1
|
Sankaranarayanan NV, Villuri BK, Nagarajan B, Lewicki S, Das SK, Fisher PB, Desai UR. Design and Synthesis of Small Molecule Probes of MDA-9/Syntenin. Biomolecules 2024; 14:1287. [PMID: 39456220 PMCID: PMC11505911 DOI: 10.3390/biom14101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
MDA-9/Syntenin, a key scaffolding protein and a molecular hub involved in a diverse range of cell signaling responses, has proved to be a challenging target for the design and discovery of small molecule probes. In this paper, we report on the design and synthesis of small molecule ligands of this key protein. Genetic algorithm-based computational design and the five-eight step synthesis of three molecules led to ligands with affinities in the range of 1-3 µM, a 20-60-fold improvement over literature reports. The design and synthesis strategies, coupled with the structure-dependent gain or loss in affinity, afford the deduction of principles that should guide the design of advanced probes of MDA-9/Syntenin.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Sarah Lewicki
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Honrubia JM, Valverde JR, Muñoz-Santos D, Ripoll-Gómez J, de la Blanca N, Izquierdo J, Villarejo-Torres M, Marchena-Pasero A, Rueda-Huélamo M, Nombela I, Ruiz-Yuste M, Zuñiga S, Sola I, Enjuanes L. Interaction between SARS-CoV PBM and Cellular PDZ Domains Leading to Virus Virulence. Viruses 2024; 16:1214. [PMID: 39205188 PMCID: PMC11359647 DOI: 10.3390/v16081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied. SARS-CoVs, in which 3a-PBM and E-PMB have been deleted (3a-PBM-/E-PBM-), reduced their titer around one logarithmic unit but still were viable. In addition, the absence of the E-PBM and the replacement of 3a-PBM with that of E did not allow the rescue of SARS-CoV. E protein PBM was necessary for virulence, activating p38-MAPK through the interaction with Syntenin-1 PDZ domain. However, the presence or absence of the homologous motif in the 3a protein, which does not bind to Syntenin-1, did not affect virus pathogenicity. Mutagenesis analysis and in silico modeling were performed to study the extension of the PBM of the SARS-CoV E protein. Alanine and glycine scanning was performed revealing a pair of amino acids necessary for optimum virus replication. The binding of E protein with the PDZ2 domain of the Syntenin-1 homodimer induced conformational changes in both PDZ domains 1 and 2 of the dimer.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose R. Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria de la Blanca
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Izquierdo
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Marchena-Pasero
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Rueda-Huélamo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ivan Nombela
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Ruiz-Yuste
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Meyer A, Zack SR, Nijim W, Burgos A, Patel V, Zanotti B, Volin MV, Amin MA, Lewis MJ, Pitzalis C, Arami S, Karam JA, Sweiss NJ, Shahrara S. Metabolic reprogramming by Syntenin-1 directs RA FLS and endothelial cell-mediated inflammation and angiogenesis. Cell Mol Immunol 2024; 21:33-46. [PMID: 38105293 PMCID: PMC10757714 DOI: 10.1038/s41423-023-01108-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
A novel rheumatoid arthritis (RA) synovial fluid protein, Syntenin-1, and its receptor, Syndecan-1 (SDC-1), are colocalized on RA synovial tissue endothelial cells and fibroblast-like synoviocytes (FLS). Syntenin-1 exacerbates the inflammatory landscape of endothelial cells and RA FLS by upregulating transcription of IRF1/5/7/9, IL-1β, IL-6, and CCL2 through SDC-1 ligation and HIF1α, or mTOR activation. Mechanistically, Syntenin-1 orchestrates RA FLS and endothelial cell invasion via SDC-1 and/or mTOR signaling. In Syntenin-1 reprogrammed endothelial cells, the dynamic expression of metabolic intermediates coincides with escalated glycolysis along with unchanged oxidative factors, AMPK, PGC-1α, citrate, and inactive oxidative phosphorylation. Conversely, RA FLS rewired by Syntenin-1 displayed a modest glycolytic-ATP accompanied by a robust mitochondrial-ATP capacity. The enriched mitochondrial-ATP detected in Syntenin-1 reprogrammed RA FLS was coupled with mitochondrial fusion and fission recapitulated by escalated Mitofusin-2 and DRP1 expression. We found that VEGFR1/2 and Notch1 networks are responsible for the crosstalk between Syntenin-1 rewired endothelial cells and RA FLS, which are also represented in RA explants. Similar to RA explants, morphological and transcriptome studies authenticated the importance of VEGFR1/2, Notch1, RAPTOR, and HIF1α pathways in Syntenin-1 arthritic mice and their obstruction in SDC-1 deficient animals. Consistently, dysregulation of SDC-1, mTOR, and HIF1α negated Syntenin-1 inflammatory phenotype in RA explants, while inhibition of HIF1α impaired synovial angiogenic imprint amplified by Syntenin-1. In conclusion, since the current therapies are ineffective on Syntenin-1 and SDC-1 expression in RA synovial tissue and blood, targeting this pathway and its interconnected metabolic intermediates may provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Stephanie R Zack
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Wes Nijim
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Adel Burgos
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Vishwa Patel
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, UK
- Department of Biomedical Sciences, Humanitas University, and Humanitas Research Hospital, Milan, Italy
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph A Karam
- Department of Orthopedic Surgery, the University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera J Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Casanova-Sepúlveda G, Sexton JA, Turk BE, Boggon TJ. Autoregulation of the LIM kinases by their PDZ domain. Nat Commun 2023; 14:8441. [PMID: 38114480 PMCID: PMC10730565 DOI: 10.1038/s41467-023-44148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
LIM domain kinases (LIMK) are important regulators of actin cytoskeletal remodeling. These protein kinases phosphorylate the actin depolymerizing factor cofilin to suppress filament severing, and are key nodes between Rho GTPase cascades and actin. The two mammalian LIMKs, LIMK1 and LIMK2, contain consecutive LIM domains and a PDZ domain upstream of the C-terminal kinase domain. The roles of the N-terminal regions are not fully understood, and the function of the PDZ domain remains elusive. Here, we determine the 2.0 Å crystal structure of the PDZ domain of LIMK2 and reveal features not previously observed in PDZ domains including a core-facing arginine residue located at the second position of the 'x-Φ-G-Φ' motif, and that the expected peptide binding cleft is shallow and poorly conserved. We find a distal extended surface to be highly conserved, and when LIMK1 was ectopically expressed in yeast we find targeted mutagenesis of this surface decreases growth, implying increased LIMK activity. PDZ domain LIMK1 mutants expressed in yeast are hyperphosphorylated and show elevated activity in vitro. This surface in both LIMK1 and LIMK2 is critical for autoregulation independent of activation loop phosphorylation. Overall, our study demonstrates the functional importance of the PDZ domain to autoregulation of LIMKs.
Collapse
Affiliation(s)
| | - Joel A Sexton
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Pradhan AK, Modi J, Maji S, Kumar A, Bhoopathi P, Mannangatti P, Guo C, Afosah DK, Mochel MC, Mukhopadhyay ND, Kirkwood JM, Wang XY, Desai UR, Sarkar D, Emdad L, Das SK, Fisher PB. Dual Targeting of the PDZ1 and PDZ2 Domains of MDA-9/Syntenin Inhibits Melanoma Metastasis. Mol Cancer Ther 2023; 22:1115-1127. [PMID: 37721536 DOI: 10.1158/1535-7163.mct-22-0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 09/19/2023]
Abstract
Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Jinkal Modi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Daniel K Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Mark C Mochel
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - John M Kirkwood
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- VCU Institute of Molecular Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
6
|
Maseko SB, Brammerloo Y, Van Molle I, Sogues A, Martin C, Gorgulla C, Plant E, Olivet J, Blavier J, Ntombela T, Delvigne F, Arthanari H, El Hajj H, Bazarbachi A, Van Lint C, Salehi-Ashtiani K, Remaut H, Ballet S, Volkov AN, Twizere JC. Identification of small molecule antivirals against HTLV-1 by targeting the hDLG1-Tax-1 protein-protein interaction. Antiviral Res 2023; 217:105675. [PMID: 37481039 DOI: 10.1016/j.antiviral.2023.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the first pathogenic retrovirus discovered in human. Although HTLV-1-induced diseases are well-characterized and linked to the encoded Tax-1 oncoprotein, there is currently no strategy to target Tax-1 functions with small molecules. Here, we analyzed the binding of Tax-1 to the human homolog of the drosophila discs large tumor suppressor (hDLG1/SAP97), a multi-domain scaffolding protein involved in Tax-1-transformation ability. We have solved the structures of the PDZ binding motif (PBM) of Tax-1 in complex with the PDZ1 and PDZ2 domains of hDLG1 and assessed the binding of 10 million molecules by virtual screening. Among the 19 experimentally confirmed compounds, one systematically inhibited the Tax-1-hDLG1 interaction in different biophysical and cellular assays, as well as HTLV-1 cell-to-cell transmission in a T-cell model. Thus, our work demonstrates that interactions involving Tax-1 PDZ-domains are amenable to small-molecule inhibition, which provides a framework for the design of targeted therapies for HTLV-1-induced diseases.
Collapse
Affiliation(s)
- Sibusiso B Maseko
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Yasmine Brammerloo
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | - Inge Van Molle
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Adrià Sogues
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Julien Olivet
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Jeremy Blavier
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium
| | | | - Frank Delvigne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates
| | - Han Remaut
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels Belgium.
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liege Belgium; Laboratory of Algal Synthetic and Systems Biology, Division of Science and Math, New York University of Abu Dhabi, Abu Dhabi United Arab Emirates.
| |
Collapse
|
7
|
Martinez JC, Ruiz-Sanz J, Resina MJ, Montero F, Camara-Artigas A, Luque I. A calorimetric and structural analysis of cooperativity in the thermal unfolding of the PDZ tandem of human Syntenin-1. Int J Biol Macromol 2023; 242:124662. [PMID: 37119899 DOI: 10.1016/j.ijbiomac.2023.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Syntenin-1 is a multidomain protein containing a central tandem of two PDZ domains flanked by two unnamed domains. Previous structural and biophysical studies show that the two PDZ domains are functional both isolated and in tandem, occurring a gain in their respective binding affinities when joined through its natural short linker. To get insight into the molecular and energetic reasons of such a gain, here, the first thermodynamic characterization of the conformational equilibrium of Syntenin-1 is presented, with special focus on its PDZ domains. These studies include the thermal unfolding of the whole protein, the PDZ-tandem construct and the two isolated PDZ domains using circular dichroism, differential scanning fluorimetry and differential scanning calorimetry. The isolated PDZ domains show low stability (ΔG < 10 kJ·mol-1) and poor cooperativity compared to the PDZ-tandem, which shows higher stability (20-30 kJ·mol-1) and a fully cooperative behaviour, with energetics similar to that previously described for archetypical PDZ domains. The high-resolution structures suggest that this remarkable increase in cooperativity is associated to strong, water-mediated, interactions at the interface between the PDZ domains, associated to nine conserved hydration regions. The low Tm value (45 °C), the anomalously high unfolding enthalpy (>400 kJ·mol-1), and native heat capacity values (above 40 kJ·K-1·mol-1), indicate that these interfacial buried waters play a relevant role in Syntenin-1 folding energetics.
Collapse
Affiliation(s)
- Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - María J Resina
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Fernando Montero
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| | - Ana Camara-Artigas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain.
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain.
| |
Collapse
|
8
|
Ricard-Blum S, Couchman JR. Conformations, interactions and functions of intrinsically disordered syndecans. Biochem Soc Trans 2023:BST20221085. [PMID: 37334846 DOI: 10.1042/bst20221085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 CNRS, Universite Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - John R Couchman
- Biotech Research & Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Hoffer L, Garcia M, Leblanc R, Feracci M, Betzi S, Ben Yaala K, Daulat AM, Zimmermann P, Roche P, Barral K, Morelli X. Discovery of a PDZ Domain Inhibitor Targeting the Syndecan/Syntenin Protein-Protein Interaction: A Semi-Automated "Hit Identification-to-Optimization" Approach. J Med Chem 2023; 66:4633-4658. [PMID: 36939673 DOI: 10.1021/acs.jmedchem.2c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.
Collapse
Affiliation(s)
- Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Manon Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Raphael Leblanc
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Mikael Feracci
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Khaoula Ben Yaala
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Avais M Daulat
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Karine Barral
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| |
Collapse
|
10
|
Jahodova I, Baliova M, Jursky F. PDZ interaction of the GABA transporter GAT1 with the syntenin-1 in Neuro-2a cells. Neurochem Int 2023; 165:105522. [PMID: 36966820 DOI: 10.1016/j.neuint.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The GABA transporter GAT1 regulates brain inhibitory neurotransmission and it is considered a potential therapeutic target for the treatment of wide spectrum of neurological diseases including epilepsy, stroke and autism. Syntenin-1 binds to syntaxin 1A, which is known to regulate the plasma membrane insertion of several neurotransmitter transporters. Previously, a direct interaction of syntenin-1 with the glycine transporter GlyT2 was reported. Here, we show that the GABA transporter GAT1 also directly interacts with syntenin-1, involving both unidentified protein interaction interface and the GAT1 C-terminal PDZ binding motif interacting mainly with syntenin-1 PDZ domain 1. The PDZ interaction was eliminated by the mutation of GAT1 isoleucine 599 and tyrosine 598 located in PDZ positions 0 and -1, respectively. This indicates an unconventional PDZ interaction and possible regulation of the transporter PDZ motif via tyrosine phosphorylation. Whole syntenin-1 protein fused to GST protein and immobilised on glutathione resin coprecipitated intact GAT1 transporter from an extract of GAT1 transfected neuroblastoma N2a cells. This coprecipitation was inhibited by tyrosine phosphatases inhibitor pervanadate. The fluorescence tagged GAT1 and syntenin-1 colocalized upon coexpression in N2a cells. The above results show that syntenin-1 might be, in addition to GlyT2, directly involved in the trafficking of GAT1 transporter.
Collapse
Affiliation(s)
- Iveta Jahodova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
11
|
Stevens AO, Kazan IC, Ozkan B, He Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all-atom simulations. Protein Sci 2022; 31:e4474. [PMID: 36251217 PMCID: PMC9667829 DOI: 10.1002/pro.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
The PDZ family is comprised of small modular domains that play critical roles in the allosteric modulation of many cellular signaling processes by binding to the C-terminal tail of different proteins. As dominant modular proteins that interact with a diverse set of peptides, it is of particular interest to explore how different binding partners induce different allosteric effects on the same PDZ domain. Because the PICK1 PDZ domain can bind different types of ligands, it is an ideal test case to answer this question and explore the network of interactions that give rise to dynamic allostery. Here, we use all-atom molecular dynamics simulations to explore dynamic allostery in the PICK1 PDZ domain by modeling two PICK1 PDZ systems: PICK1 PDZ-DAT and PICK1 PDZ-GluR2. Our results suggest that ligand binding to the PICK1 PDZ domain induces dynamic allostery at the αA helix that is similar to what has been observed in other PDZ domains. We found that the PICK1 PDZ-ligand distance is directly correlated with both dynamic changes of the αA helix and the distance between the αA helix and βB strand. Furthermore, our work identifies a hydrophobic core between DAT/GluR2 and I35 as a key interaction in inducing such dynamic allostery. Finally, the unique interaction patterns between different binding partners and the PICK1 PDZ domain can induce unique dynamic changes to the PICK1 PDZ domain. We suspect that unique allosteric coupling patterns with different ligands may play a critical role in how PICK1 performs its biological functions in various signaling networks.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - I. Can Kazan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Banu Ozkan
- Department of Physics, Center for Biological PhysicsArizona State UniversityTempeArizonaUSA
| | - Yi He
- Department of Chemistry and Chemical BiologyThe University of New MexicoAlbuquerqueNew MexicoUSA
| |
Collapse
|
12
|
Stevens AO, He Y. Allosterism in the PDZ Family. Int J Mol Sci 2022; 23:1454. [PMID: 35163402 PMCID: PMC8836106 DOI: 10.3390/ijms23031454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dynamic allosterism allows the propagation of signal throughout a protein. The PDZ (PSD-95/Dlg1/ZO-1) family has been named as a classic example of dynamic allostery in small modular domains. While the PDZ family consists of more than 200 domains, previous efforts have primarily focused on a few well-studied PDZ domains, including PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ. Taken together, experimental and computational studies have identified regions of these domains that are dynamically coupled to ligand binding. These regions include the αA helix, the αB lower-loop, and the αC helix. In this review, we summarize the specific residues on the αA helix, the αB lower-loop, and the αC helix of PTP-BL PDZ2, PSD-95 PDZ3, and Par6 PDZ that have been identified as participants in dynamic allostery by either experimental or computational approaches. This review can serve as an index for researchers to look back on the previously identified allostery in the PDZ family. Interestingly, our summary of previous work reveals clear consistencies between the domains. While the PDZ family has a low sequence identity, we show that some of the most consistently identified allosteric residues within PTP-BL PDZ2 and PSD-95 PDZ3 domains are evolutionarily conserved. These residues include A46/A347, V61/V362, and L66/L367 on PTP-BL PDZ2 and PSD-95 PDZ3, respectively. Finally, we expose a need for future work to explore dynamic allostery within (1) PDZ domains with multiple binding partners and (2) multidomain constructs containing a PDZ domain.
Collapse
Affiliation(s)
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA;
| |
Collapse
|
13
|
Haugaard-Kedström LM, Clemmensen LS, Sereikaite V, Jin Z, Fernandes EFA, Wind B, Abalde-Gil F, Daberger J, Vistrup-Parry M, Aguilar-Morante D, Leblanc R, Egea-Jimenez AL, Albrigtsen M, Jensen KE, Jensen TMT, Ivarsson Y, Vincentelli R, Hamerlik P, Andersen JH, Zimmermann P, Lee W, Strømgaard K. A High-Affinity Peptide Ligand Targeting Syntenin Inhibits Glioblastoma. J Med Chem 2021; 64:1423-1434. [PMID: 33502198 DOI: 10.1021/acs.jmedchem.0c00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the recent advances in cancer therapeutics, highly aggressive cancer forms, such as glioblastoma (GBM), still have very low survival rates. The intracellular scaffold protein syntenin, comprising two postsynaptic density protein-95/discs-large/zona occludens-1 (PDZ) domains, has emerged as a novel therapeutic target in highly malignant phenotypes including GBM. Here, we report the development of a novel, highly potent, and metabolically stable peptide inhibitor of syntenin, KSL-128114, which binds the PDZ1 domain of syntenin with nanomolar affinity. KSL-128114 is resistant toward degradation in human plasma and mouse hepatic microsomes and displays a global PDZ domain selectivity for syntenin. An X-ray crystal structure reveals that KSL-128114 interacts with syntenin PDZ1 in an extended noncanonical binding mode. Treatment with KSL-128114 shows an inhibitory effect on primary GBM cell viability and significantly extends survival time in a patient-derived xenograft mouse model. Thus, KSL-128114 is a novel promising candidate with therapeutic potential for highly aggressive tumors, such as GBM.
Collapse
Affiliation(s)
- Linda M Haugaard-Kedström
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Zeyu Jin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 120-749 Seoul, Korea
| | - Eduardo F A Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bianca Wind
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Flor Abalde-Gil
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jan Daberger
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Diana Aguilar-Morante
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Raphael Leblanc
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Antonio L Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France.,Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Marte Albrigtsen
- Marbio, UiT-The Artic University of Norway, N-9037 Tromsø, Norway
| | - Kamilla E Jensen
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Thomas M T Jensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Campus de Luminy, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Petra Hamerlik
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France.,Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 120-749 Seoul, Korea
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Leblanc R, Kashyap R, Barral K, Egea-Jimenez AL, Kovalskyy D, Feracci M, Garcia M, Derviaux C, Betzi S, Ghossoub R, Platonov M, Roche P, Morelli X, Hoffer L, Zimmermann P. Pharmacological inhibition of syntenin PDZ2 domain impairs breast cancer cell activities and exosome loading with syndecan and EpCAM cargo. J Extracell Vesicles 2020; 10:e12039. [PMID: 33343836 PMCID: PMC7737769 DOI: 10.1002/jev2.12039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes support cell-to-cell communication in physiology and disease, including cancer. We currently lack tools, such as small chemicals, capable of modifying exosome composition and activity in a specific manner. Building on our previous understanding of how syntenin, and its PDZ partner syndecan (SDC), impact on exosome composition we optimized a small chemical compound targeting the PDZ2 domain of syntenin. In vitro , in tests on MCF-7 breast carcinoma cells, this compound is non-toxic and impairs cell proliferation, migration and primary sphere formation. It does not affect the size or the number of secreted particles, yet it decreases the amounts of exosomal syntenin, ALIX and SDC4 while leaving other exosomal markers unaffected. Interestingly, it also blocks the sorting of EpCAM, a bona fide target used for carcinoma exosome immunocapture. Our study highlights the first characterization of a small pharmacological inhibitor of the syntenin-exosomal pathway, of potential interest for exosome research and oncology.
Collapse
Affiliation(s)
- R Leblanc
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - R Kashyap
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - K Barral
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - A L Egea-Jimenez
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - D Kovalskyy
- Enamine Ltd. Kyiv Ukraine.,Taras Shevchenko National University of Kyiv Kyiv Ukraine
| | - M Feracci
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - M Garcia
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - C Derviaux
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - S Betzi
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - R Ghossoub
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - M Platonov
- Enamine Ltd. Kyiv Ukraine.,Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - P Roche
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - X Morelli
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - L Hoffer
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - Pascale Zimmermann
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France.,Department of Human Genetics K. U. Leuven Leuven Belgium
| |
Collapse
|
15
|
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155:104695. [PMID: 32061839 PMCID: PMC7551653 DOI: 10.1016/j.phrs.2020.104695] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Joseph Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, CA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
16
|
Janezic EM, Harris DA, Dinh D, Lee KS, Stewart A, Hinds TR, Hsu PL, Zheng N, Hague C. Scribble co-operatively binds multiple α 1D-adrenergic receptor C-terminal PDZ ligands. Sci Rep 2019; 9:14073. [PMID: 31575922 PMCID: PMC6773690 DOI: 10.1038/s41598-019-50671-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
Many G protein-coupled receptors (GPCRs) are organized as dynamic macromolecular complexes in human cells. Unraveling the structural determinants of unique GPCR complexes may identify unique protein:protein interfaces to be exploited for drug development. We previously reported α1D-adrenergic receptors (α1D-ARs) – key regulators of cardiovascular and central nervous system function – form homodimeric, modular PDZ protein complexes with cell-type specificity. Towards mapping α1D-AR complex architecture, biolayer interferometry (BLI) revealed the α1D-AR C-terminal PDZ ligand selectively binds the PDZ protein scribble (SCRIB) with >8x higher affinity than known interactors syntrophin, CASK and DLG1. Complementary in situ and in vitro assays revealed SCRIB PDZ domains 1 and 4 to be high affinity α1D-AR PDZ ligand interaction sites. SNAP-GST pull-down assays demonstrate SCRIB binds multiple α1D-AR PDZ ligands via a co-operative mechanism. Structure-function analyses pinpoint R1110PDZ4 as a unique, critical residue dictating SCRIB:α1D-AR binding specificity. The crystal structure of SCRIB PDZ4 R1110G predicts spatial shifts in the SCRIB PDZ4 carboxylate binding loop dictate α1D-AR binding specificity. Thus, the findings herein identify SCRIB PDZ domains 1 and 4 as high affinity α1D-AR interaction sites, and potential drug targets to treat diseases associated with aberrant α1D-AR signaling.
Collapse
Affiliation(s)
- Eric M Janezic
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dorathy-Ann Harris
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Diana Dinh
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Kyung-Soon Lee
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Aaron Stewart
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Thomas R Hinds
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Peter L Hsu
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chris Hague
- Department of Pharmacology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
17
|
Syntenin: PDZ Protein Regulating Signaling Pathways and Cellular Functions. Int J Mol Sci 2019; 20:ijms20174171. [PMID: 31454940 PMCID: PMC6747541 DOI: 10.3390/ijms20174171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
Syntenin is an adaptor-like molecule that has two adjacent tandem postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ) domains. The PDZ domains of syntenin recognize multiple peptide motifs with low to moderate affinity. Many reports have indicated interactions between syntenin and a plethora of proteins. Through interactions with various proteins, syntenin regulates the architecture of the cell membrane. As a result, increases in syntenin levels induce the metastasis of tumor cells, protrusion along the neurite in neuronal cells, and exosome biogenesis in various cell types. Here, we review the updated data that support various roles for syntenin in the regulation of neuronal synapses, tumor cell invasion, and exosome control.
Collapse
|
18
|
Wrackmeyer U, Kaldrack J, Jüttner R, Pannasch U, Gimber N, Freiberg F, Purfürst B, Kainmueller D, Schmitz D, Haucke V, Rathjen FG, Gotthardt M. The cell adhesion protein CAR is a negative regulator of synaptic transmission. Sci Rep 2019; 9:6768. [PMID: 31043663 PMCID: PMC6494904 DOI: 10.1038/s41598-019-43150-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022] Open
Abstract
The Coxsackievirus and adenovirus receptor (CAR) is essential for normal electrical conductance in the heart, but its role in the postnatal brain is largely unknown. Using brain specific CAR knockout mice (KO), we discovered an unexpected role of CAR in neuronal communication. This includes increased basic synaptic transmission at hippocampal Schaffer collaterals, resistance to fatigue, and enhanced long-term potentiation. Spontaneous neurotransmitter release and speed of endocytosis are increased in KOs, accompanied by increased expression of the exocytosis associated calcium sensor synaptotagmin 2. Using proximity proteomics and binding studies, we link CAR to the exocytosis machinery as it associates with syntenin and synaptobrevin/VAMP2 at the synapse. Increased synaptic function does not cause adverse effects in KO mice, as behavior and learning are unaffected. Thus, unlike the connexin-dependent suppression of atrioventricular conduction in the cardiac knockout, communication in the CAR deficient brain is improved, suggesting a role for CAR in presynaptic processes.
Collapse
Affiliation(s)
- Uta Wrackmeyer
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Joanna Kaldrack
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - René Jüttner
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.,Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Ulrike Pannasch
- Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117, Berlin, Germany
| | - Niclas Gimber
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fabian Freiberg
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Bettina Purfürst
- Core Facility Electron Microscopy, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dagmar Kainmueller
- Biomedical Image Analysis, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, 13125, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Cluster of Excellence NeuroCure, Charité, 10117, Berlin, Germany
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
| |
Collapse
|
19
|
Das SK, Sarkar D, Emdad L, Fisher PB. MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res 2019; 144:137-191. [PMID: 31349898 DOI: 10.1016/bs.acr.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With few exceptions, metastasis is the terminal stage of cancer with limited therapeutic options. Metastasis consists of numerous phenotypic and genotypic alterations of cells that are directly and indirectly induced by multiple intrinsic (cellular) and extrinsic (micro-environmental) factors. To metastasize, a cancer cell often transitions from an epithelial to mesenchymal morphology (EMT), modifies the extracellular matrix, forms emboli and survives in the circulation, escapes immune surveillance, adheres to sites distant from the initial tumor and finally develops a blood supply (angiogenesis) and colonizes in a secondary niche (a micrometastasis). Scientific advances have greatly enhanced our understanding of the precise molecular and genetic changes, operating independently or collectively, that lead to metastasis. This review focuses on a unique gene, melanoma differentiation associated gene-9 (also known as Syntenin-1; Syndecan Binding Protein (sdcbp); mda-9/syntenin), initially cloned and characterized from metastatic human melanoma and shown to be a pro-metastatic gene. In the last two decades, our comprehension of the diversity of actions of MDA-9/Syntenin on cellular phenotype has emerged. MDA-9/Sytenin plays pivotal regulatory roles in multiple signaling cascades and orchestrates both metastatic and non-metastatic events. Considering the relevance of this gene in controlling cancer invasion and metastasis, approaches have been developed to uniquely and selectively target this gene. We also provide recent updates on strategies that have been successfully employed in targeting MDA-9/Syntenin resulting in profound pre-clinical anti-cancer activity.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
20
|
Yu Y, Li S, Wang K, Wan X. A PDZ Protein MDA-9/Syntenin: As a Target for Cancer Therapy. Comput Struct Biotechnol J 2019; 17:136-141. [PMID: 30766662 PMCID: PMC6360254 DOI: 10.1016/j.csbj.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Melanoma differentiation-associated gene 9 (MDA-9)/Syntenin is a multidomain PDZ protein and identified as a key oncogene in melanoma initially. This protein contains a unique tandem PDZ domain architecture (PDZ1 and PDZ2 spaced by a 4-amino acid linker), an N-terminal domain (NTD) that is structurally uncharacterized and a short C-terminal domain (CTD). The PDZ1 domain is regarded as the PDZ signaling domain while PDZ2 served as the PDZ superfamily domain. It has various cellular roles by regulating many of major signaling pathways in numerous cancertypes. Through the use of novel drug design methods, such as dimerization and unnatural amino acid substitution of inhibitors in our group, the protein may provide a valuable therapeutic target. The objective of this review is to provide a current perspective on the cancer-specific role of MDA-9/Syntenin in order to explore its potential for cancer drug discovery and cancer therapy.
Collapse
Affiliation(s)
- Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Shuangdi Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
21
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
22
|
Nagel M, Winklbauer R. PDGF-A suppresses contact inhibition during directional collective cell migration. Development 2018; 145:dev.162651. [PMID: 29884673 DOI: 10.1242/dev.162651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
The leading-edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase 1 upstream and ephrin B1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass.
Collapse
Affiliation(s)
- Martina Nagel
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| | - Rudolf Winklbauer
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| |
Collapse
|
23
|
Liu J, Qu J, Zhou W, Huang Y, Jia L, Huang X, Qian Z, Xia J, Yu Y. Syntenin-targeted peptide blocker inhibits progression of cancer cells. Eur J Med Chem 2018; 154:354-366. [DOI: 10.1016/j.ejmech.2018.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/12/2023]
|
24
|
Tae N, Lee S, Kim O, Park J, Na S, Lee JH. Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells. Oncotarget 2018; 8:38886-38901. [PMID: 28418925 PMCID: PMC5503580 DOI: 10.18632/oncotarget.16452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Syntenin, a tandem PDZ-domain-containing scaffold protein, is involved in the regulation of diverse biological functions, including protein trafficking, exosome biogenesis, and cancer metastasis. Here, we present the first study to explore the significance of syntenin in endothelial cells. Syntenin knockdown in human umbilical vein endothelial cells (HUVECs) impaired vascular endothelial growth factor (VEGF)-mediated proliferation, migration, invasion, vascular permeability, and nitric oxide (NO) production. Syntenin knockdown also suppressed expression of the VEGFR2 target genes VEGF, MMP2, and Nurr77 as well as VEGF-induced angiogenesis in vitro and in vivo. And it decreased cell-surface levels of ephrin-B2. Biochemical analyses revealed that syntenin exists in complex with VEGFR2 and ephrin-B2. Syntenin knockdown abolished the association between VEGFR2 and ephrin-B2, suggesting syntenin functions as a scaffold protein facilitating their association in HUVECs. Consistent with these observations, knocking down syntenin or ephrin-B2 abolished VEGF-induced endocytosis and VEGFR2 phosphorylation and activation of its downstream signaling molecules. Treatment with MG132, a proteasome inhibitor, rescued the downregulation of ephrin-B2 and VEGFR2 signaling induced by syntenin knockdown. These findings demonstrate that syntenin promotes VEGF signaling and, through its PDZ-dependent interaction with ephrin-B2, enhances VEGF-mediated VEGFR2 endocytosis and subsequent downstream signaling and angiogenesis in endothelial cells.
Collapse
Affiliation(s)
- Nara Tae
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Suhyun Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Okwha Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Juhee Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, school of Medicine, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 243-41, Republic of Korea
| |
Collapse
|
25
|
Wang LK, Pan SH, Chang YL, Hung PF, Kao SH, Wang WL, Lin CW, Yang SC, Liang CH, Wu CT, Hsiao TH, Hong TM, Yang PC. MDA-9/Syntenin-Slug transcriptional complex promote epithelial-mesenchymal transition and invasion/metastasis in lung adenocarcinoma. Oncotarget 2016; 7:386-401. [PMID: 26561205 PMCID: PMC4808006 DOI: 10.18632/oncotarget.6299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022] Open
Abstract
Melanoma differentiation-associated gene-9 (MDA-9)/Syntenin is a novel therapeutic target because it plays critical roles in cancer progression and exosome biogenesis. Here we show that Slug, a key epithelial-mesenchymal-transition (EMT) regulator, is a MDA-9/Syntenin downstream target. Mitogen EGF stimulation increases Slug expression and MDA-9/Syntenin nuclear translocation. MDA-9/Syntenin uses its PDZ1 domain to bind with Slug, and this interaction further leads to HDAC1 recruitment, up-regulation of Slug transcriptional repressor activity, enhanced Slug-mediated EMT, and promotion of cancer invasion and metastasis. The PDZ domains and nuclear localization of MDA-9/Syntenin are both required for promoting Slug-mediated cancer invasion. Clinically, patients with high MDA-9/Syntenin and high Slug expressions were associated with poor overall survival compared to those with low expression in lung adenocarcinomas. Our findings provide evidence that MDA-9/Syntenin acts as a pivotal adaptor of Slug and it transcriptionally enhances Slug-mediated EMT to promote cancer invasion and metastasis.
Collapse
Affiliation(s)
- Lu-Kai Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Doctoral Degree Program of Translational Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Fang Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Wen-Lung Wang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Wen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsien Liang
- Division of Isotope application, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chen-Tu Wu
- Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tse-Ming Hong
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,NTU Center of Genomic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
26
|
Egea-Jimenez AL, Gallardo R, Garcia-Pino A, Ivarsson Y, Wawrzyniak AM, Kashyap R, Loris R, Schymkowitz J, Rousseau F, Zimmermann P. Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling. Nat Commun 2016; 7:12101. [PMID: 27386966 PMCID: PMC5515355 DOI: 10.1038/ncomms12101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/27/2016] [Indexed: 01/01/2023] Open
Abstract
PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Rodrigo Gallardo
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
- VIB Switch Laboratory, Department of Molecular Cellular and Molecular Medicine, VIB-KU Leuven, B-3000 Leuven, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Deptartment of Biotechnology (DBIT), Vrije Universiteit Brussel and Molecular Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Ylva Ivarsson
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Anna Maria Wawrzyniak
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Rudra Kashyap
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| | - Remy Loris
- Structural Biology Brussels, Deptartment of Biotechnology (DBIT), Vrije Universiteit Brussel and Molecular Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Joost Schymkowitz
- VIB Switch Laboratory, Department of Molecular Cellular and Molecular Medicine, VIB-KU Leuven, B-3000 Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Department of Molecular Cellular and Molecular Medicine, VIB-KU Leuven, B-3000 Leuven, Belgium
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068-CNRS UMR7258, Aix-Marseille Université, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Human Genetics, KU Leuven, ON1 Herestraat 49 Box 602, B-3000 Leuven, Belgium
| |
Collapse
|
27
|
Alonso Y Adell M, Migliano SM, Teis D. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J 2016; 283:3288-302. [PMID: 26910595 DOI: 10.1111/febs.13688] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.
Collapse
Affiliation(s)
| | - Simona M Migliano
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
28
|
Garrido-Urbani S, Garg P, Ghossoub R, Arnold R, Lembo F, Sundell GN, Kim PM, Lopez M, Zimmermann P, Sidhu SS, Ivarsson Y. Proteomic peptide phage display uncovers novel interactions of the PDZ1-2 supramodule of syntenin. FEBS Lett 2016; 590:3-12. [PMID: 26787460 PMCID: PMC4819696 DOI: 10.1002/1873-3468.12037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/29/2015] [Indexed: 11/10/2022]
Abstract
Syntenin has crucial roles in cell adhesion, cell migration and synaptic transmission. Its closely linked postsynaptic density-95, discs large 1, zonula occludens-1 (PDZ) domains typically interact with C-terminal ligands. We profile syntenin PDZ1-2 through proteomic peptide phage display (ProP-PD) using a library that displays C-terminal regions of the human proteome. The protein recognizes a broad range of peptides, with a preference for hydrophobic motifs and has a tendency to recognize cryptic internal ligands. We validate the interaction with nectin-1 through orthogonal assays. The study demonstrates the power of ProP-PD as a complementary approach to uncover interactions of potential biological relevance.
Collapse
Affiliation(s)
- Sarah Garrido-Urbani
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, Centre National de la Recherche Scientifique UMR7258, Marseille, France
| | - Pankaj Garg
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Rania Ghossoub
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, Centre National de la Recherche Scientifique UMR7258, Marseille, France
| | - Roland Arnold
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Frédérique Lembo
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, Centre National de la Recherche Scientifique UMR7258, Marseille, France
| | | | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Marc Lopez
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, Centre National de la Recherche Scientifique UMR7258, Marseille, France
| | - Pascale Zimmermann
- Inserm U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille University, Centre National de la Recherche Scientifique UMR7258, Marseille, France.,Department of Human Genetics, KU Leuven, Belgium
| | - Sachdev S Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Sweden
| |
Collapse
|
29
|
Dominiak PM, Volkov A, Li X, Messerschmidt M, Coppens P. A Theoretical Databank of Transferable Aspherical Atoms and Its Application to Electrostatic Interaction Energy Calculations of Macromolecules. J Chem Theory Comput 2015; 3:232-47. [PMID: 26627168 DOI: 10.1021/ct6001994] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A comprehensive version of the theoretical databank of transferable aspherical pseudoatoms is described, and its first application to protein-ligand interaction energies is discussed. The databank contains all atom types present in natural amino acid residues and other biologically relevant molecules. Each atom type results from averaging over a family of chemically unique pseudoatoms, taking into account both first and second neighbors. The spawning procedure is used to ensure that close transferability is obeyed. The databank is applied to the syntenin PDZ2 domain complexed with four-residue peptides and to the PDZ2 dimer. Analysis of the electrostatic interactions energies calculated by the exact-potential/multipole-moment-databank method stresses the importance of the P0 and P-2 residues of the peptide in establishing the interaction, whereas the P-1 residue is shown to play a much smaller role. Unexpectedly, the charged P-3 residue contributes significantly to the interaction. The class I and II peptides are bound with the same strength by the syntenin PDZ2 domain, though the electrostatic interaction energy of the P-2 residue is smaller for class I peptides. There is no difference between the interaction energies of the peptides with PDZ2 domains from single-domain protein fragments and those from PDZ1-PDZ2 tandems.
Collapse
Affiliation(s)
- Paulina M Dominiak
- Department of Chemistry, State University of New York at Buffalo, New York 14260
| | - Anatoliy Volkov
- Department of Chemistry, State University of New York at Buffalo, New York 14260
| | - Xue Li
- Department of Chemistry, State University of New York at Buffalo, New York 14260
| | - Marc Messerschmidt
- Department of Chemistry, State University of New York at Buffalo, New York 14260
| | - Philip Coppens
- Department of Chemistry, State University of New York at Buffalo, New York 14260
| |
Collapse
|
30
|
Hwangbo C, Tae N, Lee S, Kim O, Park OK, Kim J, Kwon SH, Lee JH. Syntenin regulates TGF-β1-induced Smad activation and the epithelial-to-mesenchymal transition by inhibiting caveolin-mediated TGF-β type I receptor internalization. Oncogene 2015; 35:389-401. [PMID: 25893292 DOI: 10.1038/onc.2015.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 01/14/2023]
Abstract
Syntenin, a tandem PDZ domain containing scaffold protein, functions as a positive regulator of cancer cell progression in several human cancers. We report here that syntenin positively regulates transforming growth factor (TGF)-β1-mediated Smad activation and the epithelial-to-mesenchymal transition (EMT) by preventing caveolin-1-mediated internalization of TGF-β type I receptor (TβRI). Knockdown of syntenin suppressed TGF-β1-mediated cell migration, transcriptional responses and Smad2/3 activation in various types of cells; however, overexpression of syntenin facilitated TGF-β1-mediated responses. In particular, syntenin knockdown abolished both the basal and TGF-β1-mediated repression of E-cadherin expression, as well as induction of vimentin expression along with Snail and Slug upregulation; thus, blocking the TGF-β1-induced EMT in A549 cells. In contrast, overexpression of syntenin exhibited the opposite effect. Knockdown of syntenin-induced ubiquitination and degradation of TβRI, but not TGF-β type II receptor, leading to decreased TβRI expression at the plasma membrane. Syntenin associated with TβRI at its C-terminal domain and a syntenin mutant lacking C-terminal domain failed to increase TGF-β1-induced responses. Biochemical analyzes revealed that syntenin inhibited the interaction between caveolin-1 and TβRI and knockdown of syntenin induced a massive internalization of TβRI and caveolin-1 from lipid rafts, indicating that syntenin may increase TGF-β signaling by inhibiting caveolin-1-dependent internalization of TβRI. Moreover, a positive correlation between syntenin expression and phospho-Smad2 levels is observed in human lung tumors. Taken together, these findings demonstrate that syntenin may act as an important positive regulator of TGF-β signaling by regulating caveolin-1-mediated internalization of TβRI; thus, providing a novel function for syntenin that is linked to cancer progression.
Collapse
Affiliation(s)
- C Hwangbo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - N Tae
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - S Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - O Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - O K Park
- Division of Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-Do, Republic of Korea
| | - J Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| | - S-H Kwon
- Division of Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-Do, Republic of Korea
| | - J-H Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, Republic of Korea
| |
Collapse
|
31
|
Fujiwara Y, Goda N, Tamashiro T, Narita H, Satomura K, Tenno T, Nakagawa A, Oda M, Suzuki M, Sakisaka T, Takai Y, Hiroaki H. Crystal structure of afadin PDZ domain-nectin-3 complex shows the structural plasticity of the ligand-binding site. Protein Sci 2015; 24:376-85. [PMID: 25534554 DOI: 10.1002/pro.2628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C-terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ-binding motif, X-Φ-X-Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin-3 C-terminal peptide containing the class II motif. We engineered the nectin-3 C-terminal peptide and AFPDZ to produce an AFPDZ-nectin-3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel β sheet between β2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å-wider ligand-binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin-3 C-terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Division of Structural Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565-0871, Japan; Global-COE (Center of Excellence) Program for Integrative Membrane Biology, Kobe University, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kegelman TP, Das SK, Emdad L, Hu B, Menezes ME, Bhoopathi P, Wang XY, Pellecchia M, Sarkar D, Fisher PB. Targeting tumor invasion: the roles of MDA-9/Syntenin. Expert Opin Ther Targets 2014; 19:97-112. [PMID: 25219541 DOI: 10.1517/14728222.2014.959495] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Melanoma differentiation-associated gene - 9 (MDA-9)/Syntenin has become an increasingly popular focus for investigation in numerous cancertypes. Originally implicated in melanoma metastasis, it has diverse cellular roles and is consistently identified as a regulator of tumor invasion and angiogenesis. As a potential target for inhibiting some of the most lethal aspects of cancer progression, further insight into the function of MDA-9/Syntenin is mandatory. AREAS COVERED Recent literature and seminal articles were reviewed to summarize the latest collective understanding of MDA-9/Syntenin's role in normal and cancerous settings. Insights into its participation in developmental processes are included, as is the functional significance of the N- and C-terminals and PDZ domains of MDA-9/Syntenin. Current reports highlight the clinical significance of MDA-9/Syntenin expression level in a variety of cancers, often correlating directly with reduced patient survival. Also presented are assessments of roles of MDA-9/Syntenin in cancer progression as well as its functions as an intracellular adapter molecule. EXPERT OPINION Multiple studies demonstrate the importance of MDA-9/Syntenin in tumor invasion and progression. Through the use of novel drug design approaches, this protein may provide a worthwhile therapeutic target. As many conventional therapies do not address, or even enhance, tumor invasion, an anti-invasive approach would be a worthwhile addition in cancer therapy.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Virginia Commonwealth University, School of Medicine, Department of Human and Molecular Genetics , Richmond, VA , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gianni S, Dogan J, Jemth P. Distinguishing induced fit from conformational selection. Biophys Chem 2014; 189:33-9. [DOI: 10.1016/j.bpc.2014.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
|
34
|
Mu Y, Cai P, Hu S, Ma S, Gao Y. Characterization of diverse internal binding specificities of PDZ domains by yeast two-hybrid screening of a special peptide library. PLoS One 2014; 9:e88286. [PMID: 24505465 PMCID: PMC3913781 DOI: 10.1371/journal.pone.0088286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are essential events to play important roles in a series of biological processes. There are probably more ways of PPIs than we currently realized. Structural and functional investigations of weak PPIs have lagged behind those of strong PPIs due to technical difficulties. Weak PPIs are often short-lived, which may result in more dynamic signals with important biological roles within and/or between cells. For example, the characteristics of PSD-95/Dlg/ZO-1 (PDZ) domain binding to internal sequences, which are primarily weak interactions, have not yet been systematically explored. In the present study, we constructed a nearly random octapeptide yeast two-hybrid library. A total of 24 PDZ domains were used as baits for screening the library. Fourteen of these domains were able to bind internal PDZ-domain binding motifs (PBMs), and PBMs screened for nine PDZ domains exhibited strong preferences. Among 11 PDZ domains that have not been reported their internal PBM binding ability, six were confirmed to bind internal PBMs. The first PDZ domain of LNX2, which has not been reported to bind C-terminal PBMs, was found to bind internal PBMs. These results suggest that the internal PBMs binding ability of PDZ domains may have been underestimated. The data provided diverse internal binding properties for several PDZ domains that may help identify their novel binding partners.
Collapse
Affiliation(s)
- Yi Mu
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Sucan Ma
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
| | - Youhe Gao
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
35
|
Amacher JF, Cushing PR, Brooks L, Boisguerin P, Madden DR. Stereochemical preferences modulate affinity and selectivity among five PDZ domains that bind CFTR: comparative structural and sequence analyses. Structure 2013; 22:82-93. [PMID: 24210758 DOI: 10.1016/j.str.2013.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
PDZ domain interactions are involved in signaling and trafficking pathways that coordinate crucial cellular processes. Alignment-based PDZ binding motifs identify the few most favorable residues at certain positions along the peptide backbone. However, sequences that bind the CAL (CFTR-associated ligand) PDZ domain reveal only a degenerate motif that overpredicts the true number of high-affinity interactors. Here, we combine extended peptide-array motif analysis with biochemical techniques to show that non-motif "modulator" residues influence CAL binding. The crystallographic structures of 13 CAL:peptide complexes reveal defined, but accommodating stereochemical environments at non-motif positions, which are reflected in modulator preferences uncovered by multisequence substitutional arrays. These preferences facilitate the identification of high-affinity CAL binding sequences and differentially affect CAL and NHERF PDZ binding. As a result, they also help determine the specificity of a PDZ domain network that regulates the trafficking of CFTR at the apical membrane.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Patrick R Cushing
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Lionel Brooks
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Prisca Boisguerin
- Institute of Medical Immunology, Charité, 10115 Berlin, Germany; Centre de Recherches de Biochimie Macromoleculaire, CRBM-CNRS, UMR-5237, UM1-UM2, University of Montpellier, Department of Molecular Biophysics and Therapeutics, 34293 Montpellier, France
| | - Dean R Madden
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
36
|
Christianson HC, Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 2013; 35:51-5. [PMID: 24145152 DOI: 10.1016/j.matbio.2013.10.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022]
Abstract
How various macromolecules are exchanged between cells and how they gain entry into recipient cells are fundamental questions in cell biology with important implications e.g. non-viral drug delivery, infectious disease, metabolic disorders, and cancer. The role of heparan sulfate proteoglycan (HSPG) as a cell-surface receptor of diverse macromolecular cargo has recently been manifested. Exosomes, cell penetrating peptides, polycation-nucleic acid complexes, viruses, lipoproteins, growth factors and morphogens among other ligands enter cells through HSPG-mediated endocytosis. Key questions that partially have been unraveled over recent years include the respective roles of HSPG core protein and HS chain structure specificity for macromolecular cargo endocytosis, the down-stream intracellular signaling events involved in HSPG-dependent membrane invagination and vesicle formation, and the biological significance of the HSPG transport pathway. Here, we discuss the intriguing role of HSPGs as a major entry pathway of macromolecules in mammalian cells with emphasis on recent in vitro and in vivo data that provide compelling evidence of HSPG as an autonomous endocytosis receptor.
Collapse
Affiliation(s)
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden; Skåne University Hospital & Oncology Clinic, Lund, Sweden.
| |
Collapse
|
37
|
Sayed AAA. Molecular studies on chicken melanoma differentiation associated gene-9 (mda-9). Allergol Immunopathol (Madr) 2013; 41:225-32. [PMID: 23245759 DOI: 10.1016/j.aller.2012.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Melanoma differentiation associated (mda) genes in human encode a protein which has a surprising variety and diversity of interaction partners. It is a positive regulator of cancer cell progression in breast cancer, melanoma, and other human cancers. It regulates cell motility and invasion by altering defined biochemical and signalling pathways. METHODS Suppressive subtractive hybridisation (SSH) has been done using a cDNA library prepared from lipopolysaccharides (LPS) stimulated and non-stimulated chicken spleen cells. Then PCR analysis and in situ hybridisation were done for further studies. RESULTS This approach resulted in the identification of important chicken mda fragment. The obtained fragment was about 450bp covering the area from position 500 to position 950 of the human homologue. The expression analysis showed a wide variation in tissues and cell lines. In situ studies revealed mRNA expression in LPS stimulated tissues. CONCLUSION In this study a homologue for a chicken novel gene was described. The chicken melanoma differentiation associated gene-9 (mda-9) gene was found to be expressed in many tissues and cell lines in different levels. The stimulation time course was found to have a wide effect on both tissues and cell lines. The mda-9 gene was localised by in situ hybridisation and the effect of LPS stimulation was investigated.
Collapse
Affiliation(s)
- A A A Sayed
- Department of Zoology, Faculty of Science, 61519 Minia University, El-Minia, Egypt.
| |
Collapse
|
38
|
Yang Y, Hong Q, Shi P, Liu Z, Luo J, Shao Z. Elevated expression of syntenin in breast cancer is correlated with lymph node metastasis and poor patient survival. Breast Cancer Res 2013; 15:R50. [PMID: 23786877 PMCID: PMC4053163 DOI: 10.1186/bcr3442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Syntenin is a scaffolding-PDZ domain-containing protein. Although it is reported that syntenin is associated with melanoma growth and metastasis, the possible role of syntenin in breast cancer has not been well elucidated. The present study investigated the expression and function of syntenin in breast cancer. METHODS Real-time polymerase chain reaction (PCR) and Western blots were used to determine the mRNA and protein expression of syntenin. With a combination of overexpression and RNA interference, the effect of syntenin on migration, invasion, and ERK1/2 activation was examined in breast cancer cell lines. The effect of syntenin in vivo was assessed with an orthotropic xenograft tumor model in BALB/c nu/nu mice. In addition, the expression level of syntenin in clinical breast cancer tissues was evaluated with immunohistochemistry. The Kaplan-Meier survival curve was used to evaluate patient survival, and the Cox proportional hazards model was used for multivariate analysis. RESULTS Our study showed that syntenin expression was upregulated in high-metastasis breast cancer cell lines and breast cancer tissues. Overexpression of syntenin in breast cancer cells promoted cell migration and invasion in vitro. Moreover, overexpression of syntenin promoted breast tumor growth and lung metastasis in vivo. We further showed that activation of integrin β1 and ERK1/2 was required for syntenin-mediated migration and invasion of breast cancer cells. The correlation between syntenin expression and tumor size (P = 0.011), lymph node status (P = 0.001), and recurrence (P = 0.002) was statistically significant. More important, syntenin expression in primary tumors was significantly related to patients' overall survival (OS; P = 0.023) and disease-free survival (DFS; P = 0.001). Its status was an independent prognostic factor of OS (P = 0.049) and DFS (P = 0.002) in our cohort of patients. CONCLUSIONS These results suggest that syntenin plays a significant role in breast cancer progression, and it warrants further investigation as a candidate molecular marker of breast cancer metastasis and a potential therapeutic target.
Collapse
|
39
|
Ligand-induced dynamic changes in extended PDZ domains from NHERF1. J Mol Biol 2013; 425:2509-28. [PMID: 23583913 DOI: 10.1016/j.jmb.2013.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
The multi-domain scaffolding protein NHERF1 modulates the assembly and intracellular trafficking of various transmembrane receptors and ion-transport proteins. The two PDZ (postsynaptic density 95/disk large/zonula occluden 1) domains of NHERF1 possess very different ligand-binding capabilities: PDZ1 recognizes a variety of membrane proteins with high affinity, while PDZ2 only binds limited number of target proteins. Here using NMR, we have determined the structural and dynamic mechanisms that differentiate the binding affinities of the two PDZ domains, for the type 1 PDZ-binding motif (QDTRL) in the carboxyl terminus of cystic fibrosis transmembrane regulator. Similar to PDZ2, we have identified a helix-loop-helix subdomain coupled to the canonical PDZ1 domain. The extended PDZ1 domain is highly flexible with correlated backbone motions on fast and slow timescales, while the extended PDZ2 domain is relatively rigid. The malleability of the extended PDZ1 structure facilitates the transmission of conformational changes at the ligand-binding site to the remote helix-loop-helix extension. By contrast, ligand binding has only modest effects on the conformation and dynamics of the extended PDZ2 domain. The study shows that ligand-induced structural and dynamic changes coupled with sequence variation at the putative PDZ binding site dictate ligand selectivity and binding affinity of the two PDZ domains of NHERF1.
Collapse
|
40
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
41
|
Chi CN, Bach A, Strømgaard K, Gianni S, Jemth P. Ligand binding by PDZ domains. Biofactors 2012; 38:338-48. [PMID: 22674855 DOI: 10.1002/biof.1031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/03/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.
Collapse
Affiliation(s)
- Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
42
|
Roper JA, Williamson RC, Bass MD. Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 2012; 22:583-90. [PMID: 22841476 PMCID: PMC3712168 DOI: 10.1016/j.sbi.2012.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Abstract
The syndecan family of transmembrane proteoglycans cooperate with integrins to regulate both early and late events in adhesion formation. The heparan sulphate chains substituted on to the syndecan ectodomains are capable of engaging ligands over great distance, while the protein core spans the plasma membrane and initiates cytoplasmic signals through a short cytoplasmic tail. These properties create a spatial paradox. The volume of the heparan sulphate chains greatly exceeds that of the integrins with which it cooperates, while the short cytodomain must bind to multiple cytoplasmic factors, despite being long enough to bind only one or two. In this review we consider the structural rearrangements that a cell undertakes to overcome spatial restrictions and compare the interactomes of syndecans and integrins to gain insight into the composition of adhesions and how they are regulated over time.
Collapse
Affiliation(s)
- James A Roper
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
43
|
Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 2012; 586:2638-47. [PMID: 22576124 PMCID: PMC7094393 DOI: 10.1016/j.febslet.2012.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022]
Abstract
The PDZ domain is a protein-protein interacting module that plays an important role in the organization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also includes recognition of internal peptide sequences, dimerization and phospholipid binding. The PDZ function can be tuned by various means such as allosteric effects, changes of physiological buffer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Hruska M, Dalva MB. Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci 2012; 50:35-44. [PMID: 22449939 DOI: 10.1016/j.mcn.2012.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022] Open
Abstract
Synapses enable the transmission of information within neural circuits and allow the brain to change in response to experience. During the last decade numerous proteins that can induce synapse formation have been identified. Many of these synaptic inducers rely on trans-synaptic cell-cell interactions to generate functional contacts. Moreover, evidence now suggests that the same proteins that function early in development to regulate synapse formation may help to maintain and/or regulate the function and plasticity of mature synapses. One set of receptors and ligands that appear to impact both the development and the mature function of synapses are Eph receptors (erythropoietin-producing human hepatocellular carcinoma cell line) and their surface associated ligands, ephrins (Eph family receptor interacting proteins). Ephs can initiate new synaptic contacts, recruit and stabilize glutamate receptors at nascent synapses and regulate dendritic spine morphology. Recent evidence demonstrates that ephrin ligands also play major roles at synapses. Activation of ephrins by Eph receptors can induce synapse formation and spine morphogenesis, whereas in the mature nervous system ephrin signaling modulates synaptic function and long-term changes in synaptic strength. In this review we will summarize the recent progress in understanding the role of ephrins in presynaptic and postsynaptic differentiation, and synapse development, function and plasticity.
Collapse
Affiliation(s)
- Martin Hruska
- Department of Neuroscience and the Farber Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
45
|
Hwangbo C, Park J, Lee JH. mda-9/Syntenin protein positively regulates the activation of Akt protein by facilitating integrin-linked kinase adaptor function during adhesion to type I collagen. J Biol Chem 2011; 286:33601-12. [PMID: 21828040 DOI: 10.1074/jbc.m110.206789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.
Collapse
Affiliation(s)
- Cheol Hwangbo
- Medical and Biomaterials Research Center and Department of Biochemistry, College of Natural Sciences, Kangwon National University Chuncheon 200-701, Korea
| | | | | |
Collapse
|
46
|
EphB4/ephrinB2 Reverse Signaling Regulates Expression Levels of PDZ-domain Proteins During Osteoclast Differentiation of RAW264.7 Cells*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
The molecular genetics of autism spectrum disorders: genomic mechanisms, neuroimmunopathology, and clinical implications. AUTISM RESEARCH AND TREATMENT 2011; 2011:398636. [PMID: 22937247 PMCID: PMC3420760 DOI: 10.1155/2011/398636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.
Collapse
|
48
|
Kong HJ, Kim JM, Moon JH, Kim YO, Nam BH, Kim WJ, Lee JH, Lee SJ, Kim KK, Yeo SY, Lee CH. Hypoxia induces the PDZ domain-containing syntenin in the marine teleost Paralichthys olivaceus. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:195-201. [PMID: 20382261 DOI: 10.1016/j.cbpc.2010.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022]
Abstract
Syntenin is a scaffolding PDZ domain-containing protein with diverse biological activities, including organization of protein complexes in the plasma membrane, regulation of B-cell development, intracellular trafficking, synaptic transmission, and cancer metastasis. In the present study, we isolated and characterized the cDNA of the olive flounder Paralichthys olivaceus syntenin, designated PoSyntenin. The full-length CDS of PoSyntenin with 5'- and 3'-UTR sequences is 2618bp long and consists of a 909bp open reading frame preceded by a 161bp 5'-UTR and followed by a 1551bp 3'-UTR. The PoSyntenin cDNA encodes a polypeptide of 302 amino acids containing two PDZ domains, which shares 61-80% homology with those of other species, including humans. Expression of the PoSyntenin mRNA was detectable from 1day post-hatching and constitutively in the brain, spleen, intestine, stomach, eye, liver, kidney, and gill of normal conditioned fish. Expression of the PoSyntenin mRNA was upregulated in the eye, liver, kidney, spleen, brain, gill, and intestine of flounder under hypoxia and was increased by treatment with the hypoxia-mimic CoCl(2) (a HIF-1 inducer) in HINAE cells. Taken together, these results suggest that PoSyntenin is a hypoxia target gene that has a potential role in the hypoxia response mechanism of fish.
Collapse
Affiliation(s)
- Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kalyoncu S, Keskin O, Gursoy A. Interaction prediction and classification of PDZ domains. BMC Bioinformatics 2010; 11:357. [PMID: 20591147 PMCID: PMC2909223 DOI: 10.1186/1471-2105-11-357] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background PDZ domain is a well-conserved, structural protein domain found in hundreds of signaling proteins that are otherwise unrelated. PDZ domains can bind to the C-terminal peptides of different proteins and act as glue, clustering different protein complexes together, targeting specific proteins and routing these proteins in signaling pathways. These domains are classified into classes I, II and III, depending on their binding partners and the nature of bonds formed. Binding specificities of PDZ domains are very crucial in order to understand the complexity of signaling pathways. It is still an open question how these domains recognize and bind their partners. Results The focus of the current study is two folds: 1) predicting to which peptides a PDZ domain will bind and 2) classification of PDZ domains, as Class I, II or I-II, given the primary sequences of the PDZ domains. Trigram and bigram amino acid frequencies are used as features in machine learning methods. Using 85 PDZ domains and 181 peptides, our model reaches high prediction accuracy (91.4%) for binary interaction prediction which outperforms previously investigated similar methods. Also, we can predict classes of PDZ domains with an accuracy of 90.7%. We propose three critical amino acid sequence motifs that could have important roles on specificity pattern of PDZ domains. Conclusions Our model on PDZ interaction dataset shows that our approach produces encouraging results. The method can be further used as a virtual screening technique to reduce the search space for putative candidate target proteins and drug-like molecules of PDZ domains.
Collapse
Affiliation(s)
- Sibel Kalyoncu
- Center for Computational Biology and Bioinformatics, College of Engineering, Koc University, Rumelifeneri Yolu 34450 Sariyer, Istanbul, Turkey
| | | | | |
Collapse
|
50
|
Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 2010; 8:8. [PMID: 20509869 PMCID: PMC2891790 DOI: 10.1186/1478-811x-8-8] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/28/2010] [Indexed: 02/07/2023] Open
Abstract
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Structural Biology, St, Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|