1
|
Murtazalieva K, Mu A, Petrovskaya A, Finn RD. The growing repertoire of phage anti-defence systems. Trends Microbiol 2024; 32:1212-1228. [PMID: 38845267 DOI: 10.1016/j.tim.2024.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 12/06/2024]
Abstract
The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date. These ADSs counteract 27 of the 152 different bacterial defence families, and we hypothesise that many more ADSs are yet to be discovered. We discuss high-throughput approaches (computational and experimental) which are indispensable for discovering new ADSs and the limitations of these approaches. A comprehensive characterisation of phage ADSs is critical for understanding phage-host interplay and developing clinical applications, such as treatment for multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Khalimat Murtazalieva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Andre Mu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Aleksandra Petrovskaya
- Nencki Institute of Experimental Biology, Warsaw, Poland; University of Copenhagen, Copenhagen, Denmark
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| |
Collapse
|
2
|
Matera A, Dulak K, Werner H, Sordon S, Huszcza E, Popłoński J. Investigation on production and reaction conditions of sucrose synthase based glucosylation cascade towards flavonoid modification. Bioorg Chem 2024; 146:107287. [PMID: 38503024 DOI: 10.1016/j.bioorg.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Hanna Werner
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
3
|
Erlitzki N, Kohli RM. An Overview of Global, Local, and Base-Resolution Methods for the Detection of 5-Hydroxymethylcytosine in Genomic DNA. Methods Mol Biol 2024; 2842:325-352. [PMID: 39012604 DOI: 10.1007/978-1-0716-4051-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The discovery of 5-hydroxymethylcytosine (5hmC) as a common DNA modification in mammalian genomes has ushered in new areas of inquiry regarding the dynamic epigenome. The balance between 5hmC and its precursor, 5-methylcytosine (5mC), has emerged as a determinant of key processes including cell fate specification, and alterations involving these bases have been implicated in the pathogenesis of various diseases. The identification of 5hmC separately from 5mC initially posed a challenge given that legacy epigenetic sequencing technologies could not discriminate between these two most abundant modifications, a significant blind spot considering their potentially functionally opposing roles. The growing interest in 5hmC, as well as in the Ten-Eleven Translocation (TET) family enzymes that catalyze its generation and further oxidation to 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), has spurred the development of versatile methods for 5hmC detection. These methods enable the quantification and localization of 5hmC in diverse biological samples and, in some cases, at the resolution of individual nucleotides. However, navigating this growing toolbox of methods for 5hmC detection can be challenging. Here, we detail existing and emerging methods for the detection, quantification, and localization of 5hmC at global, locus-specific, and base resolution levels. These methods are discussed in the context of their advantages and limitations, with the goal of providing a framework to help guide researchers in choosing the level of resolution and the associated method that could be most suitable for specific needs.
Collapse
Affiliation(s)
- Noa Erlitzki
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Jiang S, Shi H, Zhang Q, Wang ZY, Zhang Y, Zhang CY. Rolling circle transcription amplification-directed construction of tandem spinach-based fluorescent light-up biosensor for label-free sensing of β-glucosyltransferase activity. Biosens Bioelectron 2023; 237:115513. [PMID: 37419074 DOI: 10.1016/j.bios.2023.115513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
β-glucosyltransferase (β-GT) can specifically catalyze the conversion of 5-hydroxymethylcytosine (5-hmC) to 5-glucosylhydroxy methylcytosine (5-ghmC), and it is associated with the control of phage-specific gene expression by affecting transcription process in vivo and in vitro. The current strategies for β-GT assay usually involve expensive equipment, laborious treatment, radioactive hazard, and poor sensitivity. Here, we report a Spinach-based fluorescent light-up biosensor for label-free measurement of β-GT activity by utilizing 5-hmC glucosylation-initiated rolling circle transcription amplification (RCTA). We design a 5-hmC-modified multifunctional circular detection probe (5-hmC-MCDP) that integrates the functions of target-recognition, signal transduction, and transcription amplification in one probe. The introduction of β-GT catalyzes 5-hmC glucosylation of 5-hmC-MCDP probe, protecting the glucosylated 5-mC-MCDP probe from the cleavage by MspI. The remaining 5-hmC-MCDP probe can initiate RCTA reaction with the aid of T7 RNA polymerase, generating tandem Spinach RNA aptamers. The tandem Spinach RNA aptamers can be lightened up by fluorophore 3,5-difluoro-4-hydroxybenzylidene imidazolinone, facilitating label-free measurement of β-GT activity. Notably, the high specificity of MspI-catalyzed cleavage of nonglucosylated probe can efficiently inhibit nonspecific amplification, endowing this assay with a low background. Due to the higher efficiency of RCTA than the canonical promoter-initiated RNA synthesis, the signal-to-noise ratio of RCTA is 4.6-fold higher than that of linear template-based transcription amplification. This method is capable of sensitively detecting β-GT activity with a limit of detection of 2.03 × 10-5 U/mL, and it can be used for the screening of inhibitors and determination of kinetic parameters, with great potential in epigenetic research and drug discovery.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Huanhuan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Kaur N, Nayakoti S, Brock N, Halford NG. Uncovering plant epigenetics: new insights into cytosine methylation in rye genomes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3395-3398. [PMID: 37369102 DOI: 10.1093/jxb/erad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This article comments on:
Kalinka A, Starczak M, Gackowski D, Stępień E, Achrem M. 2023. Global DNA 5-hydroxymethylcytosine level and its chromosomal distribution in four rye species. Journal of Experimental Botany 74, 3488–3502.
Collapse
Affiliation(s)
- Navneet Kaur
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | - Natasha Brock
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
6
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Bhat KS, Byun S, Alam A, Ko M, An J, Lim S. A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti 3C 2 MXene-based electrochemical sensor. Talanta 2022; 244:123421. [PMID: 35397322 DOI: 10.1016/j.talanta.2022.123421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
5-hydroxymethylcytosine (5hmC) is a key epigenetic mark in the mammalian genome that has been proposed as a promising cancer biomarker with diagnostic and prognostic potentials. A new type of two-dimensional (2D) material called MXene includes transition metal carbides and nitrides and possesses unique physico-chemical properties suitable for diverse applications, including electrochemical sensors. Here, we report a new nozzle-jet printed electrochemical sensor using gold nanoparticles (AuNPs)@Ti3C2 MXene nanocomposite for the real-time and label-free detection of 5hmC in the genome. We utilized Ti3C2 MXene as a platform to immobilize AuNPs, which have been shown to exhibit different affinity interactions toward 5-methylcytosine (5 mC) and 5hmC, and thus produce distinct electrochemical responses. To fabricate the electrode, a highly conductive and adhesive silver ink was prepared to generate a silver line onto polyethylene terephthalate (PET) substrate using nozzle-jet printing, followed by deposition of AuNPs@Ti3C2 MXene ink at one end via dropcasting. Analyses of morphology and chemical composition showed that all steps of the sensor fabrication were successful. The fabricated sensor coupled with cyclic voltammetry showed excellent performance in distinguishing 5 mC- or 5hmC-enriched cellular genomic DNAs. As a proof-of-concept investigation, we confirmed that our sensor readily and consistently detected 5hmC diminution in multiple tumors, compared to the paired normal tissues. Thus, our simple and cost-effective sensing strategy using printable AuNPs@Ti3C2 MXene ink holds promise for a wide range of practical applications in epigenetic studies as well as clinical settings.
Collapse
Affiliation(s)
- Kiesar Sideeq Bhat
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Seongjun Byun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Aba-Seq: High-Resolution Enzymatic Mapping of Genomic 5-Hydroxymethylcytosine. Methods Mol Biol 2021. [PMID: 34009606 DOI: 10.1007/978-1-0716-1294-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Aba-Seq (DNA modification-dependent restriction endonuclease AbaSI coupled with sequencing) provides a cost-effective and non-chemical based method for the high-resolution mapping of genomic 5-hydroxymethylcytosine (5hmC). The high specificity of the AbaSI enzyme allows sensitive detection of 5hmC in the genome. Here, we describe the Aba-Seq technique that was used for the high-resolution mapping of 5hmC in the genome of mouse embryonic stem cells (E14).
Collapse
|
9
|
Liu M, Li CC, Luo X, Ma F, Zhang CY. 5-Hydroxymethylcytosine Glucosylation-Triggered Helicase-Dependent Amplification-Based Fluorescent Biosensor for Sensitive Detection of β-Glucosyltransferase with Zero Background Signal. Anal Chem 2020; 92:16307-16313. [DOI: 10.1021/acs.analchem.0c04382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Gibas P, Narmontė M, Staševskij Z, Gordevičius J, Klimašauskas S, Kriukienė E. Precise genomic mapping of 5-hydroxymethylcytosine via covalent tether-directed sequencing. PLoS Biol 2020; 18:e3000684. [PMID: 32275660 PMCID: PMC7176277 DOI: 10.1371/journal.pbio.3000684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 01/20/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) is the most prevalent intermediate on the oxidative DNA demethylation pathway and is implicated in regulation of embryogenesis, neurological processes, and cancerogenesis. Profiling of this relatively scarce genomic modification in clinical samples requires cost-effective high-resolution techniques that avoid harsh chemical treatment. Here, we present a bisulfite-free approach for 5hmC profiling at single-nucleotide resolution, named hmTOP-seq (5hmC-specific tethered oligonucleotide–primed sequencing), which is based on direct sequence readout primed at covalently labeled 5hmC sites from an in situ tethered DNA oligonucleotide. Examination of distinct conjugation chemistries suggested a structural model for the tether-directed nonhomologous polymerase priming enabling theoretical evaluation of suitable tethers at the design stage. The hmTOP-seq procedure was optimized and validated on a small model genome and mouse embryonic stem cells, which allowed construction of single-nucleotide 5hmC maps reflecting subtle differences in strand-specific CG hydroxymethylation. Collectively, hmTOP-seq provides a new valuable tool for cost-effective and precise identification of 5hmC in characterizing its biological role and epigenetic changes associated with human disease. This study describes hmTOP-seq, a bisulfite-free approach for profiling of the epigenetic mark 5-hydroxymethylcytosine (5hmC) at single-nucleotide resolution, based on direct sequence readout primed at an in situ tethered DNA oligonucleotide.
Collapse
Affiliation(s)
- Povilas Gibas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Narmontė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Zdislav Staševskij
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juozas Gordevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- * E-mail: (SK); (EK)
| | - Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- * E-mail: (SK); (EK)
| |
Collapse
|
11
|
Ferrucci L, Gonzalez‐Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, de Cabo R. Measuring biological aging in humans: A quest. Aging Cell 2020; 19:e13080. [PMID: 31833194 PMCID: PMC6996955 DOI: 10.1111/acel.13080] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
The global population of individuals over the age of 65 is growing at an unprecedented rate and is expected to reach 1.6 billion by 2050. Most older individuals are affected by multiple chronic diseases, leading to complex drug treatments and increased risk of physical and cognitive disability. Improving or preserving the health and quality of life of these individuals is challenging due to a lack of well-established clinical guidelines. Physicians are often forced to engage in cycles of "trial and error" that are centered on palliative treatment of symptoms rather than the root cause, often resulting in dubious outcomes. Recently, geroscience challenged this view, proposing that the underlying biological mechanisms of aging are central to the global increase in susceptibility to disease and disability that occurs with aging. In fact, strong correlations have recently been revealed between health dimensions and phenotypes that are typical of aging, especially with autophagy, mitochondrial function, cellular senescence, and DNA methylation. Current research focuses on measuring the pace of aging to identify individuals who are "aging faster" to test and develop interventions that could prevent or delay the progression of multimorbidity and disability with aging. Understanding how the underlying biological mechanisms of aging connect to and impact longitudinal changes in health trajectories offers a unique opportunity to identify resilience mechanisms, their dynamic changes, and their impact on stress responses. Harnessing how to evoke and control resilience mechanisms in individuals with successful aging could lead to writing a new chapter in human medicine.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Marta Gonzalez‐Freire
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Elisa Fabbri
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Eleanor Simonsick
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Toshiko Tanaka
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Zenobia Moore
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - Shabnam Salimi
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Felipe Sierra
- Division of Aging BiologyNational Institute on AgingNIHBethesdaMDUSA
| | - Rafael de Cabo
- Translational Gerontology BranchBiomedical Research CenterNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| |
Collapse
|
12
|
|
13
|
Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS GENETICS 2019; 6:70-87. [PMID: 31922011 PMCID: PMC6949463 DOI: 10.3934/genet.2019.4.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/07/2019] [Indexed: 12/21/2022]
Abstract
Variation in patterns of gene expression can result from modifications in the genome that occur without a change in the sequence of the DNA; such modifications include methylation of cytosine to generate 5-methylcytosine (5mC) resulting in the generation of heritable epimutation and novel epialleles. This type of non-sequence variation is called epigenetics. The enzymes responsible for generation of such DNA modifications in mammals are named DNA methyltransferases (DNMT) including DNMT1, DNMT2 and DNMT3. The later stages of oxidations to these modifications are catalyzed by Ten Eleven Translocation (TET) proteins, which contain catalytic domains belonging to the 2-oxoglutarate dependent dioxygenase family. In various mammalian cells/tissues including embryonic stem cells, cancer cells and brain tissues, it has been confirmed that these proteins are able to induce the stepwise oxidization of 5-methyl cytosine to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and finally 5-carboxylcytosine (5caC). Each stage from initial methylation until the end of the DNA demethylation process is considered as a specific epigenetic mark that may regulate gene expression. This review discusses controversial evidence for the presence of such oxidative products, particularly 5hmC, in various plant species. Whereas some reports suggest no evidence for enzymatic DNA demethylation, other reports suggest that the presence of oxidative products is followed by the active demethylation and indicate the contribution of possible TET-like proteins in the regulation of gene expression in plants. The review also summarizes the results obtained by expressing the human TET conserved catalytic domain in transgenic plants.
Collapse
Affiliation(s)
- Asaad M Mahmood
- Department of Biology, College of Education, University of Garmian, Kalar, KRG/Iraq
| | - Jim M Dunwell
- School of School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
14
|
Johnson ND, Huang L, Li R, Li Y, Yang Y, Kim HR, Grant C, Wu H, Whitsel EA, Kiel DP, Baccarelli AA, Jin P, Murabito JM, Conneely KN. Age-related DNA hydroxymethylation is enriched for gene expression and immune system processes in human peripheral blood. Epigenetics 2019; 15:294-306. [PMID: 31506003 DOI: 10.1080/15592294.2019.1666651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
DNA methylation (DNAm) has a well-established association with age in many tissues, including peripheral blood mononuclear cells (PBMCs). Compared to DNAm, the closely related epigenetic modification known as DNA hydroxymethylation (DNAhm) was much more recently discovered in mammals. Preliminary investigations have observed a positive correlation between gene body DNAhm and cis-gene expression. While some of these studies have observed an association between age and global DNAhm, none have investigated region-specific age-related DNAhm in human blood samples. In this study, we investigated DNAhm and gene expression in PBMCs of 10 young and 10 old, healthy female volunteers. Thousands of regions were differentially hydroxymethylated in the old vs. young individuals in gene bodies, exonic regions, enhancers, and promoters. Consistent with previous work, we observed directional consistency between age-related differences in DNAhm and gene expression. Further, age-related DNAhm and genes with high levels of DNAhm were enriched for immune system processes which may support a role of age-related DNAhm in immunosenescence.
Collapse
Affiliation(s)
- Nicholas D Johnson
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Yuchen Yang
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hye Rim Kim
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Cancer Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Crystal Grant
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas P Kiel
- Hebrew SeniorLife, Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Joanne M Murabito
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.,Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
The role of DNA methylation and hydroxymethylation in immunosenescence. Ageing Res Rev 2019; 51:11-23. [PMID: 30769150 DOI: 10.1016/j.arr.2019.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
A healthy functioning immune system is critical to stave off infectious diseases, but as humans and other organisms age, their immune systems decline. As a result, diseases that were readily thwarted in early life pose nontrivial harm and can even be deadly in late life. Immunosenescence is defined as the general deterioration of the immune system with age, and it is characterized by functional changes in hematopoietic stem cells (HSCs) and specific blood cell types as well as changes in levels of numerous factors, particularly those involved in inflammation. Potential mechanisms underlying immunosenescence include epigenetic changes such as changes in DNA methylation (DNAm) and DNA hydroxymethylation (DNAhm) that occur with age. The purpose of this review is to describe what is currently known about the relationship between immunosenescence and the age-related changes to DNAm and DNAhm, and to discuss experimental approaches best suited to fill gaps in our understanding.
Collapse
|
16
|
Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front Genet 2018; 9:640. [PMID: 30619465 PMCID: PMC6305559 DOI: 10.3389/fgene.2018.00640] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Modification of DNA bases plays vital roles in the epigenetic control of gene expression in both animals and plants. Though much attention is given to the conventional epigenetic signature 5-methylcytosine (5-mC), the field of epigenetics is attracting increased scientific interest through the discovery of additional modifications of DNA bases and their roles in controlling gene expression. Theoretically, each of the DNA bases can be modified; however, modifications of cytosine and adenine only are known so far. This review focuses on the recent findings of the well-studied cytosine modifications and yet poorly characterized adenine modification which serve as an additional layer of epigenetic regulation in animals and discuss their potential roles in plants. Cytosine modification at symmetric (CG, CHG) and asymmetric (CHH) contexts is a key epigenetic feature. In addition to the ROS1 family mediated demethylation, Ten-Eleven Translocation family proteins-mediated hydroxylation of 5-mC to 5-hydroxymethylcytosine as additional active demethylation pathway are also discussed. The epigenetic marks are known to be associated with the regulation of several cellular and developmental processes, pluripotency of stem cells, neuron cell development, and tumor development in animals. Therefore, the most recently discovered N6-methyladenine, an additional epigenetic mark with regulatory potential, is also described. Interestingly, these newly discovered modifications are also found in the genomes which lack canonical 5-mC, signifying their independent epigenetic functions. These modified DNA bases are considered to be important players in epigenomics. The potential for combinatorial interaction among the known modified DNA bases suggests that epigenetic codon is likely to be substantially more complicated than it is thought today.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | |
Collapse
|
17
|
Shi DQ, Ali I, Tang J, Yang WC. New Insights into 5hmC DNA Modification: Generation, Distribution and Function. Front Genet 2017; 8:100. [PMID: 28769976 PMCID: PMC5515870 DOI: 10.3389/fgene.2017.00100] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023] Open
Abstract
Dynamic DNA modifications, such as methylation/demethylation on cytosine, are major epigenetic mechanisms to modulate gene expression in both eukaryotes and prokaryotes. In addition to the common methylation on the 5th position of the pyrimidine ring of cytosine (5mC), other types of modifications at the same position, such as 5-hydroxymethyl (5hmC), 5-formyl (5fC), and 5-carboxyl (5caC), are also important. Recently, 5hmC, a product of 5mC demethylation by the Ten-Eleven Translocation family proteins, was shown to regulate many cellular and developmental processes, including the pluripotency of embryonic stem cells, neuron development, and tumorigenesis in mammals. Here, we review recent advances on the generation, distribution, and function of 5hmC modification in mammals and discuss its potential roles in plants.
Collapse
Affiliation(s)
- Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Jun Tang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
18
|
Wang X, Guo T, Wang S, Chen X, Chen Y, Yuan J, Zhao R. Determination of 5-hydroxymethyl-2′-deoxycytidine in Rice by High-performance Liquid Chromatography–Tandem Mass Spectrometry with Isotope Dilution. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1286668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiaoli Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Tao Guo
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shanshan Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Yue Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Jinpeng Yuan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| | - Rusong Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
19
|
Sudhamalla B, Dey D, Breski M, Islam K. A rapid mass spectrometric method for the measurement of catalytic activity of ten-eleven translocation enzymes. Anal Biochem 2017. [PMID: 28647531 DOI: 10.1016/j.ab.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic methylation at carbon five on cytosine (5mC) in DNA is a hallmark of mammalian epigenetic programming and is critical to gene regulation during early embryonic development. It has recently been shown that dynamic erasure of 5mC by three members of the ten-eleven translocation (TET) family plays a key role in cellular differentiation. TET enzymes belong to Fe (II)- and 2-ketoglutarate (2KG) dependent dioxygenases that successively oxidize 5mC to 5-hydroxymethyl cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5CaC), thus providing a chemical basis for the removal of 5mC which once was thought to be a permanent mark in mammalian genome. Since then a wide range of biochemical assays have been developed to characterize TET activity. Majority of these methods require multi-step processing to detect and quantify the TET-mediated oxidized products. In this study, we have developed a MALDI mass spectrometry based method that directly measures the TET activity with high sensitivity while eliminating the need for any intermediate processing steps. We applied this method to the measurement of enzymatic activity of TET2 and 3, Michaleis-Menten parameters (KM and kcat) of TET-2KG pairs and inhibitory concentration (IC50) of known small-molecule inhibitors of TETs. We further demonstrated the suitability of the assay to analyze chemoenzymatic labeling of 5hmC by β-glucosyltransferase, highlighting the potential for broad application of our method in deconvoluting the functions of novel DNA demethylases.
Collapse
Affiliation(s)
- Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Debasis Dey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Megan Breski
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
Kizaki S, Zou T, Li Y, Han YW, Suzuki Y, Harada Y, Sugiyama H. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein. Chemistry 2016; 22:16598-16601. [PMID: 27689340 DOI: 10.1002/chem.201602435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/31/2023]
Abstract
Tet (ten-eleven translocation) family proteins oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), and are suggested to be involved in the active DNA demethylation pathway. In this study, we reconstituted positioned mononucleosomes using CpG-methylated 382 bp DNA containing the Widom 601 sequence and recombinant histone octamer, and subjected the nucleosome to treatment with Tet1 protein. The sites of oxidized methylcytosine were identified by bisulfite sequencing. We found that, for the oxidation reaction, Tet1 protein prefers mCs located in the linker region of the nucleosome compared with those located in the core region.
Collapse
Affiliation(s)
- Seiichiro Kizaki
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Tingting Zou
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Yue Li
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan
| | - Yong-Woon Han
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Yuki Suzuki
- Department of Robotics, Graduate School of Engineering, Tohoku University, Aramaki aza Aoba 6-6-01M2-519, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshie Harada
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan.
| |
Collapse
|
21
|
Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG. Replacement of Thymidine by a Modified Base in the Escherichia coli Genome. J Am Chem Soc 2016; 138:7272-5. [PMID: 27213685 DOI: 10.1021/jacs.6b03904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prokaryotic and eukaryotic genomic DNA is comprised of the four building blocks A, G, C, and T. We have begun to explore the consequences of replacing a large fraction or all of a nucleoside in genomic DNA with a modified nucleoside. As a first step we have investigated the possibility of replacement of T by 2'-deoxy-5-(hydroxymethyl)uridine (5hmU) in the genomic DNA of Escherichia coli. Metabolic engineering with phage genes followed by random mutagenesis enabled us to achieve approximately 75% replacement of T by 5hmU in the E. coli genome and in plasmids.
Collapse
Affiliation(s)
- Angad P Mehta
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Han Li
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean A Reed
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lubica Supekova
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tsotne Javahishvili
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Electrogenerated chemiluminescence biosensing method for the discrimination of DNA hydroxymethylation and assay of the β-glucosyltransferase activity. Biosens Bioelectron 2016; 79:92-7. [DOI: 10.1016/j.bios.2015.11.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/19/2022]
|
23
|
Gross JA, Lefebvre F, Lutz PE, Bacot F, Vincent D, Bourque G, Turecki G. Variations in 5-methylcytosine and 5-hydroxymethylcytosine among human brain, blood, and saliva using oxBS and the Infinium MethylationEPIC array. Biol Methods Protoc 2016; 1:1-8. [PMID: 32328532 PMCID: PMC7164292 DOI: 10.1093/biomethods/bpw002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Investigating 5-methylcytosine (5mC) has led to many hypotheses regarding molecular mechanism underlying human diseases and disorders. Many of these studies, however, utilize bisulfite conversion alone, which cannot distinguish 5mC from its recently discovered oxidative product, 5-hydroxymethylcytosine (5hmC). Furthermore, previous array-based technologies do not have the necessary probes to adequately investigate both modifications simultaneously. In this manuscript, we used technical replicates of DNA from human brain, human blood, and human saliva, in combination with oxidative bisulfite conversion and Illumina's Infinium MethylationEPIC array, to analyze 5mC and 5hmC at more than 650 000 and 450 000 relevant loci, respectively, in the human genome. We show the presence of loci with detectable 5mC and 5hmC to be equally distributed across chromosomes and genomic features, while also being present in genomic regions with transcriptional regulatory properties. We also describe 2528 5hmC sites common across tissue types that show a strong association with immune-related functions. Lastly, in human brain, we show that 5hmC accounts for one-third of the total signal from bisulfite-converted data. As such, not only do our results confirm the efficacy and sensitivity of pairing oxidative bisulfite conversion and the EPIC array to detect 5mC and 5hmC in all three tissue types, but they also highlight the importance of dissociating 5hmC from 5mC in future studies related to cytosine modifications.
Collapse
Affiliation(s)
- Jeffrey A. Gross
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - François Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - François Bacot
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Daniel Vincent
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Abstract
In eukaryotic DNA, cytosine can be enzymatically modified to yield up to four epigenetic base variants. DNA methyltransferases convert cytosine to 5-methylcytosine (mC), which plays critical roles in gene regulation during development. Ten-eleven translocation (TET) enzymes can sequentially oxidize mC to three products: 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC). These oxidized bases have been found in numerous mammalian cell types, where they potentially carry out independent epigenetic functions and aid in DNA demethylation. To gain insight into the mechanisms and functions of TET family enzymes, rigorous approaches are needed to quantify genomic cytosine modifications in cells and track TET enzyme activity in vitro. Here, we present tools developed by our lab and others to report on each of the five forms of cytosine (unmodified, mC, hmC, fC, and caC) with high specificity and sensitivity. We provide detailed protocols for qualitative and quantitative analysis of cytosine modifications in genomic DNA by dot blotting and LC-MS/MS. We then describe methods for generating synthetic oligonucleotide substrates for biochemical studies, provide optimized reaction conditions, and introduce several chemoenzymatic assays, as well as HPLC, mass spectrometry, and scintillation counting methods to quantify cytosine modifications in vitro. These approaches enable mechanistic studies of TET activity, which are key to understanding the role of these enzymes in epigenetic regulation.
Collapse
|
25
|
Wang XL, Song SH, Wu YS, Li YL, Chen TT, Huang ZY, Liu S, Dunwell TL, Pfeifer GP, Dunwell JM, Wamaedeesa R, Ullah I, Wang Y, Hu SN. Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6651-63. [PMID: 26272901 PMCID: PMC4715260 DOI: 10.1093/jxb/erv372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions, and mainly located in transposable elements (TEs), especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.
Collapse
Affiliation(s)
- Xi-liang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Graduate University of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Shu-hui Song
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Sheng Wu
- Mudanjiang Youbo Pharmaceutical Co., Ltd, Heilongjiang 157011, China
| | - Yu-Li Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China Graduate University of Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Ting-ting Chen
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-yuan Huang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | | | - Gerd P Pfeifer
- Beckman Research Institute, City of Hope Medical Centre, Duarte, CA 91010, USA
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| | - Raheema Wamaedeesa
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK Agricultural Biotechnology Research Institute, Faisalabad 38000, Pakistan
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Song-nian Hu
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
|
27
|
Chandra S, Terragni J, Zhang G, Pradhan S, Haushka S, Johnston D, Baribault C, Lacey M, Ehrlich M. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Hum Mol Genet 2015; 24:4660-73. [PMID: 26041816 PMCID: PMC4512632 DOI: 10.1093/hmg/ddv198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes.
Collapse
Affiliation(s)
- Sruti Chandra
- Program in Human Genetics, Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70122, USA
| | | | | | | | - Stephen Haushka
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA, and
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Carl Baribault
- Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA 70122, USA
| | - Michelle Lacey
- Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA 70122, USA
| | - Melanie Ehrlich
- Program in Human Genetics, Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70122, USA,
| |
Collapse
|
28
|
Sukovich DJ, Modavi C, de Raad M, Prince RN, Anderson JC. DNA-Linked Enzyme-Coupled Assay for Probing Glucosyltransferase Specificity. ACS Synth Biol 2015; 4:833-41. [PMID: 25621860 DOI: 10.1021/sb500341a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditional enzyme characterization methods are low-throughput and therefore limit engineering efforts in synthetic biology and biotechnology. Here, we propose a DNA-linked enzyme-coupled assay (DLEnCA) to monitor enzyme reactions in a high-throughput manner. Throughput is improved by removing the need for protein purification and by limiting the need for liquid chromatography mass spectrometry (LCMS) product detection by linking enzymatic function to DNA modification. We demonstrate the DLEnCA methodology using glucosyltransferases as an illustration. The assay utilizes cell free transcription/translation systems to produce enzymes of interest, while UDP-glucose and T4-β-glucosyltransferase are used to modify DNA, which is detected postreaction using qPCR or a similar means of DNA analysis. OleD and two glucosyltransferases from Arabidopsis were used to verify the assay's generality toward glucosyltransferases. We further show DLEnCA's utility by mapping out the substrate specificity for these enzymes.
Collapse
Affiliation(s)
- David J. Sukovich
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - Cyrus Modavi
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - Markus de Raad
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - Robin N. Prince
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - J. Christopher Anderson
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| |
Collapse
|
29
|
Biochemical characterization of a Naegleria TET-like oxygenase and its application in single molecule sequencing of 5-methylcytosine. Proc Natl Acad Sci U S A 2015; 112:4316-21. [PMID: 25831492 DOI: 10.1073/pnas.1417939112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Modified DNA bases in mammalian genomes, such as 5-methylcytosine ((5m)C) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of (5m)C to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like (5m)C oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both (5m)C (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine ((5f)U) and 5-carboxyuridine ((5ca)U) in vitro. Mutagenesis studies reveal a delicate balance between choice of (5m)C or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to (5m)CpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in (5m)C sequencing technologies such as single molecule, real-time sequencing to map (5m)C in bacterial genomes at base resolution.
Collapse
|
30
|
Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 2015; 83:585-614. [PMID: 24905787 DOI: 10.1146/annurev-biochem-060713-035513] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.
Collapse
Affiliation(s)
- Li Shen
- Howard Hughes Medical Institute and
| | | | | | | |
Collapse
|
31
|
Liu S, Ji D, Cliffe L, Bullard W, Sabatini R, Wang Y. Quantitative mass spectrometry-based analysis of β-D-glucosyl-5-hydroxymethyluracil in genomic DNA of Trypanosoma brucei. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1763-1770. [PMID: 25078157 PMCID: PMC4163122 DOI: 10.1007/s13361-014-0960-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
β-D-glucosyl-5-hydroxymethyluracil (base J) is a hyper-modified nucleobase found in the nuclear DNA of kinetoplastid parasites. With replacement of a fraction of thymine in DNA, J is localized primarily in telomeric regions of all organisms carrying this modified base. The biosynthesis of J occurs in two putative steps: first, a specific thymine in DNA is recognized and converted into 5-hydroxymethyluracil (5-HmU) by J-binding proteins (JBP1 and JBP2); a glucosyl transferase (GT) subsequently glucosylates the 5-HmU to yield J. Although several recent studies revealed the roles of internal J in regulating transcription in kinetoplastids, functions of telomeric J and proteins involved in J synthesis remain elusive. Assessing the functions of base J and understanding fully its biosynthesis necessitate the measurement of its level in cells and organisms. In this study, we reported a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS) method, together with the use of a surrogate internal standard (β-D-glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5-gHmdC), for the accurate detection of β-D-glucosyl-5-hydroxymethyl-2'-deoxyuridine (dJ) in Trypanosoma brucei DNA. For comparison, we also measured the level of the precursor for dJ synthesis [i.e. 5-hydroxymethyl-2'-deoxyuridine (5-HmdU)]. We found that base J was not detectable in the JBP-null cells whereas it replaced approximately 0.5% thymine in wild-type cells, which was accompanied with a markedly decreased level of 5-HmdU in JBP1/JBP2-null strain relative to the wild-type strain. These results provided direct evidence supporting that JBP proteins play an important role in oxidizing thymidine to form 5-HmdU, which facilitated the generation of dJ. This is the first report about the application of LC-MS/MS for the quantification of base J. The analytical method built a solid foundation for dissecting the molecular mechanisms of J biosynthesis and assessing the biological functions of base J in the future.ᅟ
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Debin Ji
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Whitney Bullard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
32
|
Booth MJ, Raiber EA, Balasubramanian S. Chemical methods for decoding cytosine modifications in DNA. Chem Rev 2014; 115:2240-54. [PMID: 25094039 PMCID: PMC4378238 DOI: 10.1021/cr5002904] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael J Booth
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW United Kingdom
| | - Eun-Ang Raiber
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW United Kingdom
| | - Shankar Balasubramanian
- †Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW United Kingdom.,‡Cambridge Institute, Li Ka Shing Centre, Cancer Research U.K., Robinson Way, Cambridge, CB2 0RE United Kingdom.,§School of Clinical Medicine, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0SP United Kingdom
| |
Collapse
|
33
|
Facile enzymatic synthesis of base J-containing oligodeoxyribonucleotides and an analysis of the impact of base J on DNA replication in cells. PLoS One 2014; 9:e103335. [PMID: 25061973 PMCID: PMC4111573 DOI: 10.1371/journal.pone.0103335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/26/2014] [Indexed: 12/17/2022] Open
Abstract
We reported here the use of T4 bacteriophage β-glucosyltransferase (T4 β-GT) for the facile synthesis of base J-containing oligodeoxyribonucleotides (ODNs). We found that the enzyme could catalyze the glucosylation of 5-hydroxymethyl-2-deoxyuridine (5hmU) in both single- and double-stranded ODNs, though the latter reaction occurred only when 5hmU was mispaired with a guanine. In addition, base J blocked moderately DNA replication, but it did not induce mutations during replication in human cells.
Collapse
|
34
|
Recent advances in the bioanalysis of modified nucleotides in epigenetic studies. Bioanalysis 2014; 5:2947-56. [PMID: 24295120 DOI: 10.4155/bio.13.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epigenetic alterations, such as DNA methylation, are involved in the pathogenesis of various diseases, the toxicity of diverse agents, the process of aging, the development of stem cells and numerous other mechanisms. DNA methylation is one of the most well-studied epigenetic alterations in mammals. Nevertheless, the scientific interest is now focusing on novel modified nucleotides with potential regulatory roles, such as 5-hydroxymethylcytosine. We currently present and discuss novel bioanalytical strategies developed for the determination of various modified nucleotides in epigenetic studies.
Collapse
|
35
|
Terragni J, Zhang G, Sun Z, Pradhan S, Song L, Crawford GE, Lacey M, Ehrlich M. Notch signaling genes: myogenic DNA hypomethylation and 5-hydroxymethylcytosine. Epigenetics 2014; 9:842-50. [PMID: 24670287 PMCID: PMC4065182 DOI: 10.4161/epi.28597] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022] Open
Abstract
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.
Collapse
Affiliation(s)
| | | | - Zhiyi Sun
- New England Biolabs; Ipswich, MA USA
| | | | - Lingyun Song
- Institute for Genome Sciences & Policy; Duke University; Durham, NC USA
| | | | - Michelle Lacey
- Tulane Cancer Center and Department of Mathematics; Tulane Health Sciences Center and Tulane University; New Orleans, LA USA
| | - Melanie Ehrlich
- Program in Human Genetics; Tulane Cancer Center; Center for Bioinformatics and Genomics; Tulane Health Sciences Center; New Orleans, LA USA
| |
Collapse
|
36
|
Nestor CE, Reddington JP, Benson M, Meehan RR. Investigating 5-hydroxymethylcytosine (5hmC): the state of the art. Methods Mol Biol 2014; 1094:243-258. [PMID: 24162993 DOI: 10.1007/978-1-62703-706-8_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The discovery of 5-hydroxymethylcytosine (5hmC) as an abundant base in mammalian genomes has excited the field of epigenetics, and stimulated an intense period of research activity aimed at decoding its biological significance. However, initial research efforts were hampered by a lack of assays capable of specifically detecting 5hmC. Consequently, the last 3 years have seen the development of a plethora of new techniques designed to detect both global levels and locus-specific profiles of 5hmC in mammalian genomes. This research effort has culminated in the recent publication of two complementary techniques for quantitative, base-resolution mapping of 5hmC in mammalian genomes, the first true mammalian hydroxymethylomes. Here, we review the techniques currently available to researchers studying 5hmC, discuss their advantages and disadvantages, and explore the technical hurdles which remain to be overcome.
Collapse
Affiliation(s)
- Colm E Nestor
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
37
|
Cadet J, Wagner JR. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:18-35. [PMID: 24045206 DOI: 10.1016/j.mrgentox.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
5-Methylcytosine and methylated histones have been considered for a long time as stable epigenetic marks of chromatin involved in gene regulation. This concept has been recently revisited with the detection of large amounts of 5-hydroxymethylcytosine, now considered as the sixth DNA base, in mouse embryonic stem cells, Purkinje neurons and brain tissues. The dioxygenases that belong to the ten eleven translocation (TET) oxygenase family have been shown to initiate the formation of this methyl oxidation product of 5-methylcytosine that is also generated although far less efficiently by radical reactions involving hydroxyl radical and one-electron oxidants. It was found as additional striking data that iterative TET-mediated oxidation of 5-hydroxymethylcytosine gives rise to 5-formylcytosine and 5-carboxylcytosine. This survey focuses on chemical and biochemical aspects of the enzymatic oxidation reactions of 5-methylcytosine that are likely to be involved in active demethylation pathways through the implication of enzymatic deamination of 5-methylcytosine oxidation products and/or several base excision repair enzymes. The high biological relevance of the latter modified bases explains why major efforts have been devoted to the design of a broad range of assays aimed at measuring globally or at the single base resolution, 5-hydroxymethylcytosine and the two other oxidation products in the DNA of cells and tissues. Another critical issue that is addressed in this review article deals with the assessment of the possible role of 5-methylcytosine oxidation products, when present in elevated amounts in cellular DNA, in terms of mutagenesis and interference with key cellular enzymes including DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jean Cadet
- Direction des Sciences de la Matière, Institut Nanosciences et Cryogénie, CEA/Grenoble, 38054 Grenoble, France; Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec JIH 5N4, Canada.
| |
Collapse
|
38
|
Alterations of 5-hydroxymethylcytosine in human cancers. Cancers (Basel) 2013; 5:786-814. [PMID: 24202321 PMCID: PMC3795365 DOI: 10.3390/cancers5030786] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 01/04/2023] Open
Abstract
Prior to 2009, 5-methylcytosine (5-mC) was thought to be the only biologically significant cytosine modification in mammalian DNA. With the discovery of the TET enzymes, which convert 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), however, intense interest has emerged in determining the biological function of 5-hmC. Here, we review the techniques used to study 5-hmC and evidence that alterations to 5-hmC physiology play a functional role in the molecular pathogenesis of human cancers.
Collapse
|
39
|
Abstract
Epigenetic genome marking and chromatin regulation are central to establishing tissue-specific gene expression programs, and hence to several biological processes. Until recently, the only known epigenetic mark on DNA in mammals was 5-methylcytosine, established and propagated by DNA methyltransferases and generally associated with gene repression. All of a sudden, a host of new actors—novel cytosine modifications and the ten eleven translocation (TET) enzymes—has appeared on the scene, sparking great interest. The challenge is now to uncover the roles they play and how they relate to DNA demethylation. Knowledge is accumulating at a frantic pace, linking these new players to essential biological processes (e.g. cell pluripotency and development) and also to cancerogenesis. Here, we review the recent progress in this exciting field, highlighting the TET enzymes as epigenetic DNA modifiers, their physiological roles, and their functions in health and disease. We also discuss the need to find relevant TET interactants and the newly discovered TET–O-linked N-acetylglucosamine transferase (OGT) pathway.
Collapse
|
40
|
Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition. Biochem J 2013; 450:37-46. [PMID: 23150922 DOI: 10.1042/bj20121403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.
Collapse
|
41
|
Song CX, Yi C, He C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol 2013; 30:1107-16. [PMID: 23138310 PMCID: PMC3537840 DOI: 10.1038/nbt.2398] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022]
Abstract
Nucleotide variants, especially those related to epigenetic functions, provide critical regulatory information beyond simple genomic sequence, and they define cell status in higher organisms. 5-methylcytosine, which is found in DNA, was until recently the only nucleotide variant studied in terms of epigenetics in eukaryotes. However, 5-methylcytosine has turned out to be just one component of a dynamic DNA epigenetic regulatory network that also includes 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. Reversible methylation of N6-methyladenosine in RNA has also been demonstrated. The discovery of new nucleotide variants triggered an explosion of new information in the epigenetics field. This rapid research progress has benefited significantly from timely developments of new technologies that specifically recognize, enrich, and sequence nucleotide modifications, as evidenced by the wide application of the bisulfite sequencing of 5-methylcytosine and very recent modifications of bisulfite sequencing to revolve 5-hydroxymethylcytosine from 5-methylcytosine with base-resolution information.
Collapse
Affiliation(s)
- Chun-Xiao Song
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
42
|
Tsumagari K, Baribault C, Terragni J, Varley KE, Gertz J, Pradhan S, Badoo M, Crain CM, Song L, Crawford GE, Myers RM, Lacey M, Ehrlich M. Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics 2013; 8:317-32. [PMID: 23417056 PMCID: PMC3669123 DOI: 10.4161/epi.23989] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
Myogenic cell cultures derived from muscle biopsies are excellent models for human cell differentiation. We report the first comprehensive analysis of myogenesis-specific DNA hyper- and hypo-methylation throughout the genome for human muscle progenitor cells (both myoblasts and myotubes) and skeletal muscle tissue vs. 30 non-muscle samples using reduced representation bisulfite sequencing. We also focused on four genes with extensive hyper- or hypo-methylation in the muscle lineage (PAX3, TBX1, MYH7B/MIR499 and OBSCN) to compare DNA methylation, DNaseI hypersensitivity, histone modification, and CTCF binding profiles. We found that myogenic hypermethylation was strongly associated with homeobox or T-box genes and muscle hypomethylation with contractile fiber genes. Nonetheless, there was no simple relationship between differential gene expression and myogenic differential methylation, rather only for subsets of these genes, such as contractile fiber genes. Skeletal muscle retained ~30% of the hypomethylated sites but only ~3% of hypermethylated sites seen in myogenic progenitor cells. By enzymatic assays, skeletal muscle was 2-fold enriched globally in genomic 5-hydroxymethylcytosine (5-hmC) vs. myoblasts or myotubes and was the only sample type enriched in 5-hmC at tested myogenic hypermethylated sites in PAX3/CCDC140 andTBX1. TET1 and TET2 RNAs, which are involved in generation of 5-hmC and DNA demethylation, were strongly upregulated in myoblasts and myotubes. Our findings implicate de novo methylation predominantly before the myoblast stage and demethylation before and after the myotube stage in control of transcription and co-transcriptional RNA processing. They also suggest that, in muscle, TET1 or TET2 are involved in active demethylation and in formation of stable 5-hmC residues.
Collapse
MESH Headings
- 5-Methylcytosine/analogs & derivatives
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- CCCTC-Binding Factor
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Case-Control Studies
- Cell Lineage/genetics
- Child
- Cytosine/analogs & derivatives
- Cytosine/metabolism
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Genome, Human
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Histones/metabolism
- Humans
- Infant, Newborn
- Male
- Middle Aged
- Mixed Function Oxygenases
- Muscle Development/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Myoblasts/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins/metabolism
- Rho Guanine Nucleotide Exchange Factors
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Koji Tsumagari
- Program in Human Genetics and Tulane Cancer Center; Tulane Health Sciences Center; New Orleans, LA USA
| | - Carl Baribault
- Tulane Cancer Center and Department of Mathematics; Tulane Health Sciences Center and Tulane University; New Orleans, LA USA
| | | | | | - Jason Gertz
- HudsonAlpha Institute for Biotechnology; Huntsville, AL USA
| | | | - Melody Badoo
- Department of Pathology and Tulane Cancer Center; Tulane Health Sciences Center; New Orleans, LA USA
| | - Charlene M. Crain
- Center for Stem Cell Research and Regenerative Medicine; Tulane Health Sciences Center; New Orleans, LA USA
| | - Lingyun Song
- Institute for Genome Sciences & Policy; Duke University; Durham, NC USA
| | | | | | - Michelle Lacey
- Tulane Cancer Center and Department of Mathematics; Tulane Health Sciences Center and Tulane University; New Orleans, LA USA
| | - Melanie Ehrlich
- Program in Human Genetics; Tulane Cancer Center and Center for Bioinformatics and Genomics; Tulane Health Sciences Center; New Orleans, LA USA
| |
Collapse
|
43
|
High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 2013; 3:567-76. [PMID: 23352666 DOI: 10.1016/j.celrep.2013.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 12/20/2022] Open
Abstract
We describe the use of a unique DNA-modification-dependent restriction endonuclease AbaSI coupled with sequencing (Aba-seq) to map high-resolution hydroxymethylome of mouse E14 embryonic stem cells. The specificity of AbaSI enables sensitive detection of 5-hydroxymethylcytosine (5hmC) at low-occupancy regions. Bioinformatic analysis suggests 5hmCs in genic regions closely follow the 5mC distribution. 5hmC is generally depleted in CpG islands and only enriched in a small set of repetitive elements. A regularly spaced and oscillating 5hmC pattern was observed at the binding sites of CTCF. 5hmC is enriched at the poised enhancers with the monomethylated histone H3 lysine 4 (H3K4me1) marks, but not at the active enhancers with the acetylated histone H3 lysine 27 (H3K27Ac) marks. Non-CG hydroxymethylation appears to be prevalent in the mitochondrial genome. We propose that some amounts of transiently stable 5hmCs may indicate a poised epigenetic state or demethylation intermediate, whereas others may suggest a locally accessible chromosomal environment for the TET enzymatic apparatus.
Collapse
|
44
|
Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:57-79. [PMID: 22956496 DOI: 10.1007/978-1-4419-9967-2_3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) is an oxidative product of 5-methylcytosine (5mC), catalyzed by the ten eleven translocation (TET) family of enzymes. Although 5hmC was discovered several decades ago, it was only after its recent identification in murine brain and stem cell DNA that it has become a major focus of epigenomic research. Part of the reason for this delay is due to the difficulty in detecting both global and locus-specific 5hmC levels. Several studies have addressed this issue with the development of novel techniques to locate and measure 5hmC, which led to multiple reports detailing 5hmC patterns in stem cells and global 5hmC levels during embryogenesis. Based on these studies of 5hmC levels and reports of tissue-specific TET expression, these enzymes are thought to play a role in mammalian development and differentiation. In addition, the TET enzymes are mutated in several types of cancer, affecting their activity and likely altering genomic 5hmC and 5mC patterns. Furthermore, oxidation of 5mC appears to be a step in several active DNA demethylation pathways, which may be important for normal processes, as well as global hypomethylation during cancer development and progression. Much has been revealed about this interesting DNA modification in recent years, but more research is needed for understanding the role of TET proteins and 5hmC in gene regulation and disease.
Collapse
|
45
|
Zovkic IB, Meadows JP, Kaas GA, Sweatt JD. Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Front Psychiatry 2013; 4:60. [PMID: 23805109 PMCID: PMC3693073 DOI: 10.3389/fpsyt.2013.00060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham , Birmingham, AL , USA
| | | | | | | |
Collapse
|
46
|
Terasaka K, Mizutani Y, Nagatsu A, Mizukami H. In situ UDP-glucose regeneration unravels diverse functions of plant secondary product glycosyltransferases. FEBS Lett 2012; 586:4344-50. [PMID: 23159939 DOI: 10.1016/j.febslet.2012.10.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022]
Abstract
The catalytic function of plant secondary product glycosyltransferases (PSPGs) was investigated by coupling the activities of recombinant flavonoid glucosyltransferases having different regiospecificities with sucrose synthase from Arabidopsis thaliana. In the present system, UDP, a product inhibitor of PSPGs, was removed from the reaction mixture and used for regeneration of UDP-glucose by AtSUS1. The in situ UDP-glucose regeneration system not only enhanced the glucosylation efficiency but also unraveled the novel regioselectivity of PSPGs. The effect of the system was shown to be because of the removal of UDP from the reaction system and not because of the additional supply of UDP-glucose.
Collapse
Affiliation(s)
- Kazuyoshi Terasaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | |
Collapse
|
47
|
Kriukienė E, Liutkevičiūtė Z, Klimašauskas S. 5-Hydroxymethylcytosine--the elusive epigenetic mark in mammalian DNA. Chem Soc Rev 2012; 41:6916-30. [PMID: 22842880 PMCID: PMC3467341 DOI: 10.1039/c2cs35104h] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over the past decade, epigenetic phenomena claimed a central role in cell regulatory processes and proved to be important factors for understanding complex human diseases. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) were long known to exist in two functional states: unmethylated or methylated at the 5-position of the pyrimidine ring (5mC). Recent studies of genomic DNA from the human and mouse brain, neurons and from mouse embryonic stem cells found that a substantial fraction of 5mC in CpG dinucleotides is converted to 5-hydroxymethyl-cytosine (hmC) by the action of 2-oxoglutarate- and Fe(ii)-dependent oxygenases of the TET family. These findings provided important clues in a long elusive mechanism of active DNA demethylation and bolstered a fresh wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of the most popular techniques with respect to their suitability for analysis of hmC in mammalian genomes. It also discusses the most recent data on biochemical and chemical aspects of the formation and further conversion of this nucleobase in DNA and its possible biological roles in cell differentiation, embryogenesis and brain function.
Collapse
Affiliation(s)
- Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241 Vilnius, Lithuania
| | | | | |
Collapse
|
48
|
Li Y, Song CX, He C, Jin P. Selective capture of 5-hydroxymethylcytosine from genomic DNA. J Vis Exp 2012:4441. [PMID: 23070273 DOI: 10.3791/4441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
5-methylcytosine (5-mC) constitutes ~2-8% of the total cytosines in human genomic DNA and impacts a broad range of biological functions, including gene expression, maintenance of genome integrity, parental imprinting, X-chromosome inactivation, regulation of development, aging, and cancer(1). Recently, the presence of an oxidized 5-mC, 5-hydroxymethylcytosine (5-hmC), was discovered in mammalian cells, in particular in embryonic stem (ES) cells and neuronal cells(2-4). 5-hmC is generated by oxidation of 5-mC catalyzed by TET family iron (II)/α-ketoglutarate-dependent dioxygenases(2, 3). 5-hmC is proposed to be involved in the maintenance of embryonic stem (mES) cell, normal hematopoiesis and malignancies, and zygote development(2, 5-10). To better understand the function of 5-hmC, a reliable and straightforward sequencing system is essential. Traditional bisulfite sequencing cannot distinguish 5-hmC from 5-mC(11). To unravel the biology of 5-hmC, we have developed a highly efficient and selective chemical approach to label and capture 5-hmC, taking advantage of a bacteriophage enzyme that adds a glucose moiety to 5-hmC specifically(12). Here we describe a straightforward two-step procedure for selective chemical labeling of 5-hmC. In the first labeling step, 5-hmC in genomic DNA is labeled with a 6-azide-glucose catalyzed by β-GT, a glucosyltransferase from T4 bacteriophage, in a way that transfers the 6-azide-glucose to 5-hmC from the modified cofactor, UDP-6-N3-Glc (6-N3UDPG). In the second step, biotinylation, a disulfide biotin linker is attached to the azide group by click chemistry. Both steps are highly specific and efficient, leading to complete labeling regardless of the abundance of 5-hmC in genomic regions and giving extremely low background. Following biotinylation of 5-hmC, the 5-hmC-containing DNA fragments are then selectively captured using streptavidin beads in a density-independent manner. The resulting 5-hmC-enriched DNA fragments could be used for downstream analyses, including next-generation sequencing. Our selective labeling and capture protocol confers high sensitivity, applicable to any source of genomic DNA with variable/diverse 5-hmC abundances. Although the main purpose of this protocol is its downstream application (i.e., next-generation sequencing to map out the 5-hmC distribution in genome), it is compatible with single-molecule, real-time SMRT (DNA) sequencing, which is capable of delivering single-base resolution sequencing of 5-hmC.
Collapse
Affiliation(s)
- Yujing Li
- Department of Human Genetics, Emory University School of Medicine
| | | | | | | |
Collapse
|