1
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Gangwar A, Deodhar SS, Saldanha S, Melander O, Abbasi F, Pearce RW, Collier TS, McPhaul MJ, Furtado JD, Sacks FM, Merrill NJ, McDermott JE, Melchior JT, Rohatgi A. Proteomic Determinants of Variation in Cholesterol Efflux: Observations from the Dallas Heart Study. Int J Mol Sci 2023; 24:15526. [PMID: 37958510 PMCID: PMC10648649 DOI: 10.3390/ijms242115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and -0.21 respectively) and low (r = -0.46, -0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = -0.11 to -0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.
Collapse
Affiliation(s)
- Anamika Gangwar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Sneha S. Deodhar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Suzanne Saldanha
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 221 00 Malmö, Sweden;
| | - Fahim Abbasi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Ryan W. Pearce
- Quest Diagnostics Cardiometabolic Center of Excellence, Cleveland HeartLab, Cleveland, OH 44103, USA; (R.W.P.); (T.S.C.)
| | - Timothy S. Collier
- Quest Diagnostics Cardiometabolic Center of Excellence, Cleveland HeartLab, Cleveland, OH 44103, USA; (R.W.P.); (T.S.C.)
| | - Michael J. McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, USA;
| | - Jeremy D. Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.D.F.); (F.M.S.)
- Biogen Inc., Cambridge, MA 02115, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.D.F.); (F.M.S.)
| | - Nathaniel J. Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| |
Collapse
|
3
|
Van Valkenburgh J, Meuret C, Martinez AE, Kodancha V, Solomon V, Chen K, Yassine HN. Understanding the Exchange of Systemic HDL Particles Into the Brain and Vascular Cells Has Diagnostic and Therapeutic Implications for Neurodegenerative Diseases. Front Physiol 2021; 12:700847. [PMID: 34552500 PMCID: PMC8450374 DOI: 10.3389/fphys.2021.700847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer’s disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aβ) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL’s structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cristiana Meuret
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ashley E Martinez
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vibha Kodancha
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Chroni A, Rallidis L, Vassou D, Gkolfinopoulou C, Papakosta P, Zervou MI, Goulielmos GN, Kiouri E, Pappa D, Eliopoulos E, Kardassis D. Identification and characterization of a rare variant in apolipoprotein A-IV, p.(V336M), and evaluation of HDL functionality in a Greek cohort with extreme HDL cholesterol levels. Arch Biochem Biophys 2020; 696:108655. [PMID: 33130088 DOI: 10.1016/j.abb.2020.108655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
High-Density Lipoprotein cholesterol (HDL-C) levels do not correlate well with Coronary Artery Disease (CAD) risk, while HDL functionality affects atherogenesis and is a better prognostic marker for CAD. Often, the extreme HDL-C levels have a multigenic origin. Here, we searched for single-nucleotide polymorphisms (SNPs) in ten genes of HDL metabolism in a Greek cohort with very low (<10th percentile, n = 13) or very high (>90th percentile, n = 21) HDL-C. We also evaluated the association between HDL-C levels, HDL functionality (anti-oxidant capacity) and CAD in the subjects of this cohort. Individuals with low HDL-C levels had higher triglyceride levels, lower apoA-I levels, decreased HDL anti-oxidant capacity and higher incidence of CAD compared with individuals with control or high HDL-C levels. With next generation sequencing we identified 18 exonic SNPs in 6 genes of HDL metabolism and for selected amino acid changes we performed computer-aided structural analysis and modeling. A previously uncharacterized rare apolipoprotein A-IV variant, apoA-IV [V336M], present in a subject with low HDL-C (14 mg/dL) and CAD, was expressed in recombinant form and structurally and functionally characterized. ApoA-IV [V336M] had similar α-helical content to WT apoA-IV but displayed a small thermodynamic stabilization by chemical unfolding analysis. ApoA-IV [V336M] was able to associate with phospholipids but presented reduced kinetics compared to WT apoA-IV. Overall, we identified a rare apoA-IV variant in a subject with low HDL levels and CAD with altered biophysical and phospholipid binding properties and showed that subjects with very low HDL-C presented with HDL dysfunction and higher incidence of CAD in a Greek cohort.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Loukianos Rallidis
- Second Department of Cardiology, "Attikon" Hospital, and School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Vassou
- Genomics Facility, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Paraskevi Papakosta
- Department of Basic Medical Sciences, University of Crete Medical School, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Maria I Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Estela Kiouri
- Second Department of Cardiology, "Attikon" Hospital, and School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Danae Pappa
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitris Kardassis
- Department of Basic Medical Sciences, University of Crete Medical School, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| |
Collapse
|
5
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
6
|
Xu XR, Wang Y, Adili R, Ju L, Spring CM, Jin JW, Yang H, Neves MAD, Chen P, Yang Y, Lei X, Chen Y, Gallant RC, Xu M, Zhang H, Song J, Ke P, Zhang D, Carrim N, Yu SY, Zhu G, She YM, Cyr T, Fu W, Liu G, Connelly PW, Rand ML, Adeli K, Freedman J, Lee JE, Tso P, Marchese P, Davidson WS, Jackson SP, Zhu C, Ruggeri ZM, Ni H. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat Commun 2018; 9:3608. [PMID: 30190457 PMCID: PMC6127106 DOI: 10.1038/s41467-018-05806-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
Platelet αIIbβ3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet β3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbβ3 integrin, and the direct apoA-IV-αIIbβ3 interaction can be detected using a single-molecule Biomembrane Force Probe. We identify that aspartic acids 5 and 13 at the N-terminus of apoA-IV are required for binding to αIIbβ3 integrin, which is additionally modulated by apoA-IV C-terminus via intra-molecular interactions. ApoA-IV inhibits platelet aggregation and postprandial platelet hyperactivity. Human apoA-IV plasma levels show a circadian rhythm that negatively correlates with platelet aggregation and cardiovascular events. Thus, we identify apoA-IV as a novel ligand of αIIbβ3 integrin and an endogenous inhibitor of thrombosis, establishing a link between lipoprotein metabolism and cardiovascular diseases. Activation of integrin αIIbβ3 at the surface of platelets is required for their aggregation and for thrombus formation. Here Xu et al. identify apolipoprotein A-IV as a novel ligand for platelet αIIbβ3 integrin, and find it inhibits platelet aggregation and thrombosis.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Department of Acupuncture and Moxibustion, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510120.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000
| | - Yiming Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Reheman Adili
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Lining Ju
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Heart Research Institute, and Charles Perkins Centre, The University of Sydney, Camperdown, Australia, 2006
| | - Christopher M Spring
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Joseph Wuxun Jin
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Hong Yang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Miguel A D Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Yan Yang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Yunfeng Chen
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332
| | - Reid C Gallant
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Miao Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Hailong Zhang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Jina Song
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Peifeng Ke
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510120
| | - Dan Zhang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Si-Yang Yu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China, 410011
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Yi-Min She
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada, K1A 0M2
| | - Terry Cyr
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada, K1A 0M2
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510120.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000
| | - Guoqing Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, P.R. China, 100083
| | - Philip W Connelly
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Margaret L Rand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Department of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A1
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA, 45219
| | - Patrizia Marchese
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA, 45219
| | - Shaun P Jackson
- Heart Research Institute, and Charles Perkins Centre, The University of Sydney, Camperdown, Australia, 2006.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1. .,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8. .,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1. .,Department of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A1. .,Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.
| |
Collapse
|
7
|
Yoo JA, Lee EY, Park JY, Lee ST, Ham S, Cho KH. Different Functional and Structural Characteristics between ApoA-I and ApoA-4 in Lipid-Free and Reconstituted HDL State: ApoA-4 Showed Less Anti-Atherogenic Activity. Mol Cells 2015; 38:573-9. [PMID: 25997739 PMCID: PMC4469915 DOI: 10.14348/molcells.2015.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/27/2022] Open
Abstract
Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipid-bound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and 67 Å on native gel electrophoresis, while apoA-I showed scattered band pattern less than 71 Å. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around 101 Å and 113 Å, while apoA-I-rHDL showed almost single band around 98 Å size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, BS3-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.
Collapse
Affiliation(s)
- Jeong-Ah Yoo
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749,
Korea
| | - Eun-Young Lee
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749,
Korea
| | - Ji Yoon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - Sihyun Ham
- Department of Chemistry, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Kyung-Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749,
Korea
- BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749,
Korea
| |
Collapse
|
8
|
Deng X, Walker RG, Morris J, Davidson WS, Thompson TB. Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function. J Biol Chem 2015; 290:10689-702. [PMID: 25733664 PMCID: PMC4409236 DOI: 10.1074/jbc.m115.637058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo)A-IV is a lipid emulsifying protein linked to a range of protective roles in obesity, diabetes, and cardiovascular disease. It exists in several states in plasma including lipid-bound in HDL and chylomicrons and as monomeric and dimeric lipid-free/poor forms. Our recent x-ray crystal structure of the central domain of apoA-IV shows that it adopts an elongated helical structure that dimerizes via two long reciprocating helices. A striking feature is the alignment of conserved proline residues across the dimer interface. We speculated that this plays important roles in the structure of the lipid-free protein and its ability to bind lipid. Here we show that the systematic conversion of these prolines to alanine increased the thermodynamic stability of apoA-IV and its propensity to oligomerize. Despite the structural stabilization, we noted an increase in the ability to bind and reorganize lipids and to promote cholesterol efflux from cells. The novel properties of these mutants allowed us to isolate the first trimeric form of an exchangeable apolipoprotein and characterize it by small-angle x-ray scattering and chemical cross-linking. The results suggest that the reciprocating helix interaction is a common feature of all apoA-IV oligomers. We propose a model of how self-association of apoA-IV can result in spherical lipoprotein particles, a model that may have broader applications to other exchangeable apolipoprotein family members.
Collapse
Affiliation(s)
- Xiaodi Deng
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | - Ryan G Walker
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | - Jamie Morris
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - W Sean Davidson
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Thomas B Thompson
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| |
Collapse
|
9
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
10
|
Walker RG, Deng X, Melchior JT, Morris J, Tso P, Jones MK, Segrest JP, Thompson TB, Davidson WS. The structure of human apolipoprotein A-IV as revealed by stable isotope-assisted cross-linking, molecular dynamics, and small angle x-ray scattering. J Biol Chem 2014; 289:5596-608. [PMID: 24425874 DOI: 10.1074/jbc.m113.541037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo)A-IV plays important roles in dietary lipid and glucose metabolism, and knowledge of its structure is required to fully understand the molecular basis of these functions. However, typical of the entire class of exchangeable apolipoproteins, its dynamic nature and affinity for lipid has posed challenges to traditional high resolution structural approaches. We previously reported an x-ray crystal structure of a dimeric truncation mutant of apoA-IV, which showed a unique helix-swapping molecular interface. Unfortunately, the structures of the N and C termini that are important for lipid binding were not visualized. To build a more complete model, we used chemical cross-linking to derive distance constraints across the full-length protein. The approach was enhanced with stable isotope labeling to overcome ambiguities in determining molecular span of the cross-links given the remarkable similarities in the monomeric and dimeric apoA-IV structures. Using 51 distance constraints, we created a starting model for full-length monomeric apoA-IV and then subjected it to two modeling approaches: (i) molecular dynamics simulations and (ii) fitting to small angle x-ray scattering data. This resulted in the most detailed models yet for lipid-free monomeric or dimeric apoA-IV. Importantly, these models were of sufficient detail to direct the experimental identification of new functional residues that participate in a "clasp" mechanism to modulate apoA-IV lipid affinity. The isotope-assisted cross-linking approach should prove useful for further study of this family of apolipoproteins in both the lipid-free and -bound states.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang F, Pearson KJ, Davidson WS, Tso P. Specific sequences in N termini of apolipoprotein A-IV modulate its anorectic effect. Physiol Behav 2013; 120:136-42. [PMID: 23911688 DOI: 10.1016/j.physbeh.2013.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/19/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Rodent apoA-IV is expressed predominantly in small intestine and also expressed to a small extent in liver and hypothalamus. ApoA-IV has been shown to inhibit food intake in rats when injected centrally. In the current study, we hypothesize that a specific sequence within rat apoA-IV is responsible for mediating the anorectic effect. We use a bacterial expression system to generate truncation mutants (Δ249-371, Δ117-371 and Δ1-61) of rat apoA-IV and assess the ability of various regions of the molecule to inhibit food intake. The results indicate that a responsible sequence exists within the N-terminal 61 amino acids of rat apoA-IV. Synthetic peptides (1-30 EVTSDQVANVMWDYFTQLSNNAKEAVEQLQ, 1-15 EVTSDQVANVMWDYF and 17-30 QLSNNAKEAVEQLQ) were used to specify the region in between residues 1 and 30. A 14-mer peptide (17-30) encompassing this sequence was capable of reducing food intake in a dose-dependent manner whereas a peptide designed on a more C-terminal region (211-232) of apoA-IV (QEKLNHQMEGLAFQMKKNAEEL) failed to exhibit the dose-dependent anorectic effect. The isolation of this sequence provides a valuable tool for future work directed at identifying apoA-IV binding proteins and is a key step for exploring the potential of therapeutic manipulation of food intake via this pathway.
Collapse
Affiliation(s)
- Fei Wang
- Departments of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
12
|
Deng X, Morris J, Chaton C, Schröder GF, Davidson WS, Thompson TB. Small-angle X-ray scattering of apolipoprotein A-IV reveals the importance of its termini for structural stability. J Biol Chem 2013; 288:4854-66. [PMID: 23288849 PMCID: PMC3576090 DOI: 10.1074/jbc.m112.436709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/02/2013] [Indexed: 12/25/2022] Open
Abstract
ApoA-IV is an amphipathic protein that can emulsify lipids and has been linked to protective roles against cardiovascular disease and obesity. We previously reported an x-ray crystal structure of apoA-IV that was truncated at its N and C termini. Here, we have extended this work by demonstrating that self-associated states of apoA-IV are stable and can be structurally studied using small-angle x-ray scattering. Both the full-length monomeric and dimeric forms of apoA-IV were examined, with the dimer showing an elongated rod core with two nodes at opposing ends. The monomer is roughly half the length of the dimer with a single node. Small-angle x-ray scattering visualization of several deletion mutants revealed that removal of both termini can have substantial conformational effects throughout the molecule. Additionally, the F334A point mutation, which we previously showed increases apoA-IV lipid binding, also exhibited large conformational effects on the entire dimer. Merging this study's low-resolution structural information with the crystal structure provides insight on the conformation of apoA-IV as a monomer and as a dimer and further defines that a clasp mechanism may control lipid binding and, ultimately, protein function.
Collapse
Affiliation(s)
- Xiaodi Deng
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jamie Morris
- the Department of Pathology and Laboratory Medicine, College of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45215, and
| | - Catherine Chaton
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Gunnar F. Schröder
- the Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - W. Sean Davidson
- the Department of Pathology and Laboratory Medicine, College of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45215, and
| | - Thomas B. Thompson
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
13
|
Duka A, Fotakis P, Georgiadou D, Kateifides A, Tzavlaki K, von Eckardstein L, Stratikos E, Kardassis D, Zannis VI. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. J Lipid Res 2012; 54:107-15. [PMID: 23132909 DOI: 10.1194/jlr.m030114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I(-/-) mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I(-/-) × apoE(-/-) mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1(-/-) or LCAT(-/-) mice. Coexpression of apoA-IV and LCAT in apoA-I(-/-) mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.
Collapse
Affiliation(s)
- Adelina Duka
- Molecular Genetics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The structure of dimeric apolipoprotein A-IV and its mechanism of self-association. Structure 2012; 20:767-79. [PMID: 22579246 DOI: 10.1016/j.str.2012.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/02/2012] [Accepted: 02/24/2012] [Indexed: 12/27/2022]
Abstract
Apolipoproteins are key structural elements of lipoproteins and critical mediators of lipid metabolism. Their detergent-like properties allow them to emulsify lipid or exist in a soluble lipid-free form in various states of self-association. Unfortunately, these traits have hampered high-resolution structural studies needed to understand the biogenesis of cardioprotective high-density lipoproteins (HDLs). We derived a crystal structure of the core domain of human apolipoprotein (apo)A-IV, an HDL component and important mediator of lipid absorption. The structure at 2.4 Å depicts two linearly connected 4-helix bundles participating in a helix swapping arrangement that offers a clear explanation for how the protein self-associates as well as clues to the structure of its monomeric form. This also provides a logical basis for antiparallel arrangements recently described for lipid-containing particles. Furthermore, we propose a "swinging door" model for apoA-IV lipid association.
Collapse
|
15
|
Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A 2012; 109:9641-6. [PMID: 22619326 DOI: 10.1073/pnas.1201433109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine in response to fat absorption. Here we demonstrate a potential role for apoA-IV in regulating glucose homeostasis. ApoA-IV-treated isolated pancreatic islets had enhanced insulin secretion under conditions of high glucose but not of low glucose, suggesting a direct effect of apoA-IV to enhance glucose-stimulated insulin release. This enhancement involves cAMP at a level distal to Ca(2+) influx into the β cells. Knockout of apoA-IV results in compromised insulin secretion and impaired glucose tolerance compared with WT mice. Challenging apoA-IV(-/-) mice with a high-fat diet led to fasting hyperglycemia and more severe glucose intolerance associated with defective insulin secretion than occurred in WT mice. Administration of exogenous apoA-IV to apoA-IV(-/-) mice improved glucose tolerance by enhancing insulin secretion in mice fed either chow or a high-fat diet. Finally, we demonstrate that exogenous apoA-IV injection decreases blood glucose levels and stimulates a transient increase in insulin secretion in KKAy diabetic mice. These results suggest that apoA-IV may provide a therapeutic target for the regulation of glucose-stimulated insulin secretion and treatment of diabetes.
Collapse
|
16
|
Sanecka A, Ansems M, van Hout-Kuijer MA, Looman MWG, Prosser AC, Welten S, Gilissen C, Sama IE, Huynen MA, Veltman JA, Jansen BJH, Eleveld-Trancikova D, Adema GJ. Analysis of genes regulated by the transcription factor LUMAN identifies ApoA4 as a target gene in dendritic cells. Mol Immunol 2011; 50:66-73. [PMID: 22209087 DOI: 10.1016/j.molimm.2011.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 10/14/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells of the immune system that play a crucial role in initiating immune responses and maintaining self tolerance. Better understanding of the molecular basis of DC immunobiology is required to improve DC-based immunotherapies. We previously described the interaction of transcription factor LUMAN (also known as CREB3 or LZIP) with the DC-specific transmembrane protein DC-STAMP in DCs. Target genes of LUMAN and its role in DCs are currently unknown. In this study we set out to identify genes regulated by LUMAN in DCs using microarray analysis. Expression of a constitutively active form of LUMAN in mouse DC cell line D2SC/1 identified Apolipoprotein A4 (ApoA4) as its target gene. Subsequent validation experiments, bioinformatics-based promoter analysis, and silencing studies confirmed that ApoA4 is a true target gene of LUMAN in bone marrow-derived DCs (BMDCs).
Collapse
Affiliation(s)
- Anna Sanecka
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cui Y, Huang M, He Y, Zhang S, Luo Y. Genetic ablation of apolipoprotein A-IV accelerates Alzheimer's disease pathogenesis in a mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1298-308. [PMID: 21356380 DOI: 10.1016/j.ajpath.2010.11.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 11/26/2022]
Abstract
The link between lipoprotein metabolism and Alzheimer's disease (AD) has been established. Apolipoprotein A-IV (apoA-IV), a component of lipoprotein particles similar to apolipoprotein E, has been suggested to play an important role in brain metabolism. Although there are clinical debates on the function of its polymorphism in AD, the pathologic role of apoA-IV in AD is still unknown. Here, we report that genetic ablation of apoA-IV is able to accelerate AD pathogenesis in mice. In a mouse model that overexpresses human amyloid precursor protein (APP) and presenilin 1, genetic reduction of apoA-IV augments extracellular amyloid-β peptide (Aβ) burden and aggravates neuron loss in the brain. In addition, genetic ablation of apoA-IV also accelerates spatial learning deficits and increases the mortality of mice. We have found that apoA-IV colocalizes within Aβ plaques in APP/presenilin 1 transgenic mice and binds to Aβ in vitro. Subsequent studies show that apoA-IV in this model facilitates Aβ uptake in the Aβ clearance pathway mediated by astrocytes rather than the amyloidogenic pathway of APP processing. Taken together, we conclude that apoA-IV deficiency increases Aβ deposition and results in cognitive damage in the mouse model. Enhancing levels of apoA-IV may have therapeutic potential in AD treatment.
Collapse
Affiliation(s)
- Yujie Cui
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Dergunov AD. Local/bulk determinants of conformational stability of exchangeable apolipoproteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1169-77. [PMID: 21600318 DOI: 10.1016/j.bbapap.2011.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/12/2011] [Accepted: 05/03/2011] [Indexed: 11/27/2022]
Abstract
GuHCl-induced denaturation of human plasma apoA-I, apoA-II, apoA-IV, apoE3 and three recombinant apoE isoforms in solution and discoidal complexes with phosphatidylcholine (only plasma proteins) was studied. The protein conformational stability (ΔG(H(2)O)) and a slope of linear dependence of free energy of unfolding on GuHCl concentration (m-value) were estimated with the three equilibrium schemes. The data for all proteins, except apoA-II, fit with the three-state model, thus evidencing two-domain structure. The predicted folding rate of the four apoE in solution correlated with conformational stability. The dependence disappeared at the inclusion of apoA-I and apoA-IV into analysis and the m-values, adjusted for residue number in helices (m(rh)), differed between those for apoE and apoA-I/apoA-IV. However, the m(rh)-values for six proteins correlated positively with the fractional change in accessible surface area at unfolding for Phe, Lys and Asn, while negatively for Arg, Ala and Gly residues. The difference between the adjusted ΔG(rh)(H(2)O) values for apolipoproteins in complexes and in solution decreased at the increase of reduced temperature (T(obs)-T(t))/T(t). The induction of intrinsic disorder by arginine residues may be of primary importance in metabolism and function of exchangeable apolipoproteins, while their stability in nascent discoidal HDL is controlled by the physical state of phosphatidylcholine.
Collapse
|
19
|
Structure and function of the apoA-IV T347S and Q360H common variants. Biochem Biophys Res Commun 2010; 393:126-30. [PMID: 20117098 DOI: 10.1016/j.bbrc.2010.01.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 01/23/2010] [Indexed: 11/21/2022]
Abstract
Human apolipoprotein A-IV (apoA-IV) is involved in chylomicron assembly and secretion, and in reverse cholesterol transport. Several apoA-IV isoforms exist, the most common in Caucasian populations being apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). The objective of the present study was to investigate the impact of these common aminoacid substitutions on the ability of apoA-IV to bind lipids, to promote cell cholesterol efflux via ABCA1, and to maintain endothelial homeostasis. Recombinant forms of wild-type apoA-IV, apoA-IV Q360H, and apoA-IV T347S were produced in Escherichia coli. ApoA-IV Q360H and apoA-IV T347S showed a slightly higher alpha-helical content compared to wild-type apoA-IV, and associated with phospholipids faster than wild-type apoA-IV. The capacity to promote ABCA1-mediated cholesterol efflux was significantly greater for the apoA-IV T347S than the other apoA-IV isoforms. No differences were observed in the ability of apoA-IV isoforms to inhibit the production of VCAM-1 and IL-6 in TNFalpha-stimulated endothelial cells. In conclusion, the apoA-IV T347S common variant has increased lipid binding properties and cholesterol efflux capacity, while the apoA-IV Q360H variant has only slightly increased lipid binding properties. The two common aminoacid substitutions have no effect on the ability of apoA-IV to maintain endothelial homeostasis.
Collapse
|
20
|
Tubb MR, Smith LE, Davidson WS. Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease. J Lipid Res 2009; 50:1497-504. [PMID: 19318686 DOI: 10.1194/jlr.d900003-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of recombinant apolipoproteins provides experimental avenues that are not possible with plasma purified protein. The ability to specifically mutate residues or delete entire regions has proven to be a valuable tool for understanding the structure and function of apolipoproteins. A common feature of many recombinant systems is an affinity tag that allows for straightforward and high-yield purification of the target protein. A specific protease can then cleave the tag and yield the native recombinant protein. However, the application of this strategy to apolipoproteins has proven somewhat problematic because of the tendency for these highly flexible proteins to be nonspecifically cleaved at undesired sites within the native protein. Although systems have been developed using a variety of proteases, many suffer from low yield and, especially, the high cost of the enzyme.We developed a method that utilizes the tobacco etch virus protease to cleave a histidine-tag from apolipoproteins A-I and A-IV expressed in Escherichia coli. This protease can be easily and inexpensively expressed within most laboratories. We found that the protease efficiently cleaved the affinity tags from both apolipoproteins without nonspecific cleavage. All structural and functional measurements showed that the proteins were equivalent to native or previously characterized protein preparations. In addition to cost-effectiveness, advantages of the tobacco etch virus protease include a short cleavage time, low reaction temperature, and easy removal using the protease's own histidine-tag.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237-0507, USA
| | | | | |
Collapse
|
21
|
Tubb MR, Silva RAGD, Fang J, Tso P, Davidson WS. A three-dimensional homology model of lipid-free apolipoprotein A-IV using cross-linking and mass spectrometry. J Biol Chem 2008; 283:17314-23. [PMID: 18430727 PMCID: PMC2427326 DOI: 10.1074/jbc.m800036200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 04/10/2008] [Indexed: 11/06/2022] Open
Abstract
Human apolipoprotein A-IV (apoA-IV) is a 46-kDa exchangeable plasma protein with many proposed functions. It is involved in chylomicron assembly and secretion, protection from atherosclerosis through a variety of mechanisms, and inhibition of food intake. There is little structural basis for these proposed functions due to the lack of a solved three-dimensional structure of the protein by x-ray crystallography or NMR. Based on previous studies, we hypothesized that lipid-free apoA-IV exists in a helical bundle, like other apolipoprotein family members and that regions near the N and C termini may interact. Utilizing a homobifunctional lysine cross-linking agent, we identified 21 intramolecular cross-links by mass spectrometry. These cross-links were used to constrain the building of a sequence threaded homology model using the I-TASSER server. Our results indicate that lipid-free apoA-IV does indeed exist as a complex helical bundle with the N and C termini in close proximity. This first structural model of lipid-free apoA-IV should prove useful for designing studies aimed at understanding how apoA-IV interacts with lipids and possibly with unknown protein partners.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | | | | | |
Collapse
|
22
|
Fischer HM, Wheat CW, Heckel DG, Vogel H. Evolutionary origins of a novel host plant detoxification gene in butterflies. Mol Biol Evol 2008; 25:809-20. [PMID: 18296701 DOI: 10.1093/molbev/msn014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.
Collapse
Affiliation(s)
- Hanna M Fischer
- Department of Entomology, Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Jena, Germany
| | | | | | | |
Collapse
|
23
|
Tubb MR, Silva RAGD, Pearson KJ, Tso P, Liu M, Davidson WS. Modulation of apolipoprotein A-IV lipid binding by an interaction between the N and C termini. J Biol Chem 2007; 282:28385-28394. [PMID: 17686771 DOI: 10.1074/jbc.m704070200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a 376-amino acid exchangeable apolipoprotein made in the small intestine of humans. Although it has many proposed roles in vascular disease, satiety, and chylomicron metabolism, there is no known structural basis for these functions. The ability to associate with lipids may be a key step in apoA-IV functionality. We recently identified a single amino acid, Phe(334), which seems to inhibit the lipid binding capability of apoA-IV. We also found that an intact N terminus was necessary for increased lipid binding of Phe(334) mutants. Here, we identify Trp(12) and Phe(15) as the N-terminal amino acids required for the fast lipid binding seen with the F334A mutant. Furthermore, we found that individual disruption of putative amphipathic alpha-helices 3-11 had little effect on lipid binding, suggesting that the N terminus of apoA-IV may be the operational site for initial lipid binding. We also provide three independent pieces of experimental evidence supporting a direct intramolecular interaction between sequences near amino acids 12/15 and 334. This interaction could represent a unique "switch" mechanism by which apoA-IV changes lipid avidity in vivo.
Collapse
Affiliation(s)
- Matthew R Tubb
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - R A Gangani D Silva
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Kevin J Pearson
- Laboratory of Experimental Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237.
| |
Collapse
|
24
|
Kretowski A, Hokanson JE, McFann K, Kinney GL, Snell-Bergeon JK, Maahs DM, Wadwa RP, Eckel RH, Ogden LG, Garg SK, Li J, Cheng S, Erlich HA, Rewers M. The apolipoprotein A-IV Gln360His polymorphism predicts progression of coronary artery calcification in patients with type 1 diabetes. Diabetologia 2006; 49:1946-54. [PMID: 16770585 DOI: 10.1007/s00125-006-0317-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 04/21/2006] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Individuals with type 1 diabetes have an increased incidence of coronary artery disease (CAD) and a higher risk of cardiovascular death compared with individuals of the same age in the general population. While chronic hyperglycaemia and insulin resistance partially explain excess CAD, little is known about the potential genetic determinants of accelerated coronary atherosclerosis in type 1 diabetes. The aim of the present study was to evaluate the association of apolipoprotein A-IV (APOA4) polymorphisms with coronary artery calcification (CAC) progression, a marker of subclinical atherosclerosis. SUBJECTS AND METHODS Two previously well-studied functional APOA4 polymorphisms resulting in the substitution of the amino acid Thr for Ser at codon 347 and Gln for His at codon 360 were genotyped in 634 subjects with type 1 diabetes and 739 non-diabetic control subjects, the participants of the prospective Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. RESULTS The His360 allele was associated with a significantly higher risk of CAC progression among patients with type 1 diabetes (33.7 vs 21.2%, p=0.014), but not in the control subjects (14.1 vs 11.1%, p=0.42). Logistic regression analysis confirmed that the presence of the APOA4 His360 allele predicts an increased risk of progression of coronary atherosclerosis in adults with type 1 diabetes of long duration (odds ratio = 3.3, p=0.003 after adjustment for covariates associated with CAD risk). CONCLUSIONS /INTERPRETATION: This is the first report suggesting an association between the APOA4 Gln360His polymorphism and risk of CAC progression in subjects with type 1 diabetes. Additional studies are needed to explore potential interactions between APOA4 genotypes and metabolic/oxidative stress components of the diabetic milieu leading to rapid progression of atherosclerosis.
Collapse
Affiliation(s)
- A Kretowski
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Mail Stop A140, P.O. Box 6511, Aurora, CO 80045-6511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lu S, Yao Y, Cheng X, Mitchell S, Leng S, Meng S, Gallagher JW, Shelness GS, Morris GS, Mahan J, Frase S, Mansbach CM, Weinberg RB, Black DD. Overexpression of apolipoprotein A-IV enhances lipid secretion in IPEC-1 cells by increasing chylomicron size. J Biol Chem 2005; 281:3473-83. [PMID: 16338933 DOI: 10.1074/jbc.m502501200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal apolipoprotein A-IV expression is highly regulated by dietary lipid in newborn swine, suggesting a role in lipid absorption. Constitutive overexpression of apoA-IV in newborn swine enterocytes enhances basolateral secretion of triacylglycerol (TG) in TG-rich lipoproteins 4.9-fold (Lu, S., Yao, Y., Meng, S., Cheng, X., and Black, D. D. (2002) J. Biol. Chem. 277, 31929-31937). To investigate the mechanism of this enhancement, IPEC-1 cells were transfected with a tetracycline-regulatable expression system (Tet-On). In cells incubated with oleic acid, a dose response relationship was observed between medium doxycycline concentration and basolateral apoA-IV and TG secretion. Similarly regulated expression of apoA-I did not enhance lipid secretion. The mean diameter of TG-rich lipoproteins secreted from doxycycline-treated cells was larger than from untreated cells (87.0 nm versus 53.4 nm). Basolateral apoB secretion decreased. Using the same expression system, full-length human apoA-IV (376 amino acids); a "pig-like" human apoA-IV, lacking the C-terminal EQQQ repeats (361 amino acids); and a "chicken-like" apoA-IV, further truncated to 343 amino acids, were expressed in IPEC-1 cells. With increasing protein secretion, cells expressing the full-length human apoA-IV displayed a 2-fold increase in TG secretion; in sharp contrast, cells expressing the pig-like human apoA-IV displayed a 25-fold increase in TG secretion and a 27-fold increase in lipoprotein diameter. When human apoA-IV was further truncated to yield a chicken-like protein, TG secretion was inhibited. We conclude that overexpression of swine apoA-IV enhances basolateral TG secretion in a dose-dependent manner by increasing the size of secreted lipoproteins. These data suggest that the region in the human apoA-IV protein from residues 344 to 354 is critical to its ability to enhance lipid secretion, perhaps by enabling the packaging of additional core TG into chylomicron particles. The EQQQ-rich region may play an inhibitory or modulatory role in chylomicron packaging in humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Apolipoproteins/chemistry
- Apolipoproteins A/biosynthesis
- Apolipoproteins A/physiology
- Blotting, Western
- Cell Line
- Chickens
- Chylomicrons/chemistry
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/metabolism
- Doxycycline/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoprecipitation
- Intestinal Mucosa/metabolism
- Intestines/cytology
- Lipid Metabolism
- Lipids/chemistry
- Lipoproteins/metabolism
- Microscopy, Electron
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mutation
- Oleic Acid/chemistry
- Oleic Acid/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Swine
- Tetracycline/pharmacology
- Transcriptional Activation
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Song Lu
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pearson K, Liu M, Shen L, Tso P, Davidson WS. Bacterial expression and characterization of rat apolipoprotein E. Protein Expr Purif 2005; 41:447-53. [PMID: 15866734 DOI: 10.1016/j.pep.2005.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/16/2005] [Indexed: 11/25/2022]
Abstract
Apolipoprotein (apo) E is a protein involved in both lipid metabolism and neuroprotection. Recently, it has been suggested that apoE may play a role in the regulation of food intake and body weight in rodents. However, rodent plasma apoE is difficult to purify in reasonable amounts due to numerous time-consuming steps. To circumvent this, we created a bacterial expression system for the efficient production of large amounts of rat apoE. We inserted rat apoE DNA into the pET30 expression vector and overexpressed the proteins in Escherichia coli strain BL21 (DE3). A histidine tag present at the N-terminus allowed for easy purification of the recombinant protein. The tag was removed with an IgA protease (Igase) from Neisseria gonorrhoeae leaving the mature form of the protein. The use of Igase was important as several more common proteases routinely cleave apolipoproteins at undesired sites. The recombinant protein was then compared both structurally and functionally to rat plasma apoE. This expression system will be highly useful for probing the ability of rat apoE to mediate food intake in rats.
Collapse
Affiliation(s)
- Kevin Pearson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
27
|
Davidson WS, Ghering AB, Beish L, Tubb MR, Hui DY, Pearson K. The biotin-capture lipid affinity assay: a rapid method for determining lipid binding parameters for apolipoproteins. J Lipid Res 2005; 47:440-9. [PMID: 16267343 DOI: 10.1194/jlr.d500034-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid affinity of plasma apolipoproteins is an important modulator of lipoprotein metabolism. Mutagenesis techniques have been widely used to modulate apolipoprotein lipid affinity for studying biological function, but the approach requires rapid and reliable lipid affinity assays to compare the mutants. Here, we describe a novel method that measures apolipoprotein binding to a standardized preparation of small unilamellar vesicles (SUVs) containing trace biotinylated and fluorescent phospholipids. After a 30 min incubation at various apolipoprotein concentrations, vesicle-bound protein is rapidly separated from free protein on columns of immobilized streptavidin in a 96-well microplate format. Vesicle-bound protein and lipid are eluted and measured in a fluorescence microplate reader for calculation of a dissociation constant and the maximum number of potential binding sites on the SUVs. Using human apolipoprotein A-I (apoA-I), apoA-IV, and mutants of each, we show that the assay generates binding constants that are comparable to other methods and is reproducible across time and apolipoprotein preparations. The assay is easy to perform and can measure triplicate binding parameters for up to 10 separate apolipoproteins in 3.5 h, consuming only 120 microg of apolipoprotein in total. The benefits and potential drawbacks of the assay are discussed.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237-0507, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Pearson K, Tubb MR, Tanaka M, Zhang XQ, Tso P, Weinberg RB, Davidson WS. Specific Sequences in the N and C Termini of Apolipoprotein A-IV Modulate Its Conformation and Lipid Association. J Biol Chem 2005; 280:38576-82. [PMID: 16159879 DOI: 10.1074/jbc.m506802200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apoA-IV) is a 376-residue exchangeable apolipoprotein that may play a number of important roles in lipid metabolism, including chylomicron assembly, reverse cholesterol transport, and appetite regulation. In vivo, apoA-IV exists in both lipid-poor and lipid-associated forms, and the balance between these states may determine its function. We examined the structural elements that modulate apoA-IV lipid binding by producing a series of deletion mutants and determining their ability to interact with phospholipid liposomes. We found that the deletion of residues 333-343 strongly increased the lipid association rate versus native apoA-IV. Additional mutagenesis revealed that two phenylalanine residues at positions 334 and 335 mediated this lipid binding inhibitory effect. We also observed that residues 11-20 in the N terminus were required for the enhanced lipid affinity induced by deletion of the C-terminal sequence. We propose a structural model in which these sequences can modulate the conformation and lipid affinity of apoA-IV.
Collapse
Affiliation(s)
- Kevin Pearson
- Department of Pathology and Laboratory Medicine, The University of Cincinnati, Cincinnati, Ohio 45237-0507, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in structural studies of exchangeable human apolipoproteins and the insights they provide into lipoprotein action in cardiovascular and amyloid diseases. RECENT FINDINGS The high-resolution X-ray crystal structure of free apoA-II reveals a parallel helical array that may represent other lipid-poor apolipoproteins, and the structure in complex with detergent substantiates the belt model for the protein arrangement on lipoproteins. Nuclear magnetic resonance structures of apolipoprotein-detergent complexes show a repertoire of curved helical conformations, suggesting multiple helical arrangements on the lipid. Low-resolution spectroscopic analyses, interface studies and molecular modeling provide new insights into the 'hinge-domain' mechanism of apolipoprotein adaptation at variable lipoprotein surfaces. A kinetic mechanism for lipoprotein stabilization is proposed. SUMMARY Cumulative evidence supports the belt model that provides a general structural basis for understanding the molecular mechanisms of functional apolipoprotein reactions, such as binding to lipoprotein receptors, lipid transporters, and the activation of lipophilic enzymes. However, the detailed protein and lipid conformations on lipoproteins and the underlying molecular interactions are unclear. New insights will hopefully emerge once the first detailed lipoprotein structure is solved.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, Boston, Massachusetts 02118, USA.
| |
Collapse
|
30
|
Davidson WS, Silva RAGD. Apolipoprotein structural organization in high density lipoproteins: belts, bundles, hinges and hairpins. Curr Opin Lipidol 2005; 16:295-300. [PMID: 15891390 DOI: 10.1097/01.mol.0000169349.38321.ad] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize recent advances towards an understanding of the three-dimensional structures of the apolipoprotein components of HDL with a specific focus on high resolution models of apolipoprotein A-I. RECENT FINDINGS Since the primary sequence was first reported, various models have been advanced for the structure of apolipoprotein A-I, the major protein constituent of HDL, in its lipid-free and lipid-bound forms. Unfortunately, the generation of experimental data capable of distinguishing among the competing models has lagged far behind. However, recent experimental strategies, including X-ray crystallography, applications of resonance energy transfer and mass spectrometry, have combined with sophisticated theoretical approaches to develop three-dimensional structural models of apolipoprotein A-I with previously unavailable resolution. SUMMARY The recent synergy of sophisticated computer modeling techniques with hard experimental data has generated new models for apolipoprotein A-I in certain subclasses of HDL produced in vitro. The challenge now is to adapt and test these models in the more complex forms of HDL isolated directly from human plasma.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237-0507, USA.
| | | |
Collapse
|