orienting the side chain of His(440) during catalysis. The present results provide the structural determinants of zymogenic inhibition of RgpB by way of a novel inhibitory mechanism for peptidases in general and open the field for the design of novel inhibitory strategies in the treatment of human periodontal disease.
Collapse
Affiliation(s)
- Iñaki de Diego
- Proteolysis Laboratory, Molecular Biology Institute of Barcelona, Spanish Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Florian T Veillard
- University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Tibisay Guevara
- Proteolysis Laboratory, Molecular Biology Institute of Barcelona, Spanish Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Barbara Potempa
- University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Maryta Sztukowska
- University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Jan Potempa
- University of Louisville School of Dentistry, Louisville, Kentucky 40202; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland.
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Molecular Biology Institute of Barcelona, Spanish Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Thornton RF, Murphy EC, Kagawa TF, O'Toole PW, Cooney JC. The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes. BMC Microbiol 2012; 12:190. [PMID: 22943521 PMCID: PMC3462683 DOI: 10.1186/1471-2180-12-190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 08/23/2012] [Indexed: 01/07/2023] Open
Abstract
Background Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes. Results We identified a paralogous set of genes (btp genes) in the B. thetaiotaomicron genome, that were related to C10 protease genes we recently identified in B. fragilis. Similar to C10 proteases found in B. fragilis, three of the B. thetaiotaomicron homologues were transcriptionally coupled to genes encoding small proteins that are similar in structural architecture to Staphostatins, protease inhibitors associated with Staphopains in Staphylococcus aureus. The expression of genes for these C10 proteases in both B. fragilis and B. thetaiotaomicron was found to be regulated by environmental stimuli, in particular by exposure to oxygen, which may be important for their contribution to the development of opportunistic infections. Conclusions Genes encoding C10 proteases are increasingly identified in operons which also contain genes encoding proteins homologous to protease inhibitors. The Bacteroides C10 protease gene expression levels are responsive to different environmental stimuli suggesting they may have distinct roles in the bacterial-host interaction.
Collapse
|
8
|
Kalińska M, Kantyka T, Greenbaum DC, Larsen KS, Władyka B, Jabaiah A, Bogyo M, Daugherty PS, Wysocka M, Jaros M, Lesner A, Rolka K, Schaschke N, Stennicke H, Dubin A, Potempa J, Dubin G. Substrate specificity of Staphylococcus aureus cysteine proteases--Staphopains A, B and C. Biochimie 2011; 94:318-27. [PMID: 21802486 DOI: 10.1016/j.biochi.2011.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Human strains of Staphylococcus aureus secrete two papain-like proteases, staphopain A and B. Avian strains produce another homologous enzyme, staphopain C. Animal studies suggest that staphopains B and C contribute to bacterial virulence, in contrast to staphopain A, which seems to have a virulence unrelated function. Here we present a detailed study of substrate preferences of all three proteases. The specificity of staphopain A, B and C substrate-binding subsites was mapped using different synthetic substrate libraries, inhibitor libraries and a protein substrate combinatorial library. The analysis demonstrated that the most efficiently hydrolyzed sites, using Schechter and Berger nomenclature, comprise a P2-Gly↓Ala(Ser) sequence motif, where P2 distinguishes the specificity of staphopain A (Leu) from that of both staphopains B and C (Phe/Tyr). However, we show that at the same time the overall specificity of staphopains is relaxed, insofar as multiple substrates that diverge from the sequences described above are also efficiently hydrolyzed.
Collapse
Affiliation(s)
- Magdalena Kalińska
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Activation mechanism of thiol protease precursor from broiler chicken specific Staphylococcus aureus strain CH-91. Vet Microbiol 2011; 147:195-9. [DOI: 10.1016/j.vetmic.2010.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/27/2010] [Accepted: 06/02/2010] [Indexed: 11/24/2022]
|
10
|
Nickerson N, Ip J, Passos DT, McGavin MJ. Comparison of Staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (Staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol Microbiol 2010; 75:161-77. [DOI: 10.1111/j.1365-2958.2009.06974.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Władyka B, Pustelny K. Regulation of bacterial protease activity. Cell Mol Biol Lett 2008; 13:212-29. [PMID: 18026858 PMCID: PMC6275810 DOI: 10.2478/s11658-007-0048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022] Open
Abstract
Proteases, also referred to as peptidases, are the enzymes that catalyse the hydrolysis of peptide bonds in polipeptides. A variety of biological functions and processes depend on their activity. Regardless of the organism's complexity, peptidases are essential at every stage of life of every individual cell, since all protein molecules produced must be proteolytically processed and eventually recycled. Protease inhibitors play a crucial role in the required strict and multilevel control of the activity of proteases involved in processes conditioning both the physiological and pathophysiological functioning of an organism, as well as in host-pathogen interactions. This review describes the regulation of activity of bacterial proteases produced by dangerous human pathogens, focusing on the Staphylococcus genus.
Collapse
Affiliation(s)
- Benedykt Władyka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
12
|
Calander AM, Dubin G, Potempa J, Tarkowski A. Staphylococcus aureusinfection triggers production of neutralizing, V8 protease-specific antibodies. ACTA ACUST UNITED AC 2008; 52:267-72. [DOI: 10.1111/j.1574-695x.2007.00371.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
von Lackum K, Ollison KM, Bykowski T, Nowalk AJ, Hughes JL, Carroll JA, Zückert WR, Stevenson B. Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochaete's mammal-tick infectious cycle. MICROBIOLOGY-SGM 2007; 153:1361-1371. [PMID: 17464050 DOI: 10.1099/mic.0.2006/003350-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Results of previous immunological studies suggested that Borrelia burgdorferi regulates synthesis of the IpLA7 lipoprotein during mammalian infection. Through combined use of quantitative reverse transcription PCR, immunofluorescence analyses, ELISA and immunoblotting, it is now demonstrated that IpLA7 is actually expressed throughout mammalian infection, as well as during transmission both from feeding ticks to naïve mice and from infected mice to naïve, feeding ticks. However, proportions of IpLA7-expressing B. burgdorferi within tick midguts declined significantly with time following completion of blood feeding. Cultured bacteria differentially expressed IpLA7 in response to changes in temperature, pH and concentration of 4,5-dihydroxy-2,3-pentanedione, the precursor of autoinducer 2, indicative of mechanisms governing IpLA7 expression. Previous studies also reported mixed results as to the cellular localization of IpLA7. It is now demonstrated that IpLA7 localizes primarily to the borrelial inner membrane and is not surface-exposed, consistent with the ability of these bacteria to produce IpLA7 throughout mammalian infection despite being the target of a robust immune response.
Collapse
Affiliation(s)
- Kate von Lackum
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kristina M Ollison
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomasz Bykowski
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Andrew J Nowalk
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jessica L Hughes
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James A Carroll
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Wolfram R Zückert
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
14
|
Mallorquí-Fernández N, Manandhar SP, Mallorquí-Fernández G, Usón I, Wawrzonek K, Kantyka T, Solà M, Thøgersen IB, Enghild JJ, Potempa J, Gomis-Rüth FX. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A. J Biol Chem 2007; 283:2871-82. [PMID: 17993455 DOI: 10.1074/jbc.m708481200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defenses and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and self-processed mature forms. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin, and a latency flap in the zymogen. Dramatic rearrangement of up to 20A of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain.
Collapse
Affiliation(s)
- Noemí Mallorquí-Fernández
- Departament de Biologia Estructural, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, c/Jordi Girona 18-26, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vivares D, Arnoux P, Pignol D. A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci U S A 2005; 102:18848-53. [PMID: 16339904 PMCID: PMC1310510 DOI: 10.1073/pnas.0505833102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Indexed: 11/18/2022] Open
Abstract
Phytochelatin synthase (PCS) is a key enzyme for heavy-metal detoxification in plants. PCS catalyzes the production of glutathione (GSH)-derived peptides (called phytochelatins or PCs) that bind heavy-metal ions before vacuolar sequestration. The enzyme can also hydrolyze GSH and GS-conjugated xenobiotics. In the cyanobacterium Nostoc, the enzyme (NsPCS) contains only the catalytic domain of the eukaryotic synthase and can act as a GSH hydrolase and weakly as a peptide ligase. The crystal structure of NsPCS in its native form solved at a 2.0-A resolution shows that NsPCS is a dimer that belongs to the papain superfamily of cysteine proteases, with a conserved catalytic machinery. Moreover, the structure of the protein solved as a complex with GSH at a 1.4-A resolution reveals a gamma-glutamyl cysteine acyl-enzyme intermediate stabilized in a cavity of the protein adjacent to a second putative GSH binding site. GSH hydrolase and PCS activities of the enzyme are discussed in the light of both structures.
Collapse
Affiliation(s)
- Denis Vivares
- Département d'Ecophysiologie Végétale et de Microbiologie, Direction des Sciences du Vivant, Laboratoire de Bioénergétique Cellulaire, Commissariat á l'Energie Atomique/Cadarache, 13108 St Paul lez Durance Cedex, France
| | | | | |
Collapse
|
16
|
Meehl MA, Pinkner JS, Anderson PJ, Hultgren SJ, Caparon MG. A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. PLoS Pathog 2005; 1:e35. [PMID: 16333395 PMCID: PMC1298937 DOI: 10.1371/journal.ppat.0010035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 08/24/2005] [Indexed: 02/07/2023] Open
Abstract
The Streptococcus pyogenes NAD-glycohydrolase (SPN) is a toxic enzyme that is introduced into infected host cells by the cytolysin-mediated translocation pathway. However, how S. pyogenes protects itself from the self-toxicity of SPN had been unknown. In this report, we describe immunity factor for SPN (IFS), a novel endogenous inhibitor that is essential for SPN expression. A small protein of 161 amino acids, IFS is localized in the bacterial cytoplasmic compartment. IFS forms a stable complex with SPN at a 1:1 molar ratio and inhibits SPN's NAD-glycohydrolase activity by acting as a competitive inhibitor of its β-NAD+ substrate. Mutational studies revealed that the gene for IFS is essential for viability in those S. pyogenes strains that express an NAD-glycohydrolase activity. However, numerous strains contain a truncated allele of ifs that is linked to an NAD-glycohydrolase−deficient variant allele of spn. Of practical concern, IFS allowed the normally toxic SPN to be produced in the heterologous host Escherichia coli to facilitate its purification. To our knowledge, IFS is the first molecularly characterized endogenous inhibitor of a bacterial β-NAD+−consuming toxin and may contribute protective functions in the streptococci to afford SPN-mediated pathogenesis. The gram-positive bacterium Streptococcus pyogenes is a human pathogen that causes a wide range of infections from pharyngitis (“strep throat”) to invasive necrotizing fasciitis (“flesh-eating disease”). While strep throat responds to antibiotic therapy, more invasive infections caused by S. pyogenes often require surgical intervention. It is currently unknown exactly how the bacteria can switch between the different types of infection, but one possibility is via a mechanism by which the bacterium injects a bacterial protein toxin (S. pyogenes NAD-glycohydrolase [SPN]) into human skin cells, causing their death. In this study, the authors have shown that the injected toxin also has the ability to affect the bacteria. A second protein neutralizes SPN to ensure the bacteria are immune to its toxic effects. Consequently, S. pyogenes has developed a valuable weapon in its arsenal to promote its survival by ensuring the safe production of SPN, through its own protection by immunity factor for SPN, enabling the delivery of active SPN into human cells. The process reported in this paper may ultimately help create therapeutic inhibitors of SPN and possibly other SPN-like toxins implicated in microbial disease progression.
Collapse
Affiliation(s)
- Michael A Meehl
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patricia J Anderson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Potempa J, Golonka E, Filipek R, Shaw LN. Fighting an enemy within: cytoplasmic inhibitors of bacterial cysteine proteases. Mol Microbiol 2005; 57:605-10. [PMID: 16045606 DOI: 10.1111/j.1365-2958.2005.04714.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genes encoding secreted, broad-spectrum activity cysteine proteases of Staphylococcus spp. (staphopains) and Streptococcus pyogenes (streptopain, SpeB) are genetically linked to genes encoding cytoplasmic inhibitors. While staphopain inhibitors have lipocalin-like folds, streptopain is inhibited by a protein bearing the scaffold of the enzyme profragment. Bioinformatic analysis of other prokaryotic genomes has revealed that two more species may utilize this same genetic arrangement to control streptopain-like proteases with lipocalin-like inhibitors, while three other species may employ a C-terminally located domain that resembles the profragment. This apparently represents a novel system that bacteria use to control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Jan Potempa
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | | | |
Collapse
|
18
|
Imamura T, Tanase S, Szmyd G, Kozik A, Travis J, Potempa J. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. ACTA ACUST UNITED AC 2005; 201:1669-76. [PMID: 15897280 PMCID: PMC2212919 DOI: 10.1084/jem.20042041] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is a major pathogen of gram-positive septic shock and frequently is associated with consumption of plasma kininogen. We examined the vascular leakage (VL) activity of two cysteine proteinases that are secreted by S. aureus. Proteolytically active staphopain A (ScpA) induced VL in a bradykinin (BK) B2-receptor–dependent manner in guinea pig skin. This effect was augmented by staphopain B (SspB), which, by itself, had no VL activity. ScpA also produced VL activity from human plasma, apparently by acting directly on kininogens to release BK, which again was augmented significantly by SspB. Intravenous injection of ScpA into a guinea pig caused BK B2-receptor–dependent hypotension. ScpA and SspB together induced the release of leucyl-methionyl-lysyl-BK, a novel kinin with VL and blood pressure–lowering activities that are equivalent to BK. Collectively, these data suggest that production of BK and leucyl-methionyl-lysyl-BK by staphopains is a new mechanism of S. aureus virulence and bacterial shock. Therefore, staphopain-specific inhibitors and kinin-receptor antagonists could be used to treat this disease.
Collapse
Affiliation(s)
- Takahisa Imamura
- Division of Molecular Pathology, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Kagawa TF, O'toole PW, Cooney JC. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol Microbiol 2005; 57:650-66. [PMID: 16045611 DOI: 10.1111/j.1365-2958.2005.04708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents evidence for a novel protease-protease inhibitor couple, SpeB-Spi, in the human pathogen Streptococcus pyogenes. The gene for the inhibitor Spi is located directly downstream of the gene for the streptococcal cysteine protease SpeB. Spi is 37% identical and 70% similar to the sequence of the SpeB propeptide, suggesting that Spi and the SpeB propeptide might bind to SpeB in an analogous manner. Secondary structure predictions and molecular modelling suggested that Spi would adopt a structure similar to the SpeB propeptide. The spi gene was co-transcribed with speB on the 1.7 knt and 2.2 knt transcripts previously identified for speB. The Spi protein was purified by SpeB-affinity chromatography from the S. pyogenes cytoplasm. Recombinant Spi was produced and purified, and shown to bind to SpeB and to inhibit its protease activity. Although a similar genetic arrangement of protease and inhibitor is present in staphylococci, this is the first example of an inhibitor molecule that is a structural homologue of the cognate propeptide, and which is genetically linked to the protease gene. Thus, this represents a novel system whereby bacteria may control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Todd F Kagawa
- Department of Chemical and Environmental Sciences, and Materials and Surfaces Sciences Institute, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
20
|
Shaw LN, Golonka E, Szmyd G, Foster SJ, Travis J, Potempa J. Cytoplasmic control of premature activation of a secreted protease zymogen: deletion of staphostatin B (SspC) in Staphylococcus aureus 8325-4 yields a profound pleiotropic phenotype. J Bacteriol 2005; 187:1751-62. [PMID: 15716447 PMCID: PMC1064019 DOI: 10.1128/jb.187.5.1751-1762.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic protein SspC of Staphylococcus aureus, referred to as staphostatin B, is a very specific, tightly binding inhibitor of the secreted protease staphopain B (SspB). SspC is hypothesized to protect intracellular proteins against proteolytic damage by prematurely folded and activated staphopain B (M. Rzychon, A. Sabat, K. Kosowska, J. Potempa, and A. Dubin, Mol. Microbiol. 49:1051-1066, 2003). Here we provide evidence that elimination of intracellular staphopain B activity is indeed the function of SspC. An isogenic sspC mutant of S. aureus 8325-4 exhibits a wide range of striking pleiotropic alterations in phenotype, which distinguish it from the parent. These changes include a defect in growth, a less structured peptidoglycan layer within the cell envelope, severely decreased autolytic activity, resistance to lysis by S. aureus phages, extensively diminished sensitivity to lysis by lysostaphin, the ability to form a biofilm, and a total lack of extracellular proteins secreted into the growth media. The same phenotype was also engineered by introduction of sspB into an 8325-4 sspBC mutant. In contrast, sspC inactivation in the SH1000 strain did not yield any significant changes in the mutant phenotype, apparently due to strongly reduced expression of sspB in the sigma B-positive background. The exact pathway by which these diverse aberrations are exerted in 8325-4 is unknown, but it is apparent that a very small amount of staphopain B (less than 20 ng per 200 microg of cell proteins) is sufficient to bring about these widespread changes. It is proposed that the effects observed are modulated through the proteolytic degradation of several cytoplasmic proteins within cells lacking the inhibitor. Seemingly, some of these proteins may play a role in protein secretion; hence, their proteolytic inactivation by SspB has pleiotropic effects on the SspC-deficient mutant.
Collapse
Affiliation(s)
- Lindsey N Shaw
- Department of Biochemistry and Molecular Biology, University of Georgia, Life Sciences Bldg., Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
21
|
Filipek R, Potempa J, Bochtler M. A comparison of staphostatin B with standard mechanism serine protease inhibitors. J Biol Chem 2005; 280:14669-74. [PMID: 15644332 DOI: 10.1074/jbc.m411792200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphostatins are the endogenous, highly specific inhibitors of staphopains, the major secreted cysteine proteases from Staphylococcus aureus. We have previously shown that staphostatins A and B are competitive, active site-directed inhibitors that span the active site clefts of their target proteases in the same orientation as substrates. We now report the crystal structure of staphostatin B in complex with wild-type staphopain B at 1.9 A resolution. In the complex structure, the catalytic residues are found in exactly the positions that would be expected for uncomplexed papain-type proteases. There is robust, continuous density for the staphostatin B binding loop and no indication for cleavage of the peptide bond that comes closest to the active site cysteine of staphopain B. The carbonyl carbon atom C of this peptide bond is 4.1 A away from the active site cysteine sulfur Sgamma atom. The carbonyl oxygen atom O of this peptide bond points away from the putative oxyanion hole and lies almost on a line from the Sgamma atom to the C atom. The arrangement is strikingly similar to the "ionmolecule" arrangement for the complex of papain-type enzymes with their substrates but differs significantly from the arrangement conventionally assumed for the Michaelis complex of papain-type enzymes with their substrates and also from the arrangement that is crystallographically observed for complexes of standard mechanism inhibitors and their target serine proteases.
Collapse
Affiliation(s)
- Renata Filipek
- International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | | | | |
Collapse
|