1
|
Zhu Z, Chu T, Niu C, Yuan H, Zhang L, Song Y. Astral-DIA proteomics: Identification of differential proteins in sheep, goat, and cow milk. Int J Biol Macromol 2024; 283:137866. [PMID: 39571851 DOI: 10.1016/j.ijbiomac.2024.137866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Dairy products are of great benefit to human health, and the nutritional differences between different dairy products have attracted attention. In this study, DIA proteomics technique, combined with parallel reaction monitoring (PRM) as a validation method, was used for the qualitative and quantitative analysis of proteins in sheep, goat, and cow milk. In total, 4316 proteins were identified. Beta-2-glycoprotein 1 and aminopeptidase can be used as potential biomarkers for sheep milk, fibrinogen alpha chain and Alpha-1-B glycoprotein can be used as potential biomarkers for goat milk, and angiogenin-1 and Serpin family G member 1 can be used as potential biomarkers for cow milk. Functional analysis showed that these different proteins were enriched through different pathways, such as complement and coagulation cascades. These data reveal the differences in protein content and physiological functionality and provide an important basis for the study of dairy nutrition and adulteration identification.
Collapse
Affiliation(s)
- Zhongshi Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tingting Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chen Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
El Atab O, Gupta B, Han Z, Stribny J, Asojo OA, Schneiter R. Alpha-1-B glycoprotein (A1BG) inhibits sterol-binding and export by CRISP2. J Biol Chem 2024; 300:107910. [PMID: 39433128 PMCID: PMC11599453 DOI: 10.1016/j.jbc.2024.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in various processes, including sperm maturation and cancer progression. They are mostly secreted glycoproteins and share a unique conserved CAP domain. The precise mode of action of these proteins, however, has remained elusive. Saccharomyces cerevisiae expresses three members of this protein family, which bind sterols in vitro and promote sterol secretion from cells. This sterol-binding and export function of yeast Pry proteins is conserved in the mammalian cysteine-rich secretory protein (CRISP) proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with alpha-1-B glycoprotein (A1BG), a human plasma glycoprotein that is upregulated in different types of cancers. Here, we examined whether the interaction between CRISP proteins and A1BG affects the sterol-binding function of CAP family members. Coexpression of A1BG with CAP proteins abolished their sterol export function in yeast and their interaction inhibits sterol-binding in vitro. We map the interaction between A1BG and CRISP2 to the third of five repeated immunoglobulin-like domains within A1BG. Interestingly, the interaction between A1BG and CRISP2 requires magnesium, suggesting that coordination of Mg2+ by the highly conserved tetrad residues within the CAP domain is essential for a stable interaction between the two proteins. The observation that A1BG modulates the sterol-binding function of CRISP2 has potential implications for the role of A1BG and related immunoglobulin-like domain containing proteins in cancer progression and the toxicity of reptile venoms containing CRISP proteins.
Collapse
Affiliation(s)
- Ola El Atab
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Barkha Gupta
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Zhu Han
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | - Jiri Stribny
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland
| | | | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, Switzerland.
| |
Collapse
|
3
|
Langbøl M, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T, Vohra R, Rives AS, Moreira J, Prokosch V, Liu H, Lackmann JW, Müller S, Nielsen CH, Kolko M, Rovelt J. Proteomic and Cytokine Profiling in Plasma from Patients with Normal-Tension Glaucoma and Ocular Hypertension. Cell Mol Neurobiol 2024; 44:59. [PMID: 39150567 PMCID: PMC11329415 DOI: 10.1007/s10571-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Primary open-angle glaucoma (POAG) is subdivided depending on eye pressure. Patients with normal-tension glaucoma (NTG) have never had high intraocular pressure (IOP) measured while patients with ocular hypertension (OHT) have high eye pressure but no signs of glaucoma. Although IOP is considered to be a risk factor for all glaucoma patients, it is reasonable to assume that other risk factors such as inflammation play a role. We aimed to characterize the proteome and cytokine profile during hypoxia in plasma from patients with NTG (n = 10), OHT (n = 10), and controls (n = 10). Participants were exposed to hypoxia for two hours, followed by 30 min of normoxia. Samples were taken before ("baseline"), during ("hypoxia"), and after hypoxia ("recovery"). Proteomics based on liquid chromatography coupled with mass spectrometry (LC-MS) was performed. Cytokines were measured by Luminex assays. Bioinformatic analyses indicated the involvement of complement and coagulation cascades in NTG and OHT. Regulation of high-density lipoprotein 3 (HDL3) apolipoproteins suggested that changes in cholesterol metabolism are related to OHT. Hypoxia decreased the level of tumor necrosis factor-α (TNF-α) in OHT patients compared to controls. Circulating levels of interleukin-1β (IL-1β) and C-reactive protein (CRP) were decreased in NTG patients compared to controls during hypoxia. After recovery, plasma interleukin-6 (IL-6) was upregulated in patients with NTG and OHT. Current results indicate an enhanced systemic immune response in patients with NTG and OHT, which correlates with pathogenic events in glaucoma. Apolipoproteins may have anti-inflammatory effects, enabling OHT patients to withstand inflammation and development of glaucoma despite high IOP.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark.
| | - Arevak Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Veterinary & Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Amalie Santaolalla Rives
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - José Moreira
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stefan Müller
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, 2200, Copenhagen, Denmark
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
4
|
Miya V, Kumar C, Breed AA, Idicula-Thomas S, Pathak BR. Mammalian cysteine-rich secretory proteins interact with plasma membrane Ca 2+ exporter PMCA4b. Andrology 2024; 12:1096-1110. [PMID: 37882330 DOI: 10.1111/andr.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mammalian cysteine-rich secretory proteins (CRISPs) are predominantly expressed in the male reproductive tract. Knockout mice lacking two or more CRISPs show defects in sperm transport, sperm-egg interaction and Ca2+ homeostasis. CRISPs play redundant and specific roles via their binding partners. To understand this, a comprehensive analysis of CRISP interactome needs to be undertaken. OBJECTIVES This study aimed to analyse CRISP4 binding partners on the plasma membrane of rat caudal spermatozoa. MATERIALS AND METHODS Total proteins from rat caudal spermatozoa were subjected to immunoprecipitation using anti-CRISP4 antibody followed by liquid chromatography-mass spectrophotometry analysis. Plasma membrane localised proteins were shortlisted, and a key target was validated by co-immunoprecipitation and co-localisation. Co-transfection followed by co-immunoprecipitation was carried out for studying the interaction of full-length as well as deletion mutants of CRISPs with human plasma membrane calcium ATPase, isoform b (hPMCA4b). Calcium assays were performed using Fura-2-AM. The cholesterol binding ability of different CRISPs was evaluated in silico. RESULTS The membrane-specific interactome of rat CRISP4 (rCRISP4) from caudal spermatozoa revealed PMCA4b as a novel binding partner, and their interaction was validated in rat spermatozoa. Human CRISP1 (hCRISP1) and hCRISP3 also interacted with PMCA4b via the N-terminal domain. Interestingly, hCRISP1 and rCRISP4 delayed PMCA4b-mediated calcium extrusion but hCRISP3 did not. In silico analysis demonstrated that hCRISP1 and rCRISP4 have higher binding affinity towards cholesterol than hCRISP3. The secretion profile of different CRISPs also showed that the ratio of secreted to cell-associated proteins was highest for hCRISP3. CONCLUSION Our study identifies PMCA4b as a target of multiple mammalian CRISPs and unravels a new role of CRISPs in regulating calcium homeostasis. Differences in the interaction of different CRISPs with cholesterol may regulate their enrichment in the lipid rafts and redistribution in the membrane post-capacitation, thereby affecting their interaction with PMCA4b.
Collapse
Affiliation(s)
- Vaidehi Miya
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Ananya A Breed
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| | - Bhakti R Pathak
- Division of Cellular and Structural Biology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, India
| |
Collapse
|
5
|
Riedelová Z, de Los Santos Pereira A, Dorado Daza DF, Májek P, Dyčka F, Riedel T. Mass-Spectrometric Identification of Proteins and Pathways Responsible for Fouling on Poly(ethylene glycol) Methacrylate Polymer Brushes. Macromol Biosci 2024; 24:e2300558. [PMID: 38350051 DOI: 10.1002/mabi.202300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Prevention of fouling from proteins in blood plasma attracts significant efforts, and great progress is made in identifying surface coatings that display antifouling properties. In particular, poly(ethylene glycol) (PEG) is widely used and dense PEG-like cylindrical brushes of poly[oligo(ethylene glycol) methacrylate] (poly(OEGMA)) can drastically reduce blood plasma fouling. Herein, a comprehensive study of the variation of blood plasma fouling on this surface, including the analysis of the composition of protein deposits on poly(OEGMA) coatings after contact with blood plasma from many different donors, is reported. Correlation between the plasma fouling behavior and protein deposit composition points to the activation of the complement system as the main culprit of dramatically increased and accelerated deposition of blood plasma proteins on this type of antifouling coating, specifically through the classical pathway. These findings are consistent with observations on PEGylated drug carriers and highlight the importance of understanding the potential interactions between antifouling coatings and their environment.
Collapse
Affiliation(s)
- Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 00, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 00, Czech Republic
| | - Diego Fernando Dorado Daza
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 00, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 00, Czech Republic
| |
Collapse
|
6
|
Brasileiro-Martins LM, Cavalcante SA, Nascimento TP, Silva-Neto AV, Mariano Santos MD, Camillo-Andrade AC, da Gama Fischer JDS, Ferreira CC, Oliveira LB, Sartim MA, Costa AG, Pucca MB, Wen FH, Moura-da-Silva AM, Sachett J, Carvalho PC, de Aquino PF, Monteiro WM. Urinary proteomics reveals biological processes related to acute kidney injury in Bothrops atrox envenomings. PLoS Negl Trop Dis 2024; 18:e0012072. [PMID: 38536893 PMCID: PMC11020875 DOI: 10.1371/journal.pntd.0012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Acute kidney injury (AKI) is a critical systemic complication caused by Bothrops envenoming, a neglected health problem in the Brazilian Amazon. Understanding the underlying mechanisms leading to AKI is crucial for effectively mitigating the burden of this complication. This study aimed to characterize the urinary protein profile of Bothrops atrox snakebite victims who developed AKI. We analyzed three groups of samples collected on admission: healthy subjects (controls, n = 10), snakebite victims who developed AKI (AKI, n = 10), and those who did not evolve to AKI (No-AKI, n = 10). Using liquid-chromatography tandem mass spectrometry, we identified and quantified (label-free) 1190 proteins. A panel of 65 proteins was identified exclusively in the urine of snakebite victims, with 32 exclusives to the AKI condition. Proteins more abundant or exclusive in AKI's urine were associated with acute phase response, endopeptidase inhibition, complement cascade, and inflammation. Notable proteins include serotransferrin, SERPINA-1, alpha-1B-glycoprotein, and NHL repeat-containing protein 3. Furthermore, evaluating previously reported biomarkers candidates for AKI and renal injury, we found retinol-binding protein, beta-2-microglobulin, cystatin-C, and hepcidin to be significant in cases of AKI induced by Bothrops envenoming. This work sheds light on physiological disturbances caused by Bothrops envenoming, highlighting potential biological processes contributing to AKI. Such insights may aid in better understanding and managing this life-threatening complication.
Collapse
Affiliation(s)
- Lisele Maria Brasileiro-Martins
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| | | | - Thaís Pinto Nascimento
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Brazil
| | - Alexandre Vilhena Silva-Neto
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Marlon Dias Mariano Santos
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Amanda C. Camillo-Andrade
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | | | | | - Marco Aurelio Sartim
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Department of Research, Nilton Lins University, Manaus, Brazil
| | - Allyson Guimarães Costa
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Nursing School, Amazonas Federal University, Manaus, Brazil
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Fan Hui Wen
- Immunopathology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Jacqueline Sachett
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Immunopathology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Paulo Costa Carvalho
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | - Wuelton M. Monteiro
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| |
Collapse
|
7
|
Gonzalez-Martin R, de Castro P, Fernandez C, Quintana F, Quiñonero A, Ferrando M, Dominguez F. Proteomic Profiling Identifies Candidate Diagnostic Biomarkers of Hydrosalpinx in Endometrial Fluid: A Pilot Study. Int J Mol Sci 2024; 25:968. [PMID: 38256043 PMCID: PMC10816103 DOI: 10.3390/ijms25020968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrosalpinx is a fluid occlusion and distension of the fallopian tubes, often resulting from pelvic inflammatory disease, which reduces the success of artificial reproductive technologies (ARTs) by 50%. Tubal factors account for approximately 25% of infertility cases, but their underlying molecular mechanisms and functional impact on other reproductive tissues remain poorly understood. This proteomic profiling study applied sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to study hydrosalpinx cyst fluid and pre- and post-salpingectomy endometrial fluid. Among the 967 proteins identified, we found 19 and 17 candidate biomarkers for hydrosalpinx in pre- and post-salpingectomy endometrial fluid, respectively. Salpingectomy significantly affected 76 endometrial proteins, providing insights into the enhanced immune response and inflammation present prior to intervention, and enhanced coagulation cascades and wound healing processes occurring one month after intervention. These findings confirmed that salpingectomy reverses the hydrosalpinx-related functional impairments in the endometrium and set a foundation for further biomarker validation and the development of less-invasive diagnostic strategies for hydrosalpinx.
Collapse
Affiliation(s)
- Roberto Gonzalez-Martin
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (P.d.C.); (A.Q.)
| | - Pedro de Castro
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (P.d.C.); (A.Q.)
| | - Carmen Fernandez
- IVIRMA Global Research Alliance, IVI-RMA Bilbao, 48940 Bizkaia, Spain; (C.F.); (F.Q.); (M.F.)
| | - Fernando Quintana
- IVIRMA Global Research Alliance, IVI-RMA Bilbao, 48940 Bizkaia, Spain; (C.F.); (F.Q.); (M.F.)
| | - Alicia Quiñonero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (P.d.C.); (A.Q.)
| | - Marcos Ferrando
- IVIRMA Global Research Alliance, IVI-RMA Bilbao, 48940 Bizkaia, Spain; (C.F.); (F.Q.); (M.F.)
| | - Francisco Dominguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.G.-M.); (P.d.C.); (A.Q.)
| |
Collapse
|
8
|
Krobthong S, Yingchutrakul Y, Sittisaree W, Tulyananda T, Samutrtai P, Choowongkomon K, Lao-On U. Evaluation of potential anti-metastatic and antioxidative abilities of natural peptides derived from Tecoma stans (L.) Juss. ex Kunth in A549 cells. PeerJ 2022; 10:e13693. [PMID: 35818360 PMCID: PMC9270879 DOI: 10.7717/peerj.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Tecoma stans (L.) Juss. ex Kunth is a well-known medicinal plant found in tropical and subtropical regions. It contains a broad range of bioactive compounds that exhibit many biological effects, including antidiabetic, antibacterial, and antioxidative activities. However, the effect of natural peptides from T. stans against cancer progression and free radical production is unknown. This study aims to evaluate the cytotoxic, anti-metastatic, and antioxidative activities of natural peptides from T. stans on A549 cells. Methods The natural peptides were extracted from the flower of T. stans using the pressurized hot water extraction (PHWE) method, followed by size exclusion chromatography and solid-phase extraction-C18. The cytotoxic and anti-metastatic effects of natural peptides were evaluated using MTT and transwell chamber assays, respectively. The free radical scavenging activity of natural peptides was determined using ABTS, DPPH, and FRAP assays. The cells were pretreated with the IC50 dosage of natural peptides and stimulated with LPS before analyzing intracellular reactive oxygen species (ROS) and proteomics. Results Natural peptides induced cell toxicity at a concentration of less than 1 ng/ml and markedly reduced cell motility of A549 cells. The cells had a migration rate of less than 10% and lost their invasion ability in the treatment condition. In addition, natural peptides showed free radical scavenging activity similar to standard antioxidants and significantly decreased intracellular ROS in the LPS-induced cells. Proteomic analysis revealed 1,604 differentially expressed proteins. The self-organizing tree algorithm (SOTA) clustered the protein abundances into eleven groups. The volcano plot revealed that the cancer-promoting proteins (NCBP2, AMD, MER34, ENC1, and COA4) were down-regulated, while the secretory glycoprotein (A1BG) and ROS-reducing protein (ASB6) were up-regulated in the treatment group. Conclusion The anti-proliferative and anti-metastatic activities of natural peptides may be attributed to the suppression of several cancer-promoting proteins. In contrast, their antioxidative activity may result from the up-regulation of ROS-reducing protein. This finding suggests that natural peptides from T. stans are viable for being the new potential anti-cancer and antioxidative agents.
Collapse
Affiliation(s)
- Sucheewin Krobthong
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand,Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Tatpong Tulyananda
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | - Udom Lao-On
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Hematology and Transfusion Science Research Center (HTSRC), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
9
|
Smith CL, Harrison PM, Bernard DJ. The extant immunoglobulin superfamily, member 1 gene results from an ancestral gene duplication in eutherian mammals. PLoS One 2022; 17:e0267744. [PMID: 35653309 PMCID: PMC9162367 DOI: 10.1371/journal.pone.0267744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Immunoglobulin superfamily, member 1 (IGSF1) is a transmembrane glycoprotein with high expression in the mammalian pituitary gland. Mutations in the IGSF1 gene cause congenital central hypothyroidism in humans. The IGSF1 protein is co-translationally cleaved into N- and C-terminal domains (NTD and CTD), the latter of which is trafficked to the plasma membrane and appears to be the functional portion of the molecule. Though the IGSF1-NTD is retained in the endoplasmic reticulum and has no apparent function, it has a high degree of sequence identity with the IGSF1-CTD and is conserved across mammalian species. Based upon phylogenetic analyses, we propose that the ancestral IGSF1 gene encoded the IGSF1-CTD, which was duplicated and integrated immediately upstream of itself, yielding a larger protein encompassing the IGSF1-NTD and IGSF1-CTD. The selective pressures favoring the initial gene duplication and subsequent retention of a conserved IGSF1-NTD are unresolved.
Collapse
Affiliation(s)
- Courtney L. Smith
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Paul M. Harrison
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Soares BS, Rocha SLG, Bastos VA, Lima DB, Carvalho PC, Gozzo FC, Demeler B, Williams TL, Arnold J, Henrickson A, Jørgensen TJD, Souza TACB, Perales J, Valente RH, Lomonte B, Gomes-Neto F, Neves-Ferreira AGC. Molecular Architecture of the Antiophidic Protein DM64 and its Binding Specificity to Myotoxin II From Bothrops asper Venom. Front Mol Biosci 2022; 8:787368. [PMID: 35155563 PMCID: PMC8830425 DOI: 10.3389/fmolb.2021.787368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023] Open
Abstract
DM64 is a toxin-neutralizing serum glycoprotein isolated from Didelphis aurita, an ophiophagous marsupial naturally resistant to snake envenomation. This 64 kDa antitoxin targets myotoxic phospholipases A2, which account for most local tissue damage of viperid snakebites. We investigated the noncovalent complex formed between native DM64 and myotoxin II, a myotoxic phospholipase-like protein from Bothrops asper venom. Analytical ultracentrifugation (AUC) and size exclusion chromatography indicated that DM64 is monomeric in solution and binds equimolar amounts of the toxin. Attempts to crystallize native DM64 for X-ray diffraction were unsuccessful. Obtaining recombinant protein to pursue structural studies was also challenging. Classical molecular modeling techniques were impaired by the lack of templates with more than 25% sequence identity with DM64. An integrative structural biology approach was then applied to generate a three-dimensional model of the inhibitor bound to myotoxin II. I-TASSER individually modeled the five immunoglobulin-like domains of DM64. Distance constraints generated by cross-linking mass spectrometry of the complex guided the docking of DM64 domains to the crystal structure of myotoxin II, using Rosetta. AUC, small-angle X-ray scattering (SAXS), molecular modeling, and molecular dynamics simulations indicated that the DM64-myotoxin II complex is structured, shows flexibility, and has an anisotropic shape. Inter-protein cross-links and limited hydrolysis analyses shed light on the inhibitor's regions involved with toxin interaction, revealing the critical participation of the first, third, and fifth domains of DM64. Our data showed that the fifth domain of DM64 binds to myotoxin II amino-terminal and beta-wing regions. The third domain of the inhibitor acts in a complementary way to the fifth domain. Their binding to these toxin regions presumably precludes dimerization, thus interfering with toxicity, which is related to the quaternary structure of the toxin. The first domain of DM64 interacts with the functional site of the toxin putatively associated with membrane anchorage. We propose that both mechanisms concur to inhibit myotoxin II toxicity by DM64 binding. The present topological characterization of this toxin-antitoxin complex constitutes an essential step toward the rational design of novel peptide-based antivenom therapies targeting snake venom myotoxins.
Collapse
Affiliation(s)
- Barbara S. Soares
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Viviane A. Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Diogo B. Lima
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Paulo C. Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Fabio C. Gozzo
- Dalton Mass Spectrometry Laboratory, University of Campinas, Campinas, Brazil
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Tayler L. Williams
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Janelle Arnold
- Department of Environmental Science, Princeton University, Princeton, NJ, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tatiana A. C. B. Souza
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Curitiba, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Richard H. Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Bruno Lomonte
- Clodomiro Picado Institute, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
11
|
Turek-Jakubowska A, Dębski J, Jakubowski M, Szahidewicz-Krupska E, Gawryś J, Gawryś K, Janus A, Trocha M, Doroszko A. New Candidates for Biomarkers and Drug Targets of Ischemic Stroke-A First Dynamic LC-MS Human Serum Proteomic Study. J Clin Med 2022; 11:jcm11020339. [PMID: 35054033 PMCID: PMC8780942 DOI: 10.3390/jcm11020339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: The aim of this dynamic-LC/MS-human-serum-proteomic-study was to identify potential proteins-candidates for biomarkers of acute ischemic stroke, their changes during acute phase of stroke and to define potential novel drug-targets. (2) Methods: A total of 32 patients (29–80 years) with acute ischemic stroke were enrolled to the study. The control group constituted 29 demographically-matched volunteers. Subjects with stroke presented clinical symptoms lasting no longer than 24 h, confirmed by neurological-examination and/or new cerebral ischemia visualized in the CT scans (computed tomography). The analysis of plasma proteome was performed using LC-MS (liquid chromatography–mass spectrometry). (3) Results: Ten proteins with significantly different serum concentrations between groups volunteers were: complement-factor-B, apolipoprotein-A-I, fibronectin, alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, heat-shock-cognate-71kDa protein/heat-shock-related-70kDa-protein-2, thymidine phosphorylase-2, cytoplasmic-tryptophan-tRNA-ligase, ficolin-2, beta-Ala-His-dipeptidase. (4) Conclusions: This is the first dynamic LC-MS study performed on a clinical model which differentiates serum proteome of patients in acute phase of ischemic stroke in time series and compares to control group. Listed proteins should be considered as risk factors, markers of ischemic stroke or potential therapeutic targets. Further clinical validation might define their exact role in differential diagnostics, monitoring the course of the ischemic stroke or specifying them as novel drug targets.
Collapse
Affiliation(s)
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warszawa, Poland;
| | - Maciej Jakubowski
- Lower Silesian Centre for Lung Diseases, Grabiszyńska 105, 53-439 Wroclaw, Poland;
| | - Ewa Szahidewicz-Krupska
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Jakub Gawryś
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Karolina Gawryś
- Department of Neurology, 4th Military Hospital, Weigla 5, 50-556 Wroclaw, Poland; (A.T.-J.); (K.G.)
| | - Agnieszka Janus
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
| | - Małgorzata Trocha
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicz-Radecki 2, 50-349 Wroclaw, Poland;
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (E.S.-K.); (J.G.); (A.J.)
- Correspondence: ; Tel.: +48-71-736-4000
| |
Collapse
|
12
|
Brown S, Stafford KJ, Norris G. A search for predictive biomarkers of ovine pre-partum vaginal prolapse. Res Vet Sci 2021; 140:251-258. [PMID: 34537551 DOI: 10.1016/j.rvsc.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/30/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Ovine pre-partum vaginal prolapse (known as bearings in sheep) occurs within a few weeks prior to lambing and unless treated both ewes and unborn lambs will die. It is a worldwide problem with no clear aetiology. Rates of prolapse in New Zealand typically vary from 0.1 to 2% per annum, varying between seasons and farms. In order to determine preclinical changes leading to prolapse, blood samples were collected prior to prolapse occurring and analysed for changes in both protein and specific hormone and vitamin levels. 650 ewes were ear tagged and blood samples were taken one month prior to the beginning of lambing; 28 of these ewes subsequently prolapsed. Using an improved proteomic method plasma samples were subjected to 2D DIGE (two dimensional differential in gel electrophoresis) to determine if there were differences between the pre-prolapse and non-prolapsing ewes. Acidic isoforms of haptoglobin, a major acute phase protein in ruminants, increased approximately 3-fold in ewes prior to prolapse occurring. Total haptoglobin quantitation was confirmed with an independent assay. Although another plasma protein, α-1B-glycoprotein, was down regulated close to prolapse, the biological significance of this is unknown. While vitamin D levels were not associated with subsequent prolapse there was, however, a negative correlation between cortisol and days to prolapse from sampling (r2 = 0.36); i.e. ewes sampled closest to prolapse had higher plasma cortisol concentrations than controls. This raises the possibility that the ewes which prolapsed may have been suffering from chronic stress. Further research is needed.
Collapse
Affiliation(s)
- S Brown
- School of Fundamental Science, Massey University, Tennent Drive, Palmerston North, New Zealand.
| | - K J Stafford
- School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - G Norris
- School of Fundamental Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| |
Collapse
|
13
|
Solmaz I, Kocak E, Kaplan O, Celebier M, Anlar B. Analysis of plasma protein biomarkers in childhood onset multiple sclerosis. J Neuroimmunol 2020; 348:577359. [DOI: 10.1016/j.jneuroim.2020.577359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
|
14
|
Tadokoro T, M. Modahl C, Maenaka K, Aoki-Shioi N. Cysteine-Rich Secretory Proteins (CRISPs) From Venomous Snakes: An Overview of the Functional Diversity in A Large and Underappreciated Superfamily. Toxins (Basel) 2020; 12:E175. [PMID: 32178374 PMCID: PMC7150914 DOI: 10.3390/toxins12030175] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Cassandra M. Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; (T.T.); (K.M.)
| | - Narumi Aoki-Shioi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Chemistry, Faculty of Science, Fukuoka University, 19-1, 8-chomeNanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
15
|
Guselnikov SV, Taranin AV. Unraveling the LRC Evolution in Mammals: IGSF1 and A1BG Provide the Keys. Genome Biol Evol 2019; 11:1586-1601. [PMID: 31106814 PMCID: PMC6557307 DOI: 10.1093/gbe/evz102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Receptors of the leukocyte receptor cluster (LRC) play a range of important functions in the human immune system. However, the evolution of the LRC remains poorly understood, even in m\ammals not to mention nonmammalian vertebrates. We conducted a comprehensive bioinformatics analysis of the LRC-related genes in the publicly available genomes of six species that represent eutherian, marsupial, and monotreme lineages of mammals. As a result, the LRCs of African elephant and armadillo were characterized, two new genes, IGSF1 and A1BG, were attributed to the LRC of eutherian mammals, the LRC gene content was substantially extended in the short-tailed opossum and Tasmanian devil and, finally, four LRC genes were identified in the platypus genome. These findings have for the first time provided a solid basis for inference of the LRC phylogeny across mammals. Our analysis suggests that the mammalian LRC family likely derived from two ancestral genes, which evolved in a lineage-specific manner by expansion/contraction, extensive exon shuffling, and sequence divergence. The striking structural and functional diversity of eutherian LRC molecules appears largely lineage specific. The only family member retained in all the three mammalian lineages is a collagen-binding receptor OSCAR. Strong sequence conservation of a transmembrane domain known to associate with FcRγ suggests an adaptive role of this domain subtype in the LRC evolution.
Collapse
Affiliation(s)
- Sergey V Guselnikov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| | - Alexander V Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Russia
| |
Collapse
|
16
|
Suntravat M, Cromer WE, Marquez J, Galan JA, Zawieja DC, Davies P, Salazar E, Sánchez EE. The isolation and characterization of a new snake venom cysteine-rich secretory protein (svCRiSP) from the venom of the Southern Pacific rattlesnake and its effect on vascular permeability. Toxicon 2019; 165:22-30. [PMID: 31014961 DOI: 10.1016/j.toxicon.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
Abstract
A novel snake venom cysteine-rich secretory protein (svCRiSP), Hellerin, was purified from C. o. helleri venom using sequential reverse phase and cation-exchange chromatography. Gel electrophoresis, N-terminal sequencing, and LC-MS/MS sequencing identified a single protein with a molecular mass of approximately 24.8 kDa and confirmed its identity as a svCRiSP. Hellerin had cytotoxic effects on human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner but not in human dermal lymphatic endothelial cells (HDLECs) and human dermal blood endothelial cells (HDBECs). Hellerin produced a dramatic increase in both blood vascular permeability in vivo, and in the trans-epithelial permeability of cultured HDLEC and HDBEC cells. This is the first study that describes the effect of a svCRiSP on vascular, blood and lymphatic permeability.
Collapse
Affiliation(s)
- Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA.
| | - Walter E Cromer
- Department of Medical Physiology, Texas A&M Health Science Center (TAMHSC), Temple, TX, USA
| | - Jessenia Marquez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Jacob A Galan
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M Health Science Center (TAMHSC), Temple, TX, USA
| | - Peter Davies
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| |
Collapse
|
17
|
Barth T, Mandacaru SC, Charneau S, Souza MVD, Ricart CAO, Noronha EF, Souza AA, Freitas SMD, Roepstorff P, Fontes W, Castro MS, Pires Júnior OR. Biochemical and structural characterization of a protein complex containing a hyaluronidase and a CRISP-like protein isolated from the venom of the spider Acanthoscurria natalensis. J Proteomics 2018; 192:102-113. [PMID: 30165259 DOI: 10.1016/j.jprot.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 08/19/2018] [Indexed: 12/19/2022]
Abstract
Spider venoms are composed of a complex mixture of bioactive molecules. The structural and functional characterization of these molecules in the venom of the Brazilian spider Acanthoscurria natalensis, has been little explored. The venom was fractionated using reversed-phase liquid chromatography. The fraction with hyaluronidase activity was named AnHyal. The partial sequencing of AnHyal revealed the presence of a CRISP-like protein, in addition to hyaluronidase, comprising 67% coverage for hyaluronidase from Brachypelma vagans and 82% for CRISP-like protein from Grammostola rosea. 1D BN-PAGE zymogram assays of AnHyal confirmed the presence of enzymatically active 53 kDa monomer and 124 and 178 kDa oligomers. The decomposition of the complexes by 2D BN/SDS-PAGE zymogram assays showed two subunits, 53 (AnHyalH) and 44 kDa (AnHyalC), with sequence similarity to hyaluronidase and CRISP proteins, respectively. The secondary structure of AnHyal is composed by 36% of α-helix. AnHyal presented maximum activity at pH between 4.0 and 6.0 and 30 and 60 °C, showed specificity to hyaluronic acid substrate and presented a KM of 617.9 μg/mL. Our results showed that hyaluronidase and CRISP proteins can form a complex and the CRISP protein may contribute to the enzymatic activity of AnHyalH.
Collapse
Affiliation(s)
- Tania Barth
- Laboratory of Toxinology, Department of Physiological Sciences/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Animal Histology, Department of Biological Sciences, State University of Santa Cruz, Ilhéus-Bahia 45662-900, Brazil.
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF, Brazil.
| | - Marcelo Valle de Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF, Brazil.
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF, Brazil.
| | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cellular Biology/IB, University of Brasília, Brasilia-DF 70910-900, Brazil.
| | - Amanda Araújo Souza
- Laboratory of Molecular Biophysics, Department of Cellular Biology/IB, University of Brasília, Brasilia-DF 70910-900, Brazil
| | - Sonia Maria de Freitas
- Laboratory of Molecular Biophysics, Department of Cellular Biology/IB, University of Brasília, Brasilia-DF 70910-900, Brazil.
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF, Brazil.
| | - Mariana S Castro
- Laboratory of Toxinology, Department of Physiological Sciences/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF, Brazil.
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil.
| |
Collapse
|
18
|
Grande G, Vincenzoni F, Milardi D, Pompa G, Ricciardi D, Fruscella E, Mancini F, Pontecorvi A, Castagnola M, Marana R. Cervical mucus proteome in endometriosis. Clin Proteomics 2017; 14:7. [PMID: 28174513 PMCID: PMC5290661 DOI: 10.1186/s12014-017-9142-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Background Endometriosis is a chronic gynecological inflammatory disease characterized by the presence of functional endometrial glands and stroma outside of the uterine cavity. It affects 7–10% of women of reproductive age and up to 50% of women with infertility. The current gold standard for the diagnosis combines laparoscopic evaluation and biopsy of the visualized lesions. However, laparoscopy requires general anesthesia and developed surgical skills and it has a high procedural cost. In addition, it is associated with the risk, although rare, of potential intraoperative or postoperative complications. To date, several noninvasive biomarkers have been proposed; however, no definite diagnostic biomarker is yet available. The aim of this study was to characterize the CM proteome in patients with endometriosis using high resolution mass spectrometry—based proteomics, implemented by bioinformatic tools for quantitative analysis, in order to investigate the pathophysiological mechanisms of endometriosis. Methods Cervical mucus samples were collected from patients affected by endometriosis and fertile controls. An aliquot of the soluble acidic fraction of each cervical mucus sample, corresponding to 0.5 mg of total protein, was left to digest with sequencing grade modified porcine trypsin. The peptides were analyzed by LC–MS/MS on a high resolution Orbitrap Elite mass spectrometer and data were evaluated using bioinformatic tools. Results We aimed at the first total profiling of the cervical mucus proteome in endometriosis. From the list of identified proteins, we detected a number of differentially expressed proteins, including some functionally significant proteins. Six proteins were quantitatively increased in endometriosis, almost all being involved in the inflammatory pattern. Nine proteins were quantitatively reduced in endometriosis, including some proteins related with local innate immunity (CRISP-3 and Pglyrp1) and protection against oxidative stress (HSPB1). Fifteen proteins were not detected in endometriosis samples including certain proteins involved in antimicrobial activity (SLURP1 and KLK13) and related to seminal plasma liquefaction and male fertility (KLK13). Conclusions This is the first application of high resolution mass spectrometry—based proteomics aimed in detecting an array of proteins in CM to be proposed for the noninvasive diagnosis of endometriosis. This chronic disease presents in CM an inflammatory protein pattern. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9142-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Grande
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, L.go F. Vito 1, 00168 Rome, Italy
| | - Domenico Milardi
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Giuseppina Pompa
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Domenico Ricciardi
- Department of Obstetrics and Gynecology, Fondazione Policlinico Universitario A. Gemelli, L.go F. Vito 1, 00168 Rome, Italy
| | - Erika Fruscella
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Francesca Mancini
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Division of Endocrinology, Catholic University, L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, L.go F. Vito 1, 00168 Rome, Italy
| | - Riccardo Marana
- International Scientific Institute "Paul VI", L.go F. Vito 1, 00168 Rome, Italy.,Department of Obstetrics and Gynecology, Fondazione Policlinico Universitario A. Gemelli, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
19
|
Rocha SL, Neves-Ferreira AG, Trugilho MR, Angulo Y, Lomonte B, Valente RH, Domont GB, Perales J. Screening for target toxins of the antiophidic protein DM64 through a gel-based interactomics approach. J Proteomics 2017; 151:204-213. [DOI: 10.1016/j.jprot.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
20
|
Anklesaria JH, Pandya RR, Pathak BR, Mahale SD. Purification and characterization of CRISP-3 from human seminal plasma and its real-time binding kinetics with PSP94. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039:59-65. [PMID: 27825912 DOI: 10.1016/j.jchromb.2016.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs) have been postulated to have a role in male reproduction and prostate pathophysiology. Of the mammalian CRISPs, CRISP-3 levels in particular have been shown to be upregulated in prostate cancer. Efforts have been made to obtain highly pure CRISP-3 for gaining structure-function information of this protein. However, well characterized and highly pure protein is not available yet. CRISPs from snake venom have been purified using prostate secretory protein of 94 amino acids (PSP94) has been reported earlier. In the present study, CRISP-3 was purified to homogeneity from human seminal plasma using human PSP94-immnobilized affinity column. The molecular mass of the purified protein was determined by SDS-PAGE followed by immunoblotting and found to be ∼26kDa and ∼28kDa. The purity was further verified using MALDI-TOF MS analysis, where two peaks at m/z 25509 and 27715 were obtained. The lower molecular weight peak corresponds to the calculated molecular mass of CRISP-3 (∼26kDa); whereas the higher molecular weight peak was confirmed to be the glycosylated form (∼28kDa) from the deglycosylation experiment. Binding of PSP94 in increasing concentrations to purified CRISP-3 immobilized chip was further validated using surface plasmon resonance. The kinetics data suggested that purified CRISP-3 binds specifically and with high affinity to PSP94. In conclusion, a homogeneous preparation of highly pure CRISP-3 protein is obtained from human seminal plasma.
Collapse
Affiliation(s)
| | | | | | - Smita D Mahale
- Division of Structural Biology, India; ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
21
|
Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J 2015; 33:309-43. [PMID: 26555091 PMCID: PMC4891372 DOI: 10.1007/s10719-015-9626-2] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023]
Abstract
Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level.
Collapse
Affiliation(s)
- Florent Clerc
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Karli R Reiding
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Guinevere S M Kammeijer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands. .,Division of BioAnalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Nikkola E, Laiwalla A, Ko A, Alvarez M, Connolly M, Ooi YC, Hsu W, Bui A, Pajukanta P, Gonzalez NR. Remote Ischemic Conditioning Alters Methylation and Expression of Cell Cycle Genes in Aneurysmal Subarachnoid Hemorrhage. Stroke 2015; 46:2445-51. [PMID: 26251247 DOI: 10.1161/strokeaha.115.009618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Remote ischemic conditioning (RIC) is a phenomenon in which short periods of nonfatal ischemia in 1 tissue confers protection to distant tissues. Here we performed a longitudinal human pilot study in patients with aneurysmal subarachnoid hemorrhage undergoing RIC by limb ischemia to compare changes in DNA methylation and transcriptome profiles before and after RIC. METHODS Thirteen patients underwent 4 RIC sessions over 2 to 12 days after rupture of an intracranial aneurysm. We analyzed whole blood transcriptomes using RNA sequencing and genome-wide DNA methylomes using reduced representation bisulfite sequencing, both before and after RIC. We tested differential expression and differential methylation using an intraindividual paired study design and then overlapped the differential expression and differential methylation results for analyses of functional categories and protein-protein interactions. RESULTS We observed 164 differential expression genes and 3493 differential methylation CpG sites after RIC, of which 204 CpG sites overlapped with 103 genes, enriched for pathways of cell cycle (P<3.8×10(-4)) and inflammatory responses (P<1.4×10(-4)). The cell cycle pathway genes form a significant protein-protein interaction network of tightly coexpressed genes (P<0.00001). CONCLUSIONS Gene expression and DNA methylation changes in aneurysmal subarachnoid hemorrhage patients undergoing RIC are involved in coordinated cell cycle and inflammatory responses.
Collapse
Affiliation(s)
- Elina Nikkola
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Azim Laiwalla
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Arthur Ko
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Marcus Alvarez
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Mark Connolly
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Yinn Cher Ooi
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - William Hsu
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Alex Bui
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Päivi Pajukanta
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.)
| | - Nestor R Gonzalez
- From the Department of Human Genetics (E.N., A.K., M.A., P.P.), Department of Neurosurgery (A.L., M.C., Y.C.O., N.R.G.), and Department of Radiological Sciences (W.H., A.B., N.R.G.), David Geffen School of Medicine at UCLA, Los Angeles, CA; and Department of Human Genetics and Molecular Biology, Molecular Biology Institute at UCLA, Los Angeles, CA (A.K., P.P.).
| |
Collapse
|
23
|
Lecht S, Chiaverelli RA, Gerstenhaber J, Calvete JJ, Lazarovici P, Casewell NR, Harrison R, Lelkes PI, Marcinkiewicz C. Anti-angiogenic activities of snake venom CRISP isolated from Echis carinatus sochureki. Biochim Biophys Acta Gen Subj 2015; 1850:1169-79. [DOI: 10.1016/j.bbagen.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/20/2015] [Accepted: 02/01/2015] [Indexed: 02/01/2023]
|
24
|
Evans J, D'Sylva R, Volpert M, Jamsai D, Merriner DJ, Nie G, Salamonsen LA, O'Bryan MK. Endometrial CRISP3 is regulated throughout the mouse estrous and human menstrual cycle and facilitates adhesion and proliferation of endometrial epithelial cells. Biol Reprod 2015; 92:99. [PMID: 25715794 DOI: 10.1095/biolreprod.114.127480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
The endometrium (the mucosal lining of the uterus) is a dynamic tissue that undergoes extensive remodeling, secretory transformation in preparation for implantation of an embryo, inflammatory and proteolytic activity during menstruation, and rapid postmenstrual repair. A plethora of local factors influence these processes. Recently, a cysteine-rich protein, CRISP3, a clade of the CRISP, antigen 5, pathogenesis-related (CAP) protein superfamily, has been implicated in uterine function. The localization, regulation, and potential function of CRISP3 in both the human and mouse endometrium is described. CRISP3 localizes to the luminal and glandular epithelium of the endometrium within both species, with increased immunoreactivity during the proliferative phase of the human cycle. CRISP3 also localizes to neutrophils, particularly within the premenstrual human endometrium and during the postbreakdown repair phase of a mouse model of endometrial breakdown and repair. Endometrial CRISP3 is produced by primary human endometrial epithelial cells and secreted in vivo to accumulate in the uterine cavity. Secreted CRISP3 is more abundant in uterine lavage fluid during the proliferative phase of the menstrual cycle. Human endometrial epithelial CRISP3 is present in both a glycosylated and a nonglycosylated form in vitro and in vivo. Treatment of endometrial epithelial cells in vitro with recombinant CRISP3 enhances both adhesion and proliferation. These data suggest roles for epithelial and neutrophil-derived CRISP3 in postmenstrual endometrial repair and regeneration.
Collapse
Affiliation(s)
- Jemma Evans
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Rebecca D'Sylva
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Marianna Volpert
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Duangporn Jamsai
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Donna Jo Merriner
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Guiying Nie
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Moira K O'Bryan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Exploring the human plasma proteome for humoral mediators of remote ischemic preconditioning--a word of caution. PLoS One 2014; 9:e109279. [PMID: 25333471 PMCID: PMC4198105 DOI: 10.1371/journal.pone.0109279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022] Open
Abstract
Despite major advances in early revascularization techniques, cardiovascular diseases are still the leading cause of death worldwide, and myocardial infarctions contribute heavily to this. Over the past decades, it has become apparent that reperfusion of blood to a previously ischemic area of the heart causes damage in and of itself, and that this ischemia reperfusion induced injury can be reduced by up to 50% by mechanical manipulation of the blood flow to the heart. The recent discovery of remote ischemic preconditioning (RIPC) provides a non-invasive approach of inducing this cardioprotection at a distance. Finding its endogenous mediators and their operative mode is an important step toward increasing the ischemic tolerance. The release of humoral factor(s) upon RIPC was recently demonstrated and several candidate proteins were published as possible mediators of the cardioprotection. Before clinical applicability, these potential biomarkers and their efficiency must be validated, a task made challenging by the large heterogeneity in reported data and results. Here, in an attempt to reproduce and provide more experimental data on these mediators, we conducted an unbiased in-depth analysis of the human plasma proteome before and after RIPC. From the 68 protein markers reported in the literature, only 28 could be mapped to manually reviewed (Swiss-Prot) protein sequences. 23 of them were monitored in our untargeted experiment. However, their significant regulation could not be reproducibly estimated. In fact, among the 394 plasma proteins we accurately quantified, no significant regulation could be confidently and reproducibly assessed. This indicates that it is difficult to both monitor and reproduce published data from experiments exploring for RIPC induced plasma proteomic regulations, and suggests that further work should be directed towards small humoral factors. To simplify this task, we made our proteomic dataset available via ProteomeXchange, where scientists can mine for novel potential targets.
Collapse
|
26
|
Bag AK, Saha S, Sundar S, Saha B, Chakrabarti A, Mandal C. Comparative proteomics and glycoproteomics of plasma proteins in Indian visceral leishmaniasis. Proteome Sci 2014; 12:48. [PMID: 25276097 PMCID: PMC4179796 DOI: 10.1186/s12953-014-0048-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/08/2014] [Indexed: 12/27/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is a deadly parasitic diseases caused by Leishmania donovani; it is a major health problem in many countries. A lack of proper understanding of the disease biology, poor diagnostic methods and increasing drug resistance are the main reasons for the growing burden of VL infection. Comparative plasma proteomics are a relatively useful technique that can be used to investigate disease-associated alterations that can help in understanding host responses against pathogens, and might be useful in disease management and diagnosis. Result In this study, a comparative proteomics and glycoproteomics approach using 2DE and 2D-DIGE was employed between early diagnosed VL patients of all age groups and healthy endemic and non-endemic controls in order to aid the recognition of disease-associated alterations in host plasma. Comparative proteomics was performed by the depletion of seven highly abundant plasma proteins. Comparative glycoproteomics was performed by the depletion of albumin and IgG, followed by purification of plasma glycoproteins using a multi lectin affinity column. From these two approaches, 39 differentially expressed protein spots were identified and sequenced using MALDI-TOF/TOF mass spectrometry. This revealed ten distinct proteins that appeared in multiple spots, suggesting micro-heterogeneity. Among these proteins, alpha-1-antitrypsin, alpha-1-B glycoprotein and amyloid-A1 precursor were up-regulated, whereas vitamin-D binding protein, apolipoprotein-A-I and transthyretin were down-regulated in VL. Alterations in the levels of these proteins in VL-infected plasma were further confirmed by western blot and ELISA. Conclusions These proteins may be involved in the survival of parasites, resisting neutrophil elastase, and in their multiplication in macrophages, potentially maintaining endogenous anti-inflammatory and immunosuppressive conditions. Consequently, the results of this study may help in understanding the host response against L.donovani, which could help in the discovery of new drugs and disease management. Finally, these alterations on protein levels might be beneficial in improving early diagnosis considering those as biomarkers in Indian VL. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0048-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arup Kumar Bag
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032 India
| | - Sutapa Saha
- Crystallography & Molecular Biology, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064 India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Chittaranjan Avenue, Kolkata, 700073 India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064 India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032 India
| |
Collapse
|
27
|
Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse. Sci Rep 2014; 4:4217. [PMID: 24573035 PMCID: PMC3936225 DOI: 10.1038/srep04217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/31/2014] [Indexed: 11/08/2022] Open
Abstract
While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.
Collapse
|
28
|
Cerda A, Hirata RDC, Hirata MH. Genetic scoring to predict antihypertensive drug response using gene variants associated with hypertension. Pharmacogenomics 2013; 14:1817-18. [PMID: 24236481 DOI: 10.2217/pgs.13.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Alvaro Cerda
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
29
|
McDonough CW, Gong Y, Padmanabhan S, Burkley B, Langaee TY, Melander O, Pepine CJ, Dominiczak AF, Cooper-Dehoff RM, Johnson JA. Pharmacogenomic association of nonsynonymous SNPs in SIGLEC12, A1BG, and the selectin region and cardiovascular outcomes. Hypertension 2013; 62:48-54. [PMID: 23690342 DOI: 10.1161/hypertensionaha.111.00823] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We sought to identify novel pharmacogenetic markers associated with cardiovascular outcomes in patients with hypertension on antihypertensive therapy. We genotyped a 1:4 case:control cohort (n=1345) on the Illumina HumanCVD Beadchip from the INternational VErapamil SR-Trandolapril STudy (INVEST), where participants were randomized to a β-blocker strategy or a calcium channel blocker strategy. Genome-spanning single nucleotide polymorphism (SNP)×treatment interaction analyses of nonsynonymous SNPs were conducted in white and Hispanic race/ethnic groups. Top hits from whites were tested in Hispanics for consistency. A genetic risk score was constructed from the top 3 signals and tested in the Nordic Diltiazem study. SIGLEC12 rs16982743 and A1BG rs893184 had a significant interaction with treatment strategy for adverse cardiovascular outcomes (INVEST whites and Hispanics combined interaction P=0.0038 and 0.0036, respectively). A genetic risk score, including rs16982743, rs893184, and rs4525 in F5, was significantly associated with treatment-related adverse cardiovascular outcomes in whites and Hispanics from the INVEST study and in the Nordic Diltiazem study (meta-analysis interaction P=2.39×10(-5)). In patients with a genetic risk score of 0 or 1, calcium channel blocker treatment was associated with lower risk (odds ratio [95% confidence interval]=0.60 [0.42-0.86]), and in those with a genetic risk score of 2 to 3, calcium channel blocker treatment was associated with higher risk (odds ratio [95% confidence interval]=1.31 [1.08-1.59]). These results suggest that cardiovascular outcomes may differ based on SIGLEC12, A1BG, F5 genotypes, and antihypertensive treatment strategy. These specific genetic associations and our risk score provide insight into a potential approach to personalized antihypertensive treatment selection.
Collapse
Affiliation(s)
- Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Biswas S, Sharma S, Saroha A, Bhakuni DS, Malhotra R, Zahur M, Oellerich M, Das HR, Asif AR. Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach. PLoS One 2013; 8:e56246. [PMID: 23418544 PMCID: PMC3572018 DOI: 10.1371/journal.pone.0056246] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune and inflammatory joint disease with a poorly understood etiology. Despite widespread diagnostic use of anti-citrullinated protein antibodies and rheumatoid factor proteins there is a strong demand for novel serological biomarkers to improve the diagnosis this disease. The present study was aimed to identify novel autoantigens involved in rheumatoid arthritis (RA) pathogenesis through immune-proteomic strategy. Synovial fluid samples from clinically diagnosed RA patients were separated on two-dimensional gel electrophoresis (2-DE). Samples from patients with non-RA rheumatisms (osteoarthritis and trauma) were used as controls. Immunoreactive proteins were spotted by Western blotting followed by identification through Q-TOF mass spectrometer analysis. Forty Western blots were generated using plasma from ten individual RA patients and 33 reactive spots were identified, 20 from the high molecular weight (HMW) gel and 13 from the low molecular weight (LMW) gel. Among the 33 common immunogenic spots, 18 distinct autoantigens were identified, out of which 14 are novel proteins in this context. Expression analysis of five important proteins, vimentin, gelsolin, alpha 2 HS glycoprotein (AHSG), glial fibrillary acidic protein (GFAP), and α1B-glycoprotein (A1BG) by Western blot analysis using their specific antibodies revealed their higher expression in RA synovial fluid as compared to non-RA samples. Recombinantly expressed GFAP and A1BG protein were used to develop an in-house ELISA to quantify the amount of autoantibodies in the RA patients. RA patients revealed an increase in the expression of GFAP and A1BG in the plasma as compared to osteoarthritis patients. Therefore, GFAP and A1BG can be proposed as potential new autoantigens of diagnostic importance for RA subjects. Further characterization of these proteins in rheumatoid arthritis will be helpful in understanding the role of these proteins in the disease pathogenesis providing new diagnostic tool with better specificity and accurate detection of the disease.
Collapse
Affiliation(s)
- Sagarika Biswas
- Department of Genomics & Molecular Medicine, Institute of Genomics and Integrative Biology, New Delhi, India
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Saurabh Sharma
- Department of Genomics & Molecular Medicine, Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashish Saroha
- Department of Genomics & Molecular Medicine, Institute of Genomics and Integrative Biology, New Delhi, India
| | - D. S. Bhakuni
- Department of Clinical Immunology and Rheumatology, Army Hospital (Research and Referral), New Delhi, India
| | - Rajesh Malhotra
- Department of Orthopaedic, All India Institute of Medical Sciences, New Delhi, India
| | - Muzna Zahur
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Michael Oellerich
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Hasi R. Das
- Department of Genomics & Molecular Medicine, Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abdul R. Asif
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
- * E-mail:
| |
Collapse
|
31
|
Mapping of the binding sites involved in PSP94-CRISP-3 interaction by molecular dissection of the complex. Biochim Biophys Acta Gen Subj 2013; 1830:3019-29. [PMID: 23375721 DOI: 10.1016/j.bbagen.2013.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/01/2013] [Accepted: 01/14/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human Prostate Secretory Protein of 94 amino acids (PSP94) has been shown to bind human CRISP-3 (cysteine-rich secretory protein 3) with very high affinity. CRISP-3 belongs to the CRISP family of proteins having a PR-1 (pathogenesis related protein 1) domain at its N-terminal and ion channel regulatory (ICR) domain at its C-terminal connected by a hinge region. Functional significance of this complex is not yet known. METHODS In order to identify the residues and/or regions involved in PSP94-CRISP-3 interaction, site-directed mutagenesis was employed. Effect of the mutations on the interaction was studied by co-immunoprecipitation (Co-IP). RESULTS For PSP94, amino acids Y(3), F(4), P(56) and the C-terminal β-strand were found to be crucial for interacting with CRISP-3. A disulfide bond between the two domains of PSP94 (C(37)A-C(73)A) was also important for this interaction. In case of CRISP-3, the N-terminal domain alone could not maintain a strong interaction with PSP94 but it required presence of the hinge region and not the C-terminal domain. Apart from CRISP-3, CRISP-2 was also found to interact with human PSP94. Based on our findings the most likely model of PSP94-CRISP-3 complex has been proposed. CONCLUSION The terminal β-strands of PSP94 contact the first α-helix and the hinge region of CRISP-3. GENERAL SIGNIFICANCE Involvement of the hinge region of CRISPs in interaction with PSP94 may affect the domain movement of CRISPs essential for the ion-channel regulatory activity resulting in inhibition of this activity.
Collapse
|
32
|
Surin B, Sachon E, Rougier JP, Steverlynck C, Garreau C, Lelongt B, Ronco P, Piedagnel R. LG3 fragment of endorepellin is a possible biomarker of severity in IgA nephropathy. Proteomics 2012; 13:142-52. [PMID: 23161552 DOI: 10.1002/pmic.201200267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/11/2012] [Accepted: 09/25/2012] [Indexed: 12/18/2022]
Abstract
IgA nephropathy (IgAN), the most common primary glomerulonephritis, is characterized by deposition of IgA in the glomerular mesangium. The diagnosis of IgAN still requires a kidney biopsy that cannot easily be repeated in the same patient during follow-up. Therefore, identification of noninvasive urinary biomarkers would be very useful for monitoring patients with IgAN. We first used bidimensional electrophoresis (2DE) coupled to MALDI-TOF-TOF and Western blot to identify some urinary biomarkers associated with IgAN. Urine of IgAN patients showed an increase of albumin fragments, α-1-antitrypsin and α-1-β-glycoprotein, along with a decrease of a single spot that was identified as the laminin G-like 3 (LG3) fragment of endorepellin. The urinary proteomes of 43 IgAN patients were compared to those of 30 healthy individuals by ELISA. Quantification of LG3 confirmed a significant decrease in the urine of IgAN patients compared to healthy controls, except in ten patients in whom LG3 was increased. These ten patients had a more severe disease with lower glomerular filtration rate values. We found a significant inverse correlation between LG3 levels and glomerular filtration rate in the 43 patients with IgAN, which was not observed in 65 patients with other glomerular diseases including membranous nephropathy (23), lupus nephropathy (13), focal segmental glomerulosclerosis (15), diabetic nephropathy (14), and six patients with nonglomerular diseases. Therefore, we suggest that the LG3 fragment of endorepellin could be associated with IgAN severity and might be related to pathogenesis of IgAN.
Collapse
|
33
|
Chalmers IW, Hoffmann KF. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum. Parasitology 2012; 139:1231-45. [PMID: 22717097 PMCID: PMC3435950 DOI: 10.1017/s0031182012000704] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 12/31/2022]
Abstract
During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members.
Collapse
Affiliation(s)
- Iain W Chalmers
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | | |
Collapse
|
34
|
Ellias MF, Zainal Ariffin SH, Karsani SA, Abdul Rahman M, Senafi S, Megat Abdul Wahab R. Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement. ScientificWorldJournal 2012; 2012:647240. [PMID: 22919344 PMCID: PMC3417200 DOI: 10.1100/2012/647240] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/26/2012] [Indexed: 01/10/2023] Open
Abstract
Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014'' Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3-10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins-Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3-have known roles in inflammation and bone resorption.
Collapse
Affiliation(s)
- Mohd Faiz Ellias
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, 43600 Bangi, Malaysia
| | | | | | | | | | | |
Collapse
|
35
|
Voss RS, Jansa SA. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol Rev Camb Philos Soc 2012; 87:822-37. [PMID: 22404916 DOI: 10.1111/j.1469-185x.2012.00222.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mammals that prey on venomous snakes include several opossums (Didelphidae), at least two hedgehogs (Erinaceidae), several mongooses (Herpestidae), several mustelids, and some skunks (Mephitidae). As a group, these taxa do not share any distinctive morphological traits. Instead, mammalian adaptations for ophiophagy seem to consist only in the ability to resist the toxic effects of snake venom. Molecular mechanisms of venom resistance (as indicated by biochemical research on opossums, mongooses, and hedgehogs) include toxin-neutralizing serum factors and adaptive changes in venom-targeted molecules. Of these, toxin-neutralizing serum factors have received the most research attention to date. All of the toxin-neutralizing serum proteins discovered so far in both opossums and mongooses are human α1B-glycoprotein homologs that inhibit either snake-venom metalloproteinases or phospholipase A(2) myotoxins. By contrast, adaptive changes in venom-targeted molecules have received far less attention. The best-documented examples include amino-acid substitutions in mongoose nicotinic acetylcholine receptor that inhibit binding by α-neurotoxins, and amino-acid substitutions in opossum von Willebrand factor (vWF) that are hypothesized to weaken the bond between vWF and coagulopathic C-type lectins. Although multiple mechanisms of venom resistance are known from some species, the proteomic complexity of most snake venoms suggests that the evolved biochemical defences of ophiophagous mammals are likely to be far more numerous than currently recognized. Whereas most previous research in this field has been motivated by the potential for medical applications, venom resistance in ophiophagous mammals is a complex adaptation that merits attention from comparative biologists. Unfortunately, evolutionary inference is currently limited by ignorance about many relevant facts that can only be provided by future research.
Collapse
Affiliation(s)
- Robert S Voss
- Department of Mammalogy, American Museum of Natural History, New York, NY 10024, USA.
| | | |
Collapse
|
36
|
A deep insight into the sialotranscriptome of the gulf coast tick, Amblyomma maculatum. PLoS One 2011; 6:e28525. [PMID: 22216098 PMCID: PMC3244413 DOI: 10.1371/journal.pone.0028525] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/09/2011] [Indexed: 01/10/2023] Open
Abstract
Background Saliva of blood sucking arthropods contains compounds that antagonize their hosts' hemostasis, which include platelet aggregation, vasoconstriction and blood clotting; saliva of these organisms also has anti-inflammatory and immunomodullatory properties. Perhaps because hosts mount an active immune response against these compounds, the diversity of these compounds is large even among related blood sucking species. Because of these properties, saliva helps blood feeding as well as help the establishment of pathogens that can be transmitted during blood feeding. Methodology/Principal Findings We have obtained 1,626,969 reads by pyrosequencing a salivary gland cDNA library from adult females Amblyomma maculatum ticks at different times of feeding. Assembly of this data produced 72,441 sequences larger than 149 nucleotides from which 15,914 coding sequences were extracted. Of these, 5,353 had >75% coverage to their best match in the non-redundant database from the National Center for Biotechnology information, allowing for the deposition of 4,850 sequences to GenBank. The annotated data sets are available as hyperlinked spreadsheets. Putative secreted proteins were classified in 133 families, most of which have no known function. Conclusions/Significance This data set of proteins constitutes a mining platform for novel pharmacologically active proteins and for uncovering vaccine targets against A. maculatum and the diseases they carry.
Collapse
|
37
|
Van Eynde A, Litovkin K, Bollen M. Growth inhibition properties of the putative prostate cancer biomarkers PSP94 and CRISP-3. Asian J Androl 2010; 13:205-6. [PMID: 21102472 DOI: 10.1038/aja.2010.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Aleyde Van Eynde
- Laboratory of Biosignaling and Therapeutics, Department of Molecular Cell Biology, Faculty of Medicine, KULeuven, Leuven B-3000, Belgium.
| | | | | |
Collapse
|
38
|
Abstract
The cysteine-rich secretory proteins (CRISPs) are a subgroup of the CRISP, antigen 5 and Pr-1 (CAP) protein superfamily, and are found only in vertebrates. They show a strong expression bias to the mammalian male reproductive tract and the venom of poisonous reptiles. Within the male reproductive tract CRISPs have been implicated in many aspects of male germ cell biology spanning haploid germ cell development, epididymal maturation, capacitation, motility and the actual processes of fertilization. At a structural level, CRISPs are composed of two domains, a CAP domain, which has been implicated in cell-cell adhesion, and a CRISP domain, which has been shown to regulate several classes of ion channels across multiple species. Herein, we will review the current literature on the role of CRISPs in male fertility, and by inference to related non-mammalian protein, infer potential biochemical functions.
Collapse
|
39
|
Wang YL, Kuo JH, Lee SC, Liu JS, Hsieh YC, Shih YT, Chen CJ, Chiu JJ, Wu WG. Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. J Biol Chem 2010; 285:37872-83. [PMID: 20889969 DOI: 10.1074/jbc.m110.146290] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.
Collapse
Affiliation(s)
- Yu-Ling Wang
- From the Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific. Asian J Androl 2010; 12:677-89. [PMID: 20676114 DOI: 10.1038/aja.2010.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis.
Collapse
|
41
|
Udby L, Johnsen AH, Borregaard N. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species. Biochim Biophys Acta Gen Subj 2010; 1800:481-5. [PMID: 20116414 DOI: 10.1016/j.bbagen.2010.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/14/2010] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular such that involve cell cultures, binding proteins present in sera might interfere in the experiments. METHODS We examined sera from five different animal species for CRISP-3 binding proteins using gel filtration and ligand blotting. We developed a rapid method for isolation of proteins that bind to human CRISP-3 and identified the isolated proteins by mass spectrometry and N-terminal sequencing. RESULTS We identified A1BG as a CRISP-3 binding protein in sera from cow, horse and rabbit. CRISP-3 bound kininogen 1 in mouse serum, whereas rat serum showed no CRISP-3 binding activity. In equine serum, we furthermore detected a possible CRISP, already bound to A1BG. GENERAL SIGNIFICANCE It seems to be a common mechanism that A1BGs bind CRISPs, also across species. Apart from the possible physiological implications hereof, complex binding of CRISPs by A1BG (and other proteins) may interfere with the detection and function of CRISPs, when these are studied in the presence of animal sera.
Collapse
Affiliation(s)
- Lene Udby
- Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Denmark.
| | | | | |
Collapse
|
42
|
Cysteine-rich secretory proteins in snake venoms form high affinity complexes with human and porcine β-microseminoproteins. Toxicon 2009; 54:128-37. [DOI: 10.1016/j.toxicon.2009.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/12/2009] [Accepted: 03/23/2009] [Indexed: 11/18/2022]
|
43
|
Matsunaga Y, Yamazaki Y, Hyodo F, Sugiyama Y, Nozaki M, Morita T. Structural Divergence of Cysteine-Rich Secretory Proteins in Snake Venoms†. ACTA ACUST UNITED AC 2008; 145:365-75. [DOI: 10.1093/jb/mvn174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
45
|
Baum A, Pohl M, Kreusch S, Cumme GA, Ditze G, Misselwitz J, Kiehntopf M, Udby L, Meier-Hellmann A, Rhode H. Searching biomarker candidates in serum using multidimensional native chromatography. II Method evaluation with Alport syndrome and severe inflammation. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 876:31-40. [DOI: 10.1016/j.jchromb.2008.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 10/02/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
46
|
Jamsai D, Reilly A, Smith S, Gibbs G, Baker H, McLachlan R, de Kretser D, O'Bryan M. Polymorphisms in the human cysteine-rich secretory protein 2 (CRISP2) gene in Australian men. Hum Reprod 2008; 23:2151-9. [DOI: 10.1093/humrep/den191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Guselnikov SV, Ramanayake T, Erilova AY, Mechetina LV, Najakshin AM, Robert J, Taranin AV. The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution. BMC Evol Biol 2008; 8:148. [PMID: 18485190 PMCID: PMC2413239 DOI: 10.1186/1471-2148-8-148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 05/16/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent studies have revealed an unexpected diversity of domain architecture among FcR-like receptors that presumably fulfill regulatory functions in the immune system. Different species of mammals, as well as chicken and catfish have been found to possess strikingly different sets of these receptors. To better understand the evolutionary history of paired receptors, we extended the study of FcR-like genes in amphibian representatives Xenopus tropicalis and Xenopus laevis. RESULTS The diploid genome of X. tropicalis contains at least 75 genes encoding paired FcR-related receptors designated XFLs. The allotetraploid X. laevis displays many similar genes primarily expressed in lymphoid tissues. Up to 35 domain architectures generated by combinatorial joining of six Ig-domain subtypes and two subtypes of the transmembrane regions were found in XFLs. None of these variants are shared by FcR-related proteins from other studied species. Putative activating XFLs associate with the FcRgamma subunit, and their transmembrane domains are highly similar to those of activating mammalian KIR-related receptors. This argues in favor of a common origin for the FcR and the KIR families. Phylogenetic analysis shows that the entire repertoires of the Xenopus and mammalian FcR-related proteins have emerged after the amphibian-amniotes split. CONCLUSION FcR- and KIR-related receptors evolved through continual species-specific diversification, most likely by extensive domain shuffling and birth-and-death processes. This mode of evolution raises the possibility that the ancestral function of these paired receptors was a direct interaction with pathogens and that many physiological functions found in the mammalian receptors were secondary acquisitions or specializations.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacques Robert
- University of Rochester Medical Centre, Rochester, NY, USA
| | | |
Collapse
|
48
|
Ferrero S, Gillott DJ, Remorgida V, Anserini P, Leung KY, Ragni N, Grudzinskas JG. Proteomic Analysis of Peritoneal Fluid in Women with Endometriosis. J Proteome Res 2007; 6:3402-11. [PMID: 17676783 DOI: 10.1021/pr060680q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study aims to evaluate differences in the expression of proteins present in the peritoneal fluid (PF) of women with and without endometriosis. PF samples were subjected to two-dimensional gel electrophoresis; protein spots of interest were identified by liquid chromatography tandem mass spectrometry. Several molecules had aberrant expression in PF of women with endometriosis; they may be useful for a better understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Simone Ferrero
- Reproductive Physiology Laboratory, St. Bartholomew's School of Medicine & Dentistry, Queen Mary University of London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Bjartell AS, Al-Ahmadie H, Serio AM, Eastham JA, Eggener SE, Fine SW, Udby L, Gerald WL, Vickers AJ, Lilja H, Reuter VE, Scardino PT. Association of cysteine-rich secretory protein 3 and beta-microseminoprotein with outcome after radical prostatectomy. Clin Cancer Res 2007; 13:4130-8. [PMID: 17634540 PMCID: PMC2660867 DOI: 10.1158/1078-0432.ccr-06-3031] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE It has been suggested that cysteine-rich secretory protein 3 (CRISP-3) and beta-microseminoprotein (MSP) are associated with outcome in prostate cancer. We investigated whether these markers are related to biochemical recurrence and whether addition of the markers improves prediction of recurring disease. EXPERIMENTAL DESIGN Tissue microarrays of radical prostatectomy specimens were analyzed for CRISP-3 and MSP by immunohistochemistry. Associations between marker positivity and postprostatectomy biochemical recurrence [prostate-specific antigen (PSA) >0.2 ng/mL with a confirmatory level] were evaluated by univariate and multivariable Cox proportional hazards regression. Multivariable analyses controlled for preoperative PSA and pathologic stage and grade. RESULTS Among 945 patients, 224 had recurrence. Median follow-up for survivors was 6.0 years. Patients positive for CRISP-3 had smaller recurrence-free probabilities, whereas MSP-positive patients had larger recurrence-free probabilities. On univariate analysis, the hazard ratio for patients positive versus negative for CRISP-3 was 1.53 (P=0.010) and for MSP was 0.63 (P=0.004). On multivariable analysis, both CRISP-3 (P=0.007) and MSP (P=0.002) were associated with recurrence. The hazard ratio among CRISP-3-positive/MSP-negative patients compared with CRISP-3-negative/MSP-positive patients was 2.38. Adding CRISP-3 to a base model that included PSA and pathologic stage and grade did not enhance the prediction of recurrence, but adding MSP increased the concordance index minimally from 0.778 to 0.781. CONCLUSION We report evidence that CRISP-3 and MSP are independent predictors of recurrence after radical prostatectomy for localized prostate cancer. However, addition of the markers does not importantly improve the performance of existing predictive models. Further research should aim to elucidate the functions of CRISP-3 and MSP in prostate cancer cells.
Collapse
Affiliation(s)
- Anders S Bjartell
- Departments of Surgery (Urology), Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gibbs GM, Bianco DM, Jamsai D, Herlihy A, Ristevski S, Aitken RJ, Kretser DMD, O'Bryan MK. Cysteine-rich secretory protein 2 binds to mitogen-activated protein kinase kinase kinase 11 in mouse sperm. Biol Reprod 2007; 77:108-14. [PMID: 17377140 DOI: 10.1095/biolreprod.106.057166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cysteine-rich secretory protein (CRISP) 2 (previously TPX1) is a testis-enriched member of the CRISP family, and has been localized to both the sperm acrosome and tail. Like all members of the mammalian CRISP family, its expression pattern is strongly suggestive of a role in male fertility, but functional support for this hypothesis remains limited. In order to determine the biochemical pathways within which CRISP2 is a component, the putative mature form of CRISP2 was used as bait in a yeast two-hybrid screen of a mouse testis expression library. One of the most frequently identified interacting partners was mitogen-activated protein kinase kinase kinase 11 (MAP3K11). Sequencing and deletion experiments showed that the carboxyl-most 20 amino acids of MAP3K11 interacted with the CRISP domain of CRISP2. This interaction was confirmed using pull-down experiments and the cellular context was supported by the localization of CRISP2 and MAP3K11 to the acrosome of the developing spermatids and epididymal spermatozoa. Interestingly, mouse epididymal sperm contained an approximately 60-kDa variant of MAP3K11, which may have been a result of proteolytic cleavage of the longer 93-kDa form seen in many tissues. These data raise the possibility that CRISP2 is a MAP3K11-modifying protein or, alternatively, that MAP3K11 acts to phosphorylate CRISP2 during acrosome development.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|