1
|
Choi S, Kronstad JW, Jung WH. Siderophore Biosynthesis and Transport Systems in Model and Pathogenic Fungi. J Microbiol Biotechnol 2024; 34:1551-1562. [PMID: 38881181 PMCID: PMC11380514 DOI: 10.4014/jmb.2405.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Fungi employ diverse mechanisms for iron uptake to ensure proliferation and survival in iron-limited environments. Siderophores are secondary metabolite small molecules with a high affinity specifically for ferric iron; these molecules play an essential role in iron acquisition in fungi and significantly influence fungal physiology and virulence. Fungal siderophores, which are primarily hydroxamate types, are synthesized via non-ribosomal peptide synthetases (NRPS) or NRPS-independent pathways. Following synthesis, siderophores are excreted, chelate iron, and are transported into the cell by specific cell membrane transporters. In several human pathogenic fungi, siderophores are pivotal for virulence, as inhibition of their synthesis or transport significantly reduces disease in murine models of infection. This review briefly highlights siderophore biosynthesis and transport mechanisms in fungal pathogens as well the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Understanding siderophore biosynthesis and transport in pathogenic fungi provides valuable insights into fungal biology and illuminates potential therapeutic targets for combating fungal infections.
Collapse
Affiliation(s)
- Sohyeong Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
2
|
Sun J, Zhao J, Liu M, Li J, Cheng J, Li W, Yuan M, Xiao S, Xue C. SreC-dependent adaption to host iron environments regulates the transition of trophic stages and developmental processes of Curvularia lunata. MOLECULAR PLANT PATHOLOGY 2024; 25:e13444. [PMID: 38481338 PMCID: PMC10938068 DOI: 10.1111/mpp.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism of plant pathogens rapidly adapting to the dynamic host iron environments to assimilate iron for invasion and colonization remains largely unexplored. Here, we found that the GATA transcription factor SreC in Curvularia lunata is required for virulence and adaption to the host iron excess environment. SreC directly binds to the ATGWGATAW element in an iron-dependent manner to regulate the switch between different iron assimilation pathways, conferring adaption to host iron environments in different trophic stages of C. lunata. SreC also regulates the transition of trophic stages and developmental processes in C. lunata. SreC-dependent adaption to host iron environments is essential to the infectious growth and survival of C. lunata. We also demonstrate that CgSreA (a SreC orthologue) plays a similar role in Colletotrichum graminicola. We conclude that Sre mediates adaption to the host iron environment during infection, and the function is conserved in hemibiotrophic fungi.
Collapse
Affiliation(s)
- Jiaying Sun
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jiamei Zhao
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Miaomiao Liu
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jiayang Li
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Jie Cheng
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Wenling Li
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Mingyue Yuan
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
- Section of Microbial Ecology, Department of BiologyLund UniversityLundSweden
| | - Shuqin Xiao
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| | - Chunsheng Xue
- College of Plant ProtectionShenyang Agriculture UniversityShenyangChina
| |
Collapse
|
3
|
Moraes D, Tristão GB, Rappleye CA, Ray SC, Ribeiro-Dias F, Gomes RS, Assunção LDP, Paccez JD, Zancopé-Oliveira RM, Silva-Bailão MG, Soares CMDA, Bailão AM. The influence of a copper efflux pump in Histoplasma capsulatum virulence. FEBS J 2024; 291:744-760. [PMID: 37950580 DOI: 10.1111/febs.16999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Chad A Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Stephanie C Ray
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
4
|
Ebrahim A, Alfwuaires MA, Abukhalil MH, Alasmari F, Ahmad F, Yao R, Luo Y, Huang Y. Schizosaccharomyces pombe Grx4, Fep1, and Php4: In silico analysis and expression response to different iron concentrations. Front Genet 2022; 13:1069068. [PMID: 36568394 PMCID: PMC9768344 DOI: 10.3389/fgene.2022.1069068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Due to iron's essential role in cellular metabolism, most organisms must maintain their homeostasis. In this regard, the fission yeast Schizosaccharomyces pombe (sp) uses two transcription factors to regulate intracellular iron levels: spFep1 under iron-rich conditions and spPhp4 under iron-deficient conditions, which are controlled by spGrx4. However, bioinformatics analysis to understand the role of the spGrx4/spFep1/spPhp4 axis in maintaining iron homeostasis in S. pombe is still lacking. Our study aimed to perform bioinformatics analysis on S. pombe proteins and their sequence homologs in Aspergillus flavus (af), Saccharomyces cerevisiae (sc), and Homo sapiens (hs) to understand the role of spGrx4, spFep1, and spPhp4 in maintaining iron homeostasis. The three genes' expression patterns were also examined at various iron concentrations. A multiple sequence alignment analysis of spGrx4 and its sequence homologs revealed a conserved cysteine residue in each PF00085 domain. Blast results showed that hsGLRX3 is most similar to spGrx4. In addition, spFep1 is most closely related in sequence to scDal80, whereas scHap4 is most similar to spFep1. We also found two highly conserved motifs in spFep1 and its sequence homologs that are significant for iron transport systems because they contain residues involved in iron homeostasis. The scHap4 is most similar to spPhp4. Using STRING to analyze protein-protein interactions, we found that spGrx4 interacts strongly with spPhp4 and spFep1. Furthermore, spGrx4, spPhp4, and spFep1 interact with spPhp2, spPhp3, and spPhp5, indicating that the three proteins play cooperative roles in iron homeostasis. At the highest level of Fe, spgrx4 had the highest expression, followed by spfep1, while spphp4 had the lowest expression; a contrast occurred at the lowest level of Fe, where spgrx4 expression remained constant. Our findings support the notion that organisms develop diverse strategies to maintain iron homeostasis.
Collapse
Affiliation(s)
- Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan,Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Ahmad
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Ying Huang,
| |
Collapse
|
5
|
Fe-S clusters masquerading as zinc finger proteins. J Inorg Biochem 2022; 230:111756. [DOI: 10.1016/j.jinorgbio.2022.111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
|
6
|
Mühlenhoff U, Braymer JJ, Christ S, Rietzschel N, Uzarska MA, Weiler BD, Lill R. Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biol Chem 2021; 401:1407-1428. [PMID: 33031050 DOI: 10.1515/hsz-2020-0237] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
The physiological roles of the intracellular iron and redox regulatory systems are intimately linked. Iron is an essential trace element for most organisms, yet elevated cellular iron levels are a potent generator and amplifier of reactive oxygen species and redox stress. Proteins binding iron or iron-sulfur (Fe/S) clusters, are particularly sensitive to oxidative damage and require protection from the cellular oxidative stress protection systems. In addition, key components of these systems, most prominently glutathione and monothiol glutaredoxins are involved in the biogenesis of cellular Fe/S proteins. In this review, we address the biochemical role of glutathione and glutaredoxins in cellular Fe/S protein assembly in eukaryotic cells. We also summarize the recent developments in the role of cytosolic glutaredoxins in iron metabolism, in particular the regulation of fungal iron homeostasis. Finally, we discuss recent insights into the interplay of the cellular thiol redox balance and oxygen with that of Fe/S protein biogenesis in eukaryotes.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| | - Stefan Christ
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Nicole Rietzschel
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307Gdansk, Poland
| | - Benjamin D Weiler
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043Marburg, Germany
| |
Collapse
|
7
|
Jung WH, Sánchez-León E, Kronstad JW. Coordinated regulation of iron metabolism in Cryptococcus neoformans by GATA and CCAAT transcription factors: connections with virulence. Curr Genet 2021; 67:583-593. [PMID: 33760942 DOI: 10.1007/s00294-021-01172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Iron acquisition is critical for pathogenic fungi to adapt to and survive within the host environment. However, to same extent, the fungi must also avoid the detrimental effects caused by excess iron. The importance of iron has been demonstrated for the physiology and virulence of major fungal pathogens of humans including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. In particular, numerous studies have revealed that aspects of iron acquisition, metabolism, and homeostasis in the fungal pathogens are tightly controlled by conserved transcriptional regulators including a GATA-type iron transcription factor and the CCAAT-binding complex (CBC)/HapX orthologous protein complex. However, the specific downstream regulatory networks are slightly different in each fungus. In addition, roles have been proposed or demonstrated for other factors including monothiol glutaredoxins, BolA-like proteins, and Fe-S cluster incorporation on the GATA-type iron transcription factor and the CBC/HapX orthologous protein complex, although limited information is available. Here we focus on recent work on C. neoformans in the context of an emerging framework for fungal regulation of iron acquisition, metabolism, and homeostasis. Our specific goal is to summarize recent findings on transcriptional networks governed by the iron regulators Cir1 and HapX in C. neoformans.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea.
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Liu Y, Kong D, Wu HL, Ling HQ. Iron in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2114-2124. [PMID: 33161430 DOI: 10.1093/jxb/eraa516] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential element for most organisms. As an indispensable co-factor of many enzymes, iron is involved in various crucial metabolic processes that are required for the survival of plants and pathogens. Conversely, excessive iron produces highly active reactive oxygen species, which are toxic to the cells of plants and pathogens. Therefore, plants and pathogens have evolved sophisticated mechanisms to modulate iron status at a moderate level for maintaining their fitness. Over the past decades, many efforts have been made to reveal these mechanisms, and some progress has been made. In this review, we describe recent advances in understanding the roles of iron in plant-pathogen interactions and propose prospects for future studies.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hui-Lan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Berndt C, Christ L, Rouhier N, Mühlenhoff U. Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148317. [PMID: 32980338 DOI: 10.1016/j.bbabio.2020.148317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Among the thioredoxin superfamily of proteins, the observation that numerous glutaredoxins bind iron-sulphur (Fe/S) clusters is one of the more recent and major developments concerning their functional properties. Glutaredoxins are present in most organisms. All members of the class II subfamily (including most monothiol glutaredoxins), but also some members of the class I (mostly dithiol glutaredoxins) and class III (land plant-specific monothiol or dithiol glutaredoxins) are Fe/S proteins. In glutaredoxins characterised so far, the [2Fe2S] cluster is coordinated by two active-site cysteine residues and two molecules of non-covalently bound glutathione in homo-dimeric complexes bridged by the cluster. In contrast to dithiol glutaredoxins, monothiol glutaredoxins possess no or very little oxidoreductase activity, but have emerged as important players in cellular iron metabolism. In this review we summarise the recent developments of the most prominent Fe/S glutaredoxins in eukaryotes, the mitochondrial single domain monothiol glutaredoxin 5, the chloroplastic single domain monothiol glutaredoxin S14 and S16, the nuclear/cytosolic multi-domain monothiol glutaredoxin 3, and the mitochondrial/cytosolic dithiol glutaredoxin 2.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Merowingerplatz1a, 40225 Düsseldorf, Germany
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35032 Marburg, Germany.
| |
Collapse
|
11
|
A Transcriptional Regulatory Map of Iron Homeostasis Reveals a New Control Circuit for Capsule Formation in Cryptococcus neoformans. Genetics 2020; 215:1171-1189. [PMID: 32580959 DOI: 10.1534/genetics.120.303270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 11/18/2022] Open
Abstract
Iron is essential for the growth of the human fungal pathogen Cryptococcus neoformans within the vertebrate host, and iron sensing contributes to the elaboration of key virulence factors, including the formation of the polysaccharide capsule. C. neoformans employs sophisticated iron acquisition and utilization systems governed by the transcription factors Cir1 and HapX. However, the details of the transcriptional regulatory networks that are governed by these transcription factors and connections to virulence remain to be defined. Here, we used chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and transcriptome analysis (RNA-seq) to identify genes directly regulated by Cir1 and/or HapX in response to iron availability. Overall, 40 and 100 genes were directly regulated by Cir1, and 171 and 12 genes were directly regulated by HapX, under iron-limited and replete conditions, respectively. More specifically, we found that Cir1 directly controls the expression of genes required for iron acquisition and metabolism, and indirectly governs capsule formation by regulating specific protein kinases, a regulatory connection not previously revealed. HapX regulates the genes responsible for iron-dependent pathways, particularly under iron-depleted conditions. By analyzing target genes directly bound by Cir1 and HapX, we predicted the binding motifs for the transcription factors and verified that the purified proteins bind these motifs in vitro Furthermore, several direct target genes were coordinately and reciprocally regulated by Cir1 and HapX, suggesting that these transcription factors play conserved roles in the response to iron availability. In addition, biochemical analyses revealed that Cir1 and HapX are iron-containing proteins, implying that the regulatory networks of Cir1 and HapX may be influenced by the incorporation of iron into these proteins. Taken together, our identification of the genome-wide transcriptional networks provides a detailed understanding of the iron-related regulatory landscape, establishes a new connection between Cir1 and kinases that regulate capsule, and underpins genetic and biochemical analyses that reveal iron-sensing mechanisms for Cir1 and HapX in C. neoformans.
Collapse
|
12
|
Alkafeef SS, Lane S, Yu C, Zhou T, Solis NV, Filler SG, Huang L, Liu H. Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genet 2020; 16:e1008881. [PMID: 32525871 PMCID: PMC7319344 DOI: 10.1371/journal.pgen.1008881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/26/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell. Mammalian pathogens occupy a diverse set of niches within the host organism. These niches vary in iron and oxygen availability. As a commensal and pathogen of humans, its ability to regulate iron uptake and utilization in response to bioavailable iron level is critical for its survival in different host environments encompassing a broad range of iron levels. This study aims to understand how C. albicans senses and responds to iron level to regulate multiple aspects of its biology. The cytosolic monothiol glutaredoxin Grx3 is a critical regulator of C. albicans iron homeostasis and virulence. Taking a proteomic approach, we identified a large list of Grx3 associated proteins of diverse functions, including iron-sulfur trafficking, iron homeostasis, metabolism redox homeostasis, protein translation, DNA maintenance and repair. In support of these protein associations, Grx3 is important for all these processes. Thus, Grx3 is a global regulator of iron homeostasis and other iron dependent cellular processes.
Collapse
Affiliation(s)
- Selma S Alkafeef
- Department of Biological Chemistry, University of California, Irvine, California, United States of America.,Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Shelley Lane
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| | - Norma V Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America.,David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California, United States of America
| |
Collapse
|
13
|
The siderophore repressor SreA maintains growth, hydrogen peroxide resistance, and cell wall integrity in the phytopathogenic fungus Alternaria alternata. Fungal Genet Biol 2020; 139:103384. [PMID: 32278718 DOI: 10.1016/j.fgb.2020.103384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023]
Abstract
The siderophore-mediated iron uptake machinery is required by the tangerine pathotype of Alternaria alternata to colonize host plants. The present study reports the functions of the GATA-type transcription regulator SreA by analyzing loss- and gain-of-function mutants. The expression of sreA is transiently upregulated by excess iron. The sreA deficiency mutant (ΔsreA) shows severe growth defect but produces ACT toxin and incites necrotic lesions on citrus leaves as efficiently as wild type. SreA suppresses the expression of genes encoding polypeptides required for siderophore biosynthesis and transport under iron-replete conditions. Under iron-replete conditions, SreA impacts the expression of the genes encoding the NADPH oxidase complex involved in H2O2 production. SreA negatively impacts H2O2 resistance as ΔsreA increases resistance to H2O2. However, sreA deficiency has no effects on the expression of genes encoding several key factors (Yap1, Hog1, and Skn7) involved in oxidative stress resistance. ΔsreA increases resistance to calcofluor white and Congo red, which may suggest a role of SreA in the maintenance of cell wall integrity. Those are novel phenotypes associated with fungal sreA. Overall, our results indicate that SreA is required to protect fungal cells from cytotoxicity caused by excess iron. The results also highlight the regulatory functions of SreA and provide insights into the critical role of siderophore-mediated iron homeostasis in resistance to oxidative stress in A. alternata.
Collapse
|
14
|
Mao Y, Chen C. The Hap Complex in Yeasts: Structure, Assembly Mode, and Gene Regulation. Front Microbiol 2019; 10:1645. [PMID: 31379791 PMCID: PMC6652802 DOI: 10.3389/fmicb.2019.01645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The CCAAT box-harboring proteins represent a family of heterotrimeric transcription factors which is highly conserved in eukaryotes. In fungi, one of the particularly important homologs of this family is the Hap complex that separates the DNA-binding domain from the activation domain and imposes essential impacts on regulation of a wide range of cellular functions. So far, a comprehensive summary of this complex has been described in filamentous fungi but not in the yeast. In this review, we summarize a number of studies related to the structure and assembly mode of the Hap complex in a list of representative yeasts. Furthermore, we emphasize recent advances in understanding the regulatory functions of this complex, with a special focus on its role in regulating respiration, production of reactive oxygen species (ROS) and iron homeostasis.
Collapse
Affiliation(s)
- Yinhe Mao
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection and Host Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
16
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Mutational Analysis of the Cysteine-Rich Region of the Iron-Responsive GATA Factor Fep1. Role of Individual Cysteines as [2Fe–2S] Cluster Ligands. Cell Biochem Biophys 2018; 76:339-344. [DOI: 10.1007/s12013-018-0842-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/30/2018] [Indexed: 12/19/2022]
|
18
|
Pasricha S, Schafferer L, Lindner H, Joanne Boyce K, Haas H, Andrianopoulos A. Differentially regulated high-affinity iron assimilation systems support growth of the various cell types in the dimorphic pathogenTalaromyces marneffei. Mol Microbiol 2016; 102:715-737. [DOI: 10.1111/mmi.13489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Shivani Pasricha
- Department of Genetics; University of Melbourne; Victoria 3010 Australia
| | - Lukas Schafferer
- Division of Molecular Biology and Division of Clinical Biochemistry and the Protein Micro-Analysis Facility; Innsbruck Medical University; Innsbruck, Innrain 80-82 Innsbruck A-6020 Austria
| | - Herbert Lindner
- Division of Molecular Biology and Division of Clinical Biochemistry and the Protein Micro-Analysis Facility; Innsbruck Medical University; Innsbruck, Innrain 80-82 Innsbruck A-6020 Austria
| | - Kylie Joanne Boyce
- Department of Genetics; University of Melbourne; Victoria 3010 Australia
| | - Hubertus Haas
- Division of Molecular Biology and Division of Clinical Biochemistry and the Protein Micro-Analysis Facility; Innsbruck Medical University; Innsbruck, Innrain 80-82 Innsbruck A-6020 Austria
| | | |
Collapse
|
19
|
Kim HJ, Lee KL, Kim KD, Roe JH. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines. Biochem Biophys Res Commun 2016; 478:187-192. [DOI: 10.1016/j.bbrc.2016.07.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022]
|
20
|
Cutone A, Howes BD, Miele AE, Miele R, Giorgi A, Battistoni A, Smulevich G, Musci G, di Patti MCB. Pichia pastoris Fep1 is a [2Fe-2S] protein with a Zn finger that displays an unusual oxygen-dependent role in cluster binding. Sci Rep 2016; 6:31872. [PMID: 27546548 PMCID: PMC4992955 DOI: 10.1038/srep31872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023] Open
Abstract
Fep1, the iron-responsive GATA factor from the methylotrophic yeast Pichia pastoris, has been characterised both in vivo and in vitro. This protein has two Cys2-Cys2 type zinc fingers and a set of four conserved cysteines arranged in a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers. Electronic absorption and resonance Raman spectroscopic analyses in anaerobic and aerobic conditions indicate that Fep1 binds iron in the form of a [2Fe-2S] cluster. Site-directed mutagenesis shows that replacement of the four cysteines with serine inactivates this transcriptional repressor. Unexpectedly, the inactive mutant is still able to bind a [2Fe-2S] cluster, employing two cysteine residues belonging to the first zinc finger. These two cysteine residues can act as alternative cluster ligands selectively in aerobically purified Fep1 wild type, suggesting that oxygen could play a role in Fep1 function by causing differential localization of the [Fe-S] cluster.
Collapse
Affiliation(s)
- Antimo Cutone
- Dip. Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Roma, Italy
| | - Barry D Howes
- Dip. Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Adriana E Miele
- Dip. Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Roma, Italy
| | - Rossella Miele
- Dip. Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Roma, Italy
| | - Alessandra Giorgi
- Dip. Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, Roma, Italy
| | | | - Giulietta Smulevich
- Dip. Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Giovanni Musci
- Dip. Bioscienze e Territorio, Università del Molise, Pesche, Italy
| | | |
Collapse
|
21
|
Li Y, Wang Z, Liu X, Song Z, Li R, Shao C, Yin Y. Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for the Dimorphic Fungus Nomuraea rileyi Conidiation, Dimorphism Transition, Resistance to Oxidative Stress, Pigmented Microsclerotium Formation, and Virulence. Front Microbiol 2016; 7:931. [PMID: 27379061 PMCID: PMC4909778 DOI: 10.3389/fmicb.2016.00931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/31/2016] [Indexed: 12/04/2022] Open
Abstract
Iron is an indispensable factor for the dimorphic insect pathogenic Nomuraea rileyi to form persistent microsclerotia which can replace conidia or blastospores for commercial mass production. There are two high affinity iron acquisition pathways in N. rileyi, siderophore-assisted iron mobilization and reductive iron assimilation systems. Transcription of the two iron uptake pathways related genes is induced under iron-limiting conditions. Stage-specific iron uptake-related genes expression during microsclerotia development shows siderophore-mediated iron acquisition genes are rigorously upregulated specifically during the formation and mature period while reductive iron assimilation related genes just display a higher expression at the late maturation period. Abrogation of reductive iron assimilation, by the deletion of the high affinity iron permease (NrFtrA), has no visible effect on microsclerotia biogenesis in N. rileyi. In sharp contrast, N. rileyi L-ornithine-N5-monooxygenase (NrSidA), required for synthesis of all siderophores, is absolutely necessary for the development of pigmented microsclerotia. In agreement with the lower intracellular iron contents of microsclerotia in ΔNrSidA strains, not only the pigments, but both the number and the biomass are also noticeably reduced. Certain concentration of ROS is required for promoting microsclerotia biogenesis. Combined with expression pattern analysis of related genes and quantitative of intracellular iron or extracellular siderophore in WT and mutants, these data demonstrate the lack of adequate intracellular iron caused by the loss of the siderophore results in the deficiency of ROS detoxication. Furthermore, ΔNrSidA strains show significantly increased sensitivity to hydrogen peroxide. Besides, NrSidA, but not NrFtrA, play a crucial role in vegetative growth under iron-limiting conditions, conidiation, and dimorphic switching. Remarkably, the slower growth of the ΔNrSidA strains in vivo due to a reduced capacity for iron acquisition leads to the loss of virulence in Spodoptera litura while the ΔNrFtrA mutants behaved as WT during infection. Together, these results prove siderophore-assisted iron mobilization is the major pathway of cellular iron uptake and essential for conidiation, dimorphism transition, oxidative stress resistance, pigmented microsclerotium formation and full virulence.
Collapse
Affiliation(s)
- Yan Li
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| | - Xuee Liu
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| | - Zhangyong Song
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| | - Ren Li
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| | - Changwen Shao
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University Chongqing, China
| |
Collapse
|
22
|
Revisiting old friends: Developments in understanding Histoplasma capsulatum pathogenesis. J Microbiol 2016; 54:265-76. [DOI: 10.1007/s12275-016-6044-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/27/2022]
|
23
|
Brault A, Mourer T, Labbé S. Molecular basis of the regulation of iron homeostasis in fission and filamentous yeasts. IUBMB Life 2015; 67:801-15. [PMID: 26472434 DOI: 10.1002/iub.1441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/01/2015] [Indexed: 11/08/2022]
Abstract
When iron load exceeds that needed by fission and filamentous yeasts, iron-regulatory GATA-type transcription factors repress genes encoding iron acquisition systems. In contrast, under iron starvation, optimization of cellular iron utilization is coordinated by a specialized regulatory subunit of the CCAAT-binding factor that fosters repression of genes encoding iron-using proteins. Despite these findings, there is still limited knowledge concerning the mechanisms by which these iron-responsive regulators respond to high- or low-iron availability. To provide a framework for understanding common and distinct properties of iron-dependent transcriptional regulators, a repertoire of their functional domains in different fungal species is presented here. In addition, discovery of interacting partners of these iron-responsive factors contributes to provide additional insight into their properties.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thierry Mourer
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015; 94:292-308. [DOI: 10.1016/j.ejcb.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Giuliano Garisto Donzelli B, Gibson DM, Krasnoff SB. Intracellular siderophore but not extracellular siderophore is required for full virulence in Metarhizium robertsii. Fungal Genet Biol 2015; 82:56-68. [PMID: 26135511 DOI: 10.1016/j.fgb.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
Abstract
Efficient iron acquisition mechanisms are fundamental for microbial survival in the environment and for pathogen virulence within their hosts. M. robertsii produces two known iron-binding natural products: metachelins, which are used to scavenge extracellular iron, and ferricrocin, which is strictly intracellular. To study the contribution of siderophore-mediated iron uptake and storage to M. robertsii fitness, we generated null mutants for each siderophore synthase gene (mrsidD and mrsidC, respectively), as well as for the iron uptake transcriptional repressor mrsreA. All of these mutants showed impaired germination speed, differential sensitivity to hydrogen peroxide, and differential ability to overcome iron chelation on growth-limiting iron concentrations. RT-qPCR data supported regulation of mrsreA, mrsidC, and mrsidD by supplied iron in vitro and during growth within the insect host, Spodoptera exigua. We also observed strong upregulation of the insect iron-binding proteins, transferrins, during infection. Insect bioassays revealed that ferricrocin is required for full virulence against S. exigua; neither the loss of metachelin production nor the deletion of the transcription factor mrsreA significantly affected M. robertsii virulence.
Collapse
Affiliation(s)
- Bruno Giuliano Garisto Donzelli
- School of Integrative Plant Science - Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, United States.
| | - Donna M Gibson
- USDA ARS, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, United States
| | - Stuart B Krasnoff
- USDA ARS, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, NY 14853, United States
| |
Collapse
|
26
|
Marty AJ, Broman AT, Zarnowski R, Dwyer TG, Bond LM, Lounes-Hadj Sahraoui A, Fontaine J, Ntambi JM, Keleş S, Kendziorski C, Gauthier GM. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis. PLoS Pathog 2015; 11:e1004959. [PMID: 26114571 PMCID: PMC4482641 DOI: 10.1371/journal.ppat.1004959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. Blastomyces dermatitidis belongs to a group of human pathogenic fungi that convert between two forms, mold and yeast, in response to temperature. Growth as yeast (37°C) in tissue facilitates immune evasion, whereas growth as mold (22°C) promotes environmental survival, sexual reproduction, and generation of transmissible spores. Despite the importance of dimorphism, how fungi regulate temperature adaptation is poorly understood. We identified SREB, a transcription factor that regulates disparate processes including dimorphism. SREB null mutants, which lack SREB, fail to fully complete the conversion to mold at 22°C. The goal of our research was to characterize how SREB regulates transcription during the switch to mold. Gene expression microarray along with chromatin binding and biochemical analyses indicated that SREB affected several processes including iron homeostasis, lipid biosynthesis, and lipid droplet formation. In vivo, SREB directly bound and regulated genes involved with iron uptake, lipid biosynthesis, and transcription. Functional analysis suggested that lipid metabolism may influence filamentous growth at 22°C. In addition, SREB interacted with another transcription factor, HAPX.
Collapse
Affiliation(s)
- Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Aimee T. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Teigan G. Dwyer
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Laura M. Bond
- Department of Biochemistry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Anissa Lounes-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant, Calais, France
| | - James M. Ntambi
- Department of Biochemistry, Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Statistics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 2015; 72:2261-87. [PMID: 25700837 PMCID: PMC11113693 DOI: 10.1007/s00018-015-1860-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Life-threatening invasive fungal infections are becoming increasingly common, at least in part due to the prevalence of medical interventions resulting in immunosuppression. Opportunistic fungal pathogens of humans exploit hosts that are immunocompromised, whether by immunosuppression or genetic predisposition, with infections originating from either commensal or environmental sources. Fungal pathogens are armed with an arsenal of traits that promote pathogenesis, including the ability to survive host physiological conditions and to switch between different morphological states. Despite the profound impact of fungal pathogens on human health worldwide, diagnostic strategies remain crude and treatment options are limited, with resistance to antifungal drugs on the rise. This review will focus on the global burden of fungal infections, the reservoirs of these pathogens, the traits of opportunistic yeast that lead to pathogenesis, host genetic susceptibilities, and the challenges that must be overcome to combat antifungal drug resistance and improve clinical outcome.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Xinliu Li
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| | - Michelle D. Leach
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Room 4368, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
28
|
Encinar del Dedo J, Gabrielli N, Carmona M, Ayté J, Hidalgo E. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast. PLoS Genet 2015; 11:e1005106. [PMID: 25806539 PMCID: PMC4373815 DOI: 10.1371/journal.pgen.1005106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.
Collapse
Affiliation(s)
| | - Natalia Gabrielli
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
29
|
The basic leucine zipper stress response regulator Yap5 senses high-iron conditions by coordination of [2Fe-2S] clusters. Mol Cell Biol 2014; 35:370-8. [PMID: 25368382 DOI: 10.1128/mcb.01033-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential, yet at elevated concentrations toxic trace element. To date, the mechanisms of iron sensing by eukaryotic iron-responsive transcription factors are poorly understood. The Saccharomyces cerevisiae transcription factor Yap5, a member of the Yap family of bZIP stress response regulators, administrates the adaptive response to high-iron conditions. Despite the central role of the iron-sensing process for cell viability, the molecule perceived by Yap5 and the underlying regulatory mechanisms are unknown. Here, we show that Yap5 senses high-iron conditions by two Fe/S clusters bound to its activator domain (Yap5-AD). The more stable iron-regulatory Fe/S cluster at the N-terminal cysteine-rich domain (n-CRD) of Yap5 is detected in vivo and in vitro. The second cluster coordinated by the C-terminal CRD can only be shown after chemical reconstitution, since it is bound in a labile fashion. Both clusters are of the [2Fe-2S] type as characterized by UV/visible (UV/Vis), circular dichroism, electron paramagnetic resonance (EPR), and Mössbauer spectroscopy. Fe/S cluster binding to Yap5-AD induces a conformational change that may activate transcription. The cluster-binding motif of the n-CRD domain is highly conserved in HapX-like transcription factors of pathogenic fungi and thus may represent a general sensor module common to many eukaryotic stress response regulators.
Collapse
|
30
|
Abstract
Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host-fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies.
Collapse
Affiliation(s)
- Iuliana V Ene
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Alistair J P Brown
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany Center for Sepsis Control and Care, Universitätsklinikum Jena, 07747 Jena, Germany
| |
Collapse
|
31
|
Silva-Bailão MG, Bailão EFLC, Lechner BE, Gauthier GM, Lindner H, Bailão AM, Haas H, de Almeida Soares CM. Hydroxamate production as a high affinity iron acquisition mechanism in Paracoccidioides spp. PLoS One 2014; 9:e105805. [PMID: 25157575 PMCID: PMC4144954 DOI: 10.1371/journal.pone.0105805] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity.
Collapse
Affiliation(s)
- Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Elisa Flávia Luiz Cardoso Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Unidade Universitária de Iporá, Universidade Estadual de Goiás, Iporá, Goiás, Brazil
| | | | - Gregory M. Gauthier
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Herbert Lindner
- Division of Clinical Biochemistry/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
32
|
Ding C, Hu G, Jung WH, Kronstad JW. Essential Metals in Cryptococcus neoformans: Acquisition and Regulation. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Newman SL, Smulian AG. Iron uptake and virulence in Histoplasma capsulatum. Curr Opin Microbiol 2013; 16:700-7. [DOI: 10.1016/j.mib.2013.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
34
|
Noble SM. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol 2013; 16:708-15. [PMID: 24121029 DOI: 10.1016/j.mib.2013.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 01/23/2023]
Abstract
Candida albicans is a fungal commensal-pathogen that persistently associates with its mammalian hosts. Between the commensal and pathogenic lifestyles, this microorganism inhabits host niches that differ markedly in the levels of bioavailable iron. A number of recent studies have exposed C. albicans specializations for acquiring iron from specific host molecules in regions where iron is scarce, while also defending against iron-related toxicity in regions where iron occurs in surfeit. Together, these results point to a central role for iron homeostasis in the evolution of this important human pathogen.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology & Immunology, 513 Parnassus Avenue, Box 0414, San Francisco, CA 94143-0414, United States; Division of Infectious Diseases, Department of Medicine, 513 Parnassus Avenue, Box 0414, San Francisco, CA 94143-0414, United States.
| |
Collapse
|
35
|
Labbé S, Khan MGM, Jacques JF. Iron uptake and regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 2013; 16:669-76. [PMID: 23916750 DOI: 10.1016/j.mib.2013.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Schizosaccharomyces pombe is a useful model system for understanding many aspects of eukaryotic cell growth. Studies of S. pombe have identified novel genes that function in the regulation of iron homeostasis. In response to high levels of iron, Fep1 represses the expression of several genes involved in the acquisition of iron. When iron levels are limited, optimization of cellular iron utilization is coordinated by Php4, which represses genes encoding iron-using proteins. Results from studies in yeast have shed new light on the role of monothiol glutaredoxins (Grxs) in iron homeostasis. In S. pombe, the Grx4 protein serves as an inhibitory partner for Fep1 in response to iron deficiency, whereas it is required for the inhibition of Php4 under iron-replete conditions.
Collapse
Affiliation(s)
- Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| | | | | |
Collapse
|
36
|
Albarouki E, Deising HB. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:695-708. [PMID: 23639025 DOI: 10.1094/mpmi-01-13-0003-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ferroxidases are essential components of the high-affinity reductive iron assimilation pathway in fungi. Two ferroxidase genes, FET3-1 and FET3-2, have been identified in the genome of the maize anthracnose fungus Colletotrichum graminicola. Complementation of growth defects of the ferroxidase-deficient Saccharomyces cerevisiae strain Δfet3fet4 showed that both Fet3-1 and Fet3-2 of C. graminicola represent functional ferroxidases. Expression of enhanced green fluorescent protein fusions in yeast and C. graminicola indicated that both ferroxidase proteins localize to the plasma membrane. Transcript abundance of FET3-1 increased dramatically under iron-limiting conditions but those of FET3-2 were hardly detectable. Δfet3-1 and Δfet3-2 single as well as Δfet3-1/2 double-deletion strains were generated. Under iron-sufficient or deficient conditions, vegetative growth rates of these strains did not significantly differ from that of the wild type but Δfet3-1 and Δfet3-1/2 strains showed increased sensitivity to reactive oxygen species. Furthermore, under iron-limiting conditions, appressoria of Δfet3-1 and Δfet3-1/2 strains showed significantly reduced transcript abundance of a class V chitin synthase and exhibited severe cell wall defects. Infection assays on intact and wounded maize leaves, quantitative data of infection structure differentiation, and infection stage-specific expression of FET3-1 showed that reductive iron assimilation is required for appressorial penetration, biotrophic development, and full virulence.
Collapse
Affiliation(s)
- Emad Albarouki
- Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
37
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
38
|
Chen C, Noble SM. Post-transcriptional regulation of the Sef1 transcription factor controls the virulence of Candida albicans in its mammalian host. PLoS Pathog 2012; 8:e1002956. [PMID: 23133381 PMCID: PMC3486892 DOI: 10.1371/journal.ppat.1002956] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/24/2012] [Indexed: 11/30/2022] Open
Abstract
The yeast Candida albicans transitions between distinct lifestyles as a normal component of the human gastrointestinal microbiome and the most common agent of disseminated fungal disease. We previously identified Sef1 as a novel Cys6Zn2 DNA binding protein that plays an essential role in C. albicans virulence by activating the transcription of iron uptake genes in iron-poor environments such as the host bloodstream and internal organs. Conversely, in the iron-replete gastrointestinal tract, persistence as a commensal requires the transcriptional repressor Sfu1, which represses SEF1 and genes for iron uptake. Here, we describe an unexpected, transcription-independent role for Sfu1 in the direct inhibition of Sef1 function through protein complex formation and localization in the cytoplasm, where Sef1 is destabilized. Under iron-limiting conditions, Sef1 forms an alternative complex with the putative kinase, Ssn3, resulting in its phosphorylation, nuclear localization, and transcriptional activity. Analysis of sfu1 and ssn3 mutants in a mammalian model of disseminated candidiasis indicates that these post-transcriptional regulatory mechanisms serve as a means for precise titration of C. albicans virulence. Candida albicans is a fungus that resides on the skin and in the gastrointestinal tract of humans and other mammals. However, this commensal organism is also capable of proliferating and causing disease in people who have received antibiotics, who are immunocompromised, or who have suffered injury to epithelial layers. We previously identified a novel transcription factor called Sef1 that promotes C. albicans virulence by activating the expression of iron uptake genes in iron-poor environments, such as the host bloodstream. However, in iron-replete environments such as the gastrointestinal niche, the SEF1 gene is repressed by a second transcription factor called Sfu1. Here, we report our discovery of a series of post-transcriptional regulatory events that determine the intracellular localization, stability, and activity of Sef1 protein. Mutants that disrupt these post-transcriptional events alter C. albicans virulence in a mammalian model of disseminated infection. The existence of multiple levels of regulation speaks to the importance of Sef1 in C. albicans virulence and suggests that close titration of Sef1 activity is important for adaptation to distinct microenvironments within the mammalian host.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Suzanne M. Noble
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Medicine, Division of Infectious Diseases, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bailão EFLC, Parente AFA, Parente JA, Silva-Bailão MG, de Castro KP, Kmetzsch L, Staats CC, Schrank A, Vainstein MH, Borges CL, Bailão AM, de Almeida Soares CM. Metal Acquisition and Homeostasis in Fungi. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0108-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Canessa P, Muñoz-Guzmán F, Vicuña R, Larrondo LF. Characterization of PIR1, a GATA family transcription factor involved in iron responses in the white-rot fungus Phanerochaete chrysosporium. Fungal Genet Biol 2012; 49:626-34. [DOI: 10.1016/j.fgb.2012.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 01/19/2023]
|
41
|
Li H, Outten CE. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 2012; 51:4377-89. [PMID: 22583368 DOI: 10.1021/bi300393z] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monothiol glutaredoxins (Grxs) with a signature CGFS active site and BolA-like proteins have recently emerged as novel players in iron homeostasis. Elegant genetic and biochemical studies examining the functional and physical interactions of CGFS Grxs in the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have unveiled their essential roles in intracellular iron signaling, iron trafficking, and the maturation of Fe-S cluster proteins. Biophysical and biochemical analyses of the [2Fe-2S] bridging interaction between CGFS Grxs and a BolA-like protein in S. cerevisiae provided the first molecular-level understanding of the iron regulation mechanism in this model eukaryote and established the ubiquitous CGFS Grxs and BolA-like proteins as novel Fe-S cluster-binding regulatory partners. Parallel studies focused on Escherichia coli and human homologues for CGFS Grxs and BolA-like proteins have supported the studies in yeast and provided additional clues about their involvement in cellular iron metabolism. Herein, we review recent progress in uncovering the cellular and molecular mechanisms by which CGFS Grxs and BolA-like proteins help regulate iron metabolism in both eukaryotic and prokaryotic organisms.
Collapse
Affiliation(s)
- Haoran Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | |
Collapse
|
42
|
The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function. EUKARYOTIC CELL 2012; 11:806-19. [PMID: 22523368 DOI: 10.1128/ec.00060-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
When iron is scarce, Schizosaccharomyces pombe cells repress transcription of several genes that encode iron-using proteins. Php4 mediates this transcriptional control by specifically interacting with the CCAAT-binding core complex that is composed of Php2, Php3, and Php5. In contrast, when there is sufficient iron, Php4 is inactivated, thus allowing the transcription of many genes that encode iron-requiring proteins. Analysis by bimolecular fluorescence complementation and two-hybrid assays showed that Php4 and the monothiol glutaredoxin Grx4 physically interact with each other. Deletion mapping analysis revealed that the glutaredoxin (GRX) domain of Grx4 associates with Php4 in an iron-dependent manner. Site-directed mutagenesis identified the Cys172 of Grx4 as being required for this iron-dependent association. Subsequent analysis showed that, although the thioredoxin (TRX) domain of Grx4 interacts strongly with Php4, this interaction is insensitive to iron. Fine mapping analysis revealed that the Cys35 of Grx4 is necessary for the association between the TRX domain and Php4. Taken together, the results revealed that whereas the TRX domain interacts constitutively with Php4, the GRX domain-Php4 association is both modulated by iron and required for the inhibition of Php4 activity in response to iron repletion.
Collapse
|
43
|
Philpott CC, Leidgens S, Frey AG. Metabolic remodeling in iron-deficient fungi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1509-20. [PMID: 22306284 DOI: 10.1016/j.bbamcr.2012.01.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells contain dozens, perhaps hundreds, of iron-dependent proteins, which perform critical functions in nearly every major cellular process. Nutritional iron is frequently available to cells in only limited amounts; thus, unicellular and higher eukaryotes have evolved mechanisms to cope with iron scarcity. These mechanisms have been studied at the molecular level in the model eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe, as well as in some pathogenic fungi. Each of these fungal species exhibits metabolic adaptations to iron deficiency that serve to reduce the cell's reliance on iron. However, the regulatory mechanisms that accomplish these adaptations differ greatly between fungal species. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Caroline C Philpott
- Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Rm. 9B-16, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence. EUKARYOTIC CELL 2011; 11:109-18. [PMID: 22140231 DOI: 10.1128/ec.05273-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The basidiomycete fungus Cryptococcus neoformans infects humans via inhalation of desiccated yeast cells or spores from the environment. In the absence of effective immune containment, the initial pulmonary infection often spreads to the central nervous system to result in meningoencephalitis. The fungus must therefore make the transition from the environment to different mammalian niches that include the intracellular locale of phagocytic cells and extracellular sites in the lung, bloodstream, and central nervous system. Recent studies provide insights into mechanisms of adaptation during this transition that include the expression of antiphagocytic functions, the remodeling of central carbon metabolism, the expression of specific nutrient acquisition systems, and the response to hypoxia. Specific transcription factors regulate these functions as well as the expression of one or more of the major known virulence factors of C. neoformans. Therefore, virulence factor expression is to a large extent embedded in the regulation of a variety of functions needed for growth in mammalian hosts. In this regard, the complex integration of these processes is reminiscent of the master regulators of virulence in bacterial pathogens.
Collapse
|
45
|
SRE1 regulates iron-dependent and -independent pathways in the fungal pathogen Histoplasma capsulatum. EUKARYOTIC CELL 2011; 11:16-25. [PMID: 22117028 DOI: 10.1128/ec.05274-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of iron acquisition genes is critical for microbial survival under both iron-limiting conditions (to acquire essential iron) and iron-replete conditions (to limit iron toxicity). In fungi, iron acquisition genes are repressed under iron-replete conditions by a conserved GATA transcriptional regulator. Here we investigate the role of this transcription factor, Sre1, in the cellular responses of the fungal pathogen Histoplasma capsulatum to iron. We showed that cells in which SRE1 levels were diminished by RNA interference were unable to repress siderophore biosynthesis and utilization genes in the presence of abundant iron and thus produced siderophores even under iron-replete conditions. Mutation of a GATA-containing consensus site found in the promoters of these genes also resulted in inappropriate gene expression under iron-replete conditions. Microarray analysis comparing control and SRE1-depleted strains under conditions of iron limitation or abundance revealed both iron-responsive genes and Sre1-dependent genes, which comprised distinct but overlapping sets. Iron-responsive genes included those encoding putative oxidoreductases, metabolic and mitochondrial enzymes, superoxide dismutase, and nitrosative-stress-response genes; Sre1-dependent genes were of diverse functions. Genes regulated by iron levels and Sre1 included all of the siderophore biosynthesis genes, a gene involved in reductive iron acquisition, an iron-responsive transcription factor, and two catalases. Based on transcriptional profiling and phenotypic analyses, we conclude that Sre1 plays a critical role in the regulation of both traditional iron-responsive genes and iron-independent pathways such as regulation of cell morphology. These data highlight the evolving realization that the effect of Sre1 orthologs on fungal biology extends beyond the iron regulon.
Collapse
|
46
|
Iron influences the abundance of the iron regulatory protein Cir1 in the fungal pathogen Cryptococcus neoformans. FEBS Lett 2011; 585:3342-7. [PMID: 21963719 DOI: 10.1016/j.febslet.2011.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 01/05/2023]
Abstract
The GATA-type, zinc-finger protein Cir1 regulates iron uptake, iron homeostasis and virulence factor expression in the fungal pathogen Cryptococcus neoformans. The mechanisms by which Cir1 senses iron availability, although as yet undefined, are important for understanding the proliferation of the fungus in mammalian hosts. We investigated the influence of iron availability on Cir1 and found that the abundance of the protein decreases upon iron deprivation. This destabilization was influenced by reducing conditions and by inhibition of proteasome function. The combined data suggest a post-translational mechanism for the control of Cir1 abundance in response to iron and redox status.
Collapse
|
47
|
Ehrensberger KM, Bird AJ. Hammering out details: regulating metal levels in eukaryotes. Trends Biochem Sci 2011; 36:524-31. [PMID: 21840721 DOI: 10.1016/j.tibs.2011.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 07/15/2011] [Indexed: 12/01/2022]
Abstract
The transition metals zinc, iron and copper are common constituents in a wide range of proteins. Although these metals are all essential for life, when present in excess, they are frequently toxic to cell growth and viability. Therefore, all organisms rely on sophisticated mechanisms to maintain optimal levels of each metal. Genes that encode metal transport or storage proteins are often regulated at the transcriptional level in response to changes in metal status. In this review, we focus on what is known about the transcription factors that mediate these metal-dependent changes. Specifically, we highlight recent advances in our understanding of the mechanisms by which these factors sense metal ions.
Collapse
Affiliation(s)
- Kate M Ehrensberger
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
48
|
Singh RP, Prasad HK, Sinha I, Agarwal N, Natarajan K. Cap2-HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem 2011; 286:25154-70. [PMID: 21592964 DOI: 10.1074/jbc.m111.233569] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron homeostasis is highly regulated in organisms across evolutionary time scale as iron is essential for various cellular processes. In a computational screen, we identified the Yap/bZIP domain family in Candida clade genomes. Cap2/Hap43 is essential for C. albicans growth under iron-deprivation conditions and for virulence in mouse. Cap2 has an amino-terminal bipartite domain comprising a fungal-specific Hap4-like domain and a bZIP domain. Our mutational analyses showed that both the bZIP and Hap4-like domains perform critical and independent functions for growth under iron-deprivation conditions. Transcriptome analysis conducted under iron-deprivation conditions identified about 16% of the C. albicans ORFs that were differentially regulated in a Cap2-dependent manner. Microarray data also suggested that Cap2 is required to mobilize iron through multiple mechanisms; chiefly by activation of genes in three iron uptake pathways and repression of iron utilizing and iron storage genes. The expression of HAP2, HAP32, and HAP5, core components of the HAP regulatory complex was induced in a Cap2-dependent manner indicating a feed-forward loop. In a feed-back loop, Cap2 repressed the expression of Sfu1, a negative regulator of iron uptake genes. Cap2 was coimmunoprecipitated with Hap5 from cell extracts prepared from iron-deprivation conditions indicating an in vivo association. ChIP assays demonstrated Hap32-dependent recruitment of Hap5 to the promoters of FRP1 (Cap2-induced) and ACO1 (Cap2-repressed). Together our data indicates that the Cap2-HAP complex functions both as a positive and a negative regulator to maintain iron homeostasis in C. albicans.
Collapse
Affiliation(s)
- Rana Pratap Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
49
|
Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. EUKARYOTIC CELL 2011; 10:629-45. [PMID: 21421748 DOI: 10.1128/ec.00015-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The expression of iron transport genes in Schizosaccharomyces pombe is controlled by the Fep1 transcription factor. When iron levels exceed those needed by the cells, Fep1 represses iron transport genes. In contrast, Fep1 is unable to bind chromatin under low-iron conditions, and that results in activation of genes involved in iron acquisition. Studies of fungi have revealed that monothiol glutaredoxins are required to inhibit iron-dependent transcription factors in response to high levels of iron. Here, we show that the monothiol glutaredoxin Grx4 plays an important role in the negative regulation of Fep1 activity in response to iron deficiency. Deletion of the grx4(+) gene led to constitutive promoter occupancy by Fep1 and caused an invariable repression of iron transport genes. We found that Grx4 and Fep1 physically interact with each other. Grx4 contains an N-terminal thioredoxin (TRX)-like domain and a C-terminal glutaredoxin (GRX)-like domain. Deletion mapping analysis revealed that the TRX domain interacts strongly and constitutively with the C-terminal region of Fep1. As opposed to the TRX domain, the GRX domain associates weakly and in an iron-dependent manner with the N-terminal region of Fep1. Further analysis showed that Cys35 of Grx4 is required for the interaction between the Fep1 C terminus and the TRX domain, whereas Grx4 Cys172 is necessary for the association between the Fep1 N terminus and the GRX domain. Our results describe the first example of a monothiol glutaredoxin that acts as an inhibitory partner for an iron-regulated transcription factor under conditions of low iron levels.
Collapse
|
50
|
Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence. EUKARYOTIC CELL 2010; 10:207-25. [PMID: 21131439 DOI: 10.1128/ec.00158-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of "natural resistance" that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities.
Collapse
|