1
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
2
|
Cologna SM, Pathmasiri KC, Pergande MR, Rosenhouse-Dantsker A. Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:143-165. [PMID: 36988880 DOI: 10.1007/978-3-031-21547-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.
Collapse
Affiliation(s)
| | | | - Melissa R Pergande
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | |
Collapse
|
3
|
Yoon HJ, Jeong H, Lee HH, Jang S. Molecular dynamics study with mutation shows that N-terminal domain structural re-orientation in Niemann-Pick type C1 is required for proper alignment of cholesterol transport. J Neurochem 2020; 156:967-978. [PMID: 32880929 PMCID: PMC7461377 DOI: 10.1111/jnc.15150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
The lysosomal membrane protein Niemann‐Pick type C1 (NPC1) and Niemann‐Pick type C2 (NPC2) are main players of cholesterol control in the lysosome and it is known that the mutation on these proteins leads to the cholesterol trafficking‐related neurodegenerative disease, which is called the NPC disease. The mutation R518W or R518Q on the NPC1 is one of the type of disease‐related mutation that causes cholesterol transports to be cut in half, which results in the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment of the cell. Even though there has been significant progress with understanding the cholesterol transport by NPC1 in combination with NPC2, especially after the structural determination of the full‐length NPC1 in 2016, many details such as the interaction of the full‐length NPC1 with the NPC2, the molecular motions responsible for the cholesterol transport during and after this interaction, and the structure and the function relations of many mutations are still not well understood. In this study, we report the extensive molecular dynamics simulations in order to gain insight into the structure and the dynamics of NPC1 lumenal domain for the cholesterol transport and the disease behind the mutation (R518W). It was found that the mutation induces a structural shift of the N‐terminal domain, toward the loop region in the middle lumenal domain, which is believed to play a central role in the interaction with NPC2 protein, so the interaction with the NPC2 protein might be less favorable compared to the wild NPC1. Also, the simulation indicates the possible re‐orientation of the N‐terminal domain with both the wild and the R518W‐mutated NPC1 after receiving the cholesterol from the NPC2 that align to form an internal tunnel, which is a possible pose for further action in cholesterol trafficking. We believe the current study can provide a better understanding of the cholesterol transport by NPC1 especially the role of NTD of NPC1 in combination with NPC2 interactions.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunah Jeong
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Insights into the Molecular Mechanisms of Cholesterol Binding to the NPC1 and NPC2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:139-160. [PMID: 31098815 DOI: 10.1007/978-3-030-14265-0_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, a growing number of studies have implicated the coordinated action of NPC1 and NPC2 in intralysosomal transport and efflux of cholesterol. Our current understanding of this process developed with just over two decades of research. Since the cloning of the genes encoding the NPC1 and NPC2 proteins, studies of the biochemical defects observed when either gene is mutated along with computational and structural studies have unraveled key steps in the underlying mechanism. Here, we summarize the major contributions to our understanding of the proposed cholesterol transport controlled by NPC1 and NPC2, and briefly discuss recent findings of cholesterol binding and transport proteins beyond NPC1 and NPC2. We conclude with key questions and major challenges for future research on cholesterol transport by the NPC1 and NPC2 proteins.
Collapse
|
5
|
Molecular Determinants of Cholesterol Binding to Soluble and Transmembrane Protein Domains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:47-66. [PMID: 31098810 DOI: 10.1007/978-3-030-14265-0_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol-protein interactions play a critical role in lipid metabolism and maintenance of cell integrity. To elucidate the molecular mechanisms underlying these interactions, a growing number of studies have focused on determining the crystal structures of a variety of proteins complexed with cholesterol. These include structures in which cholesterol binds to transmembrane domains, and structures in which cholesterol interacts with soluble ones. However, it remains unknown whether there are differences in the prerequisites for cholesterol binding to these two types of domains. Thus, to define the molecular determinants that characterize the binding of cholesterol to these two distinct protein domains, we employed the database of crystal structures of proteins complexed with cholesterol. Our analysis suggests that cholesterol may bind more strongly to soluble domains than to transmembrane domains. The interactions between cholesterol and the protein in both cases critically depends on hydrophobic and aromatic residues. In addition, cholesterol binding sites in both types of domains involve polar and/or charged residues. However, the percentage of appearance of the different types of polar/charged residues in cholesterol binding sites differs between soluble and transmembrane domains. No differences were observed in the conformational characteristics of the cholesterol molecules bound to soluble versus transmembrane protein domains suggesting that cholesterol is insensitive to the environment provided by the different protein domains.
Collapse
|
6
|
The characteristics and biological significance of NPC2: Mutation and disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108284. [PMID: 31843136 DOI: 10.1016/j.mrrev.2019.108284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/10/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
Niemann-Pick C disease (NPC) is a rare autosomal recessive disorder characterized by severe neurodegeneration of central nervous system. Linkage studies in multiplex NPC families and genetic complementation research revealed two disease genes, NPC1 and NPC2, both of which are important transporters for cholesterol trafficking. NPC2 executes cholesterol-transport function through protein-protein interaction with NPC1 as well as through protein-membrane interaction directly with membrane of late endosome and lysosome. In addition, NPC2 may play many other roles as indicated by its widely expressing pattern in different cells and presenting in numerous secretory fluids, although it biological significance is less studied today. About 50 clinical cases have been reported documenting over twenty different mutations of NPC2 in NPC patients so far. In this review, we will mainly summarize the molecular characteristics and biological significance of NPC2, highlighting its vital roles in NPC disease.
Collapse
|
7
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Elghobashi-Meinhardt N. Computational Tools Unravel Putative Sterol Binding Sites in the Lysosomal NPC1 Protein. J Chem Inf Model 2019; 59:2432-2441. [PMID: 30942586 DOI: 10.1021/acs.jcim.9b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two proteins have been linked as the critical components in the molecular mechanisms involved in the Niemann Pick type C (NPC) disease: NPC1, a 140 kDa polytopic membrane-bound protein, and the smaller (132 residues), water-soluble NPC2 protein. NPC1 is believed to act in tandem with NPC2, transferring cholesterol and other sterols out of the LE/Lys compartments. Mutations in either NPC1 or NPC2 can lead to an accumulation of cholesterol and lipids in the LE/Lys, the primary phenotype of the NPC disease, but approximately 95% of identified disease-causing mutations have been mapped to the membrane-bound NPC1 protein. Here, we investigate the full length, membrane-bound NPC1 protein computationally using a combination of molecular modeling, docking, and molecular dynamics (MD) simulations. An analysis of titratable amino acid side chains, several buried in protein pockets, reveals several nonstandard protonation states for the low-pH scenario (pH 5) that is realized in the lysosome. Together with the location of these buried amino acids, docking studies have identified putative lipid binding domains that are in close proximity to amino acids that, when mutated, are connected to NPC1 loss-of-function. Using energy analyses and MD simulations, we analyze these domains as potential cholesterol binding sites and propose the possibility of multiple sterol binding pockets enabling the intramolecular transport of sterol molecules to the transmembrane domain.
Collapse
|
9
|
Hodošček M, Elghobashi-Meinhardt N. Simulations of NPC1(NTD):NPC2 Protein Complex Reveal Cholesterol Transfer Pathways. Int J Mol Sci 2018; 19:ijms19092623. [PMID: 30181526 PMCID: PMC6163316 DOI: 10.3390/ijms19092623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
The Niemann Pick type C (NPC) proteins, NPC1 and NPC2, are involved in the lysosomal storage disease, NPC disease. The formation of a NPC1–NPC2 protein–protein complex is believed to be necessary for the transfer of cholesterol and lipids out of the late endosomal (LE)/lysosomal (Lys) compartments. Mutations in either NPC1 or NPC2 can lead to an accumulation of cholesterol and lipids in the LE/Lys, the primary phenotype of the NPC disease. We investigated the NPC1(NTD)–NPC2 protein–protein complex computationally using two putative binding interfaces. A combination of molecular modeling and molecular dynamics simulations reveals atomic details that are responsible for interface stability. Cholesterol binding energies associated with each of the binding pockets for the two models are calculated. Analyses of the cholesterol binding in the two models support bidirectional ligand transfer when a particular interface is established. Based on the results, we propose that, depending on the location of the cholesterol ligand, a dynamical interface between the NPC2 and NPC1(NTD) proteins exists. Structural features of a particular interface can lower the energy barrier and stabilize the passage of the cholesterol substrate from NPC2 to NPC1(NTD).
Collapse
Affiliation(s)
- Milan Hodošček
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| | | |
Collapse
|
10
|
Enkavi G, Mikkolainen H, Güngör B, Ikonen E, Vattulainen I. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Comput Biol 2017; 13:e1005831. [PMID: 29084218 PMCID: PMC5679659 DOI: 10.1371/journal.pcbi.1005831] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022] Open
Abstract
Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic detail two competitively favorable membrane binding orientations of npc2 with a low interconversion barrier. The first binding mode (Prone) places the cholesterol binding pocket in direct contact with the membrane and is characterized by membrane insertion of a loop (V59-M60-G61-I62-P63-V64-P65). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required for strong membrane binding in Prone mode, and that it cannot be substituted by other anionic lipids. Meanwhile, sphingomyelin counteracts bmp by hindering Prone mode without affecting Supine mode. Our results provide concrete evidence that lipids modulate npc2-mediated cholesterol transport either by favoring or disfavoring Prone mode and that they impose this by modulating the accessibility of bmp for interacting with npc2. Overall, we provide a mechanism by which npc2-mediated cholesterol transport is controlled by the membrane composition and how npc2-lipid interactions can regulate the transport rate.
Collapse
Affiliation(s)
- Giray Enkavi
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Heikki Mikkolainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
| | - Burçin Güngör
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, Tampere, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
- Memphys—Center for Biomembrane Physics, Odense, Denmark
| |
Collapse
|
11
|
Poongavanam V, Kongsted J, Wüstner D. Computational Analysis of Sterol Ligand Specificity of the Niemann Pick C2 Protein. Biochemistry 2016; 55:5165-79. [DOI: 10.1021/acs.biochem.6b00217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vasanthanathan Poongavanam
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Physics, Chemistry
and Pharmacy and †Department of Biochemistry and
Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
12
|
Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1908-26. [DOI: 10.1016/j.bbamem.2015.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
|
13
|
Byrd KM, Arieno MD, Kennelly ME, Estiu G, Wiest O, Helquist P. Design and synthesis of a crosslinker for studying intracellular steroid trafficking pathways. Bioorg Med Chem 2015; 23:3843-51. [PMID: 25890696 DOI: 10.1016/j.bmc.2015.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 11/30/2022]
Abstract
A crosslinker was designed and synthesized as a molecular tool for potential use in probing the intracellular trafficking pathways of steroids. The design was guided by computational modeling based upon a model for the transfer of cholesterol between two proteins, NPC1 and NPC2. These proteins play critical roles in the transport of low-density lipoprotein-derived cholesterol from the lumen of lysosomes to other subcellular compartments. Two modified cholesterol residues were covalently joined by a tether based on molecular modeling of the transient interaction of NPC1 and NPC2 during the transfer of cholesterol from the binding site of one of these proteins to the other. With two cholesterol molecules appropriately connected, we hypothesize that the cholesterol binding sites of both proteins will be simultaneously occupied in a manner that will stabilize the protein-protein interaction to permit detailed structural analysis of the resulting complex. A photoaffinity label has also been introduced into one of the cholesterol cores to permit covalent attachment of one of the units into its respective protein-binding pocket. The basic design of these crosslinkers should render them useful for examining interactions of the NPC1/NPC2 pair as well as other sterol transport proteins.
Collapse
Affiliation(s)
- Katherine M Byrd
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Marcus D Arieno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Megan E Kennelly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Guillermina Estiu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|