1
|
Bigiotti C, Bianconi E, Ruta L, Grottelli S, Coletti A, Dindo M, Carotti A, Cellini B, Macchiarulo A. Molecular Dynamics-Ensemble Docking and Biophysical Studies for Structure-Based Identification of Non-Amino Acidic Ligands of DDAH-1. J Chem Inf Model 2024; 64:6866-6879. [PMID: 39177258 DOI: 10.1021/acs.jcim.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) accounts for the catabolism of the endogenous inhibitors of nitric oxide (NO) synthases, namely, ADMA (Nω,Nω-dimethyl-l-arginine) and NMMA (Nω-monomethyl-l-arginine). Inhibition of DDAH-1 may prove a therapeutic benefit in diseases associated with elevated nitric oxide (NO) levels by providing a tissue-specific increase of ADMA and NMMA. In this work, we have used molecular dynamics to generate a pool of DDAH-1 conformations in the apo and holo forms. Ensemble docking has been instrumental in screening an in-house fragment-based library of 824 compounds. Resulting virtual hits have been validated for their binding activity to recombinant human DDAH-1 using microscale thermophoresis (MST). As a key result, three non-amino acidic ligands of DDAH-1 (VIS212, VIS268, VIS726) are identified with higher binding efficiency index than ADMA. Amid these compounds, purpurogallin (VIS726) proves a potent ligand of DDAH-1, showing a mixed behavior of enzymatic inhibition in a biochemical assay. This finding widens the panel of known molecular targets of purpurogallin and provides clues into the molecular mechanisms of its cellular NO inhibition activity as well as its anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Carlo Bigiotti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Luana Ruta
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Silvia Grottelli
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Mirco Dindo
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Barbara Cellini
- Department of Experimental Medicine and Surgery, University of Perugia, P.le Gambuli, 06132 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
2
|
Shao J, Qu L, Liu Y, Zhang J, Liu Y, Deng J, Ma X, Fan D. Ginsenoside Rk3 Regulates Tryptophan Metabolism along the Brain-Gut Axis by Targeting Tryptophan Hydroxylase and Remodeling the Intestinal Microenvironment to Alleviate Depressive-Like Behavior in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7100-7120. [PMID: 38488514 DOI: 10.1021/acs.jafc.3c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Depression is a neuropsychiatric disease that significantly impacts the physical and mental health of >300 million people worldwide and places a major burden on society. Ginsenosides are the main active ingredient in ginseng and have been proven to have various pharmacological effects on the nervous system. Herein, we investigated the antidepressant effect of ginsenoside Rk3 and its underlying mechanism in a murine model of depression. Rk3 significantly improved depression-like behavior in mice, ameliorated the disturbance of the hypothalamus-pituitary-adrenal axis, and alleviated neuronal damage in the hippocampus and prefrontal cortex of mice. Additionally, Rk3 improved the abnormal metabolism of tryptophan in brain tissue by targeting tryptophan hydroxylase, thereby reducing neuronal apoptosis and synaptic structural damage in the mouse hippocampus and prefrontal cortex. Furthermore, Rk3 reshaped the composition of the gut microbiota of mice and regulated intestinal tryptophan metabolism, which alleviated intestinal barrier damage. Thus, this study provides valuable insights into the role of Rk3 in the tryptophan metabolic cycle along the brain-gut axis, suggesting that Rk3 may have the potential for treating depression.
Collapse
Affiliation(s)
- Jingjing Shao
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jingjing Zhang
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
3
|
Doman AJ, Perkins MV, Tommasi S, Mangoni AA, Nair PC. Recent advances in DDAH1 inhibitor design and discovery: insights from structure-activity relationships and X-ray crystal structures. RSC Adv 2024; 14:9619-9630. [PMID: 38525060 PMCID: PMC10958460 DOI: 10.1039/d3ra08210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Nitric oxide (NO) is an important signalling molecule which modulates several biological and pathological processes. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a key role indirectly regulating NO concentrations in the body. It has been shown that DDAH1 inhibition may be an effective therapeutic strategy in certain pathological states in which excessive NO is produced. In recent years, specific DDAH1 inhibitors have shown promise in suppressing abnormal neovascularization in cancer. However, the available DDAH1 inhibitors lack potency and selectivity and are mostly arginine-based. Further, these inhibitors display unfavourable pharmacokinetics and have not been tested in humans. Thus, the development of potent, selective, and chemically diverse DDAH1 inhibitors is essential. In this review, we examine the structure activity relationships (SARs) and X-ray crystal structures of known DDAH1 inhibitors. Then, we discuss current challenges in the design and development of novel DDAH1 inhibitors and provide future directions for developing potent and chemically diverse compounds.
Collapse
Affiliation(s)
- Anthony J Doman
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
| | - Michael V Perkins
- College of Science and Engineering, Flinders University Adelaide Australia
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network Adelaide Australia
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
- Flinders Health and Medical Research Institute, Flinders University Adelaide Australia
| | - Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University Adelaide Australia +61-8-82043155
- Flinders Health and Medical Research Institute, Flinders University Adelaide Australia
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide Adelaide SA Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide Adelaide SA Australia
| |
Collapse
|
4
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
5
|
Doman AJ, Tommasi S, Perkins MV, McKinnon RA, Mangoni AA, Nair PC. Chemical similarities and differences among inhibitors of nitric oxide synthase, arginase and dimethylarginine dimethylaminohydrolase-1: implications for the design of novel enzyme inhibitors modulating the nitric oxide pathway. Bioorg Med Chem 2022; 72:116970. [DOI: 10.1016/j.bmc.2022.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
|
6
|
Milton AD, Almazroue H, Jin Y, Zender G, Trittmann JK. DDAH1 SNP rs480414 that protects against the development of pulmonary hypertension in bronchopulmonary dysplasia results in lower nitric oxide production in neonatal cord blood-derived lymphoblastoid cell lines. J Neonatal Perinatal Med 2022; 15:113-121. [PMID: 34151866 PMCID: PMC8678367 DOI: 10.3233/npm-210710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is chronic lung disease of prematurity and pulmonary hypertension (PH) is a major contributor to morbidity and mortality in BPD patients. Nitric oxide (NO) is a vasodilator and apoptotic mediator made by NO synthase (NOS). NOS is inhibited by asymmetric dimethylarginine (ADMA), and dimethylarginine dimethylaminohydrolase (DDAH) hydrolyzes ADMA. Previously, in a BPD patient cohort, we identified single nucleotide polymorphism (SNP) DDAH1 rs480414 (G > A) that was protective against developing PH. This study aims to determine functional consequences of the DDAH1 SNP in lymphoblastoid cell lines (LCLs) derived from neonatal cord blood. We tested the hypothesis that DDAH1 SNP (AA) results in DDAH1 gain of function, leading to greater NO-mediated apoptosis compared to DDAH1 wild-type (GG) in LCLs. METHODS LCLs were analyzed by Western blot (DDAH1, cleaved and total caspase-3 and -8, and β-actin), and RT-PCR (DDAH1, iNOS). Cell media assayed for nitrites with chemiluminescence NO analyzer, and conversion of ADMA to L-citrulline was measured by spectrophotometry. RESULTS LCLs with DDAH1 SNP had similar levels of DDAH1 protein and mRNA expression, as well as DDAH activity, compared to DDAH1 WT LCLs. There were also no changes in cleaved caspase-3 and -8 protein levels. LCLs with DDAH1 SNP had similar iNOS mRNA expression. Nitrite levels in media were lower for DDAH1 SNP LCLs compared to DDAH1 WT LCLs (p < 0.05). CONCLUSION Contrary to our hypothesis, we found that NO production was lower in DDAH1 SNP LCLs, indicative of a loss of function phenotype.
Collapse
Affiliation(s)
- Avante D. Milton
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gloria Zender
- Center for Cardiovascular and Pulmonary Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jennifer K. Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
7
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
8
|
McCarty MF, DiNicolantonio JJ, Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis-And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int J Mol Sci 2021; 22:2140. [PMID: 33669995 PMCID: PMC7926325 DOI: 10.3390/ijms22042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress and increased cytoplasmic calcium are key mediators of the detrimental effects on neuronal function and survival in Alzheimer's disease (AD). Pathways whereby these perturbations arise, and then prevent dendritic spine formation, promote tau hyperphosphorylation, further amplify amyloid β generation, and induce neuronal apoptosis, are described. A comprehensive program of nutraceutical supplementation, comprised of the NADPH oxidase inhibitor phycocyanobilin, phase two inducers, the mitochondrial antioxidant astaxanthin, and the glutathione precursor N-acetylcysteine, may have important potential for antagonizing the toxic effects of amyloid β on neurons and thereby aiding prevention of AD. Moreover, nutraceutical antioxidant strategies may oppose the adverse impact of amyloid β oligomers on astrocyte clearance of glutamate, and on the ability of brain capillaries to export amyloid β monomers/oligomers from the brain. Antioxidants, docosahexaenoic acid (DHA), and vitamin D, have potential for suppressing microglial production of interleukin-1β, which potentiates the neurotoxicity of amyloid β. Epidemiology suggests that a health-promoting lifestyle, incorporating a prudent diet, regular vigorous exercise, and other feasible measures, can cut the high risk for AD among the elderly by up to 60%. Conceivably, complementing such lifestyle measures with long-term adherence to the sort of nutraceutical regimen outlined here may drive down risk for AD even further.
Collapse
Affiliation(s)
| | | | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel
| |
Collapse
|
9
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
10
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
11
|
Rosen M, Chan P, Saleem M, Herrmann N, Adibfar A, Andreazza A, Oh PI, Lanctôt KL. Longitudinal associations between 4-hydroxynonenal and depression in coronary artery disease patients. Psychiatry Res 2018; 270:219-224. [PMID: 30267986 DOI: 10.1016/j.psychres.2018.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022]
Abstract
Depressive symptoms in patients with coronary artery disease (CAD) attenuate the cardiovascular benefits of cardiac rehabilitation (CR). Given that oxidative stress may be an important mechanism underlying depression, this study aimed to understand the longitudinal relationship between lipid peroxidation markers and depression in CAD. Serum levels of early (lipid hydroperoxides, LPH) and late (4‑hydroxy‑2-nonenal, 4-HNE; 8-isoprotane, 8-ISO) lipid peroxidation markers were measured in 120 CAD patients undergoing CR. The Structured Clinical Interview for DSM Axis I Disorders - Depression Module (SCID) was used to diagnose depression at baseline and the Center for Epidemiological Studies Depression Scale (CES-D) was used to measure depressive symptom severity. Multivariate mixed models compared the trajectories of serum LPH, 4-HNE, and 8-ISO between depressed and non-depressed CAD patients undergoing 6 months of CR. Similar models evaluated the associations between serum LPH, 4-HNE, and 8-ISO and CES-D score over the course of CR. Serum 4-HNE decreased less in CAD patients with depression compared to those without. In addition, a decrease in 4-HNE concentrations was significantly associated with a decrease in CES-D scores over 6 months. These findings suggest that 4-HNE may be an important marker of depressive symptoms in CAD and may be involved in its progression.
Collapse
Affiliation(s)
- Michael Rosen
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, FG-08, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Parco Chan
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, FG-08, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mahwesh Saleem
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, FG-08, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, FG-08, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Adibfar
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, FG-08, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Paul I Oh
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Health Sciences Centre, FG-08, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Nagasaka H, Morioka I, Takuwa M, Nakacho M, Yoshida M, Ishida A, Hirayama S, Miida T, Tsukahara H, Yorifuji T, Iijima K. Blood asymmetric dimethylarginine and nitrite/nitrate concentrations in short-stature children born small for gestational age with and without growth hormone therapy. J Int Med Res 2017; 46:761-772. [PMID: 28974136 PMCID: PMC5971506 DOI: 10.1177/0300060517723183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective
To investigate the basal amino acid metabolism and impact of growth hormone (GH) therapy in short-stature children born small for gestational age (short SGA children). Methods In this age-matched case-control study, the basal blood levels of amino acids, asymmetric dimethylarginine (ADMA), and nitrite/nitrate (NOx) were compared between 24 short SGA children and 25 age-matched normal children. Changes in these parameters were assessed for 12 months in 12 short SGA children initiating GH therapy (Group A) and 12 age-matched short SGA children without GH therapy (Group B). Results The arginine levels were significantly lower in the short SGA than in normal children. The ADMA levels were significantly higher and NOx levels were significantly lower in the short SGA than normal children. In Group A, the ADMA level was significantly lower and NOx level was significantly higher at 6 months than at baseline. At 12 months, the ADMA level in Group A began to increase, but the NOx level remained the same. Group B showed no significant changes. Conclusions This study is the first to show that ADMA is promoted and nitric oxide is suppressed in short SGA children and that GH therapy affects the production of ADMA and nitric oxide.
Collapse
Affiliation(s)
- Hironori Nagasaka
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Ichiro Morioka
- 2 Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mayuko Takuwa
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Mariko Nakacho
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Mayumi Yoshida
- 1 Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Akihito Ishida
- 3 Kobe Children's Primary Emergency Medical Center, Kobe, Japan
| | - Satoshi Hirayama
- 4 Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Miida
- 4 Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirokazu Tsukahara
- 5 Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tohru Yorifuji
- 6 Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Kazumoto Iijima
- 2 Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Tommasi S, Elliot DJ, Hulin JA, Lewis BC, McEvoy M, Mangoni AA. Human dimethylarginine dimethylaminohydrolase 1 inhibition by proton pump inhibitors and the cardiovascular risk marker asymmetric dimethylarginine: in vitro and in vivo significance. Sci Rep 2017; 7:2871. [PMID: 28588208 PMCID: PMC5460274 DOI: 10.1038/s41598-017-03069-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Proton pump inhibitor (PPI)-induced inhibition of dimethylarginine dimethylaminohydrolase 1 (DDAH1), with consequent accumulation of the nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA), might explain the increased cardiovascular risk with PPI use. However, uncertainty exists regarding whether clinical PPI concentrations significantly inhibit DDAH1 under linear initial rate conditions, and whether PPI-induced DDAH1 inhibition significantly increases ADMA in humans. DDAH1 inhibition by esomeprazole, omeprazole, pantoprazole, lansoprazole and rabeprazole was determined by quantifying DDAH1-mediated L-citrulline formation in vitro. Plasma ADMA was measured in PPI users (n = 134) and non-users (n = 489) in the Hunter Community Study (HCS). At clinical PPI concentrations (0.1–10 μmol/L), DDAH1 retained >80% activity vs. baseline. A significant, reversible, time-dependent inhibition was observed with lansoprazole (66% activity at 240 min, P = 0.034) and rabeprazole (25% activity at 240 min, P < 0.001). In regression analysis, PPI use was not associated with ADMA in HCS participants (beta 0.012, 95% CI −0.001 to 0.025, P = 0.077). Furthermore, there were no differences in ADMA between specific PPIs (P = 0.748). At clinical concentrations, PPIs are weak, reversible, DDAH1 inhibitors in vitro. The lack of significant associations between PPIs and ADMA in HCS participants questions the significance of DDAH1 inhibition as a mechanism explaining the increased cardiovascular risk reported with PPI use.
Collapse
Affiliation(s)
- S Tommasi
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - D J Elliot
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - J A Hulin
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - B C Lewis
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Adelaide, Australia.,Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
| | - M McEvoy
- Centre for Clinical Epidemiology & Biostatistics, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - A A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Adelaide, Australia.
| |
Collapse
|
14
|
McCarty MF. Supplementation with Phycocyanobilin, Citrulline, Taurine, and Supranutritional Doses of Folic Acid and Biotin-Potential for Preventing or Slowing the Progression of Diabetic Complications. Healthcare (Basel) 2017; 5:E15. [PMID: 28335416 PMCID: PMC5371921 DOI: 10.3390/healthcare5010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, the resulting uncoupling of endothelial nitric oxide synthase (eNOS), and loss of nitric oxide (NO) bioactivity, are key mediators of the vascular and microvascular complications of diabetes. Much of this oxidative stress arises from up-regulated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Phycocyanobilin (PhyCB), the light-harvesting chromophore in edible cyanobacteria such as spirulina, is a biliverdin derivative that shares the ability of free bilirubin to inhibit certain isoforms of NADPH oxidase. Epidemiological studies reveal that diabetics with relatively elevated serum bilirubin are less likely to develop coronary disease or microvascular complications; this may reflect the ability of bilirubin to ward off these complications via inhibition of NADPH oxidase. Oral PhyCB may likewise have potential in this regard, and has been shown to protect diabetic mice from glomerulosclerosis. With respect to oxidant-mediated uncoupling of eNOS, high-dose folate can help to reverse this by modulating the oxidation status of the eNOS cofactor tetrahydrobiopterin (BH4). Oxidation of BH4 yields dihydrobiopterin (BH2), which competes with BH4 for binding to eNOS and promotes its uncoupling. The reduced intracellular metabolites of folate have versatile oxidant-scavenging activity that can prevent oxidation of BH4; concurrently, these metabolites promote induction of dihydrofolate reductase, which functions to reconvert BH2 to BH4, and hence alleviate the uncoupling of eNOS. The arginine metabolite asymmetric dimethylarginine (ADMA), typically elevated in diabetics, also uncouples eNOS by competitively inhibiting binding of arginine to eNOS; this effect is exacerbated by the increased expression of arginase that accompanies diabetes. These effects can be countered via supplementation with citrulline, which efficiently enhances tissue levels of arginine. With respect to the loss of NO bioactivity that contributes to diabetic complications, high dose biotin has the potential to "pinch hit" for diminished NO by direct activation of soluble guanylate cyclase (sGC). High-dose biotin also may aid glycemic control via modulatory effects on enzyme induction in hepatocytes and pancreatic beta cells. Taurine, which suppresses diabetic complications in rodents, has the potential to reverse the inactivating impact of oxidative stress on sGC by boosting synthesis of hydrogen sulfide. Hence, it is proposed that concurrent administration of PhyCB, citrulline, taurine, and supranutritional doses of folate and biotin may have considerable potential for prevention and control of diabetic complications. Such a regimen could also be complemented with antioxidants such as lipoic acid, N-acetylcysteine, and melatonin-that boost cellular expression of antioxidant enzymes and glutathione-as well as astaxanthin, zinc, and glycine. The development of appropriate functional foods might make it feasible for patients to use complex nutraceutical regimens of the sort suggested here.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA 92009, USA.
| |
Collapse
|
15
|
Tsigelny IF, Kouznetsova VL, Lian N, Kesari S. Molecular mechanisms of OLIG2 transcription factor in brain cancer. Oncotarget 2016; 7:53074-53101. [PMID: 27447975 PMCID: PMC5288170 DOI: 10.18632/oncotarget.10628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan-Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks-framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix-loop-helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0752, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Nathan Lian
- REHS, San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
- Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
| |
Collapse
|
16
|
McCarty MF. Asymmetric Dimethylarginine Is a Well Established Mediating Risk Factor for Cardiovascular Morbidity and Mortality-Should Patients with Elevated Levels Be Supplemented with Citrulline? Healthcare (Basel) 2016; 4:healthcare4030040. [PMID: 27417628 PMCID: PMC5041041 DOI: 10.3390/healthcare4030040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
The arginine metabolite asymmetric dimethylarginine (ADMA) is a competitive inhibitor and uncoupler of endothelial nitric oxide synthase (eNOS), an enzyme that acts in multifarious ways to promote cardiovascular health. This phenomenon likely explains, at least in part, why elevated ADMA has been established as an independent risk factor for cardiovascular events, ventricular hypertrophy, and cardiovascular mortality. Fortunately, the suppressive impact of ADMA on eNOS activity can be offset by increasing intracellular arginine levels with supplemental citrulline. Although the long-term impact of supplemental citrulline on cardiovascular health in patients with elevated ADMA has not yet been studied, shorter-term clinical studies of citrulline administration demonstrate effects suggestive of increased NO synthesis, such as reductions in blood pressure and arterial stiffness, improved endothelium-dependent vasodilation, increased erection hardness, and increased ejection fractions in patients with heart failure. Supplemental citrulline could be a practical option for primary or secondary prevention of cardiovascular events and mortality, as it is inexpensive, has a mild flavor, and is well tolerated in doses (3-6 g daily) that can influence eNOS activity. Large and long-term clinical trials, targeting patients at high risk for cardiovascular events in whom ADMA is elevated, are needed to evaluate citrulline's potential for aiding cardiovascular health.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Dr., Apt. 316, Carlsbad, CA 92009, USA.
| |
Collapse
|
17
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
18
|
Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015; 7:443-459. [PMID: 25848469 PMCID: PMC4381168 DOI: 10.4254/wjh.v7.i3.443] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.
Collapse
|
19
|
Staab EB, Weigel J, Xiao F, Madayiputhiya N, Wyatt TA, Wells SM. Asymmetric dimethyl-arginine metabolism in a murine model of cigarette smoke-mediated lung inflammation. J Immunotoxicol 2014; 12:273-82. [PMID: 25913572 DOI: 10.3109/1547691x.2014.961619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence that the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethyl-arginine (ADMA) is involved in the pathogenesis of chronic lung diseases. One important regulator of this molecule is the ADMA-metabolizing enzyme dimethyl-arginine dimethyl-aminohydrolase (DDAH). The objective of this study was to determine whether perturbation of the ADMA-DDAH pathway contributes to lung inflammation following exposure to cigarette smoke (CS). For these studies, wild-type and DDAH transgenic mice were sham or CS-exposed. Serum ADMA levels were determined by mass spectrometry. ADMA content and DDAH expression were also visualized in mouse lung tissue by immunohistochemistry. DDAH expression was determined by real-time quantitative PCR (qPCR). Inflammation was assessed by H&E staining and analyses of total cell counts and fluid tumor necrosis factor (TNF)-α levels (using ELISA) in lung lavage fluid. NF-κB binding activity in mouse lung epithelial (LA-4) cells was assessed by a transcription factor-binding assay. The results indicated that the concentration of serum ADMA was increased following exposure to CS, and this corresponded with increased ADMA content in bronchial epithelial cells in lung tissue. Total lung DDAH expression was significantly decreased in lung tissue and cultured LA-4 cells following CS exposure. Addition of exogenous ADMA increased CSE-mediated NF-κB binding activity and TNFα production in LA-4 cells more than 2-fold compared to that in CSE-exposed controls. CS-mediated lung inflammation was significantly attenuated in DDAH transgenic mice compared to in wild-type controls. These findings demonstrated that lung ADMA metabolism was altered in mice following CS exposure and suggested that ADMA played a role in CS-mediated inflammation through increasing the presence of inflammatory mediators in lung epithelial cells.
Collapse
Affiliation(s)
- Elizabeth B Staab
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center , Omaha, NE , USA
| | | | | | | | | | | |
Collapse
|
20
|
Nguyen TH, Neil CJ, Sverdlov AL, Ngo DT, Chan WP, Heresztyn T, Chirkov YY, Tsikas D, Frenneaux MP, Horowitz JD. Enhanced NO signaling in patients with Takotsubo cardiomyopathy: short-term pain, long-term gain? Cardiovasc Drugs Ther 2014; 27:541-7. [PMID: 23921835 DOI: 10.1007/s10557-013-6481-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Little information is available concerning the mechanism(s) underlying Takotsubo cardiomyopathy (TTC), other than evidence of associated catecholamine secretion. Given the known effects of catecholamines on endothelial function, we tested the hypothesis that TTC might also be associated with impairment of nitric oxide (NO) signaling. We now report an evaluation of NO signaling in TTC patients (vs. aged-matched controls) in relation to (a) severity of the acute attack and (b) rate of recovery. METHODS In 56 patients with TTC, we utilized (1) platelet responsiveness to NO and (2) plasma levels of asymmetric dimethylarginine (ADMA) as indices of integrity of the cyclic guanosine monophosphate (cGMP) pathway. Additionally, endothelial progenitor cell (EPC) counts, which are partially NO-dependent, were evaluated. These parameters were measured at the time of diagnosis and 3 months thereafter, and compared with an aging female cohort (n = 81). RESULTS The data suggested that both NO generation and effect were accentuated in TTC patients: ADMA concentrations were lower (p = 0.003), and responsiveness to NO substantially greater (p = 0.0001) than in controls both acutely and after 3 months. Markers of severity of TTC attacks directly correlated with NO responsiveness, while extent of recovery at 3 months varied inversely with ADMA concentrations. CONCLUSION TTC is associated with intensification of NO signaling relative to that in normal age-matched females. Our data are consistent with this intensified signal's potential contribution to the extent of initial myocardial injury, but conversely to accelerated recovery.
Collapse
Affiliation(s)
- Thanh H Nguyen
- The Queen Elizabeth Hospital, Department of Cardiology, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mali VR, Ning R, Chen J, Yang XP, Xu J, Palaniyandi SS. Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med (Maywood) 2014; 239:610-8. [PMID: 24651616 DOI: 10.1177/1535370213520109] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are generated in the myocardium in cardiac disease. 4HNE and other toxic aldehydes form adducts with proteins, leading to cell damage and organ dysfunction. Aldehyde dehydrogenases (ALDHs) metabolize toxic aldehydes such as 4HNE into nontoxic metabolites. Both ALDH levels and activity are reduced in cardiac disease. We examined whether reduced ALDH2 activity contributes to cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin (STZ). These mice exhibited most of the characteristics of metabolic syndrome/type-2 diabetes mellitus (DM): increased blood glucose levels depicting hyperglycemia (415.2 ± 18.7 mg/dL vs. 265.2 ± 7.6 mg/dL; P < 0.05), glucose intolerance with normal plasma insulin levels, suggesting insulin resistance and obesity as evident from increased weight (44 ± 3.1 vs. 34.50 ± 1.32 g; P < 0.05) and body fat. Myocardial ALDH2 activity was 60% lower in these mice (0.1 ± 0.012 vs. 0.04 ± 0.015 µmol/min/mg protein; P < 0.05). Myocardial 4HNE levels were also elevated in the hyperglycemic hearts. Co-immunoprecipitation study showed that 4HNE formed adducts on myocardial ALDH2 protein in the mice exhibiting metabolic syndrome/type-2 DM, and they had obvious cardiac hypertrophy compared with controls as evident from increased heart weight (HW), HW to tibial length ratio, left ventricular (LV) mass and cardiomyocyte hypertrophy. Cardiomyocyte hypertrophy was correlated inversely with ALDH2 activity (R (2 )= 0.7; P < 0.05). Finally, cardiac dysfunction was observed in mice with metabolic syndrome/type-2 DM. Therefore, we conclude that reduced ALDH2 activity may contribute to cardiac hypertrophy and dysfunction in mice presenting with some of the characteristics of metabolic syndrome/type-2 DM when on a high-fat diet and low-dose STZ injection.
Collapse
Affiliation(s)
- Vishal R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
22
|
Mali VR, Palaniyandi SS. Regulation and therapeutic strategies of 4-hydroxy-2-nonenal metabolism in heart disease. Free Radic Res 2013; 48:251-63. [PMID: 24237196 DOI: 10.3109/10715762.2013.864761] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE), a reactive aldehyde, is generated from polyunsaturated fatty acids (PUFAs) in biological membranes. Reactive oxygen species (ROS) generated during oxidative stress react with PUFAs to form aldehydes like 4-HNE, which inactivates proteins and DNA by forming hybrid covalent chemical addition compounds called adducts. The ensuing chain reaction results in cellular dysfunction and tissue damage. It includes a wide spectrum of events ranging from electron transport chain dysfunction to apoptosis. In addition, 4-HNE directly depresses contractile function, enhances ROS formation, modulates cell signaling pathways, and can contribute to many cardiovascular diseases, including atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and cardiomyopathy. Therefore, targeting 4-HNE could help reverse these pathologies. This review will focus on 4-HNE generation, the role of 4-HNE in cardiovascular diseases, cellular targets (especially mitochondria), processes and mechanisms for 4-HNE-induced toxicity, regulation of 4-HNE metabolism, and finally strategies for developing potential therapies for cardiovascular disease by attenuating 4-HNEinduced toxicity.
Collapse
Affiliation(s)
- V R Mali
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System , Detroit, MI , USA
| | | |
Collapse
|
23
|
Chen L, Zhou JP, Kuang DB, Tang J, Li YJ, Chen XP. 4-HNE increases intracellular ADMA levels in cultured HUVECs: evidence for miR-21-dependent mechanisms. PLoS One 2013; 8:e64148. [PMID: 23717555 PMCID: PMC3661487 DOI: 10.1371/journal.pone.0064148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Objective To investigate whether 4-hydroxynonenal (4-HNE) regulates asymmetric dimethylarginine (ADMA) metabolism through pathway independent of direct adduct formation with ADMA metabolizing enzyme and the involvement of microRNA (miRNA) miR-21 in human umbilical venous endothelial cells (HUVECs). Methods Cultured HUVECs were treated with 4-HNE (at concentrations of 1, 5, and 10 µM, respectively) or 1‰ DMSO (vehicle control) for 24 h. MiR-21 inhibitor (final concentration of 100 nM) was transfected at 1 h before 4-HNE treatment. HUVECs were also transfected with miR-21 (at concentrations of 50 nM and 100 nM) and cultured for 12, 24, and 48 h, respectively. DDAH mRNA and miR-21 expression in the HUVECs were determined by semi-quantitative real time PCR. DDAH1 and DDAH2 protein expression were analyzed by Western blot. ADMA in the cell medium and cell lysates were analyzed by ELISA. ADMA metabolizing activity of the cell lysates was also determined. Results MiR-21 decreased DDAH1 and DDAH2 expression and ADMA metabolic activity significantly, while increased intracellular ADMA accumulation significantly in HUVECs. 10 µM 4-HNE treatment for 24 h increased the expression of miR-21 and intracellular ADMA concentration, decreased the expression of DDAH1/2 mRNA and protein, decreased ADMA metabolizing activity of the cell lysates significantly. MiR-21 inhibitor reversed the inhibitory effects of 4-HNE on DDAH1 expression completely, and partially reversed the changes in ADMA metabolizing activity and intracellular ADMA accumulation challenged by 10 µM 4-HNE. Conclusion 4-HNE down-regulates DDAH1 expression and increases intracellular ADMA accumulation in HUVECs through a miR-21-dependent mechanism.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Ji-Peng Zhou
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Da-Bin Kuang
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Jie Tang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ping Chen
- Department of Pharmacology, School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
24
|
McCarty MF. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med Hypotheses 2013; 80:456-62. [PMID: 23380360 DOI: 10.1016/j.mehy.2012.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
Rodent studies reveal that oxidative stress, much of it generated via induction/activation of NADPH oxidase, is a key mediator of a number of the pathogenic effects of chronic ethanol overconsumption. The highly reactive ethanol metabolite acetaldehyde is a key driver of this oxidative stress, and doubtless works in other ways to promote alcohol-induced pathology. Effective antioxidant measure may therefore be useful for mitigating the adverse health consequences of alcohol consumption; spirulina may have particular utility in this regard, as its chief phycochemical phycocyanobilin has recently been shown to function as an inhibitor of certain NADPH oxidase complexes, mimicking the physiological role of its chemical relatives biliverdin/bilirubin in this respect. Moreover, certain nutraceuticals, including taurine, pantethine, and lipoic acid, may have the potential to boost the activity of the mitochondrial isoform of aldehyde dehydrogenase, ALDH-2, accelerating conversion of acetaldehyde to acetate (which arguably has protective health effects). Little noticed clinical studies conducted nearly three decades ago reported that pre-ingestion of either taurine or pantethine could blunt the rise in blood acetaldehyde following ethanol consumption. Other evidence suggests that lipoic acid may function within mitochondria to maintain aldehyde dehydrogenase in a reduced active conformation; the impact of this agent on ethanol metabolism has however received little or no study. Studies evaluating the impact of nutracetical strategies on prevention of hangovers - which likely are mediated by acetaldehyde - may represent a quick, low-cost way to identify nutraceutical regimens that merit further attention for their potential impact on alcohol-induced pathology. Measures which boost or preserve ALDH-2 activity may also have important antioxidant potential, as this enzyme functions physiologically to protect cells from toxic aldehydes generated by oxidant stress.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
25
|
Mah E, Noh SK, Ballard KD, Park HJ, Volek JS, Bruno RS. Supplementation of a γ-tocopherol-rich mixture of tocopherols in healthy men protects against vascular endothelial dysfunction induced by postprandial hyperglycemia. J Nutr Biochem 2013; 24:196-203. [DOI: 10.1016/j.jnutbio.2012.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
|
26
|
Abstract
Nitric oxide (NO), a key regulator of cardiovascular function, is synthesized from L-arginine and oxygen by the enzyme nitric oxide synthase (NOS). This reaction requires tetrahydrobiopterin (BH4) as a cofactor. BH4 is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GTPCH) and recycled from 7,8-dihydrobiopterin (BH2) by dihydrofolate reductase. Under conditions of low BH4 bioavailability relative to NOS or BH2, oxygen activation is "uncoupled" from L-arginine oxidation, and NOS produces superoxide (O (2) (-) ) instead of NO. NOS-derived superoxide reacts with NO to produce peroxynitrite (ONOO(-)), a highly reactive anion that rapidly oxidizes BH4 and propagates NOS uncoupling. BH4 depletion and NOS uncoupling contribute to overload-induced heart failure, hypertension, ischemia/reperfusion injury, and atrial fibrillation. L-arginine depletion, methylarginine accumulation, and S-glutathionylation of NOS also promote uncoupling. Recoupling NOS is a promising approach to treating myocardial and vascular dysfunction associated with heart failure.
Collapse
Affiliation(s)
- Matthew S. Alkaitis
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mark J. Crabtree
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
27
|
Linsky TW, Fast W. Discovery of structurally-diverse inhibitor scaffolds by high-throughput screening of a fragment library with dimethylarginine dimethylaminohydrolase. Bioorg Med Chem 2012; 20:5550-8. [PMID: 22921743 DOI: 10.1016/j.bmc.2012.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 12/11/2022]
Abstract
Potent and selective inhibitors of the enzyme dimethylarginine dimethylaminohydrolase (DDAH) are useful as molecular probes to better understand cellular regulation of nitric oxide. Inhibitors are also potential therapeutic agents for treatment of pathological states associated with the inappropriate overproduction of nitric oxide, such as septic shock, selected types of cancer, and other conditions. Inhibitors with structures dissimilar to substrate may overcome limitations inherent to substrate analogs. Therefore, to identify structurally-diverse inhibitor scaffolds, high-throughput screening (HTS) of a 4000-member library of fragment-sized molecules was completed using the Pseudomonas aeruginosa DDAH and human DDAH-1 isoforms. Use of a substrate concentration equal to its K(M) value during the primary screen allowed for the detection of inhibitors with different modes of inhibition. A series of validation tests were designed and implemented in the identification of four inhibitors of human DDAH-1 that were unknown prior to the screen. Two inhibitors share a 4-halopyridine scaffold and act as quiescent affinity labels that selectively and covalently modify the active-site Cys residue. Two inhibitors are benzimidazole-like compounds that reversibly and competitively inhibit human DDAH-1 with Ligand Efficiency values ≥0.3 kcal/mol/heavy (non-hydrogen) atom, indicating their suitability for further development. Both inhibitor scaffolds have available sites to derivatize for further optimization. Therefore, use of this fragment-based HTS approach is demonstrated to successfully identify two novel scaffolds for development of DDAH-1 inhibitors.
Collapse
Affiliation(s)
- Thomas W Linsky
- Graduate Program in Biochemistry, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
28
|
Sorolla MA, Rodríguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E. Protein oxidation in Huntington disease. Biofactors 2012; 38:173-85. [PMID: 22473822 DOI: 10.1002/biof.1013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the huntingtin gene, affecting initially the striatum and progressively the cortex. Oxidative stress, and consequent protein oxidation, has been described as important to disease progression. This review focuses on recent advances in the field, with a particular emphasis on the identified target proteins and the role that their oxidation has or might have in the pathophysiology of HD. Oxidation and the resulting inactivation and/or degradation of important proteins can explain the impairment of several metabolic pathways in HD. Oxidation of enzymes involved in ATP synthesis can account for the energy deficiency observed. Impairment of protein folding and degradation can be due to oxidation of several heat shock proteins and Valosin-containing protein. Oxidation of two enzymes involved in the vitamin B6 metabolism could result in decreased availability of pyridoxal phosphate, which is a necessary cofactor in transaminations, the kynurenine pathway and the synthesis of glutathione, GABA, dopamine and serotonin, all of which have a key role in HD pathology. In addition, protein oxidation often contributes to oxidative stress, aggravating the molecular damage inside the cell.
Collapse
Affiliation(s)
- M Alba Sorolla
- Department of Basic Medical Sciences, IRBLleida, Universitat de Lleida, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Caplin B, Leiper J. Endogenous nitric oxide synthase inhibitors in the biology of disease: markers, mediators, and regulators? Arterioscler Thromb Vasc Biol 2012; 32:1343-53. [PMID: 22460557 DOI: 10.1161/atvbaha.112.247726] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The asymmetric methylarginines inhibit nitric oxide synthesis in vivo by competing with L-arginine at the active site of nitric oxide synthase. High circulating levels of asymmetric dimethylarginine predict adverse outcomes, specifically vascular events but there is now increasing experimental and epidemiological evidence that these molecules, and the enzymes that regulate this pathway, play a mechanistic role in cardiovascular diseases. Recent data have provided insight into the impact of altered levels of these amino acids in both humans and rodents, however these reports also suggest a simplistic approach based on measuring, and modulating circulating asymmetric dimethylarginine alone is inadequate. This review outlines the basic biochemistry and physiology of endogenous methylarginines, examines both the experimental and observational evidence for a role in disease pathogenesis, and examines the potential for therapeutic regulation of these molecules.
Collapse
Affiliation(s)
- Ben Caplin
- Centre for Nephrology, UCL Medical School, Royal Free Campus 2nd Floor, Rowland Hill St, London NW3 2PF.
| | | |
Collapse
|
30
|
Mah E, Noh SK, Ballard KD, Matos ME, Volek JS, Bruno RS. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine. J Nutr 2011; 141:1961-8. [PMID: 21940510 DOI: 10.3945/jn.111.144592] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function.
Collapse
Affiliation(s)
- Eunice Mah
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | |
Collapse
|
31
|
McCarty MF. Marinobufagenin and cyclic strain may activate endothelial NADPH oxidase, contributing to the adverse impact of salty diets on vascular and cerebral health. Med Hypotheses 2011; 78:191-6. [PMID: 21968275 DOI: 10.1016/j.mehy.2011.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/30/2011] [Accepted: 09/13/2011] [Indexed: 12/11/2022]
Abstract
Limited but provocative ecologic epidemiology suggests that dietary salt may play a central role in the genesis of not only of stroke, but also dementia, including Alzheimer's disease. Impairment of nitric oxide bioactivity in the cerebral microvasculature is a likely mediator of this effect. Salted diets evoke increased adrenal secretion of the natriuretic steroid marinobufagenin (MBG), which promotes natriuresis via inhibition of renal tubular Na+/K+-ATPase; this effect is notably robust in salt-sensitive rodent strains in which other compensatory natriuretic mechanisms are subnormally efficient. MBG-mediated inhibition of sodium pumps in vascular smooth muscle likely plays a role in the hypertension induced by salty diets in these rodents. However, salt sensitivity in humans is associated with increased vascular mortality and ventricular hypertrophy independent of blood pressure; this suggests that MBG may be pathogenic via mechanisms unrelated to blood pressure control. Indeed, recent evidence indicates that MBG, via interaction with alpha1 isoforms of the sodium pump, can activate various intracellular signaling pathways at physiological concentrations too low to notably inhibit pump activity. An overview of current evidence suggests the hypothesis that MBG - as well as the cyclic strain induced by hypertension per se - may induce endothelial oxidative stress by activating NADPH oxidase. If so, this could rationalize the increase in vascular and systemic oxidative stress observed in salt-sensitive rodents fed salty diets, or in rodents infused with MBG; moreover, if this effect is a particularly prominent determinant of oxidative stress in cerebrovascular endothelium, it might help to explain the virtual absence of stroke and dementia in low-salt societies. As a corollary of this hypothesis, it can be predicted that spirulina-derived phycobilins, which appear to mimic the physiological role of bilirubin as an inhibitor of NAPDH oxidase complexes, may have potential for ameliorating the adverse health impacts of MBG and of salty diets. Potassium-rich diets are also likely to be protective in this regard, as they should suppress MBG production via their natriuretic impact, while their stimulatory effect on sodium pump activity may exert a hyperpolarizing effect on plasma membranes that suppresses NADPH oxidase activity.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
32
|
Johnson CM, Monzingo AF, Ke Z, Yoon DW, Linsky TW, Guo H, Robertus JD, Fast W. On the mechanism of dimethylarginine dimethylaminohydrolase inactivation by 4-halopyridines. J Am Chem Soc 2011; 133:10951-9. [PMID: 21630706 PMCID: PMC3135753 DOI: 10.1021/ja2033684] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecules capable of selective covalent protein modification are of significant interest for the development of biological probes and therapeutics. We recently reported that 2-methyl-4-bromopyridine is a quiescent affinity label for the nitric oxide controlling enzyme dimethylarginine dimethylaminohydrolase (DDAH) (Johnson, C. M.; Linsky, T. W.; Yoon, D. W.; Person, M. D.; Fast, W. J. Am. Chem. Soc. 2011, 133, 1553-1562). Discovery of this novel protein modifier raised the possibility that the 4-halopyridine motif may be suitable for wider application. Therefore, the inactivation mechanism of the related compound 2-hydroxymethyl-4-chloropyridine is probed here in more detail. Solution studies support an inactivation mechanism in which the active site Asp66 residue stabilizes the pyridinium form of the inactivator, which has enhanced reactivity toward the active site Cys, resulting in covalent bond formation, loss of the halide, and irreversible inactivation. A 2.18 Å resolution X-ray crystal structure of the inactivated complex elucidates the orientation of the inactivator and its covalent attachment to the active site Cys, but the structural model does not show an interaction between the inactivator and Asp66. Molecular modeling is used to investigate inactivator binding, reaction, and also a final pyridinium deprotonation step that accounts for the apparent differences between the solution-based and structural studies with respect to the role of Asp66. This work integrates multiple approaches to elucidate the inactivation mechanism of a novel 4-halopyridine "warhead," emphasizing the strategy of using pyridinium formation as a "switch" to enhance reactivity when bound to the target protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Guo
- To whom correspondence should be addressed. W.F.: College of Pharmacy, PHAR-MED CHEM, 1 University Station; C0850, Austin, Texas 78712; Phone: (512) 232-4000; Fax: (512) 232-2606; ; J.D.R.: Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712. Phone: (512) 471-3175. Fax: (512) 471-6135. , and H.G.: Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131;
| | - Jon D. Robertus
- To whom correspondence should be addressed. W.F.: College of Pharmacy, PHAR-MED CHEM, 1 University Station; C0850, Austin, Texas 78712; Phone: (512) 232-4000; Fax: (512) 232-2606; ; J.D.R.: Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712. Phone: (512) 471-3175. Fax: (512) 471-6135. , and H.G.: Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131;
| | - Walter Fast
- To whom correspondence should be addressed. W.F.: College of Pharmacy, PHAR-MED CHEM, 1 University Station; C0850, Austin, Texas 78712; Phone: (512) 232-4000; Fax: (512) 232-2606; ; J.D.R.: Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712. Phone: (512) 471-3175. Fax: (512) 471-6135. , and H.G.: Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
33
|
Kotthaus J, Schade D, Kotthaus J, Clement B. Designing modulators of dimethylarginine dimethylaminohydrolase (DDAH): A focus on selectivity over arginase. J Enzyme Inhib Med Chem 2011; 27:24-8. [DOI: 10.3109/14756366.2011.573480] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Juerke Kotthaus
- Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University,
Gutenbergstr. 76-78, Kiel, Germany
| | - Dennis Schade
- Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University,
Gutenbergstr. 76-78, Kiel, Germany
- Sanford-Burnham Medical Research Institute and Human BioMolecular Research Institute,
5310 Eastgate Mall, San Diego, USA
| | - Joscha Kotthaus
- Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University,
Gutenbergstr. 76-78, Kiel, Germany
| | - Bernd Clement
- Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University,
Gutenbergstr. 76-78, Kiel, Germany
| |
Collapse
|
34
|
Zweier JL, Chen CA, Druhan LJ. S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 2011; 14:1769-75. [PMID: 21261471 PMCID: PMC3078498 DOI: 10.1089/ars.2011.3904] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been shown to convert endothelial nitric oxide synthase (eNOS) from an NO-producing enzyme to an enzyme that generates superoxide, a process termed NOS uncoupling. This uncoupling of eNOS converts it to function as an NADPH oxidase with superoxide and hydrogen peroxide generation. eNOS uncoupling has been associated with many pathophysiologic conditions, such as heart failure, ischemia/reperfusion injury, hypertension, atherosclerosis, and diabetes. The mechanisms implicated in the uncoupling of eNOS include oxidation of the critical NOS cofactor tetrahydrobiopterin, depletion of L-arginine, and accumulation of methylarginines. All of these prior mechanisms of eNOS-derived reactive oxygen species formation occur primarily at the heme of the oxygenase domain and are blocked by heme blockers or the NOS inhibitor N-nitro-L-arginine methylester. Recently, we have identified another unique mechanism of redox regulation of eNOS through S-glutathionylation that was shown to be important in cell signaling and vascular disease. Herein, we briefly review the mechanisms of eNOS uncoupling as well as their interrelationships and the evidence for their importance in disease.
Collapse
Affiliation(s)
- Jay L. Zweier
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Chun-An Chen
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Lawrence J. Druhan
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
- Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
35
|
Del Vecchio L, Locatelli F, Carini M. What We Know About Oxidative Stress in Patients with Chronic Kidney Disease on Dialysis-Clinical Effects, Potential Treatment, and Prevention. Semin Dial 2011; 24:56-64. [PMID: 21299632 DOI: 10.1111/j.1525-139x.2010.00819.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology, Dialysis, and Renal Transplant, A Manzoni Hospital, Lecco, Italy
| | | | | |
Collapse
|
36
|
Johnson CM, Linsky TW, Yoon DW, Person MD, Fast W. Discovery of halopyridines as quiescent affinity labels: inactivation of dimethylarginine dimethylaminohydrolase. J Am Chem Soc 2011; 133:1553-62. [PMID: 21222447 DOI: 10.1021/ja109207m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to develop novel covalent modifiers of dimethylarginine dimethylaminohydrolase (DDAH) that are useful for biological applications, a set of "fragment"-sized inhibitors that were identified using a high-throughput screen are tested for time-dependent inhibition. One structural class of inactivators, 4-halopyridines, show time- and concentration-dependent inactivation of DDAH, and the inactivation mechanism of one example, 4-bromo-2-methylpyridine (1), is characterized in detail. The neutral form of halopyridines is not very reactive with excess glutathione. However, 1 readily reacts, with loss of its halide, in a selective, covalent, and irreversible manner with the active-site Cys249 of DDAH. This active-site Cys is not particularly reactive (pK(a) ca. 8.8), and 1 does not inactivate papain (Cys pK(a) ca. ≤4), suggesting that, unlike many reagents, Cys nucleophilicity is not a predominating factor in selectivity. Rather, binding and stabilization of the more reactive pyridinium form of the inactivator by a second moiety, Asp66, is required for facile reaction. This constraint imparts a unique selectivity profile to these inactivators. To our knowledge, halopyridines have not previously been reported as protein modifiers, and therefore they represent a first-in-class example of a novel type of quiescent affinity label.
Collapse
Affiliation(s)
- Corey M Johnson
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
37
|
Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, Yeum KJ, Negrisoli G, Carini M. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 2010; 15:1339-54. [PMID: 20518851 PMCID: PMC4373334 DOI: 10.1111/j.1582-4934.2010.01101.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The metabolic syndrome is a risk factor that increases the risk for development of renal and vascular complications. This study addresses the effects of chronic administration of the endogenous dipeptide carnosine (β-alanyl-L-histidine, L-CAR) and of its enantiomer (β-alanyl-D-histidine, D-CAR) on hyperlipidaemia, hypertension, advanced glycation end products, advanced lipoxidation end products formation and development of nephropathy in the non-diabetic, Zucker obese rat. The Zucker rats received a daily dose of L-CAR or D-CAR (30 mg/kg in drinking water) for 24 weeks. Systolic blood pressure was recorded monthly. At the end of the treatment, plasma levels of triglycerides, total cholesterol, glucose, insulin, creatinine and urinary levels of total protein, albumin and creatinine were measured. Several indices of oxidative/carbonyl stress were also measured in plasma, urine and renal tissue. We found that both L- and D-CAR greatly reduced obese-related diseases in obese Zucker rat, by significantly restraining the development of dyslipidaemia, hypertension and renal injury, as demonstrated by both urinary parameters and electron microscopy examinations of renal tissue. Because the protective effect elicited by L- and D-CAR was almost superimposable, we conclude that the pharmacological action of L-CAR is not due to a pro-histaminic effect (D-CAR is not a precursor of histidine, since it is stable to peptidic hydrolysis), and prompted us to propose that some of the biological effects can be mediated by a direct carbonyl quenching mechanism.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Guo YJ, Chen L, Bai YP, Li L, Sun J, Zhang GG, Yang TL, Xia J, Li YJ, Chen XP. The ALDH2 Glu504Lys polymorphism is associated with coronary artery disease in Han Chinese: Relation with endothelial ADMA levels. Atherosclerosis 2010; 211:545-50. [PMID: 20417517 DOI: 10.1016/j.atherosclerosis.2010.03.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We studied the association between mitochondrial aldehyde dehydrogenase (ALDH2) Glu504Lys (rs671 or ALDH2*2) polymorphism and coronary artery disease (CAD), and sought to clarify the mechanisms underlying this association. METHODS The ALDH2 rs671 polymorphism was genotyped in 417 CAD patients and 448 age- and gender-matched controls. All participants were Han Chinese. Human umbilical vein endothelial cells (HUVECs) isolated from 11 human umbilical cords were genotyped, cultured, and exposed to angiotensin II (Ang II, 10(-7)-10(-5)mol/L). Dimethylarginine dimethylaminohydrolase 1 (DDAH1) mRNA expression levels were determined by real-time PCR. Levels of asymmetric dimethylarginine (ADMA) in culture media and cell lysates were determined by high performance liquid chromatography-mass spectrometry (HPLC-MS). RESULTS The frequency of carriers of the ALDH2 rs671 A allele (GA+AA) was significantly higher in patients with CAD (47.5%) than in controls (35.0%, p=0.0002). After adjustment for potential confounders, the odds ratio (OR) for CAD for carriers of the rs671 A allele was 1.85 (95% confidence interval [CI]: 1.38-2.49, p=0.00005) in the entire study cohort, and 1.95 (95% CI: 1.40-2.70, p=0.00007) in non-drinkers. In non-drinking controls, the homozygous rs671 AA genotype was associated with significantly lower high-density lipoprotein cholesterol (HDL-C) concentrations compared with rs671 GG homozygotes (p=0.015). HUVEC cells homozygous for the G allele of rs671 showed a significantly higher DDAH1 mRNA expression and lower intracellular ADMA levels compared with heterozygous GA cells (p<0.05, respectively). In homozygous GG cells, high concentrations of Ang II (10(-5)mol/L) decreased DDAH1 mRNA expression and increased intracellular ADMA concentrations. CONCLUSIONS The rs671 polymorphism of ALDH2 is associated with CAD in Han Chinese, possibly by influencing HDL-C levels and endothelial ADMA levels.
Collapse
Affiliation(s)
- Yi-Jie Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, 110# Xiangya Road, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sequence variation in DDAH1 and DDAH2 genes is strongly and additively associated with serum ADMA concentrations in individuals with type 2 diabetes. PLoS One 2010; 5:e9462. [PMID: 20209122 PMCID: PMC2830883 DOI: 10.1371/journal.pone.0009462] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/04/2010] [Indexed: 11/19/2022] Open
Abstract
Background Asymmetric dimethylarginine (ADMA), present in human serum, is an endogenous inhibitor of nitric oxide synthase and contributes to vascular disease. Dimethylarginine dimethylaminohydrolase (DDAH) is an ADMA degrading enzyme that has two isoforms: DDAHI and DDAHII. We sought to determine whether serum ADMA levels in type 2 diabetes are influenced by common polymorphisms in the DDAH1 and DDAH2 genes. Methodology/Principal Findings Relevant clinical parameters were measured and peripheral whole blood obtained for serum and genetic analysis on 343 participants with type 2 diabetes. Serum ADMA concentrations were determined by mass spectroscopy. Twenty six tag SNPs in the DDAH1 and 10 in the DDAH2 gene were genotyped in all subjects and tested for association with serum ADMA levels. Several SNPs and haplotypes in the DDAH genes were strongly associated with ADMA levels. Most significantly in the DDAH1 gene, rs669173 (p = 2.96×10−7), rs7521189 (p = 6.40×10−7), rs2474123 (p = 0.00082) and rs13373844 (p = 0.00027), and in the DDAH2 gene, rs3131383 (p = 0.0029) and the TGCCCAGGAG haplotype (p = 0.0012) were significantly associated with ADMA levels. Sub-analysis by diabetic retinopathy (DR) status revealed these variants were associated with ADMA levels predominantly in participants without DR. Combined analysis of the most strongly associated SNPs in DDAH1 (rs669173) and DDAH2 (rs3131383) revealed an additive effect (p = 1.37×10−8) on ADMA levels. Conclusions/Significance Genetic variation in the DDAH1 and 2 genes is significantly associated with serum ADMA levels. Further studies are required to determine the pathophysiological significance of elevated serum ADMA in type 2 diabetes and to better understand how DDAH gene variation influences ADMA levels.
Collapse
|
40
|
Wang Y, Hu S, Fast W. A click chemistry mediated in vivo activity probe for dimethylarginine dimethylaminohydrolase. J Am Chem Soc 2010; 131:15096-7. [PMID: 19919155 DOI: 10.1021/ja906432e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric N(omega),N(omega)-dimethyl-l-arginine (ADMA) is an endogenously produced inhibitor of human nitric oxide synthase and an emerging biomarker for cardiovascular disease. Concentrations of ADMA are controlled by two isoforms of its catabolic enzyme dimethylarginine dimethylaminohydrolase (DDAH), the dysregulation of which has been studied as a mediating factor for endothelial dysfunction. A two-part, click-chemistry mediated activity-based probe, N-but-3-ynyl-2-chloroacetamidine, is shown to label myc-tagged DDAH-1 expressed in HEK 293T cells, but not an inactive mutant or inhibited enzyme. A two-color Western blotting technique is used to determine the in vivo IC(50) value for a reversible inhibitor of DDAH-1, N(5)-(1-iminopropyl)-l-ornithine, indicating this compound's bioavailability and its competition for binding to the active site. This probe provides a novel tool for the analysis of DDAH-1 activity in normal and pathophysiological states and should allow more meaningful studies of the etiology of endothelial dysfunction.
Collapse
Affiliation(s)
- Yun Wang
- Division of Medicinal Chemistry, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
41
|
Pope AJ, Karrupiah K, Kearns PN, Xia Y, Cardounel AJ. Role of dimethylarginine dimethylaminohydrolases in the regulation of endothelial nitric oxide production. J Biol Chem 2009; 284:35338-47. [PMID: 19820234 PMCID: PMC2790963 DOI: 10.1074/jbc.m109.037036] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/29/2009] [Indexed: 01/08/2023] Open
Abstract
Reduced NO is a hallmark of endothelial dysfunction, and among the mechanisms for impaired NO synthesis is the accumulation of the endogenous nitric-oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Free ADMA is actively metabolized by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH), which catalyzes the conversion of ADMA to citrulline. Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA-mediated endothelial nitric-oxide synthase impairment. Two isoforms of DDAH have been identified; however, it is presently unclear which is responsible for endothelial ADMA metabolism and NO regulation. The current study investigated the effects of both DDAH-1 and DDAH-2 in the regulation of methylarginines and endothelial NO generation. Results demonstrated that overexpression of DDAH-1 and DDAH-2 increased endothelial NO by 24 and 18%, respectively. Moreover, small interfering RNA-mediated down-regulation of DDAH-1 and DDAH-2 reduced NO bioavailability by 27 and 57%, respectively. The reduction in NO production following DDAH-1 gene silencing was associated with a 48% reduction in l-Arg/ADMA and was partially restored with l-Arg supplementation. In contrast, l-Arg/ADMA was unchanged in the DDAH-2-silenced cells, and l-Arg supplementation had no effect on NO. These results clearly demonstrate that DDAH-1 and DDAH-2 manifest their effects through different mechanisms, the former of which is largely ADMA-dependent and the latter ADMA-independent. Overall, the present study demonstrates an important regulatory role for DDAH in the maintenance of endothelial function and identifies this pathway as a potential target for treating diseases associated with decreased NO bioavailability.
Collapse
Affiliation(s)
- Arthur J. Pope
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| | - Kanchana Karrupiah
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| | - Patrick N. Kearns
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| | - Yong Xia
- the Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210
| | - Arturo J. Cardounel
- From the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32607 and
| |
Collapse
|
42
|
Pope AJ, Karuppiah K, Cardounel AJ. Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production. Pharmacol Res 2009; 60:461-5. [PMID: 19682581 DOI: 10.1016/j.phrs.2009.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 01/22/2023]
Abstract
There is abundant evidence that the endothelium plays a crucial role in the maintenance of vascular tone and structure. One of the major endothelium-derived vasoactive mediators is nitric oxide (NO), formed in healthy vascular endothelium from the amino acid precursor l-arginine. Endothelial dysfunction is increased by various cardiovascular risk factors, metabolic diseases, and systemic or local inflammation. One mechanism that has been implicated in the development of endothelial dysfunction is the presence of elevated levels of asymmetric dimethylarginine (ADMA). Free ADMA, which is formed during proteolysis, is actively degraded by the intracellular enzyme dimethylarginine dimethylaminohydrolase (DDAH) which catalyzes the conversion of ADMA to citrulline and dimethylamine. It has been estimated that more than 70% of ADMA is metabolized by DDAH (Achan et al. [1]). Decreased DDAH expression/activity is evident in disease states associated with endothelial dysfunction and is believed to be the mechanism responsible for increased methylarginines and subsequent ADMA mediated eNOS impairment. However, recent studies suggest that DDAH may regulate eNOS activity and endothelial function through both ADMA-dependent and -independent mechanisms. In this regard, elevated plasma ADMA may serve as a marker of impaired methylarginine metabolism and the pathology previously attributed to elevated ADMA may be manifested, at least in part, through altered activity of the enzymes involved in ADMA regulation, specifically DDAH and PRMT.
Collapse
Affiliation(s)
- Arthur J Pope
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, 32607, United States
| | | | | |
Collapse
|
43
|
Wadham C, Mangoni AA. Dimethylarginine dimethylaminohydrolase regulation: a novel therapeutic target in cardiovascular disease. Expert Opin Drug Metab Toxicol 2009; 5:303-19. [PMID: 19331593 DOI: 10.1517/17425250902785172] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous methylated form of the amino acid L-arginine, inhibits the activity of the enzyme endothelial nitric oxide synthase, with consequent reduced synthesis of nitric oxide. ADMA is metabolised to L-citrulline and dimethylamine by the enzyme dimethylarginine dimethylaminohydrolase (DDAH). The modulation of DDAH activity and expression plays a pivotal role in regulating intracellular ADMA concentrations, with important effects on vascular homeostasis. For example, impairment in DDAH activity, resulting in elevated ADMA concentrations and reduced nitric oxide synthesis, can promote the onset and progression of atherosclerosis in experimental models. This review discusses the current role of ADMA and DDAH in vascular health and disease, the techniques used to assess DDAH activity and expression, and the results of recent studies on pharmacological and biological agents modulating DDAH activity and expression. Suggestions for future basic and clinical research directions are also discussed.
Collapse
Affiliation(s)
- Carol Wadham
- Flinders University, Flinders Medical Centre, Department of Clinical Pharmacology, Adelaide, Australia
| | | |
Collapse
|
44
|
Churchill EN, Disatnik MH, Budas GR, Mochly-Rosen D. Ethanol for cardiac ischemia: the role of protein kinase c. Ther Adv Cardiovasc Dis 2009; 2:469-83. [PMID: 19124442 DOI: 10.1177/1753944708094735] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The physiological effects of ethanol are dependent upon the amount and duration of consumption. Chronic excessive consumption can lead to diseases such as liver cirrhosis, and cardiac arrhythmias, while chronic moderate consumption can have therapeutic effects on the cardiovascular system. Recently, it has also been observed that acute administration of ethanol to animals prior to an ischemic event provides significant protection to the heart. This review focuses on the different modalities of chronic vs. acute ethanol consumption and discusses recent evidence for a protective effect of acute ethanol exposure and the possible use of ethanol as a therapeutic agent.
Collapse
Affiliation(s)
- Eric N Churchill
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|