1
|
Tsuji T, Hasegawa J, Sasaki T, Fujimoto T. Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling. J Cell Biol 2025; 224:e202311067. [PMID: 39495319 PMCID: PMC11535894 DOI: 10.1083/jcb.202311067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a phospholipid essential for plasma membrane functions, but its two-dimensional distribution is not clear. Here, we compared the result of sodium dodecyl sulfate-treated freeze-fracture replica labeling (SDS-FRL) of quick-frozen cells with the actual PtdIns(4,5)P2 content and the results obtained by fluorescence biosensor and by labeling of chemically-fixed membranes. In yeast, enrichment of PtdIns(4,5)P2 in the membrane compartment of Can1 (MCC)/eisosome, especially in the curved MCC/eisosome, was evident by SDS-FRL, but not by fluorescence biosensor, GFP-PLC1δ-PH. PtdIns(4,5)P2 remaining after acute ATP depletion and in the stationary phase, 30.0% and 56.6% of the control level, respectively, was not detectable by fluorescence biosensor, whereas the label intensity by SDS-FRL reflected the PtdIns(4,5)P2 amount. In PC12 cells, PtdIns(4,5)P2 was observed in a punctate pattern in the formaldehyde-fixed plasma membrane, whereas it was distributed randomly by SDS-FRL and showed clustering after formaldehyde fixation. The results indicate that the distribution of PtdIns(4,5)P2 can be defined most reliably by SDS-FRL of quick-frozen cells.
Collapse
Affiliation(s)
- Takuma Tsuji
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junya Hasegawa
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Sasaki
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Hofbrucker-MacKenzie SA, Seemann E, Westermann M, Qualmann B, Kessels MM. Long-term depression in neurons involves temporal and ultra-structural dynamics of phosphatidylinositol-4,5-bisphosphate relying on PIP5K, PTEN and PLC. Commun Biol 2023; 6:366. [PMID: 37012315 PMCID: PMC10070498 DOI: 10.1038/s42003-023-04726-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Synaptic plasticity involves proper establishment and rearrangement of structural and functional microdomains. Yet, visualization of the underlying lipid cues proved challenging. Applying a combination of rapid cryofixation, membrane freeze-fracturing, immunogold labeling and electron microscopy, we visualize and quantitatively determine the changes and the distribution of phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane of dendritic spines and subareas thereof at ultra-high resolution. These efforts unravel distinct phases of PIP2 signals during induction of long-term depression (LTD). During the first minutes PIP2 rapidly increases in a PIP5K-dependent manner forming nanoclusters. PTEN contributes to a second phase of PIP2 accumulation. The transiently increased PIP2 signals are restricted to upper and middle spine heads. Finally, PLC-dependent PIP2 degradation provides timely termination of PIP2 cues during LTD induction. Together, this work unravels the spatial and temporal cues set by PIP2 during different phases after LTD induction and dissects the molecular mechanisms underlying the observed PIP2 dynamics.
Collapse
Affiliation(s)
- Sarah A Hofbrucker-MacKenzie
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
4
|
The distribution of phosphatidylinositol 4,5-bisphosphate in the budding yeast plasma membrane. Histochem Cell Biol 2021; 156:109-121. [PMID: 34052862 DOI: 10.1007/s00418-021-01989-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is generated through phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P) by Mss4p, the only PtdIns phosphate 5-kinase in yeast cells. PtdIns(4,5)P2 is involved in various kinds of yeast functions. PtdIns(4)P is not only the immediate precursor of PtdIns(4,5)P2, but also an essential signaling molecule in the plasma membrane, Golgi, and endosomal system. To analyze the distribution of PtdIns(4,5)P2 and PtdIns(4)P in the yeast plasma membrane at a nanoscale level, we employed a freeze-fracture electron microscopy (EM) method that physically immobilizes lipid molecules in situ. It has been reported that the plasma membrane of budding yeast can be divided into three distinct areas: furrowed, hexagonal, and undifferentiated flat. Previously, using the freeze-fracture EM method, we determined that PtdIns(4)P is localized in the undifferentiated flat area, avoiding the furrowed and hexagonal areas of the plasma membrane. In the present study, we found that PtdIns(4,5)P2 was localized in the cytoplasmic leaflet of the plasma membrane, and concentrated in the furrowed area. There are three types of PtdIns 4-kinases which are encoded by stt4, pik1, and lsb6. The labeling density of PtdIns(4)P in the plasma membrane significantly decreased in both pik1ts and stt4ts mutants. However, the labeling densities of PtdIns(4,5)P2 in the plasma membrane of both the pik1ts and stt4ts mutants were comparable to that of the wild type yeast. These results suggest that PtdIns(4)P produced by either Pik1p or Stt4p is immediately phosphorylated by Mss4p and converted to PtdIns(4,5)P2 at the plasma membrane.
Collapse
|
5
|
Li T, Chen F, Zhou Q, Wang X, Liao C, Zhou L, Wan L, An J, Wan Y, Li N. Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems. ENVIRONMENTAL RESEARCH 2020; 183:109143. [PMID: 32028180 DOI: 10.1016/j.envres.2020.109143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Formaldehyde poses significant threats to the ecosystem and is widely used as a toxicity indicator to obtain electrical signal feedback in electroactive biofilm (EAB)-based sensors. Although many optimizations have been adopted to improve the performance of EAB to formaldehyde, nearly no studies have discussed the toxicity of formaldehyde to EAB. Here, EABs were acclimated with a stable current density (8.9 ± 0.2 A/m2) and then injected with formaldehyde. The current density decreased by 27% and 98% after the injection of 1 and 10 ppm formaldehyde, respectively, compared with that in the control. The ecotoxicity of formaldehyde caused the irreversible loss of current with 3% (1 ppm) and 81% (10 ppm). Confocal laser scanning microscopy and scanning electron microscopy results showed that the redox activity was inhibited by formaldehyde, and the number of dead/broken cells increased from 2% to 40% (1 ppm) and 91% (10 ppm). The contents of the total protein and extracellular polymer substances decreased by more than 28% (1 ppm) and 75% (10 ppm) because of the cleavage reaction caused by formaldehyde. Bacterial community analysis showed that the proportion of Geobacter decreased from 81% to 53% (1 ppm) and 24% (10 ppm). As a result, the current production was significantly impaired, and the irreversible loss increased. Toxicological analysis demonstrated that formaldehyde disturbed the physiological indices of cells, thereby inducing apoptosis. These findings fill the gap of ecotoxicology of toxicants to EAB in a bioelectrochemical system.
Collapse
Affiliation(s)
- Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Fan Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lean Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lili Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jingkun An
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
6
|
de Vries WC, Kudruk S, Grill D, Niehues M, Matos ALL, Wissing M, Studer A, Gerke V, Ravoo BJ. Controlled Cellular Delivery of Amphiphilic Cargo by Redox-Responsive Nanocontainers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901935. [PMID: 31871866 PMCID: PMC6918114 DOI: 10.1002/advs.201901935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/06/2019] [Indexed: 05/08/2023]
Abstract
The specific transport of amphiphilic compounds such as fluorescently labeled phospholipids into cells is a prerequisite for the analysis of highly dynamic cellular processes involving these molecules, e.g., the intracellular distribution and metabolism of phospholipids. However, cellular delivery remains a challenge as it should not affect the physiological integrity and morphology of the cell membrane. To address this, polymer nanocontainers based on redox-responsive cyclodextrin (CD) amphiphiles are prepared, and their potential to deliver fluorescently labeled phospholipids to intracellular membrane compartments is analyzed. It is shown that mixtures of reductively degradable cyclodextrin amphiphiles and different phospholipids form liposome-like vesicles (CD-lipid vesicles, CSSLV) with a homogeneous distribution of each lipid. Host-guest-mediated self-assembly of a cystamine-crosslinked polymer shell on these CSSLV produces polymer-shelled liposomal vesicles (PSSCSSLV) with the unique feature of a redox-sensitive CSSLV core and reductively degradable polymer shell. PSSCSSLV show high stability and a redox-sensitive release of the amphiphilic cargo. Live cell experiments reveal that the novel PSSCSSLV are readily internalized by primary human endothelial cells and that the reductive microenvironment of the cells' endosomes triggers the release of the amphiphilic cargo into the cytosol. Thus, PSSCSSLV represent a highly efficient system to transport lipid-like amphiphilic cargo into the intracellular environment.
Collapse
Affiliation(s)
- Wilke C. de Vries
- Center for Soft Nanoscience and Organic Chemistry InstituteWestfälische Wilhelms‐Universität MünsterBusso‐Peus‐Str. 10Münster48149Germany
| | - Sergej Kudruk
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationWestfälische Wilhelms‐Universität MünsterVon‐Esmarch‐Str. 56Münster48149Germany
| | - David Grill
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationWestfälische Wilhelms‐Universität MünsterVon‐Esmarch‐Str. 56Münster48149Germany
| | - Maximilian Niehues
- Center for Soft Nanoscience and Organic Chemistry InstituteWestfälische Wilhelms‐Universität MünsterBusso‐Peus‐Str. 10Münster48149Germany
| | - Anna Livia Linard Matos
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationWestfälische Wilhelms‐Universität MünsterVon‐Esmarch‐Str. 56Münster48149Germany
| | - Maren Wissing
- Center for Soft Nanoscience and Organic Chemistry InstituteWestfälische Wilhelms‐Universität MünsterBusso‐Peus‐Str. 10Münster48149Germany
| | - Armido Studer
- Center for Soft Nanoscience and Organic Chemistry InstituteWestfälische Wilhelms‐Universität MünsterBusso‐Peus‐Str. 10Münster48149Germany
| | - Volker Gerke
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationWestfälische Wilhelms‐Universität MünsterVon‐Esmarch‐Str. 56Münster48149Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry InstituteWestfälische Wilhelms‐Universität MünsterBusso‐Peus‐Str. 10Münster48149Germany
| |
Collapse
|
7
|
Nanoscale analysis reveals no domain formation of glycosylphosphatidylinositol-anchored protein SAG1 in the plasma membrane of living Toxoplasma gondii. Histochem Cell Biol 2019; 152:365-375. [PMID: 31542792 DOI: 10.1007/s00418-019-01814-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 10/25/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins typically localise to lipid rafts. GPI-anchored protein microdomains may be present in the plasma membrane; however, they have been studied using heterogeneously expressed GPI-anchored proteins, and the two-dimensional distributions of endogenous molecules in the plasma membrane are difficult to determine at the nanometre scale. Here, we used immunoelectron microscopy using a quick-freezing and freeze-fracture labelling (QF-FRL) method to examine the distribution of the endogenous GPI-anchored protein SAG1 in Toxoplasma gondii at the nanoscale. QF-FRL physically immobilised molecules in situ, minimising the possibility of artefactual perturbation. SAG1 labelling was observed in the exoplasmic, but not cytoplasmic, leaflets of T. gondii plasma membrane, whereas none was detected in any leaflet of the inner membrane complex. Point pattern analysis of SAG1 immunogold labelling revealed mostly random distribution in T. gondii plasma membrane. The present method obtains information on the molecular distribution of natively expressed GPI-anchored proteins and demonstrates that SAG1 in T. gondii does not form significant microdomains in the plasma membrane.
Collapse
|
8
|
Tsuji T, Cheng J, Tatematsu T, Ebata A, Kamikawa H, Fujita A, Gyobu S, Segawa K, Arai H, Taguchi T, Nagata S, Fujimoto T. Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc Natl Acad Sci U S A 2019; 116:13368-13373. [PMID: 31217287 PMCID: PMC6613088 DOI: 10.1073/pnas.1822025116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.
Collapse
Affiliation(s)
- Takuma Tsuji
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Aoi Ebata
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Hiroki Kamikawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Joint Faculty of Veterinary Medicine, Kagoshima University, 890-0065 Kagoshima, Japan
| | - Sayuri Gyobu
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Katsumori Segawa
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, 980-8578 Sendai, Japan
| | - Shigekazu Nagata
- Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Japan;
| |
Collapse
|
9
|
Definition of phosphoinositide distribution in the nanoscale. Curr Opin Cell Biol 2019; 57:33-39. [DOI: 10.1016/j.ceb.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022]
|
10
|
Li S, Yu H, Liu Y, Zhang X, Ma F. The lipid strategies in Cunninghamella echinulata for an allostatic response to temperature changes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Kurokawa Y, Yoshida A, Fujii E, Tomioku K, Hayashi H, Tanabe K, Fujita A. Phosphatidylinositol 4-phosphate on Rab7-positive autophagosomes revealed by the freeze-fracture replica labeling. Traffic 2018; 20:82-95. [PMID: 30426618 DOI: 10.1111/tra.12623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023]
Abstract
Phosphatidylinositol 4-phophate (PtdIns(4)P) is an essential signaling molecule in the Golgi body, endosomal system, and plasma membrane and functions in the regulation of membrane trafficking, cytoskeletal organization, lipid metabolism and signal transduction pathways, all mediated by direct interaction with PtdIns(4)P-binding proteins. PtdIns(4)P was recently reported to have functional roles in autophagosome biogenesis. LC3 and GABARAP subfamilies and a small GTP-binding protein, Rab7, are localized on autophagosomal membranes and participate at each stage of autophagosome formation and maturation. To better understand autophagosome biogenesis, it is essential to determine the localization of PtdIns(4)P and to examine its relationship with LC3 and GABARAP subfamilies and Rab7. To analyze PtdIns(4)P distribution, we used an electron microscopy technique that labels PtdIns(4)P on the freeze-fracture replica of intracellular biological membranes, which minimizes the possibility of artificial perturbation because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P is localized on the cytoplasmic, but not the luminal (exoplasmic), leaflet of the inner and outer membranes of autophagosomes. Double labeling revealed that PtdIns(4)P mostly colocalizes with Rab7, but not with LC3B, GABARAP, GABARAPL1 and GABARAPL2. Rab7 plays essential roles in autophagosome maturation and in autophagosome-lysosome fusion events. We suggest that PtdIns(4)P is localized to the cytoplasmic leaflet of the autophagosome at later stages, which may illuminate the importance of PtdIns(4)P at the later stages of autophagosome formation.
Collapse
Affiliation(s)
- Yuna Kurokawa
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Akane Yoshida
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Emi Fujii
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kanna Tomioku
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroki Hayashi
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
12
|
Immunoelectron Microscopy of Gangliosides. Methods Mol Biol 2018. [PMID: 29926412 DOI: 10.1007/978-1-4939-8552-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Because chemical fixatives like aldehydes do not work on most lipid molecules in the membrane, small-scale lipid distribution cannot be identified by immunoelectron microscopy in cells fixed by conventional methods. Here we describe a method for physically stabilizing membranes through quick-freezing and freeze-fracture replica formation and for specifically labeling gangliosides for electron microscopy. This method enables the ultrahigh-resolution mapping of membrane lipids including gangliosides within the two-dimensional plane of membranes.
Collapse
|
13
|
Li S, Yue Q, Zhou S, Yan J, Zhang X, Ma F. Trehalose Contributes to Gamma-Linolenic Acid Accumulation in Cunninghamella echinulata Based on de Novo Transcriptomic and Lipidomic Analyses. Front Microbiol 2018; 9:1296. [PMID: 29963034 PMCID: PMC6013572 DOI: 10.3389/fmicb.2018.01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
Gamma-linolenic acid (GLA) is essential for the well-being of humans and other animals. People may lack GLA because of aging or diseases, and thus, dietary supplements or medical reagents containing GLA-enriched lipids are in demand. Cunninghamella echinulata is a potential GLA-producing strain. Interestingly, we found that the GLA content of C. echinulata FR3 was up to 21% (proportion of total lipids) when trehalose was used as a carbon source, significantly higher than the 13% found when glucose was used. Trehalose is quite common and can be accumulated in microorganisms under stress conditions. However, little information is available regarding the role of trehalose in GLA synthesis and accumulation. Our study aimed to understand how the metabolism of C. echinulata responds to trehalose as a carbon source for GLA and lipid biosynthesis. We profiled the major sugars, fatty acids, phospholipids, and gene transcripts of C. echinulata FR3 grown in trehalose medium with glucose as a control by de novo transcriptomics, lipidomics, and other methods. The results showed that trehalose could influence the expression of desaturases and that the GLA proportion increased because of delta-6 desaturase upregulation. The increased GLA was transferred to the extracellular environment through the active PI ion channel, which prefers polyunsaturated acyl chains. At the same time, trehalose might prevent GLA from peroxidation by forming a trehalose-polyunsaturated fatty acid (PUFA) complex. Our study provides new insights into the functions of trehalose in GLA accumulation.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Yue
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhou
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yan
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| |
Collapse
|
14
|
Ariotti N, Rae J, Giles N, Martel N, Sierecki E, Gambin Y, Hall TE, Parton RG. Ultrastructural localisation of protein interactions using conditionally stable nanobodies. PLoS Biol 2018; 16:e2005473. [PMID: 29621251 PMCID: PMC5903671 DOI: 10.1371/journal.pbio.2005473] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 03/20/2018] [Indexed: 01/21/2023] Open
Abstract
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.
Collapse
Affiliation(s)
- Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - James Rae
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas E. Hall
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
- The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells. Eur J Cell Biol 2018; 97:269-278. [PMID: 29609807 DOI: 10.1016/j.ejcb.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/27/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
In budding yeast Saccharomyces cerevisiae, PtdIns(4)P serves as an essential signalling molecule in the Golgi complex, endosomal system, and plasma membrane, where it is involved in the control of multiple cellular functions via direct interactions with PtdIns(4)P-binding proteins. To analyse the distribution of PtdIns(4)P in yeast cells at a nanoscale level, we employed an electron microscopy technique that specifically labels PtdIns(4)P on the freeze-fracture replica of the yeast membrane. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilised in situ. We observed that PtdIns(4)P is localised on the cytoplasmic leaflet, but not the exoplasmic leaflet, of the plasma membrane, Golgi body, vacuole, and vesicular structure membranes. PtdIns(4)P labelling was not observed in the membrane of the endoplasmic reticulum, and in the outer and inner membranes of the nuclear envelope or mitochondria. PtdIns(4)P forms clusters of <100 nm in diameter in the plasma membrane and vacuolar membrane according to point pattern analysis of immunogold labelling. There are three kinds of compartments in the cytoplasmic leaflet of the plasma membrane. In the present study, we showed that PtdIns(4)P is specifically localised in the flat undifferentiated plasma membrane compartment. In the vacuolar membrane, PtdIns(4)P was concentrated in intramembrane particle (IMP)-deficient raft-like domains, which are tightly bound to lipid droplets, but not surrounding IMP-rich non-raft domains in geometrical IMP-distributed patterns in the stationary phase. This is the first report showing microdomain formations of PtdIns(4)P in the plasma membrane and vacuolar membrane of budding yeast cells at a nanoscale level, which will illuminate the functionality of PtdIns(4)P in each membrane.
Collapse
|
16
|
Reifarth M, Hoeppener S, Schubert US. Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy-Polymer-Based Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29325211 DOI: 10.1002/adma.201703704] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/14/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate mechanisms of nanoparticle (NP)-cell interactions, a detailed knowledge about membrane-particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor-made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode-of-action of tailor-made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low-contrast materials in electron microscopy, i.e., polymeric and polymer-modified nanoparticles, are highlighted.
Collapse
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
17
|
Jena P, Roxbury D, Galassi TV, Akkari L, Horoszko CP, Iaea DB, Budhathoki-Uprety J, Pipalia N, Haka AS, Harvey JD, Mittal J, Maxfield FR, Joyce JA, Heller DA. A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux. ACS NANO 2017; 11:10689-10703. [PMID: 28898055 PMCID: PMC5707631 DOI: 10.1021/acsnano.7b04743] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/31/2017] [Indexed: 05/18/2023]
Abstract
Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube's optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann-Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases.
Collapse
Affiliation(s)
- Prakrit
V. Jena
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department
of Chemical Engineering, University of Rhode
Island, Kingston, Rhode Island 02881, United States
| | - Thomas V. Galassi
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
| | - Leila Akkari
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Division
of Tumor Biology & Immunology, The Netherlands
Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Christopher P. Horoszko
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
| | - David B. Iaea
- Weill
Cornell Medicine, New York, New York 10065, United States
| | | | - Nina Pipalia
- Weill
Cornell Medicine, New York, New York 10065, United States
| | - Abigail S. Haka
- Weill
Cornell Medicine, New York, New York 10065, United States
| | - Jackson D. Harvey
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
| | - Jeetain Mittal
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | | | - Johanna A. Joyce
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
- Ludwig Center
for Cancer Research, University of Lausanne, Lausanne CH 1066, Switzerland
| | - Daniel A. Heller
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
18
|
Aktar S, Takatori S, Tsuji T, Orii M, Ohsaki Y, Cheng J, Fujimoto T. A New Electron Microscopic Method to Observe the Distribution of Phosphatidylinositol 3,4-bisphosphate. Acta Histochem Cytochem 2017; 50:141-147. [PMID: 29276316 PMCID: PMC5736831 DOI: 10.1267/ahc.17025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2] is a phosphoinositide that plays important roles in signal transduction, endocytosis, and cell migration among others. The intracellular distribution of PtdIns(3,4)P2 has mainly been studied by observing the distribution of GFP-tagged PtdIns(3,4)P2-binding protein domains in live cells and by labeling with anti-PtdIns(3,4)P2 antibody in fixed cell samples, but these methods only offer low spatial resolution results and may have pitfalls. In the present study, we developed an electron microscopic method to observe the PtdIns(3,4)P2 distribution using the SDS-treated freeze-fracture replica labeling method. The recombinant GST-tagged pleckstrin homology (PH) domain of TAPP1 was used as the binding probe, and its binding to PtdIns(3,4)P2in the freeze-fracture replica was confirmed by using liposomes containing different phosphoinositides and by the lack of labeling by a mutant probe, in which one amino acid in the PH domain was substituted. The method was applied to NIH3T3 cell samples and showed that the increase of PtdIns(3,4)P2 in cells treated with hydrogen peroxide occurs in the cytoplasmic leaflet of the plasma membrane, except in the caveolar membrane. The present method can define the distribution of PtdIns(3,4)P2 at a high spatial resolution and will facilitate our understanding of the physiological function of this less studied phosphoinositide.
Collapse
Affiliation(s)
- Sharmin Aktar
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| | - Sho Takatori
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
- Present affiliation: Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Takuma Tsuji
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| | - Minami Orii
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| | - Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine
| |
Collapse
|
19
|
Bader CA, Carter EA, Safitri A, Simpson PV, Wright P, Stagni S, Massi M, Lay PA, Brooks DA, Plush SE. Unprecedented staining of polar lipids by a luminescent rhenium complex revealed by FTIR microspectroscopy in adipocytes. MOLECULAR BIOSYSTEMS 2017; 12:2064-8. [PMID: 27170554 DOI: 10.1039/c6mb00242k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fourier transform infrared (FTIR) microspectroscopy and confocal imaging have been used to demonstrate that the neutral rhenium(i) tricarbonyl 1,10-phenanthroline complex bound to 4-cyanophenyltetrazolate as the ancillary ligand is able to localise in regions with high concentrations of polar lipids such as phosphatidylethanolamine (PE), sphingomyelin, sphingosphine and lysophosphatidic acid (LPA) in mammalian adipocytes.
Collapse
Affiliation(s)
- C A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences/Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | - E A Carter
- Vibrational Spectroscopy Core Facility and School of Chemistry, The University of Sydney, Sydney, Australia
| | - A Safitri
- Vibrational Spectroscopy Core Facility and School of Chemistry, The University of Sydney, Sydney, Australia
| | - P V Simpson
- School of Chemistry, Curtin University, Perth, Australia
| | - P Wright
- School of Chemistry, Curtin University, Perth, Australia
| | - S Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - M Massi
- School of Chemistry, Curtin University, Perth, Australia
| | - P A Lay
- Vibrational Spectroscopy Core Facility and School of Chemistry, The University of Sydney, Sydney, Australia
| | - D A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences/Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| | - S E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences/Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.
| |
Collapse
|
20
|
Yoshida A, Hayashi H, Tanabe K, Fujita A. Segregation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate into distinct microdomains on the endosome membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28648675 DOI: 10.1016/j.bbamem.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the immediate precursor of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which is located on the cytoplasmic leaflet of the plasma membrane and has been reported to possess multiple cellular functions. Although PtdIns(4)P and PtdIns(4,5)P2 have been reported to localize to multiple intracellular compartments and to each function as regulatory molecules, their generation, regulation and functions in most intracellular compartments are not well-defined. To analyze PtdIns(4)P and PtdIns(4,5)P2 distributions, at a nanoscale, we employed an electron microscopy technique that specifically labels PtdIns(4)P and PtdIns(4,5)P2 on the freeze-fracture replica of intracellular biological membranes. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilized in situ. Using this technique, we found that PtdIns(4)P was localized to the cytoplasmic leaflet of Golgi apparatus and vesicular-shaped structures. The PtdIns(4,5)P2 labeling was observed in the cytoplasmic leaflet of the mitochondrial inner membrane and vesicular-shaped structures. Double labeling of PtdIns(4)P and PtdIns(4,5)P2 with endosome markers illustrated that PtdIns(4)P and PtdIns(4,5)P2 were mainly localized to the late endosome/lysosome and early endosome, respectively. PtdIns(4)P and PtdIns(4,5)P2 were colocalized in some endosomes, with the two phospholipids separated into distinct microdomains on the same endosomes. This is the first report showing, at a nanoscale, segregation of PtdIns(4)P- and PtdIns(4,5)P2-enriched microdomains in the endosome, of likely importance for endosome functionality.
Collapse
Affiliation(s)
- Akane Yoshida
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Hiroki Hayashi
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akikazu Fujita
- Field of Veterinary Pathobiology, Basic Veterinary Science, Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| |
Collapse
|
21
|
The sleeping beauty kissed awake: new methods in electron microscopy to study cellular membranes. Biochem J 2017; 474:1041-1053. [DOI: 10.1042/bcj20160990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023]
Abstract
Electron microscopy (EM) for biological samples, developed in the 1940–1950s, changed our conception about the architecture of eukaryotic cells. It was followed by a period where EM applied to cell biology had seemingly fallen asleep, even though new methods with important implications for modern EM were developed. Among these was the discovery that samples can be preserved by chemical fixation and most importantly by rapid freezing without the formation of crystalline ice, giving birth to the world of cryo-EM. The past 15–20 years are hallmarked by a tremendous interest in EM, driven by important technological advances. Cryo-EM, in particular, is now capable of revealing structures of proteins at a near-atomic resolution owing to improved sample preparation methods, microscopes and cameras. In this review, we focus on the challenges associated with the imaging of membranes by EM and give examples from the field of host–pathogen interactions, in particular of virus-infected cells. Despite the advantages of imaging membranes under native conditions in cryo-EM, conventional EM will remain an important complementary method, in particular if large volumes need to be imaged.
Collapse
|
22
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2017; 4:155. [PMID: 28119914 PMCID: PMC5222840 DOI: 10.3389/fcell.2016.00155] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
23
|
Mondal S, Rakshit A, Pal S, Datta A. Cell Permeable Ratiometric Fluorescent Sensors for Imaging Phosphoinositides. ACS Chem Biol 2016; 11:1834-43. [PMID: 27082310 DOI: 10.1021/acschembio.6b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphoinositides are critical cell-signal mediators present on the plasma membrane. The dynamic change of phosphoinositide concentrations on the membrane including clustering and declustering mediates signal transduction. The importance of phosphoinositides is scored by the fact that they participate in almost all cell-signaling events, and a defect in phosphoinositide metabolism is linked to multiple diseases including cancer, bipolar disorder, and type-2 diabetes. Optical sensors for visualizing phosphoinositide distribution can provide information on phosphoinositide dynamics. This exercise will ultimately afford a handle into understanding and manipulating cell-signaling processes. The major requirement in phosphoinositide sensor development is a selective, cell permeable probe that can quantify phosphoinositides. To address this requirement, we have developed short peptide-based ratiometric fluorescent sensors for imaging phosphoinositides. The sensors afford a selective response toward two crucial signaling phosphoinositides, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol-4-phosphate (PI4P), over other anionic membrane phospholipids and soluble inositol phosphates. Dissociation constant values indicate up to 4 times higher probe affinity toward PI(4,5)P2 when compared to PI4P. Significantly, the sensors are readily cell-permeable and enter cells within 15 min of incubation as indicated by multiphoton excitation confocal microscopy. Furthermore, the sensors light up signaling phosphoinositides present both on the cell membrane and on organelle membranes near the perinuclear space, opening avenues for quantifying and monitoring phosphoinositide signaling.
Collapse
Affiliation(s)
- Samsuzzoha Mondal
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ananya Rakshit
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Suranjana Pal
- Department
of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ankona Datta
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
24
|
Nanoscale analysis reveals agonist-sensitive and heterogeneous pools of phosphatidylinositol 4-phosphate in the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1298-305. [DOI: 10.1016/j.bbamem.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
|
25
|
Takatori S, Fujimoto T. A novel imaging method revealed phosphatidylinositol 3,5-bisphosphate-rich domains in the endosome/lysosome membrane. Commun Integr Biol 2016; 9:e1145319. [PMID: 27195064 PMCID: PMC4857783 DOI: 10.1080/19420889.2016.1145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 11/04/2022] Open
Abstract
We developed a new method to observe distribution of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] using electron microscopy. In freeze-fracture replicas of quick-frozen samples, PtdIns(3,5)P2 was labeled specifically using recombinant ATG18 tagged with glutathione S-transferase and 4×FLAG, which was mixed with an excess of recombinant PX domain to suppress binding of ATG18 to phosphatidylinositol 3-phosphate. Using this method, PtdIns(3,5)P2 was found to be enriched in limited domains in the yeast vacuole and mammalian endosomes. In the yeast vacuole exposed to hyperosmolar stress, PtdIns(3,5)P2 was distributed at a significantly higher density in the intramembrane particle (IMP)-deficient liquid-ordered domains than in the surrounding IMP-rich domains. In mammalian cells, PtdIns(3,5)P2 was observed in endosomes of tubulo-vesicular morphology labeled for RAB5 or RAB7. Notably, distribution density of PtdIns(3,5)P2 in the endosome was significantly higher in the vesicular portion than in the tubular portion. The nano-scale distribution of PtdIns(3,5)P2 revealed in the present study is important to understand its functional roles in the vacuole and endosomes.
Collapse
Affiliation(s)
- Sho Takatori
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo , Tokyo, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine , Nagoya, Japan
| |
Collapse
|
26
|
Reprint of: “Synthetic lipids and their role in defining macromolecular assemblies”. Chem Phys Lipids 2016; 194:149-57. [DOI: 10.1016/j.chemphyslip.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022]
|
27
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2016. [PMID: 28119914 DOI: 10.3389/fcell.2016.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
28
|
Daemen S, van Zandvoort MAMJ, Parekh SH, Hesselink MKC. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol Metab 2015; 5:153-163. [PMID: 26977387 PMCID: PMC4770264 DOI: 10.1016/j.molmet.2015.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/19/2015] [Accepted: 12/27/2015] [Indexed: 12/01/2022] Open
Abstract
Background Excess storage of lipids in ectopic tissues, such as skeletal muscle, liver, and heart, seems to associate closely with metabolic abnormalities and cardiac disease. Intracellular lipid storage occurs in lipid droplets, which have gained attention as active organelles in cellular metabolism. Recent developments in high-resolution microscopy and microscopic spectroscopy have opened up new avenues to examine the physiology and biochemistry of intracellular lipids. Scope of review The aim of this review is to give an overview of recent technical advances in microscopy, and its application for the visualization, identification, and quantification of intracellular lipids, with special focus to lipid droplets. In addition, we attempt to summarize the probes currently available for the visualization of lipids. Major conclusions The continuous development of lipid probes in combination with the rapid development of microscopic techniques can provide new insights in the role and dynamics of intracellular lipids. Moreover, in situ identification of intracellular lipids is now possible and promises to add a new dimensionality to analysis of lipid biochemistry, and its relation to (patho)physiology.
Collapse
Key Words
- BODIPY, Boron-dipyrromethene
- CARS, coherent anti-stokes Raman scattering
- CLEM, correlative light electron microscopy
- CLSM, confocal laser scanning microscopy
- DIC, differential interference microscopy
- FA, fatty acid
- FIB-SEM, focused ion beam scanning electron microscopy
- FLIP, fluorescence loss in photobleaching
- FRAP, fluorescent recovery after photobleaching
- FRET, fluorescence resonance energy transfer
- Fluorescent lipid probes
- GFP, green fluorescent protein
- HCV, hepatitis C virus
- LD, lipid droplet
- Lipid droplets
- Live-cell imaging
- Metabolic disease
- NBD, nitro-benzoxadiazolyl
- PALM, photoactivation localization microscopy
- SBEM, serial block face scanning electron microscopy
- SIMS, Secondary Ion Mass Spectrometry
- SRS, Stimulated Raman Scattering
- STED, stimulated emission depletion
- STORM, stochastic optical reconstruction microscopy
- Super-resolution
- TAG, triacylglycerol
- TEM, transmission electron microscopy
- TOF-SIMS, time-of-flight SIMS
- TPLSM, two-photon laser scanning microscopy
- Vibrational microscopy
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Human Movement Sciences and Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Marc A M J van Zandvoort
- Department of Genetics and Molecular Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
| | - Sapun H Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Matthijs K C Hesselink
- Department of Human Movement Sciences and Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Takatori S, Tatematsu T, Cheng J, Matsumoto J, Akano T, Fujimoto T. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes. Traffic 2015; 17:154-67. [PMID: 26563567 DOI: 10.1111/tra.12346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/02/2023]
Abstract
Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality.
Collapse
Affiliation(s)
- Sho Takatori
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jun Matsumoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuya Akano
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
30
|
Ariotti N, Hall TE, Rae J, Ferguson C, McMahon KA, Martel N, Webb RE, Webb RI, Teasdale RD, Parton RG. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Dev Cell 2015; 35:513-25. [PMID: 26585296 DOI: 10.1016/j.devcel.2015.10.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Reliable and quantifiable high-resolution protein localization is critical for understanding protein function. However, the time required to clone and characterize any protein of interest is a significant bottleneck, especially for electron microscopy (EM). We present a modular system for enzyme-based protein tagging that allows for improved speed and sampling for analysis of subcellular protein distributions using existing clone libraries to EM-resolution. We demonstrate that we can target a modified soybean ascorbate peroxidase (APEX) to any GFP-tagged protein of interest by engineering a GFP-binding peptide (GBP) directly to the APEX-tag. We demonstrate that APEX-GBP (1) significantly reduces the time required to characterize subcellular protein distributions of whole libraries to less than 3 days, (2) provides remarkable high-resolution localization of proteins to organelle subdomains, and (3) allows EM localization of GFP-tagged proteins, including proteins expressed at endogenous levels, in vivo by crossing existing GFP-tagged transgenic zebrafish lines with APEX-GBP transgenic lines.
Collapse
Affiliation(s)
- Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robyn E Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia; Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Parrill AL. Synthetic lipids and their role in defining macromolecular assemblies. Chem Phys Lipids 2015; 191:38-47. [DOI: 10.1016/j.chemphyslip.2015.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
32
|
Pirrone GF, Vernon BC, Kent MS, Engen JR. Hydrogen Exchange Mass Spectrometry of Proteins at Langmuir Monolayers. Anal Chem 2015; 87:7022-9. [PMID: 26134943 DOI: 10.1021/acs.analchem.5b01724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high, despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef), which adopts a different conformation, depending on whether or not it is able to insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than the isolated use of either method.
Collapse
Affiliation(s)
- Gregory F Pirrone
- †Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115-5000, United States
| | - Briana C Vernon
- ‡Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Michael S Kent
- ‡Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - John R Engen
- †Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115-5000, United States
| |
Collapse
|