1
|
Chaves-Sanjuan A, D'Abrosca G, Russo V, van Erp B, Del Cont-Bernard A, Capelli R, Pirone L, Slapakova M, Sgambati D, Fattorusso R, Isernia C, Russo L, Barton IS, Roop RM, Pedone EM, Bolognesi M, Dame RT, Pedone PV, Nardini M, Malgieri G, Baglivo I. Circular oligomeric particles formed by Ros/MucR family members mediate DNA organization in α-proteobacteria. Nucleic Acids Res 2024; 52:13945-13963. [PMID: 39588759 DOI: 10.1093/nar/gkae1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
The transcriptional regulator MucR from Brucella species controls the expression of many genes, including those involved in virulence, by binding AT-rich DNA regions. MucR and its homologs belong to the Ros/MucR family, whose members occur in α-proteobacteria. MucR is a recent addition to the family of histone-like nucleoid structuring (H-NS) proteins. Indeed, despite the lack of sequence homology, MucR bears many functional similarities with H-NS and H-NS-like proteins, structuring the bacterial genome and acting as global regulators of transcription. Here we present an integrated cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance, modeling and biochemical study shedding light on the functional architecture of MucR from Brucella abortus and its homolog Ml5 from Mesorhizobium loti. We show that MucR and Ml5 fold in a circular quaternary assembly, which allows it to bridge and condense DNA by binding AT-rich sequences. Our results show that Ros/MucR family members are a novel type of H-NS-like proteins and, based on previous studies, provide a model connecting nucleoid structure and transcription regulation in α-proteobacteria.
Collapse
Affiliation(s)
- Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Gianluca D'Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Veronica Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Bert van Erp
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | | | - Riccardo Capelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Martina Slapakova
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Domenico Sgambati
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | - Roy Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | - Emilia M Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | - Paolo V Pedone
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
2
|
Wang H, Zhuang H, Tang W, Zhu J, Zhu W, Jiang L. Coacervate-pore complexes for selective molecular transport and dynamic reconfiguration. Nat Commun 2024; 15:10069. [PMID: 39567561 PMCID: PMC11579452 DOI: 10.1038/s41467-024-54510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Despite surging interests on liquid-state coacervates and condensates, confinement within solid-state pores for selective permeation remains an unexplored area. Drawing inspiration from nuclear pore complexes (NPCs), we design and construct coacervate-pore complexes (CPCs) with regulatable permeability. We demonstrate universal CPC formation across 19 coacervate systems and 5 pore types, where capillarity drives the spontaneous imbibition of coacervate droplets into dispersed or interconnected pores. CPCs regulate through-pore transport by forming a fluidic network that modulates guest molecule permeability based on guest-coacervate affinity, mimicking NPC selectivity. While solid constructs of NPC mimicries are limited by spatial fixation of polymer chains, CPCs of a liquid nature feature dynamic healing and rapid phase transitioning for permeability recovery and regulation, respectively. Looking forward, we expect the current work to establish a basis for developing liquid-based NPC analogs using a large pool of synthetic coacervates and biomolecular condensates.
Collapse
Affiliation(s)
- Hao Wang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Zhuang
- Experimental Basis and Practical Training Center, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Tang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510640, China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Stratton RL, Pokhrel B, Smith B, Adeyemi A, Dhakal A, Shen H. DNA Catalysis: Design, Function, and Optimization. Molecules 2024; 29:5011. [PMID: 39519652 PMCID: PMC11547689 DOI: 10.3390/molecules29215011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Catalytic DNA has gained significant attention in recent decades as a highly efficient and tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization. Despite being composed of just four monomers, DNA's complex conformational intricacies enable a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving the way for rational structural optimization. This review will summarize the latest studies on the performance and optimization of traditional DNAzymes and provide an in-depth analysis of DNAzyme hybrid catalysts and their unique and promising properties.
Collapse
Affiliation(s)
- Rebecca L. Stratton
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bishal Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Bryce Smith
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Adeola Adeyemi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Ananta Dhakal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (R.L.S.); (B.P.); (B.S.); (A.A.)
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Forni D, Pozzoli U, Mozzi A, Cagliani R, Sironi M. Depletion of CpG dinucleotides in bacterial genomes may represent an adaptation to high temperatures. NAR Genom Bioinform 2024; 6:lqae088. [PMID: 39071851 PMCID: PMC11282364 DOI: 10.1093/nargab/lqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Dinucleotide biases have been widely investigated in the genomes of eukaryotes and viruses, but not in bacteria. We assembled a dataset of bacterial genomes (>15 000), which are representative of the genetic diversity in the kingdom Eubacteria, and we analyzed dinucleotide biases in relation to different traits. We found that TpA dinucleotides are the most depleted and that CpG dinucleotides show the widest dispersion. The abundances of both dinucleotides vary with genomic G + C content and show a very strong phylogenetic signal. After accounting for G + C content and phylogenetic inertia, we analyzed different bacterial lifestyle traits. We found that temperature preferences associate with the abundance of CpG dinucleotides, with thermophiles/hyperthemophiles being particularly depleted. Conversely, the TpA dinucleotide displays a bias that only depends on genomic G + C composition. Using predictions of intrinsic cyclizability we also show that CpG depletion may associate with higher DNA bendability in both thermophiles/hyperthermophiles and mesophiles, and that the former are predicted to have significantly more flexible genomes than the latter. We suggest that higher bendability is advantageous at high temperatures because it facilitates DNA positive supercoiling and that, through modulation of DNA mechanical properties, local or global CpG depletion controls genome organization, most likely not only in bacteria.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
5
|
Mou X, Liu K, He L, Li S. Mechanical response of double-stranded DNA: Bend, twist, and overwind. J Chem Phys 2024; 161:085102. [PMID: 39177087 DOI: 10.1063/5.0216585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
We employed all-atom molecular dynamics simulations to explore the mechanical response of bending, twisting, and overwinding for double-stranded DNA (dsDNA). We analyzed the bending and twisting deformations, as well as their stiffnesses, using the tilt, roll, and twist modes under stretching force. Findings indicate that the roll and twist angles vary linearly with the stretching force but show opposite trends. The tilt, roll, and twist elastic moduli are considered constants, while the coupling between roll and twist modes slightly decreases under stretching force. The effect of the stretching force on the roll and twist modes, including both their deformations and elasticities, exhibits sequence-dependence, with symmetry around the base pair step. Furthermore, we examined the overwinding path and mechanism of dsDNA from the perspective of the stiffness matrix, based on the tilt, roll, and twist modes. The correlations among tilt, roll, and twist angles imply an alternative overwinding pathway via twist-roll coupling when dsDNA is stretched, wherein entropic contribution prevails.
Collapse
Affiliation(s)
- Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Kai Liu
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
6
|
Bianchi I, Grassi S, Nardi E, Castiglione F, Focardi M. Dental DNA Mutations Occurring after Death: A Novel Method for Post-Mortem Interval (PMI) Estimation. Int J Mol Sci 2024; 25:8832. [PMID: 39201518 PMCID: PMC11354992 DOI: 10.3390/ijms25168832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Post-mortem interval (PMI) estimation remains one of the major challenges in forensic practice, especially for late PMIs beyond 7-10 days after the death of the subject. In 2022, an innovative method to investigate the occurrence of mutations induced by the death of a subject in the DNA of post-mortem dental pulps at different PMIs was developed, applying a next-generation sequencing (NGS) analysis. The present study aims to apply the same method of analysis to a small sample of teeth belonging to the same subject and analyzed at different PMIs/accumulated degree days (ADDs), and of teeth extracted from different subjects but analyzed at the same PMI/ADD to verify the repeatability of the results obtained in relation to the time elapsed since death. A total of 10 teeth were collected from 6 patients (3 males and 3 females) with PMI varying from 8 to 35 days, and ADD from 157.4 to 753.8. We found 1754 mutations in 56 genes, with more than 700 mutations having a prevalence > 5% and more than 300 variants considered of interest for the purposes of the study. Mutations that were not present at lower PMIs but manifested in later PMIs in pulps belonging to the same subject demonstrate that they can only have been acquired by the subject after death and according to the time elapsed since death. In total, 67 somatic mutations in 29 out of the 56 genes of the used panel occurred in a fashion that allows an association with specific PMI/ADD ranges (within 8 days, between 17 and 28, and beyond 30 days after death). The results suggest that temperature and humidity could influence the rate of DNA degeneration in dental pulps, thus PMI should be estimated in ADD more than days. The preliminary validation supports the hypothesis that the innovative method could be a useful tool for estimating the post-mortem interval even beyond the first week after death, but further analyses are needed to customize a specific genetic panel for forensic investigations and verify the influence of degenerative processes of soft tissues surrounding dental elements on DNA degeneration of pulps.
Collapse
Affiliation(s)
- Ilenia Bianchi
- Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (M.F.)
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Simone Grassi
- Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (M.F.)
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eleonora Nardi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Careggi University Hospital, Largo Brambilla, 50134 Florence, Italy; (E.N.); (F.C.)
| | - Francesca Castiglione
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Careggi University Hospital, Largo Brambilla, 50134 Florence, Italy; (E.N.); (F.C.)
| | - Martina Focardi
- Laboratory of Personal Identification and Forensic Morphology, Department of Health Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.G.); (M.F.)
- Forensic Medical Sciences, Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
7
|
Hu Y, Schwab S, Deiss S, Escudeiro P, van Heesch T, Joiner J, Vreede J, Hartmann M, Lupas A, Alvarez B, Alva V, Dame R. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res 2024; 52:8193-8204. [PMID: 38864377 PMCID: PMC11317129 DOI: 10.1093/nar/gkae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Silvia Deiss
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Thor van Heesch
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Joe D Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jocelyne Vreede
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
8
|
Wang X, Huang T, Li L, Xu Y. Effect of temperature on anisotropic bending elasticity of dsRNA: an all-atom molecular dynamics simulation. RSC Adv 2024; 14:17170-17177. [PMID: 38808231 PMCID: PMC11130765 DOI: 10.1039/d4ra02354d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Employing all-atom molecular dynamics simulations, we examined the temperature-dependent behavior of bending elasticity in double-stranded RNA (dsRNA). Specifically, we focused on the bending persistence length and its constituent components, namely, the tilt and roll stiffness. Our results revealed a near-linear decrease in these stiffness components as a function of temperature, thereby highlighting the increased flexibility of dsRNA at elevated temperatures. Furthermore, our data revealed a significant anisotropy in dsRNA bending elasticity, which diminished with increasing temperature, attributable to marked disparities in tilt and roll stiffness components. We delineated the underlying biophysical mechanisms and corroborated our findings with extant literature. These observations offer salient implications for advancing our understanding of nucleic acid elasticity, and are pertinent to potential medical applications.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information Shanghai 201411 China
| | - Tingting Huang
- School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information Shanghai 201411 China
| | - Liyun Li
- Department of Physics, Wenzhou University Wenzhou 325035 China
| | - Yanliang Xu
- School of Sino-German Engineering, Shanghai Technical Institute of Electronics and Information Shanghai 201411 China
| |
Collapse
|
9
|
Zhang Z, Mou X, Zhang Y, He L, Li S. Influence of temperature on bend, twist and twist-bend coupling of dsDNA. Phys Chem Chem Phys 2024; 26:8077-8088. [PMID: 38224130 DOI: 10.1039/d3cp04932a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The temperature-dependent bend and twist elasticities of dsDNA, as well as their couplings, were explored through all-atom molecular dynamics simulations. Three rotational parameters, tilt, roll, and twist, were employed to assess the bend and twist elasticities through their stiffness matrix. Our analysis indicates that the bend and twist stiffnesses decrease as the temperature rises, primarily owing to entropic influences stemming from thermodynamic fluctuations. Furthermore, the couplings between these rotational parameters also exhibit a decline with increasing temperature, although the roll-twist coupling displays greater strength than the tilt-roll and tilt-twist couplings, attributed to its more robust correction component. We elucidated the influence of temperature on bend and twist elasticities based on the comparisons between various models and existing data.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Dohnalová H, Matoušková E, Lankaš F. Temperature-dependent elasticity of DNA, RNA, and hybrid double helices. Biophys J 2024; 123:572-583. [PMID: 38340722 PMCID: PMC10938081 DOI: 10.1016/j.bpj.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Nucleic acid double helices in their DNA, RNA, and DNA-RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist-stretch coupling for DNA, RNA, and hybrid duplexes between 7°C and 47°C. The results are based on all-atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist-stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/°C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/°C, and smaller values are found for the other elastic moduli. The twist-stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two-state model of DNA flexibility is discussed. Our work provides temperature-dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.
Collapse
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Eva Matoušková
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Praha 6, Czech Republic
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Praha 6, Czech Republic.
| |
Collapse
|
11
|
Gupta A, Yu J, Challita EJ, Standeven J, Bhamla MS. OpenCell: A Low-cost, Open-Source, 3-in-1 device for DNA Extraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558349. [PMID: 37808818 PMCID: PMC10557587 DOI: 10.1101/2023.09.18.558349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
High-cost DNA extraction procedures pose significant challenges for budget-constrained laboratories. To address this, we introduce OpenCell, an economical, open-source, 3-in-1 laboratory device that combines the functionalities of a bead homogenizer, a microcentrifuge, and a vortex mixer. OpenCell utilizes modular attachments that magnetically connect to a central rotating brushless motor. This motor couples to an epicyclic gearing mechanism, enabling efficient bead homogenization, vortex mixing, and centrifugation within one compact unit. OpenCell's design incorporates multiple redundant safety features, ensuring both the device's and operator's safety. Additional features such as RPM measurement, programmable timers, battery operation, and optional speed control make OpenCell a reliable and reproducible laboratory instrument. In our study, OpenCell successfully isolated DNA from Spinacia oleracea (spinach), with an average yield of 2.3 μg and an A260/A280 ratio of 1.77, demonstrating its effectiveness for downstream applications such as Polymerase Chain Reaction (PCR) amplification. With its compact size (20 cm x 28 cm x 6.7 cm) and lightweight design (0.8 kg), comparable to the size and weight of a laptop, OpenCell is portable, making it an attractive component of a 'lab-in-a-backpack' for resource-constrained environments in low-and-middle-income countries and synthetic biology in remote field stations. Leveraging the accessibility of 3D printing and off-the-shelf components, OpenCell can be manufactured and assembled at a low unit cost of less than $50, providing an affordable alternative to expensive laboratory equipment costing over $4000. OpenCell aims to overcome the barriers to entry in synthetic biology research and contribute to the growing collection of frugal and open hardware.
Collapse
Affiliation(s)
- Aryan Gupta
- School of Electrical & Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Justin Yu
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Elio J. Challita
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA, 30318, USA
| | - Janet Standeven
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
- Lambert High School, Suwanee, Georgia, United States of America
| | - M. Saad Bhamla
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Dohnalová H, Seifert M, Matoušková E, Klein M, Papini FS, Lipfert J, Dulin D, Lankaš F. Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations. J Phys Chem B 2024; 128:664-675. [PMID: 38197365 PMCID: PMC10823466 DOI: 10.1021/acs.jpcb.3c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
RNA plays critical roles in the transmission and regulation of genetic information and is increasingly used in biomedical and biotechnological applications. Functional RNAs contain extended double-stranded regions, and the structure of double-stranded RNA (dsRNA) has been revealed at high resolution. However, the dependence of the properties of the RNA double helix on environmental effects, notably temperature, is still poorly understood. Here, we use single-molecule magnetic tweezer measurements to determine the dependence of the dsRNA twist on temperature. We find that dsRNA unwinds with increasing temperature, even more than DNA, with ΔTwRNA = -14.4 ± 0.7°/(°C·kbp), compared to ΔTwDNA = -11.0 ± 1.2°/(°C·kbp). All-atom molecular dynamics (MD) simulations using a range of nucleic acid force fields, ion parameters, and water models correctly predict that dsRNA unwinds with rising temperature but significantly underestimate the magnitude of the effect. These MD data, together with additional MD simulations involving DNA and DNA-RNA hybrid duplexes, reveal a linear correlation between the twist temperature decrease and the helical rise, in line with DNA but at variance with RNA experimental data. We speculate that this discrepancy might be caused by some unknown bias in the RNA force fields tested or by as yet undiscovered transient alternative structures in the RNA duplex. Our results provide a baseline to model more complex RNA assemblies and to test and develop new parametrizations for RNA simulations. They may also inspire physical models of the temperature-dependent dsRNA structure.
Collapse
Affiliation(s)
- Hana Dohnalová
- Department
of Informatics and Chemistry, University
of Chemistry and Technology Prague, Technická 5, 166 28 Praha
6, Czech Republic
| | - Mona Seifert
- Junior
Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 3, Erlangen 91058, Germany
| | - Eva Matoušková
- Department
of Informatics and Chemistry, University
of Chemistry and Technology Prague, Technická 5, 166 28 Praha
6, Czech Republic
| | - Misha Klein
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Flávia S. Papini
- Junior
Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 3, Erlangen 91058, Germany
| | - Jan Lipfert
- Soft
Condensed Matter and Biophysics, Department of Physics and Debye Institute, Utrecht University, Utrecht 3584 CC, The Netherlands
| | - David Dulin
- Junior
Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstr. 3, Erlangen 91058, Germany
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Filip Lankaš
- Department
of Informatics and Chemistry, University
of Chemistry and Technology Prague, Technická 5, 166 28 Praha
6, Czech Republic
| |
Collapse
|
13
|
Anbalagan S. Temperature-sensing riboceptors. RNA Biol 2024; 21:1-6. [PMID: 39016038 PMCID: PMC11259075 DOI: 10.1080/15476286.2024.2379118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Understanding how cells sense temperature is a fundamental question in biology and is pivotal for the evolution of life. In numerous organisms, temperature is not only sensed but also generated due to cellular processes. Consequently, the mechanisms governing temperature sensation in various organisms have been experimentally elucidated. Extending upon others' proposals and demonstration of protein- and nucleic acid-based thermosensors, and utilizing a colonial India 'punkah-wallahs' analogy, I present my rationale for the necessity of temperature sensing in every organelle in a cell. Finally, I propose temperature-sensing riboceptors (ribonucleic acid receptors) to integrate all the RNA molecules (mRNA, non-coding RNA, and so forth) capable of sensing temperature and triggering a signaling event, which I call as thermocrine signaling. This approach could enable the identification of riboceptors in every cell of almost every organism, not only for temperature but also for other classes of ligands, including gaseous solutes, and water.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
14
|
Henneman B, Erkelens AM, Heinsman J, Battjes J, Dame RT. Quantitation of DNA Binding Affinity Using Tethered Particle Motion. Methods Mol Biol 2024; 2819:497-518. [PMID: 39028521 DOI: 10.1007/978-1-0716-3930-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The binding constant is an important characteristic of a DNA-binding protein. A large number of methods exist to measure the binding constant, but many of those methods have intrinsic flaws that influence the outcome of the characterization. Tethered particle motion (TPM) is a simple, cheap, and high-throughput single-molecule method that can be used to measure binding constants of proteins binding to DNA reliably, provided that they distort DNA. In TPM, the motion of a bead tethered to a surface by DNA is tracked using light microscopy. A protein binding to the DNA will alter bead motion. This change in bead motion makes it possible to measure the DNA-binding properties of proteins. We use the bacterial protein integration host factor (IHF) and the archaeal histone HMfA as examples to show how specific binding to DNA can be measured. Moreover, we show how the end-to-end distance can provide structural insights into protein-DNA binding.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Joost Heinsman
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Julius Battjes
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
15
|
van der Valk RA, Zarguit I, Laurens N, Dame RT. Tethered Particle Motion Analysis of DNA-Binding Properties of Architectural Proteins. Methods Mol Biol 2024; 2819:477-496. [PMID: 39028520 DOI: 10.1007/978-1-0716-3930-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Architectural DNA-binding proteins are key to the organization and compaction of genomic DNA inside cells. Tethered particle motion (TPM) permits analysis of DNA conformation and detection of changes in conformation induced by such proteins at the single molecule level in vitro. As many individual protein-DNA complexes can be investigated in parallel, these experiments have high throughput. TPM is therefore well suited for characterization of the effects of protein-DNA stoichiometry and changes in physicochemical conditions (pH, osmolarity, and temperature). Here, we describe in detail how to perform tethered particle motion experiments on complexes between DNA and architectural proteins to determine their structural and biochemical characteristics.
Collapse
Affiliation(s)
| | - Ilias Zarguit
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Niels Laurens
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
- Faculty Governance and Global Affairs, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
16
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Żarczyńska M, Żarczyński P, Tomsia M. Nucleic Acids Persistence-Benefits and Limitations in Forensic Genetics. Genes (Basel) 2023; 14:1643. [PMID: 37628694 PMCID: PMC10454188 DOI: 10.3390/genes14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The analysis of genetic material may be the only way to identify an unknown person or solve a criminal case. Often, the conditions in which the genetic material was found determine the choice of the analytical method. Hence, it is extremely important to understand the influence of various factors, both external and internal, on genetic material. The review presents information on DNA and RNA persistence, depending on the chemical and physical factors affecting the genetic material integrity. One of the factors taken into account is the time elapsing to genetic material recovery. Temperature can both preserve the genetic material or lead to its rapid degradation. Radiation, aquatic environments, and various types of chemical and physical factors also affect the genetic material quality. The substances used during the forensic process, i.e., for biological trace visualization or maceration, are also discussed. Proper analysis of genetic material degradation can help determine the post-mortem interval (PMI) or time since deposition (TsD), which may play a key role in criminal cases.
Collapse
Affiliation(s)
- Małgorzata Żarczyńska
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Piotr Żarczyński
- School of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland; (M.Ż.); (P.Ż.)
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
18
|
Li X, Gong P, Zhou X, Wang S, Liu Y, Zhang Y, Nguyen LV, Warren-Smith SC, Zhao Y. In-situ detection scheme for EGFR gene with temperature and pH compensation using a triple-channel optical fiber biosensor. Anal Chim Acta 2023; 1263:341286. [PMID: 37225344 DOI: 10.1016/j.aca.2023.341286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
An advanced multi-parameter optical fiber sensing technology for EGFR gene detection based on DNA hybridization technology is demonstrated in this paper. For traditional DNA hybridization detection methods, temperature and pH compensation can not be realized or need multiple sensor probes. However, the multi-parameter detection technology we proposed can simultaneously detect complementary DNA, temperature and pH based on a single optical fiber probe. In this scheme, three optical signals including dual surface plasmon resonance signal (SPR) and Mach-Zehnder interference signal (MZI) are excited by binding the probe DNA sequence and pH-sensitive material with the optical fiber sensor. The paper proposes the first research to achieve simultaneous excitation of dual SPR signal and Mach-Zehnder interference signal in a single fiber and used for three-parameter detection. Three optical signals have different sensitivities to the three variables. From a mathematical point of view, the unique solutions of exon-20 concentration, temperature and pH can be obtained by analyzing the three optical signals. The experimental results show that the exon-20 sensitivity of the sensor can reach 0.07 nm nM-1, and the limit of detection is 3.27 nM. The designed sensor gives a fast response, high sensitivity, and low detection limit, which is important for the field of DNA hybridization research and for solving the problems of biosensor susceptibility to temperature and pH.
Collapse
Affiliation(s)
- Xuegang Li
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Pengqi Gong
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Xue Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Shankun Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yingxuan Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yanan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Linh V Nguyen
- Institute for Photonics and Advanced Sensing and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Stephen C Warren-Smith
- Institute for Photonics and Advanced Sensing and School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China
| |
Collapse
|
19
|
Ranasinghe M, Fogg JM, Catanese DJ, Zechiedrich L, Demeler B. Suitability of double-stranded DNA as a molecular standard for the validation of analytical ultracentrifugation instruments. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:267-280. [PMID: 37501021 PMCID: PMC10530205 DOI: 10.1007/s00249-023-01671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
To address the current lack of validated molecular standards for analytical ultracentrifugation (AUC), we investigated the suitability of double-stranded DNA molecules. We compared the hydrodynamic properties of linear and circular DNA as a function of temperature. Negatively supercoiled, nicked, and linearized 333 and 339 bp minicircles were studied. We quantified the hydrodynamic properties of these DNAs at five different temperatures, ranging from 4 to 37 °C. To enhance the precision of our measurements, each sample was globally fitted over triplicates and five rotor speeds. The exceptional stability of DNA allowed each sample to be sedimented repeatedly over the course of several months without aggregation or degradation, and with excellent reproducibility. The sedimentation and diffusion coefficients of linearized and nicked minicircle DNA demonstrated a highly homogeneous sample, and increased with temperature, indicating a decrease in friction. The sedimentation of linearized DNA was the slowest; supercoiled DNA sedimented the fastest. With increasing temperature, the supercoiled samples shifted to slower sedimentation, but sedimented faster than nicked minicircles. These results suggest that negatively supercoiled DNA becomes less compact at higher temperatures. The supercoiled minicircles, as purified from bacteria, displayed heterogeneity. Therefore, supercoiled DNA isolated from bacteria is unsuitable as a molecular standard. Linear and nicked samples are well suited as a molecular standard for AUC and have exceptional colloidal stability in an AUC cell. Even after sixty experiments at different speeds and temperatures, measured over the course of 4 months, all topological states of DNA remained colloidal, and their concentrations remained essentially unchanged.
Collapse
Affiliation(s)
- Maduni Ranasinghe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Daniel J Catanese
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
20
|
Bao Y, Chen Y, Wang F, Xu Z, Zhou S, Sun R, Wu X, Yan K. East Asian monsoon manipulates the richness and taxonomic composition of airborne bacteria over China coastal area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162581. [PMID: 36889406 DOI: 10.1016/j.scitotenv.2023.162581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Airborne bacteria may have significant impacts on aerosol properties, public health and ecosystem depending on their taxonomic composition and transport. This study investigated the seasonal and spatial variations of bacterial composition and richness over the east coast of China and the roles of East Asian monsoon played through synchronous sampling and 16S rRNA sequencing analysis of airborne bacteria at Huaniao island of the East China Sea (ECS) and the urban and rural sites of Shanghai. Airborne bacteria showed higher richness over the land sites than Huaniao island with the highest values found in the urban and rural springs associated with the growing plants. For the island, the maximal richness occurred in winter as the result of prevailing terrestrial winds controlled by East Asian winter monsoon. Proteobacteria, Actinobacteria and Cyanobacteria were found to be top three phyla, together accounting for 75 % of total airborne bacteria. Radiation-resistant Deinococcus, Methylobacterium belonging to Rhizobiales (related to vegetation) and Mastigocladopsis_PCC_10914 originating from marine ecosystem were indicator genera for urban, rural and island sites, respectively. The Bray-Curits dissimilarity of taxonomic composition between the island and two land sites was the lowest in winter with the representative genera over island also typically from the soil. Our results reveal that seasonal change of monsoon wind directions evidently affects the richness and taxonomic composition of airborne bacteria in China coastal area. Particularly, prevailing terrestrial winds lead to the dominance of land-derived bacteria over the coastal ECS which may have a potential impact on marine ecosystem.
Collapse
Affiliation(s)
- Yang Bao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ying Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 202162, China.
| | - Fanghui Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Zongjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Shengqian Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ruihua Sun
- Pudong New District Environmental Monitoring Station, Shanghai 200135, China
| | - Xiaowei Wu
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200233, China
| | - Ke Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
21
|
Fan H. Single‐molecule tethered particle motion to study
protein‐DNA
interaction. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
22
|
Zhang Y, He L, Li S. Temperature dependence of DNA elasticity: An all-atom molecular dynamics simulation study. J Chem Phys 2023; 158:094902. [PMID: 36889965 DOI: 10.1063/5.0138940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We used all-atom molecular dynamics simulation to investigate the elastic properties of double-stranded DNA (dsDNA). We focused on the influences of temperature on the stretch, bend, and twist elasticities, as well as the twist-stretch coupling, of the dsDNA over a wide range of temperature. The results showed that the bending and twist persistence lengths, together with the stretch and twist moduli, decrease linearly with temperature. However, the twist-stretch coupling behaves in a positive correction and enhances as the temperature increases. The potential mechanisms of how temperature affects dsDNA elasticity and coupling were investigated by using the trajectories from atomistic simulation, in which thermal fluctuations in structural parameters were analyzed in detail. We analyzed the simulation results by comparing them with previous simulation and experimental data, which are in good agreement. The prediction about the temperature dependence of dsDNA elastic properties provides a deeper understanding of DNA elasticities in biological environments and potentially helps in the further development of DNA nanotechnology.
Collapse
Affiliation(s)
- Yahong Zhang
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
23
|
Avicenna F, Yudianto A, I'tishom R, Wungu CDK. Effect of machine-washing semen-stained fabrics on the persistence of human spermatozoa DNA: A systematic review of five articles. Leg Med (Tokyo) 2023; 60:102179. [PMID: 36450204 DOI: 10.1016/j.legalmed.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Biological evidence of sexual violence, such as semen, can change due to fabric washing. This can be due to attempts by the perpetrator to eliminate evidence or because the victim feels ashamed of sexual violence. While much research on this topic has been conducted, no systematic review has been attempted. This systematic review explores the effect of fabric machine-washing on the persistence of human spermatozoa deoxyribonucleic acid (DNA). This systematic review seeks in vitro experiments in which semen-stained fabrics were washed by washing machines, published in English, and matched with keywords in PubMed, Europe PMC, ScienceDirect, and Google Scholar. We then assessed the obtained articles with the Joanna Briggs Institute quasi-experimental checklist. This systematic review used the narrative synthesis method. Our search yielded five articles. These articles observe the effect of machine-washing factors on the persistence of human spermatozoa DNA, such as water temperature, washing duration, detergent type, washing repetition, and duration of fabric storage before washing. This systematic review shows that fabric washing insignificantly affects spermatozoa DNA persistence, and DNA might persist after multiple washes. However, variations in the articles indicate that future studies on this topic need to account for more variables and be reported in more detail to reduce bias.
Collapse
Affiliation(s)
- Fajar Avicenna
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
| | - Ahmad Yudianto
- Department of Forensic Medicine and Medicolegal, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia.
| | - Reny I'tishom
- Department of Medical Biology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
| | - Citrawati Dyah Kencono Wungu
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia; Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia.
| |
Collapse
|
24
|
Liu X, Zhen Y, Ye N, Zhang L. Label-free microRNA detection using a locked-to-unlocked transforming system assembled by microfluidics. LAB ON A CHIP 2022; 22:4984-4994. [PMID: 36426714 DOI: 10.1039/d2lc00911k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MicroRNA (miRNA) is a potential biomarker for the early screening and diagnosis of cancers and is widely present in human blood, urine and saliva. Here, we report a microfluidics-assembled tool for miRNA detection based on the regulation of DNA locked and unlocked states and explore its application in complex samples. Microfluidic techniques are used to continuously assemble the locked-to-unlocked transforming system using a rapid one-step method. It only takes 2 min to produce enough locked-to-unlocked systems for a miRNA detection experiment. DNA molecules with a recognition sequence and a G-rich reporter sequence (G4m) are locked by attaching both ends to the surface of magnetic beads (MBs) in microchannels. The presence of the target miRNA can initiate the specific cleavage of one end of G4m by duplex-specific nuclease, resulting in the transition of G4m from a locked state to an unlocked state. This transition enables G4m to freely fold into a G-quadruplex, which can participate in the catalysis of ABTS oxidation and result in a turquoise color. During the whole process, the target miRNA remains intact and continuously initiate specific cleavage, facilitating signal amplification. Magnetic separation steps are employed to assist in miRNA enrichment and interference reduction. As a proof of concept, we quantified miRNA-21 using the locked-to-unlocked system. The assay allows specific detection of miRNA-21 in the range of 3.2-570 pM with a detection limit of 2.01 pM (S/N = 3). Furthermore, the locked-to-unlocked system is used to analyze miRNA-spiked urine, saliva and serum samples and shows robust performance in different matrices.
Collapse
Affiliation(s)
- Xuting Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| | - Yi Zhen
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China.
| |
Collapse
|
25
|
Erkelens AM, Qin L, van Erp B, Miguel-Arribas A, Abia D, Keek HGJ, Markus D, Cajili MKM, Schwab S, Meijer WJJ, Dame R. The B. subtilis Rok protein is an atypical H-NS-like protein irresponsive to physico-chemical cues. Nucleic Acids Res 2022; 50:12166-12185. [PMID: 36408910 PMCID: PMC9757077 DOI: 10.1093/nar/gkac1064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) play a central role in chromosome organization and environment-responsive transcription regulation. The Bacillus subtilis-encoded NAP Rok binds preferentially AT-rich regions of the genome, which often contain genes of foreign origin that are silenced by Rok binding. Additionally, Rok plays a role in chromosome architecture by binding in genomic clusters and promoting chromosomal loop formation. Based on this, Rok was proposed to be a functional homolog of E. coli H-NS. However, it is largely unclear how Rok binds DNA, how it represses transcription and whether Rok mediates environment-responsive gene regulation. Here, we investigated Rok's DNA binding properties and the effects of physico-chemical conditions thereon. We demonstrate that Rok is a DNA bridging protein similar to prototypical H-NS-like proteins. However, unlike these proteins, the DNA bridging ability of Rok is not affected by changes in physico-chemical conditions. The DNA binding properties of the Rok interaction partner sRok are affected by salt concentration. This suggests that in a minority of Bacillus strains Rok activity can be modulated by sRok, and thus respond indirectly to environmental stimuli. Despite several functional similarities, the absence of a direct response to physico-chemical changes establishes Rok as disparate member of the H-NS family.
Collapse
Affiliation(s)
| | | | - Bert van Erp
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | - Helena G J Keek
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Dorijn Markus
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Marc K M Cajili
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands,Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Wilfried J J Meijer
- Correspondence may also be addressed to Wilfried J.J. Meijer. Tel: +34 91 196 4539;
| | - Remus T Dame
- To whom correspondence should be addressed. Tel: +31 71 527 5605;
| |
Collapse
|
26
|
Modified methods obtain high-quality DNA and RNA from anaerobic activated sludge at a wide range of temperatures. J Microbiol Methods 2022; 199:106532. [DOI: 10.1016/j.mimet.2022.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/27/2022]
|
27
|
System-Wide Analysis of the GATC-Binding Nucleoid-Associated Protein Gbn and Its Impact on
Streptomyces
Development. mSystems 2022; 7:e0006122. [PMID: 35575488 PMCID: PMC9239103 DOI: 10.1128/msystems.00061-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large part of the chemical space of bioactive natural products is derived from
Actinobacteria
. Many of the biosynthetic gene clusters for these compounds are cryptic; in others words, they are expressed in nature but not in the laboratory.
Collapse
|
28
|
Abstract
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA;
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA; .,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
29
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
30
|
Yeou S, Lee NK. Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability. Mol Cells 2022; 45:33-40. [PMID: 34470919 PMCID: PMC8819492 DOI: 10.14348/molcells.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
van de Pol ILE, Hermaniuk A, Verberk WCEP. Interacting Effects of Cell Size and Temperature on Gene Expression, Growth, Development and Swimming Performance in Larval Zebrafish. Front Physiol 2021; 12:738804. [PMID: 34950046 PMCID: PMC8691434 DOI: 10.3389/fphys.2021.738804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size may be important in understanding the thermal biology of ectotherms, as the regulation and consequences of cell size appear to be temperature dependent. Using a recently developed model system of triploid zebrafish (which have around 1.5-fold larger cells than their diploid counterparts) we examine the effects of cell size on gene expression, growth, development and swimming performance in zebrafish larvae at different temperatures. Both temperature and ploidy affected the expression of genes related to metabolic processes (citrate synthase and lactate dehydrogenase), growth and swimming performance. Temperature also increased development rate, but there was no effect of ploidy level. We did find interactive effects between ploidy and temperature for gene expression, body size and swimming performance, confirming that the consequences of cell size are temperature dependent. Triploids with larger cells performed best at cool conditions, while diploids performed better at warmer conditions. These results suggest different selection pressures on ectotherms and their cell size in cold and warm habitats.
Collapse
Affiliation(s)
- Iris Louise Eleonora van de Pol
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Adam Hermaniuk
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Białystok, Białystok, Poland
| | | |
Collapse
|
32
|
Bailey LF, Vavolil Prabhakaran J, Vishwapathi VK, Kulkarni CV. Electroformation of Particulate Emulsions Using Lamellar and Nonlamellar Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14527-14539. [PMID: 34855404 DOI: 10.1021/acs.langmuir.1c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the development of an electroformation technique for the preparation of particulate (particle-based) emulsions. These oil-in-water (here, lipid phase acts as an "oil") emulsions were prepared using nonlamellar lipid phases. Such emulsion particles offer high hydrophobic volumes compared to conventional lipid particles based on lamellar phases (vesicles/liposomes). In addition, the tortuous internal nanostructure contributes through greater surface area per volume of lipid particles allowing an enhanced loading of payloads. The electroformation method makes use of a capacitor formed from two indium tin oxide coated conductive glass surfaces separated by a dielectric aqueous medium. This capacitor setup is enclosed in a custom-designed 3D-printed unit. Lipid molecules, deposited on conductive surfaces, self-assemble into a nanostructure in the presence of an aqueous medium, which when subjected to an alternating current electric field forms nano- and/or microparticles. Optical microscopy, dynamic light scattering, and small-angle X-ray scattering techniques were employed for micro- and nanostructural analyses of electroformed particles. With this method, it is possible to produce particulate emulsions at a very low (e.g., 0.0005 wt % or 0.5 mg/mL) lipid concentration. We demonstrate an applicability of the electroformation method for drug delivery by preparing lipid particles with curcumin, which is a highly important but water-insoluble medicinal compound. As the method employs gentle conditions, it is potentially noninvasive for the delivery of delicate biomolecules and certain drugs, which are prone to decomposition or denaturation due to the high thermomechanical energy input and/or nonaqueous solvents required for existing methods.
Collapse
Affiliation(s)
| | - Jayachandran Vavolil Prabhakaran
- Applied Biology Section, Department of Applied Sciences, University of Technology and Applied Sciences, P. O. Box 74, Al-Khuwair, 133 Muscat, Sultanate of Oman
| | | | | |
Collapse
|
33
|
Guo R, He M, Zhang X, Ji X, Wei Y, Zhang QL, Zhang Q. Genome-Wide Transcriptional Changes of Rhodosporidium kratochvilovae at Low Temperature. Front Microbiol 2021; 12:727105. [PMID: 34603256 PMCID: PMC8481953 DOI: 10.3389/fmicb.2021.727105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Rhodosporidium kratochvilovae strain YM25235 is a cold-adapted oleaginous yeast strain that can grow at 15°C. It is capable of producing polyunsaturated fatty acids. Here, we used the Nanopore Platform to first assemble the R. kratochvilovae strain YM25235 genome into a 23.71 Mb size containing 46 scaffolds and 8,472 predicted genes. To explore the molecular mechanism behind the low temperature response of R. kratochvilovae strain YM25235, we analyzed the RNA transcriptomic data from low temperature (15°C) and normal temperature (30°C) groups using the next-generation deep sequencing technology (RNA-seq). We identified 1,300 differentially expressed genes (DEGs) by comparing the cultures grown at low temperature (15°C) and normal temperature (30°C) transcriptome libraries, including 553 significantly upregulated and 747 significantly downregulated DEGs. Gene ontology and pathway enrichment analysis revealed that DEGs were primarily related to metabolic processes, cellular processes, cellular organelles, and catalytic activity, whereas the overrepresented pathways included the MAPK signaling pathway, metabolic pathways, and amino sugar and nucleotide sugar metabolism. We validated the RNA-seq results by detecting the expression of 15 DEGs using qPCR. This study provides valuable information on the low temperature response of R. kratochvilovae strain YM25235 for further research and broadens our understanding for the response of R. kratochvilovae strain YM25235 to low temperature.
Collapse
Affiliation(s)
- Rui Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Meixia He
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
34
|
Henneman B, Brouwer TB, Erkelens AM, Kuijntjes GJ, van Emmerik C, van der Valk RA, Timmer M, Kirolos NCS, van Ingen H, van Noort J, Dame RT. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res 2021; 49:4338-4349. [PMID: 33341892 PMCID: PMC8096283 DOI: 10.1093/nar/gkaa1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone–DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an ‘endless’ histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB–DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Thomas B Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gert-Jan Kuijntjes
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Clara van Emmerik
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Nancy C S Kirolos
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
35
|
Vemulapalli S, Hashemi M, Kolomeisky AB, Lyubchenko YL. DNA Looping Mediated by Site-Specific SfiI-DNA Interactions. J Phys Chem B 2021; 125:4645-4653. [PMID: 33914533 DOI: 10.1021/acs.jpcb.1c00763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between distant DNA segments play important roles in various biological processes, such as DNA recombination. Certain restriction enzymes create DNA loops when two sites are held together and then cleave the DNA. DNA looping is important during DNA synapsis. Here we investigated the mechanisms of DNA looping by restriction enzyme SfiI by measuring the properties of the system at various temperatures. Different sized loop complexes, mediated by SfiI-DNA interactions, were visualized with AFM. The experimental results revealed that small loops are more favorable compared to other loop sizes at all temperatures. Our theoretical model found that entropic cost dominates at all conditions, which explains the preference for short loops. Furthermore, specific loop sizes were predicted as favorable from an energetic point of view. These predictions were tested by experiments with transiently assembled SfiI loops on a substrate with a single SfiI site.
Collapse
Affiliation(s)
- Sridhar Vemulapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry-MS60, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
36
|
A quantitative model of a cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q Rev Biophys 2021; 54:e5. [PMID: 33722316 DOI: 10.1017/s0033583521000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantitative parameters for a two-state cooperative transition in duplex DNAs were finally obtained during the last 5 years. After a brief discussion of observations pertaining to the existence of the two-state equilibrium per se, the lengths, torsion, and bending elastic constants of the two states involved and the cooperativity parameter of the model are simply stated. Experimental tests of model predictions for the responses of DNA to small applied stretching, twisting, and bending stresses, and changes in temperature, ionic conditions, and sequence are described. The mechanism and significance of the large cooperativity, which enables significant DNA responses to such small perturbations, are also noted. The capacity of the model to resolve a number of long-standing and sometimes interconnected puzzles in the extant literature, including the origin of the broad pre-melting transition studied by numerous workers in the 1960s and 1970s, is demonstrated. Under certain conditions, the model predicts significant long-range attractive or repulsive interactions between hypothetical proteins with strong preferences for one or the other state that are bound to well-separated sites on the same DNA. A scenario is proposed for the activation of the ilvPG promoter on a supercoiled DNA by integration host factor.
Collapse
|
37
|
Plasmonic Layer as a Localized Temperature Control Element for Surface Plasmonic Resonance-Based Sensors. SENSORS 2021; 21:s21062035. [PMID: 33805691 PMCID: PMC8001950 DOI: 10.3390/s21062035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
Surface plasmon resonance (SPR) sensing is a well-established high-sensitivity, label-free and real-time detection technique for biomolecular interaction study. Its primary working principle consists of the measurement of the optical refractive index of the medium that is in close vicinity of the sensor surface. Bio-functionalization techniques allow biomolecular events to be located in such a way. Since optical refractive indices of any medium varies with the temperature, the place where the measurement takes place shall be within a temperature-controlled environment in order to ensure any temperature fluctuation is interpreted as a biomolecular event. Since the SPR measurement probes the sensed medium within the penetration depth of the plasmonic wave, which is less or in the order of 1 µm, we propose to use the metallic film constituting the detection surface as a localized heater aiming at controlling finely and quickly the temperature of the sensed medium. The Joule heating principle is then used and the modeling of the heater is reported as well as its validation by thermal IR imaging. Using water as a demonstration medium, SPR measurement results at different temperatures are successfully compared to the theoretical optical refractive index of water versus temperature.
Collapse
|
38
|
Tan X, Ge L, Zhang T, Lu Z. Preservation of DNA for data storage. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The preservation of DNA has attracted significant interest of scientists in diverse research fields from ancient biological remains to the information field. In light of the different DNA safekeeping requirements (e.g., storage time, storage conditions) in these disparate fields, scientists have proposed distinct methods to maintain the DNA integrity. Specifically, DNA data storage is an emerging research, which means that the binary digital information is converted to the sequences of nucleotides leading to dense and durable data storage in the form of synthesized DNA. The intact preservation of DNA plays a significant role because it is closely related to data integrity. This review discusses DNA preservation methods, aiming to confirm an appropriate one for synthetic oligonucleotides in DNA data storage. First, we analyze the impact factors of the DNA long-term storage, including the intrinsic stability of DNA, environmental factors, and storage methods. Then, the benefits and disadvantages of diverse conservation approaches (e.g., encapsulation-free, chemical encapsulation) are discussed. Finally, we provide advice for storing non-genetic information in DNA in vitro. We expect these preservation suggestions to promote further research that may extend the DNA storage time.
The bibliography includes 99 references.
Collapse
|
39
|
Misova I, Pitelova A, Budis J, Gazdarica J, Sedlackova T, Jordakova A, Benko Z, Smondrkova M, Mayerova N, Pichlerova K, Strieskova L, Prevorovsky M, Gregan J, Cipak L, Szemes T, Polakova SB. Repression of a large number of genes requires interplay between homologous recombination and HIRA. Nucleic Acids Res 2021; 49:1914-1934. [PMID: 33511417 PMCID: PMC7913671 DOI: 10.1093/nar/gkab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.
Collapse
Affiliation(s)
- Ivana Misova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Alexandra Pitelova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Tatiana Sedlackova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Anna Jordakova
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Zsigmond Benko
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary
| | - Maria Smondrkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Nina Mayerova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Karoline Pichlerova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Lucia Strieskova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Praha 2, Czechia
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF and Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Silvia Bagelova Polakova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| |
Collapse
|
40
|
Molecular diagnostic of toxigenic Corynebacterium diphtheriae strain by DNA sensor potentially suitable for electrochemical point-of-care diagnostic. Talanta 2021; 227:122161. [PMID: 33714465 DOI: 10.1016/j.talanta.2021.122161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The presented study is focused on the development of electrochemical genosensor for detection of tox gene fragment of toxigenic Corynebacterium diphtheriae strain. Together with our previous studies it fulfils the whole procedure for fast and accurate diagnostic of diphtheria at its early stage of infection with the use of electrochemical methods. The developed DNA sensor potentially can be used in more sophisticated portable device. After the electrochemical stem-loop probe structure optimization the conditions for real asymmetric PCR (aPCR) product detection were selected. As was shown it was crucial to optimize the magnesium and organic solvent concentrations in detection buffer. Under optimal conditions it was possible to selectively detect as low as 20.8 nM of complementary stand in 5 min or 0.5 nM in 30 min with sensitivity of 12.81 and 0.24 1⋅μM-1 respectively. The unspecific biosensor response was elucidated with the use of new electrode blocking agent, diethyldithiocarbamate. Its application in electrochemical genosensors lead to significant higher current values and the biosensor response even in conditions with magnesium ion depletion. The developed biosensor selectivity was examined using samples containing genetic material originated from a number of non-target bacterial species which potentially can be present in the human upper respiratory tract.
Collapse
|
41
|
Lin SN, Wuite GJ, Dame RT. Effect of Different Crowding Agents on the Architectural Properties of the Bacterial Nucleoid-Associated Protein HU. Int J Mol Sci 2020; 21:ijms21249553. [PMID: 33334011 PMCID: PMC7765392 DOI: 10.3390/ijms21249553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
HU is a nucleoid-associated protein expressed in most eubacteria at a high amount of copies (tens of thousands). The protein is believed to bind across the genome to organize and compact the DNA. Most of the studies on HU have been carried out in a simple in vitro system, and to what extent these observations can be extrapolated to a living cell is unclear. In this study, we investigate the DNA binding properties of HU under conditions approximating physiological ones. We report that these properties are influenced by both macromolecular crowding and salt conditions. We use three different crowding agents (blotting grade blocker (BGB), bovine serum albumin (BSA), and polyethylene glycol 8000 (PEG8000)) as well as two different MgCl2 conditions to mimic the intracellular environment. Using tethered particle motion (TPM), we show that the transition between two binding regimes, compaction and extension of the HU protein, is strongly affected by crowding agents. Our observations suggest that magnesium ions enhance the compaction of HU–DNA and suppress filamentation, while BGB and BSA increase the local concentration of the HU protein by more than 4-fold. Moreover, BGB and BSA seem to suppress filament formation. On the other hand, PEG8000 is not a good crowding agent for concentrations above 9% (w/v), because it might interact with DNA, the protein, and/or surfaces. Together, these results reveal a complex interplay between the HU protein and the various crowding agents that should be taken into consideration when using crowding agents to mimic an in vivo system.
Collapse
Affiliation(s)
- Szu-Ning Lin
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J.L. Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: (G.J.L.W.); (R.T.D.)
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Centre for Microbial Cell Biology, Leiden University, 2333 CC Leiden, The Netherlands
- Correspondence: (G.J.L.W.); (R.T.D.)
| |
Collapse
|
42
|
Temperature Measurement of a Bullet in Flight. SENSORS 2020; 20:s20247016. [PMID: 33302567 PMCID: PMC7764414 DOI: 10.3390/s20247016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/28/2022]
Abstract
This study answers a primary question concerning how the temperature changes during the flight of a bullet. To answer the question, the authors performed unique research to measure the initial temperatures of bullet surfaces and applied it to four kinds of projectiles in a series of field experiments. The technique determines the temperature changes on metallic objects in flight that reach a velocity of 300 to 900 m/s. Until now, the tests of temperature change available in the literature include virtual points that are adopted to ideal laboratory conditions using classic thermomechanical equations. The authors conducted the first study of its kind, in which is considered four projectiles in field conditions in which a metallic bullet leaves a rifle barrel after a powder deflagration. During this process, heat is partly transferred to the bullet from the initial explosion of the powder and barrel-bullet friction. In this case, the temperature determination of a bullet is complex because it concerns different points on the external surface. Thus, for the first time the authors measured the temperatures at different position on the bullet surface. Moreover, the authors showed that basic thermodynamic equations allow for the credible prediction of such behavior if the initial conditions are identified correctly. This novel identification of the initial conditions of temperature and velocity of flying bullets was not presented anywhere else up to now.
Collapse
|
43
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
44
|
Sunny JS, Mukund N, Natarajan A, Saleena LM. Identifying heat shock response systems from the genomic assembly of Ureibacillus thermophilus LM102 using protein-protein interaction networks. Gene X 2020; 737:144449. [DOI: 10.1016/j.gene.2020.144449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
|
45
|
Liu Q, Song W, Zhou Y, Dong X, Xin Y. Phenotypic divergence of thermotolerance: Molecular basis and cold adaptive evolution related to intrinsic DNA flexibility of glacier‐inhabitingCryobacteriumstrains. Environ Microbiol 2020; 22:1409-1420. [DOI: 10.1111/1462-2920.14957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Wei‐Zhi Song
- Centre for Marine Bio‐InnovationUniversity of New South Wales Sydney New South Wales Australia
| | - Yu‐Guang Zhou
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Xiu‐Zhu Dong
- State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Yu‐Hua Xin
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
46
|
Dohnalová H, Dršata T, Šponer J, Zacharias M, Lipfert J, Lankaš F. Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. J Chem Theory Comput 2020; 16:2857-2863. [DOI: 10.1021/acs.jctc.0c00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hana Dohnalová
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Martin Zacharias
- Physics-Department T38, Technical University of Munich, James-Franck-Strasse 1, 85748 Garching, Germany
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
47
|
A Mathematical Model for Vibration Behavior Analysis of DNA and Using a Resonant Frequency of DNA for Genome Engineering. Sci Rep 2020; 10:3439. [PMID: 32103036 PMCID: PMC7044233 DOI: 10.1038/s41598-020-60105-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 11/08/2022] Open
Abstract
The DNA molecule is the most evolved and most complex molecule created by nature. The primary role of DNA in medicine is long-term storage of genetic information. Genetic modifying is one of the most critical challenges that scientists face. On the other hand, it is said that under the influence of acoustic, electromagnetic, and scalar waves, the genetic code of DNA can be read or rewritten. In this article, the most accurate and comprehensive dynamic model will be presented for DNA. Each of the two strands is modeled with an out of plane curved beam and then by doubling this two strands with springs, consider the hydrogen bond strength between this two strands. Beams are traditionally descriptions of mechanical engineering structural elements or building. However, any structure such as automotive automobile frames, aircraft components, machine frames, and other mechanical or structural systems contain beam structures that are designed to carry lateral loads are analyzed similarly. Also, in this model, the mass of the nucleobases in the DNA structure, the effects of the fluid surrounding the DNA (nucleoplasm) and the effects of temperature changes are also considered. Finally, by deriving governing equations from Hamilton's principle method and solving these equations with the generalized differential quadrature method (GDQM), the frequency and mode shape of the DNA is obtained for the first time. In the end, validation of the obtained results from solving the governing equations of mathematical model compared to the obtained results from the COMSOL software is confirmed. By the help of these results, a conceptual idea for controlling cancer with using the DNA resonance frequency is presented. This idea will be presented to stop the cancerous cell's protein synthesis and modifying DNA sequence and genetic manipulation of the cell. On the other hand, by the presented DNA model and by obtaining DNA frequency, experimental studies of the effects of waves on DNA such as phantom effect or DNA teleportation can also be studied scientifically and precisely.
Collapse
|
48
|
Fliervoet LA, Lisitsyna ES, Durandin NA, Kotsis I, Maas-Bakker RFM, Yliperttula M, Hennink WE, Vuorimaa-Laukkanen E, Vermonden T. Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules 2020; 21:73-88. [PMID: 31500418 PMCID: PMC6961130 DOI: 10.1021/acs.biomac.9b00896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/29/2019] [Indexed: 12/15/2022]
Abstract
Combining multiple stimuli-responsive functionalities into the polymer design is an attractive approach to improve nucleic acid delivery. However, more in-depth fundamental understanding how the multiple functionalities in the polymer structures are influencing polyplex formation and stability is essential for the rational development of such delivery systems. Therefore, in this study the structure and dynamics of thermosensitive polyplexes were investigated by tracking the behavior of labeled plasmid DNA (pDNA) and polymer with time-resolved fluorescence spectroscopy using fluorescence resonance energy transfer (FRET). The successful synthesis of a heterofunctional poly(ethylene glycol) (PEG) macroinitiator containing both an atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) initiator is reported. The use of this novel PEG macroinitiator allows for the controlled polymerization of cationic and thermosensitive linear triblock copolymers and labeling of the chain-end with a fluorescent dye by maleimide-thiol chemistry. The polymers consisted of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), hydrophilic PEG (P), and cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block, further referred to as NPD. Polymer block D chain-ends were labeled with Cy3, while pDNA was labeled with FITC. The thermosensitive NPD polymers were used to prepare pDNA polyplexes, and the effect of the N/P charge ratio, temperature, and composition of the triblock copolymer on the polyplex properties were investigated, taking nonthermosensitive PD polymers as the control. FRET was observed both at 4 and 37 °C, indicating that the introduction of the thermosensitive PNIPAM block did not compromise the polyplex structure even above the polymer's cloud point. Furthermore, FRET results showed that the NPD- and PD-based polyplexes have a less dense core compared to polyplexes based on cationic homopolymers (such as PEI) as reported before. The polyplexes showed to have a dynamic character meaning that the polymer chains can exchange between the polyplex core and shell. Mobility of the polymers allow their uniform redistribution within the polyplex and this feature has been reported to be favorable in the context of pDNA release and subsequent improved transfection efficiency, compared to nondynamic formulations.
Collapse
Affiliation(s)
- Lies A.
L. Fliervoet
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Ekaterina S. Lisitsyna
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Nikita A. Durandin
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Ilias Kotsis
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Roel F. M. Maas-Bakker
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Marjo Yliperttula
- Division
of Pharmaceutical Biosciences and Drug Research Program, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), 00014 Helsinki, Finland
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Elina Vuorimaa-Laukkanen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
49
|
Heat-shrinking DNA nanoparticles for in vivo gene delivery. Gene Ther 2020; 27:196-208. [PMID: 31900424 DOI: 10.1038/s41434-019-0117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
The particle size of a PEG-peptide DNA nanoparticle is a key determinant of biodistribution following i.v. dosing. DNA nanoparticles of <100 nm in diameter are sufficiently small to cross through fenestrated endothelial cells to target hepatocytes in the liver. In addition, DNA nanoparticles must be close to charge-neutral to avoid recognition and binding to scavenger receptors found on Kupffer cells and endothelial cells in the liver. In the present study, we demonstrate an approach to heat shrink DNA nanoparticles to reduce their size to <100 nm to target hepatocytes. An optimized protocol heated plasmid DNA at 100 °C for 10 min resulting in partial denaturation. The immediate addition of a polyacridine PEG-peptide followed by cooling to room temperature resulted in heat-shrunken DNA nanoparticles that were ~70 nm in diameter compared with 170 nm when heating was omitted. Heat shrinking resulted in the conversion of supercoiled DNA into open circular to remove strain during compaction. Heat-shrunken DNA nanoparticles were stable to freeze-drying and reconstitution in saline. Hydrodynamic dosing established that 70 nm heat-shrunken DNA nanoparticles efficiently expressed luciferase in mouse liver. Biodistribution studies revealed that 70 nm DNA nanoparticles are rapidly and transiently taken up by liver whereas 170 nm DNA nanoparticles avoid liver uptake due to their larger size. The results provide a new approach to decrease the size of polyacridine PEG-peptide DNA nanoparticles to allow penetration of the fenestrated endothelium of the liver for the purpose of transfecting hepatocytes in vivo.
Collapse
|
50
|
Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods 2019; 169:57-68. [PMID: 31302177 DOI: 10.1016/j.ymeth.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical tools and models are reviewed in this paper.
Collapse
|