1
|
Lamb CA, Fabris VT, Jacobsen B, Molinolo AA, Lanari C. Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 2018; 25:ERC-18-0179. [PMID: 29991638 DOI: 10.1530/erc-18-0179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
There is a consensus that progestins and thus their cognate receptor molecules, the progesterone receptors (PR), are essential in the development of the adult mammary gland and regulators of proliferation and lactation. However, a role for natural progestins in breast carcinogenesis remains poorly understood. A hint to that possible role came from studies in which the synthetic progestin medroxyprogesterone acetate was associated with an increased breast cancer risk in women under hormone replacement therapy. However, progestins have been also used for breast cancer treatment and to inhibit the growth of several experimental breast cancer models. More recently, PR have been shown to be regulators of estrogen receptor signaling. With all this information, the question is how can we target PR, and if so, which patients may benefit from such an approach? PR are not single unique molecules. Two main PR isoforms have been characterized, PRA and PRB, that exert different functions and the relative abundance of one isoform respect to the other determines the response of PR agonists and antagonists. Immunohistochemistry with standard antibodies against PR do not discriminate between isoforms. In this review, we summarize the current knowledge on the expression of both PR isoforms in mammary glands, in experimental models of breast cancer and in breast cancer patients, to better understand how the PRA/PRB ratio can be exploited therapeutically to design personalized therapeutic strategies.
Collapse
Affiliation(s)
- Caroline A Lamb
- C Lamb, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Victoria T Fabris
- V Fabris, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | - Britta Jacobsen
- B Jacobsen, Department of Pathology, University of Colorado at Denver - Anschutz Medical Campus, Aurora, United States
| | - Alfredo A Molinolo
- A Molinolo, Biorepository and Tissue Technology Shared Resource, University of California San Diego Moores Cancer Center, La Jolla, United States
| | - Claudia Lanari
- C Lanari, Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| |
Collapse
|
2
|
Bain DL, De Angelis RW, Connaghan KD, Yang Q, Degala GD, Lambert JR. Dissecting Steroid Receptor Function by Analytical Ultracentrifugation. Methods Enzymol 2015; 562:363-89. [PMID: 26412661 DOI: 10.1016/bs.mie.2015.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Steroid receptors comprise a family of ligand-activated transcription factors. The members include the androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor (PR). Each receptor controls distinct sets of genes associated with development, metabolism, and homeostasis. Although a qualitative understanding of how individual receptors mediate gene expression has come into focus, quantitative insight remains less clear. As a step toward delineating the physical mechanisms by which individual receptors activate their target genes, we have carried out a systematic dissection of receptor interaction energetics with their multisite regulatory elements. Analytical ultracentrifugation (AUC) has proved indispensable in these studies, in part by revealing the energetics of receptor self-association and its thermodynamic coupling to DNA binding. Here, we discuss these findings in the context of understanding specificity of receptor-mediated gene control. We first highlight the role of sedimentation velocity and sedimentation equilibrium in addressing receptor assembly state, and present a comparative analysis across the receptor family. We then use these results for understanding how receptors assemble at multisite regulatory elements, and hypothesize how these findings might play a role in receptor-specific gene regulation. Finally, we examine receptor behavior in a cellular context, with a view toward linking our in vitro studies with in vivo function.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Rolando W De Angelis
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory D Degala
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry. Structure 2014; 22:961-73. [PMID: 24909783 DOI: 10.1016/j.str.2014.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/31/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
Abstract
Structural and functional details of the N-terminal activation function 1 (AF1) of most nuclear receptors are poorly understood due to the highly dynamic intrinsically disordered nature of this domain. A hydrogen/deuterium exchange (HDX) mass-spectrometry-based investigation of TATA box-binding protein (TBP) interaction with various domains of progesterone receptor (PR) demonstrate that agonist-bound PR interaction with TBP via AF1 impacts the mobility of the C-terminal AF2. Results from HDX and other biophysical studies involving agonist- and antagonist-bound full-length PR and isolated PR domains reveal the molecular mechanism underlying synergistic transcriptional activation mediated by AF1 and AF2, dominance of PR-B isoform over PR-A, and the necessity of AF2 for full AF1-mediated transcriptional activity. These results provide a comprehensive picture elaborating the underlying mechanism of PR-TBP interactions as a model for studying nuclear receptor (NR)-transcription factor functional interactions.
Collapse
|
4
|
Connaghan KD, Yang Q, Miura MT, Moody AD, Bain DL. Homologous steroid receptors assemble at identical promoter architectures with unique energetics of cooperativity. Proteins 2014; 82:2078-87. [PMID: 24648119 DOI: 10.1002/prot.24563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/05/2014] [Accepted: 03/14/2014] [Indexed: 01/27/2023]
Abstract
Steroid receptors comprise a homologous family of ligand-activated transcription factors. The receptors bind largely identical response elements in vitro, yet regulate distinct gene networks in vivo. This paradox raises the issue of how transcriptional specificity is achieved, particularly if multiple receptor populations are competing for identical sites. Noting that receptor-DNA energetics are a primary force in driving transcriptional activity, differences in interaction energetics among the receptors might underlie receptor-specific transcriptional control. Thermodynamic dissections support this premise-upon assembling at an identical promoter architecture, individual receptors exhibit vast differences in cooperative and self-association energetics. More intriguingly, these parameters distribute in a way that mirrors the evolutionary divergence of the steroid receptor family. For example, the closely related progesterone and glucocorticoid receptors (PR and GR) display little or no self-association but strong intersite cooperativity, whereas the more distantly related estrogen receptor (ER-α) shows inverse behavior. These findings suggest that receptors view genomic promoter architectures as a collection of affinity landscapes; receptors select from this landscape via their unique interaction energetics. To test this idea, we analyzed the cooperative binding energetics of the above three receptors using an array of promoters. We find that cooperativity is not only receptor-specific but also highly promoter-specific. Thus PR shows maximal cooperativity at promoters with closely spaced and in phase binding sites. GR cooperativity is maintained over greater distances, is larger energetically, and shows markedly different phase dependency. Finally, ER-α appears incapable of cooperativity regardless of promoter architecture, consistent with its more distant phylogeny.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | | | | | | | | |
Collapse
|
5
|
Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol 2014; 140:80-9. [PMID: 24333793 PMCID: PMC3923415 DOI: 10.1016/j.jsbmb.2013.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Bain DL, Connaghan KD, Maluf NK, Yang Q, Miura MT, De Angelis RW, Degala GD, Lambert JR. Steroid receptor-DNA interactions: toward a quantitative connection between energetics and transcriptional regulation. Nucleic Acids Res 2013; 42:691-700. [PMID: 24064251 PMCID: PMC3902896 DOI: 10.1093/nar/gkt859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Steroid receptors comprise an evolutionarily conserved family of transcription factors. Although the qualitative aspects by which individual receptors regulate transcription are well understood, a quantitative perspective is less clear. This is primarily because receptor function is considerably more complex than that of classical regulatory factors such as phage or bacterial repressors. Here we discuss recent advances in placing receptor-specific transcriptional regulation on a more quantitative footing, specifically focusing on the role of macromolecular interaction energetics. We first highlight limitations and challenges associated with traditional approaches for assessing the role of energetics (more specifically, binding affinity) with functional outcomes such as transcriptional activation. We next demonstrate how rigorous in vitro measurements and straightforward interaction models quantitatively relate energetics to transcriptional activity within the cell, and follow by discussing why such an approach is unexpectedly effective in explaining complex functional behavior. Finally, we examine the implications of these findings for considering the unique gene regulatory properties of the individual receptors.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
De Angelis RW, Yang Q, Miura MT, Bain DL. Dissection of androgen receptor-promoter interactions: steroid receptors partition their interaction energetics in parallel with their phylogenetic divergence. J Mol Biol 2013; 425:4223-35. [PMID: 23917122 DOI: 10.1016/j.jmb.2013.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 01/24/2023]
Abstract
Steroid receptors comprise a homologous family of ligand-activated transcription factors. The members include androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and progesterone receptor (PR). Phylogenetic studies demonstrate that AR, GR, MR, and PR are most closely related, falling into subgroup 3C. ER is more distantly related, falling into subgroup 3A. To determine the quantitative basis by which receptors generate their unique transcriptional responses, we are systematically dissecting the promoter-binding energetics of all receptors under a single "standard state" condition. Here, we examine the self-assembly and promoter-binding energetics of full-length AR and a mutant associated with prostate cancer, T877A. We first demonstrate that both proteins exist only as monomers, showing no evidence of dimerization. Although this result contradicts the traditional understanding that steroid receptors dimerize in the absence of DNA, it is fully consistent with our previous work demonstrating that GR and two PR isoforms either do not dimerize or dimerize only weakly. Moreover, both AR proteins exhibit substantial cooperativity between binding sites, again as seen for GR and PR. In sharp contrast, the more distantly related ER-α dimerizes so strongly that energetics can only be measured indirectly, yet cooperativity is negligible. Thus, homologous receptors partition their promoter-binding energetics quite differently. Moreover, since receptors most closely related by phylogeny partition their energetics similarly, such partitioning appears to be evolutionarily conserved. We speculate that such differences in energetics, coupled with different promoter architectures, serve as the basis for generating receptor-specific promoter occupancy and thus function.
Collapse
Affiliation(s)
- Rolando W De Angelis
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
8
|
Connaghan KD, Miura MT, Maluf NK, Lambert JR, Bain DL. Analysis of a glucocorticoid-estrogen receptor chimera reveals that dimerization energetics are under ionic control. Biophys Chem 2012; 172:8-17. [PMID: 23333595 DOI: 10.1016/j.bpc.2012.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 11/28/2022]
Abstract
Steroid receptors assemble at DNA response elements as dimers, resulting in coactivator recruitment and transcriptional activation. Our work has focused on dissecting the energetics associated with these events and quantitatively correlating the results with function. A recent finding is that different receptors dimerize with large differences in energetics. For example, estrogen receptor-α (ER-α) dimerizes with a ΔG=-12.0 kcal/mol under conditions in which the glucocorticoid receptor (GR) dimerizes with a ΔG≤-5.1 kcal/mol. To determine the molecular forces responsible for such differences, we created a GR/ER chimera, replacing the hormone-binding domain (HBD) of GR with that of ER-α. Cellular and biophysical analyses demonstrate that the chimera is functionally active. However, GR/ER dimerization energetics are intermediate between the parent proteins and coupled to a strong ionic linkage. Since the ER-α HBD is the primary contributor to dimerization, we suggest that GR residues constrain an ion-regulated HBD assembly reaction.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
9
|
Bain DL, Yang Q, Connaghan KD, Robblee JP, Miura MT, Degala GD, Lambert JR, Maluf NK. Glucocorticoid receptor-DNA interactions: binding energetics are the primary determinant of sequence-specific transcriptional activity. J Mol Biol 2012; 422:18-32. [PMID: 22698871 DOI: 10.1016/j.jmb.2012.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. A long-standing question has focused on how GR and other receptors precisely control gene expression. One difficulty in addressing this is that GR function is influenced by multiple factors including ligand and coactivator levels, chromatin state, and allosteric coupling. Moreover, the receptor recognizes an array of DNA sequences that generate a range of transcriptional activities. Such complexity suggests that any single parameter-DNA binding affinity, for example-is unlikely to be a dominant contributor to function. Indeed, a number of studies have suggested that for GR and other receptors, binding affinity toward different DNA sequences is poorly correlated with transcriptional activity. As a step toward determining the factors most predictive of GR function, we rigorously examined the relationship between in vitro GR-DNA binding energetics and in vivo transcriptional activity. We first demonstrate that previous approaches for assessing affinity-function relationships are problematic due to issues of data transformation and linearization. Thus, the conclusion that binding energetics and transcriptional activity are poorly correlated is premature. Using more appropriate analyses, we find that energetics and activity are in fact highly correlated. Furthermore, this correlation can be quantitatively accounted for using simple binding models. Finally, we show that the strong relationship between energetics and transcriptional activity is recapitulated in multiple promoter contexts, cell lines, and chromatin environments. Thus, despite the complexity of GR function, DNA binding energetics are the primary determinant of sequence-specific transcriptional activity.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK. Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 2012; 355:15-24. [PMID: 22330642 PMCID: PMC4716679 DOI: 10.1016/j.mce.2011.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/23/2011] [Accepted: 12/29/2011] [Indexed: 01/01/2023]
Abstract
Progesterone receptors (PRs) mediate response to progestins in the normal breast and breast cancer. To determine if liganded PR regulate microRNAs (miRNAs) as a component of their action, we profiled mature miRNA levels following progestin treatment. Indeed, 28 miRNAs are significantly altered by 6h of progestin treatment. Many progestin-responsive genes are putative targets of progestin-regulated miRNAs; for example, progestin treatment decreases miR-29, thereby relieving repression of one of its direct targets, the gene encoding ATPase, Na(+)/K(+) transporting, beta 1 polypeptide (ATP1B1). Thus, liganded PR regulates ATP1B1 through sites in the promoter and the 3'UTR, to achieve maximal tight hormonal regulation of ATP1B1 protein via both transcriptional and translational control. We find that ATP1B1 serves to limit migration and invasion in breast cancer cells. Lastly, we demonstrate that PR itself is regulated by a progestin-upregulated miRNA, miR-513a-5p, providing a novel mechanism for tight control of PR protein expression.
Collapse
Affiliation(s)
- Dawn R. Cochrane
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Britta M. Jacobsen
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Keith D. Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Erin N. Howe
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - David L. Bain
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Denver, USA
| |
Collapse
|
11
|
Hill KK, Roemer SC, Churchill ME, Edwards DP. Structural and functional analysis of domains of the progesterone receptor. Mol Cell Endocrinol 2012; 348:418-29. [PMID: 21803119 PMCID: PMC4437577 DOI: 10.1016/j.mce.2011.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/18/2022]
Abstract
Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.
Collapse
Affiliation(s)
- Krista K. Hill
- Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | - Sarah C. Roemer
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mair E.A. Churchill
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Moody AD, Miura MT, Connaghan KD, Bain DL. Thermodynamic dissection of estrogen receptor-promoter interactions reveals that steroid receptors differentially partition their self-association and promoter binding energetics. Biochemistry 2012; 51:739-49. [PMID: 22201220 DOI: 10.1021/bi2017156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steroid receptors define a family of ligand-activated transcription factors. Recent work has demonstrated that the receptors regulate distinct but overlapping gene networks, yet the mechanisms by which they do so remain unclear. We previously determined the microscopic binding energetics for progesterone receptor (PR) isoform assembly at promoters containing multiple response elements. We found that the two isoforms (PR-A and PR-B) share nearly identical dimerization and intrinsic DNA binding free energies but maintain large differences in cooperative free energy. Moreover, cooperativity can be modulated by monovalent ion binding and promoter layout, suggesting that differences in cooperativity might control isoform-specific promoter occupancy and thus receptor function. To determine whether cooperative binding energetics are common to other members of the steroid receptor family, we dissected the thermodynamics of estrogen receptor-α (ER-α):promoter interactions. We find that the ER-α intrinsic DNA binding free energy is identical to that of the PR isoforms. This was expected, noting that receptor DNA binding domains are highly conserved. Unexpectedly, ER-α generates negligible cooperativity-orders of magnitude less than predicted based on our studies of the PR isoforms. However, analysis of the cooperativity term suggests that it reflects a balance between highly favorable cooperative stabilization and unfavorable promoter bending. Moreover, ER-α cooperative free energy is compensated for by a large increase in dimerization free energy. Collectively, the results demonstrate that steroid receptors differentially partition not only cooperative energetics but also dimerization energetics. We speculate that this ability serves as a framework for regulating receptor-specific promoter occupancy and thus receptor-specific gene regulation.
Collapse
Affiliation(s)
- Amie D Moody
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | | | |
Collapse
|
13
|
Connaghan KD, Moody AD, Robblee JP, Lambert JR, Bain DL. From steroid receptors to cytokines: the thermodynamics of self-associating systems. Biophys Chem 2011; 159:24-32. [PMID: 21696881 DOI: 10.1016/j.bpc.2011.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/17/2022]
Abstract
Since 1987, the Gibbs Conference on Biothermodynamics has maintained a focus on understanding the quantitative aspects of gene regulatory systems. These studies coupled rigorous techniques with exact theory to dissect the linked reactions associated with bacterial and lower eukaryotic gene regulation. However, only in the last ten years has it become possible to apply this approach to clinically relevant, human gene regulatory systems. Here we summarize our work on the thermodynamics of human steroid receptors and their interactions with multi-site promoter sequences, highlighting results not available from more traditional biochemical and structural approaches. Noting that the Gibbs Conference has also served as a vehicle to promote the broader use of thermodynamics in understanding biology, we then discuss collaborative work on the hydrodynamics of a cytokine implicated in tumor suppression, prostate derived factor (PDF).
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | | | | | | |
Collapse
|
14
|
Connaghan KD, Heneghan AF, Miura MT, Bain DL. Na(+) and K(+) allosterically regulate cooperative DNA binding by the human progesterone receptor. Biochemistry 2010; 49:422-31. [PMID: 20000807 DOI: 10.1021/bi901525m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cooperativity is a common mechanism used by transcription factors to generate highly responsive yet stable gene regulation. For the two isoforms of human progesterone receptor (PR-A and PR-B), differences in cooperative DNA binding energetics may account for their differing transcriptional activation properties. Here we report on the molecular origins responsible for cooperativity, finding that it can be activated or repressed with Na(+) and K(+), respectively. We demonstrate that PR self-association and DNA-dependent cooperativity are linked to a monovalent cation binding event and that this binding is coupled to modulation of receptor structure. K(+) and Na(+) are therefore allosteric effectors of PR function. Noting that the apparent binding affinities of Na(+) and K(+) are comparable to their intracellular concentrations and that PR isoforms directly regulate the genes of a number of ion pumps and channels, these results suggest that Na(+) and K(+) may additionally function as physiological regulators of PR action.
Collapse
Affiliation(s)
- Keith D Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Progesterone receptors (PRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. The mechanisms by which receptors such as PR assemble at a promoter and recruit coactivators are well understood at the biochemical level. However, a rigorous and thus quantitatively predictive understanding of function is entirely lacking. This is so in part because the study of receptor function has largely been carried out using semiquantitative or qualitative approaches. These types of analyses are limited in their ability to resolve thermodynamically valid and physically meaningful microscopic interaction parameters. This includes resolution of intrinsic binding constants and cooperativity terms, as well as the mathematical framework for integrating these values into a larger molecular code for function. Here we present our experimental and theoretical approach for dissecting the linked reactions associated with PR and coactivator assembly at complex promoter sequences. We discuss the use of analytical ultracentrifugation and quantitative DNase footprint titration and their coupling to exact theoretical treatments. We then highlight the major findings of these studies and their implications for understanding and reevaluating receptor function.
Collapse
|
16
|
Connaghan-Jones KD, Moody AD, Bain DL. Quantitative DNase footprint titration: a tool for analyzing the energetics of protein-DNA interactions. Nat Protoc 2008; 3:900-14. [PMID: 18451798 DOI: 10.1038/nprot.2008.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major goal in biomedical research is to determine the mechanisms responsible for gene regulation. However, the promoters and operators that control transcription are often complex in nature, containing multiple-binding sites with which DNA-binding proteins can interact cooperatively. Quantitative DNase footprint titration is one of the few techniques capable of resolving the microscopic binding affinities responsible for the macroscopic assembly process. Here, we present a step-by-step protocol for carrying out a footprint titration experiment. We then describe how to quantify the resultant images to generate individual-site binding curves. Finally, we derive basic equations for binding at each site and present an overview of the fitting process, applying it to the anticipated results. Users should anticipate that the footprinting experiment will take 3-5 d starting from DNA template isolation to image acquisition and quantitation.
Collapse
Affiliation(s)
- Keith D Connaghan-Jones
- Department of Pharmaceutical Sciences, University of Colorado Denver, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
17
|
Connaghan-Jones KD, Heneghan AF, Miura MT, Bain DL. Thermodynamic dissection of progesterone receptor interactions at the mouse mammary tumor virus promoter: monomer binding and strong cooperativity dominate the assembly reaction. J Mol Biol 2008; 377:1144-60. [PMID: 18313072 DOI: 10.1016/j.jmb.2008.01.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
Abstract
Progesterone receptors (PRs) play critical roles in eukaryotic gene regulation, yet the mechanisms by which they assemble at their promoters are poorly understood. One of the few promoters amenable to analysis is the mouse mammary tumor virus gene regulatory sequence. Embedded within this sequence are four progesterone response elements (PREs) corresponding to a palindromic PRE and three half-site PREs. Early mutational studies indicated that the presence of all four sites generated a synergistic and strong transcriptional response. However, DNA binding analyses suggested that receptor assembly at the promoter occurred in the absence of significant cooperativity. Taken together, the results indicated that cooperative interactions among PREs could not account for the observed functional synergy. More broadly, the studies raised the question of whether cooperativity was a common feature of PR-mediated gene regulation. As a step toward obtaining a quantitative and, thus, predictive understanding of receptor function, we have carried out a thermodynamic dissection of PR A-isoform interactions at the mouse mammary tumor virus promoter. Utilizing analytical ultracentrifugation and quantitative footprinting, we have resolved the microscopic energetics of PR A-isoform binding, including cooperativity terms. Our results reveal a model contrary to that inferred from previous biochemical investigations. Specifically, the binding unit at a half-site is not a receptor dimer but is instead a monomer; monomers bound at half-sites are capable of significant pairwise cooperative interactions; occupancy of all three half-sites is required to cooperatively engage the palindromic-bound dimer; and finally, large unfavorable forces accompany assembly. Overall, monomer binding accounts for the majority of the intrinsic binding energetics and cooperativity contributes an approximately 1000-fold increase in receptor-promoter stability. Finally, the partitioning of cooperativity suggests a framework for interpreting in vivo transcriptional synergy. These results highlight the insight available from rigorous analysis and demonstrate that receptor-promoter interactions are considerably more complex than typically envisioned.
Collapse
Affiliation(s)
- Keith D Connaghan-Jones
- Department of Pharmaceutical Sciences, C-238, University of Colorado Denver, 4200 East 9th Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
18
|
Linked equilibria in regulation of transcription initiation. Methods Cell Biol 2007. [PMID: 17964927 DOI: 10.1016/s0091-679x(07)84002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Assembly of transcriptional regulatory complexes often involves multiple binding processes and these binding processes are frequently coupled to one another. Small molecule binding can promote or inhibit DNA-binding or protein-protein interactions. DNA binding may be coupled to protein association. Finally, proteins may bind cooperatively to multiple sites in a transcriptional regulatory region. The level of transcription initiation at a promoter reflects the assembly of regulatory complexes in a transcription control region. Quantitative mechanistic understanding of regulatory complex assembly requires dissection of the assembly process into its constituent interactions followed by measurements of linkage between the individual binding processes. Methods and approaches to achieving this quantitative understanding of transcription regulation are outlined in this chapter.
Collapse
|
19
|
Abstract
Small lipophilic molecules such as steroidal hormones, retinoids, and free fatty acids control many of the reproductive, developmental, and metabolic processes in eukaryotes. The mediators of these effects are nuclear receptor proteins, ligand-activated transcription factors capable of regulating the expression of complex gene networks. This review addresses the structure and structural properties of nuclear receptors, focusing on the well-studied ligand-binding and DNA-binding domains as well as our still-emerging understanding of the largely unstructured N-terminal regions. To emphasize the allosteric interdependence among these subunits, a more detailed inspection of the structural properties of the human progesterone receptor is presented. Finally, this work is placed in the context of developing a quantitative and mechanistic understanding of nuclear receptor function.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
20
|
Connaghan-Jones KD, Heneghan AF, Miura MT, Bain DL. Thermodynamic analysis of progesterone receptor-promoter interactions reveals a molecular model for isoform-specific function. Proc Natl Acad Sci U S A 2007; 104:2187-92. [PMID: 17277083 PMCID: PMC1892943 DOI: 10.1073/pnas.0608848104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human progesterone receptors (PR) exist as two functionally distinct isoforms, PR-A and PR-B. The proteins are identical except for an additional 164 residues located at the N terminus of PR-B. To determine the mechanisms responsible for isoform-specific functional differences, we present here a thermodynamic dissection of PR-A-promoter interactions and compare the results to our previous work on PR-B. This analysis has generated a number of results inconsistent with the traditional, biochemically based model of receptor function. Specifically, statistical models invoking preformed PR-A dimers as the active binding species demonstrate that intrinsic binding energetics are over an order of magnitude greater than is apparent. High-affinity binding is opposed, however, by a large energetic penalty. The consequences of this penalty are 2-fold: Successive monomer binding to a palindromic response element is thermodynamically favored over preformed dimer binding, and DNA-induced dimerization of the monomers is largely abolished. Furthermore, PR-A binding to multiple PREs is only weakly cooperative, as judged by a 5-fold increase in overall stability. Comparison of these results to our work on PR-B demonstrates that whereas both isoforms appear to have similar DNA binding affinities, PR-B in fact has a greatly increased intrinsic binding affinity and cooperative binding ability relative to PR-A. These differences thus suggest that residues unique to PR-B allosterically regulate the energetics of cooperative promoter assembly. From a functional perspective, the differences in microscopic affinities predict receptor-promoter occupancies that accurately correlate with the transcriptional activation profiles seen for each isoform.
Collapse
Affiliation(s)
- Keith D. Connaghan-Jones
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Aaron F. Heneghan
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262
| | - Michael T. Miura
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262
| | - David L. Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262
- *To whom correspondence should be addressed at:
Department of Pharmaceutical Sciences, C-238, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262. E-mail:
| |
Collapse
|
21
|
Tung L, Abdel-Hafiz H, Shen T, Harvell DME, Nitao LK, Richer JK, Sartorius CA, Takimoto GS, Horwitz KB. Progesterone receptors (PR)-B and -A regulate transcription by different mechanisms: AF-3 exerts regulatory control over coactivator binding to PR-B. Mol Endocrinol 2006; 20:2656-70. [PMID: 16762974 DOI: 10.1210/me.2006-0105] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The two, nearly identical, isoforms of human progesterone receptors (PR), PR-B and -A, share activation functions (AF) 1 and 2, yet they possess markedly different transcriptional profiles, with PR-B being much stronger transactivators. Their differences map to a unique AF3 in the B-upstream segment (BUS), at the far N terminus of PR-B, which is missing in PR-A. Combined mutation of two LXXLL motifs plus tryptophan 140 in BUS, to yield PR-BdL140, completely destroys PR-B activity, because strong AF3 synergism with downstream AF1 and AF2 is eliminated. This synergism involves cooperative interactions among receptor multimers bound at tandem hormone response elements and is transferable to AFs of other nuclear receptors. Other PR-B functions-N-/C-terminal interactions, steroid receptor coactivator-1 coactivation, ligand-dependent down-regulation-also require an intact BUS. All three are autonomous in PR-A, and map to N-terminal regions common to both PR. This suggests that the N-terminal structure adopted by the two PR is different, and that for PR-B, this is controlled by BUS. Indeed, gene expression profiling of breast cancer cells stably expressing PR-B, PR-BdL140, or PR-A shows that mutation of AF3 destroys PR-B-dependent gene transcription without converting PR-B into PR-A. In sum, AF3 in BUS plays a critical modulatory role in PR-B, and in doing so, defines a mechanism for PR-B function that is fundamentally distinct from that of PR-A.
Collapse
Affiliation(s)
- Lin Tung
- Department of Medicine, RC1 South, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Heneghan AF, Connaghan-Jones KD, Miura MT, Bain DL. Cooperative DNA binding by the B-isoform of human progesterone receptor: thermodynamic analysis reveals strongly favorable and unfavorable contributions to assembly. Biochemistry 2006; 45:3285-96. [PMID: 16519523 PMCID: PMC2505112 DOI: 10.1021/bi052046g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Progesterone receptors (PR) play critical roles in eukaryotic gene regulation, yet the mechanisms by which they assemble at multisite promoters are poorly understood. Here we present a thermodynamic analysis of the interactions of the PR B-isoform (PR-B) with promoters containing either one or two progesterone response elements (PREs). Utilizing quantitative footprinting, we have resolved the microscopic energetics of PR-B binding, including cooperativity terms. The results of this analysis challenge a number of assumptions found in traditional models of receptor function. First, PR-B interactions at a single PRE can be equally well described by mechanisms invoking either the receptor monomer or the dimer as the active DNA binding species. If, as is commonly accepted, PR-B interacts with response elements only as a preformed dimer, then its intrinsic binding affinity is not the typically observed nanomolar but is rather picomolar. This high affinity binding is opposed, however, by a large energetic penalty. The penalty presumably pays for costly structural rearrangements of the receptor dimer and/or response element that are needed to form the protein-DNA complex. If PR-B assembles at a single response element via successive monomer binding reactions, then this penalty minimizes cooperative interactions between adjacent monomers. When binding to two response elements, the receptor exhibits strong intersite cooperativity. Although this phenomenon has been observed before, the present work demonstrates that the energetics reach levels seen in highly cooperative systems such as lambda cI repressor. This first quantitative dissection of cooperative receptor-promoter interactions suggests that PR-B function is more complex than traditionally envisioned.
Collapse
Affiliation(s)
- Aaron F Heneghan
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|