1
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
2
|
Samario-Román J, Velasco M, Larqué C, Cárdenas-Vázquez R, Ortiz-Huidobro RI, Hiriart M. NGF effects promote the maturation of rat pancreatic beta cells by regulating GLUT2 levels and distribution, and glucokinase activity. PLoS One 2024; 19:e0303934. [PMID: 38875221 PMCID: PMC11178159 DOI: 10.1371/journal.pone.0303934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.
Collapse
Affiliation(s)
- Jazmín Samario-Román
- Neuroscience Division, Cognitive Neuroscience Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Neuroscience Division, Cognitive Neuroscience Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - René Cárdenas-Vázquez
- Laboratory of Experimental Animal Biology, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Ciudad de México, Mexico
| | - Marcia Hiriart
- Neuroscience Division, Cognitive Neuroscience Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Firdos, Pramanik T, Verma P, Mittal A. (Re-)Viewing Role of Intracellular Glucose Beyond Extracellular Regulation of Glucose-Stimulated Insulin Secretion by Pancreatic Cells. ACS OMEGA 2024; 9:11755-11768. [PMID: 38496986 PMCID: PMC10938456 DOI: 10.1021/acsomega.3c09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
For glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells in animals, it is believed that ATP generated from glucose metabolism is primarily responsible. However, this ignores two well-established aspects in literature: (a) intracellular ATP generation from other sources resulting in an overall pool of ATP, regardless of the original source, and (b) that intracellular glucose transport is 10- to 100-fold higher than intracellular glucose phosphorylation in β-cells. The latter especially provides an earlier unaddressed, but highly appealing, observation pertaining to (at least transient) the presence of intracellular glucose molecules. Could these intracellular glucose molecules be responsible for the specificity of GSIS to glucose (instead of the widely believed ATP production from its metabolism)? In this work, we provide a comprehensive compilation of literature on glucose and GSIS using various cellular systems - all studies focus only on the extracellular role of glucose in GSIS. Further, we carried out a comprehensive analysis of differential gene expression in Mouse Insulinoma 6 (MIN6) cells, exposed to low and high extracellular glucose concentrations (EGC), from the existing whole transcriptome data. The expression of other genes involved in glycolysis, Krebs cycle, and electron transport chain was found to be unaffected by EGC, except Gapdh, Atp6v0a4, and Cox20. Remarkably, 3 upregulated genes (Atp6v0a4, Cacnb4, Kif11) in high EGC were identified to have an association with cellular secretion. Using glucose as a possible ligand for the 3 proteins, computational investigations were carried out (that will require future 'wet validation', both in vitro and in vivo, e.g., using primary islets and animal models). The glucose-affinity/binding scores (in kcal/mol) obtained were also compared with glucose binding scores for positive controls (GCK and GLUT2), along with negative controls (RPA1, KU70-80, POLA1, ACAA1A, POLR1A). The binding affinity scores of glucose molecules for the 3 proteins were found to be closer to positive controls. Therefore, we report the glucose binding ability of 3 secretion-related proteins and a possible direct role of intracellular glucose molecules in GSIS.
Collapse
Affiliation(s)
- Firdos
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Tapabrata Pramanik
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Prachi Verma
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
- Supercomputing
Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
4
|
Ali A. Development of antidiabetic drugs from benzamide derivatives as glucokinase activator: A computational approach. Saudi J Biol Sci 2022; 29:3313-3325. [PMID: 35844378 PMCID: PMC9280248 DOI: 10.1016/j.sjbs.2022.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022] Open
Abstract
Hyperglycemia is a condition known for the impairment of insulin secretion and is responsible for diabetes mellitus. Various small molecule inhibitors have been discovered as glucokinase activators. Recent studies on benzamide derivatives showed their importance in the treatment of diabetes as glucokinase activator. The present manuscript showed a computation study on benzamide derivatives to help in the production of potent glucokinase activators. In the present study, pharmacophore development, 3D-QSAR, and docking studies were performed on benzamide derivatives to find out the important features required for the development of a potential glucokinase activator. The generated pharmacophore hypothesis ADRR_1 consisted of essential features required for the activity. The resultant statistical data showed high significant values with R2 > 0.99; 0.98 for the training set and Q2 > 0.52; 0.71 for test set based on atom-based and field-based models, respectively. The potent compound 15b of the series showed a good docking score via binding with different amino acid residues such as (NH…ARG63), (SO2…ARG250, THR65), and π-π staking with (phenyl……TYR214). The virtual screening study used 3563 compounds from ZINC database and screened hit compound ZINC08974524, binds with similar amino acids as shown by compound 15b and crystal ligand with docking scores SP (-11.17 kcal/mol) and XP (-8.43 kcal/mol). Compounds were further evaluated by ADME and MMGBSA parameters. Ligands and ZINC hits showed no violation of Lipinski rules. All the screened compounds showed good synthetic accessibility. The present study may be used by researchers for the development of novel benzamide derivatives as glucokinase activator.
Collapse
|
5
|
Grewal AS, Lather V, Charaya N, Sharma N, Singh S, Kairys V. Recent Developments in Medicinal Chemistry of Allosteric Activators of Human Glucokinase for Type 2 Diabetes Mellitus Therapeutics. Curr Pharm Des 2020; 26:2510-2552. [PMID: 32286938 DOI: 10.2174/1381612826666200414163148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucokinase (GK), a cytoplasmic enzyme catalyzes the metabolism of glucose to glucose- 6-phosphate with the help of ATP and aids in the controlling of blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a chief role by controlling the glucose-stimulated secretion of insulin and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for the pharmacological treatment of patients with type 2 diabetes mellitus (T2DM) as it plays an important role in the control of carbohydrate metabolism. METHODS Data used for this review was based on the search from several science databases as well as various patent databases. The main data search terms used were allosteric GK activators, diabetes mellitus, type 2 diabetes, glucokinase, glucokinase activators and human glucokinase. RESULTS This article discusses an overview of T2DM, the biology of GK, the role of GK in T2DM, recent updates in the development of small molecule GK activators reported in recent literature, mechanism of action of GK activators and their clinical status. CONCLUSION GK activators are the novel class of pharmacological agents that enhance the catalytic activity of GK enzyme and display their antihyperglycemic effects. Broad diversity of chemical entities including benzamide analogues, carboxamides, acrylamides, benzimidazoles, quinazolines, thiazoles, pyrimidines, pyridines, orotic acid amides, amino acid derivatives, amino phosphates and urea derivatives have been synthesized in past two decades as potent allosteric activators of GK. Presently, the pharmaceutical companies and researchers are focusing on the design and development of liver-selective GK activators for preventing the possible adverse effects associated with GK activators for the long-term treatment of T2DM.
Collapse
Affiliation(s)
- Ajmer S Grewal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Neha Charaya
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Haryana, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
7
|
Liu W, Yao C, Shang Q, Liu Y, Liu C, Meng F. Insights into the binding of dorzagliatin with glucokinase: A molecular dynamics simulation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human glucokinase (GK) is a potentially attractive target for diabetes, playing a prominent role in the control of glucose homeostasis. Dorzagliatin is the first GK activator (GKA) to enter phase III clinical trial. In this study, the possible binding mode of dorzagliatin with GK was investigated via the molecular simulation method. Two other systems in the absence of dorzagliatin and glucose were also studied to disclose the roles of dorzagliatin and glucose. The outcomes revealed that dorzagliatin can create the characteristic hydrogen bonds of GKA with Arg63, and Arg63 can form hydrogen bonds with nearby residues, making a tight binding hydrogen bond network around dorzagliatin. The presence of dorzagliatin can stabilize glucokinase for a period of time, and the binding of glucose may prevent the GK conformational change to a certain extent. Our results may be beneficial to mechanism understanding of GKA, and will be useful in design of novel GKAs for treating metabolic diseases.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Chenhui Yao
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Qian Shang
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Yuqiang Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Changying Liu
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular, Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, P. R. China
| |
Collapse
|
8
|
The index of ideality of correlation: A statistical yardstick for better QSAR modeling of glucokinase activators. Struct Chem 2019. [DOI: 10.1007/s11224-019-01468-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Ermakova E, Kurbanov R. Molecular insight into conformational transformation of human glucokinase: conventional and targeted molecular dynamics. J Biomol Struct Dyn 2019; 38:3035-3045. [PMID: 31379266 DOI: 10.1080/07391102.2019.1652689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glucokinase (GK) plays a key role in the regulation of hepatic glucose metabolism. An unusual mechanism of positive cooperativity of monomeric GK containing only a single binding site for glucose is very interesting and still unclear. The activation process of GK is associated with a large-scale conformational change from the inactive to the active state. Here, conventional and targeted molecular dynamics simulations were used to study the conformational dynamics of GK in the stable configurations and in the transition from active to inactive state. Three phases of the structural reorganization of GK were detected. The first step is a transformation of GK from the active state to the intermediate structure, where the cleft between the domains is open, but alpha helix 13 is still inside the small domain. From this point, there are two alternative paths. One path leads to the inactive state through the release of helix 13 from the inside of small domain to the outside. Other path goes back to the active state. Simulation results reveal the critical role of helix 13 in the transformation of GK from the open state to inactive one and the influence of the loop 2 on the protein transformation between the open and the closed active states. Principal component analysis and covariance matrix analysis were carried out to analyze the dynamics of protein. Importance of hydrogen bonds in the stability of the closed conformation is shown. Overall, our simulations provide new information about the dynamics of GK and its structural transformation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elena Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Rauf Kurbanov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
10
|
Dolgikh VV, Tsarev AA, Timofeev SA, Zhuravlyov VS. Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitol Res 2019; 118:1511-1518. [DOI: 10.1007/s00436-019-06279-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 01/10/2023]
|
11
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
12
|
McCluskey K, Carlos Penedo J. An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters. Phys Chem Chem Phys 2018; 19:6921-6932. [PMID: 28225108 DOI: 10.1039/c6cp08798a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Riboswitches are short RNA motifs that sensitively and selectively bind cognate ligands to modulate gene expression. Like protein receptor-ligand pairs, their binding dynamics are traditionally categorized as following one of two paradigmatic mechanisms: conformational selection and induced fit. In conformational selection, ligand binding stabilizes a particular state already present in the receptor's dynamic ensemble. In induced fit, ligand-receptor interactions enable the system to overcome the energetic barrier into a previously inaccessible state. In this article, we question whether a polarized division of RNA binding mechanisms truly meets the conceptual needs of the field. We will review the history behind this classification of RNA-ligand interactions, and the way induced fit in particular has been rehabilitated by single-molecule studies of RNA aptamers. We will highlight several recent results from single-molecule experimental studies of riboswitches that reveal gaps or even contradictions between common definitions of the two terms, and we will conclude by proposing a more robust framework that considers the range of RNA behaviors unveiled in recent years as a reality to be described, rather than an increasingly unwieldy set of exceptions to the traditional models.
Collapse
Affiliation(s)
- K McCluskey
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| | - J Carlos Penedo
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK. and Biomolecular Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| |
Collapse
|
13
|
Abstract
Conformational selection (CS) and induced fit (IF) are two widely used interpretations of binding of a ligand to biological macromolecules. Both mechanisms envision a two-step reaction in which a conformational transition either precedes (CS) or follows (IF) the binding step. Under pseudo-first-order conditions where the ligand is in excess compared to the macromolecule, both mechanisms produce two relaxations. A fast one eventually increases linearly with ligand concentration and reflects the binding interaction. A slow one saturates to a constant value after decreasing or increasing hyperbolically with ligand concentration. This relaxation is the one most often accessible to experimental measurements and is potentially diagnostic of the mechanism involved. A relaxation that decreases unequivocally identifies CS, but a hyperbolic increase is compatible with both CS and IF. The potential ambiguity between the two mechanisms is more than qualitative. Here we show that the entire kinetic repertoire of IF is nothing but a mathematical special case of CS as revealed by a simple transformation of the rate constants, which emphasizes the need for independent support of either mechanism from additional experimental evidence. We discuss a simple strategy for distinguishing between IF and CS under the most common conditions encountered in practice, i.e., when the ligand is in excess compared to the macromolecule and a single relaxation is accessible to experimental measurements.
Collapse
Affiliation(s)
- Pradipta Chakraborty
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| |
Collapse
|
14
|
Paul F, Weikl TR. How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates. PLoS Comput Biol 2016; 12:e1005067. [PMID: 27636092 PMCID: PMC5026370 DOI: 10.1371/journal.pcbi.1005067] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2016] [Indexed: 12/04/2022] Open
Abstract
Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event (‘conformational selection’) or after a binding event (‘induced fit’), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes—also in cases in which such a distinction is not possible under pseudo-first-order conditions—and to extract conformational transition rates of proteins from chemical relaxation data. The function of proteins is affected by their conformational dynamics, i.e. by transitions between lower-energy ground-state conformations and higher-energy excited-state conformations of the proteins. Advanced NMR and single-molecule experiments indicate that higher-energy conformations in the unbound state of proteins can be similar to ground-state conformations in the bound state, and vice versa. These experiments illustrate that the conformational change of a protein during binding may occur before a binding event, rather than being induced by this binding event. However, determining the temporal order of conformational transitions and binding events typically requires additional information from chemical relaxation experiments that probe the relaxation kinetics of a mixture of proteins and ligands into binding equilibrium. These chemical relaxation experiments are usually performed and analysed at ligand concentrations that are much larger than the protein concentrations. At such high ligand concentrations, the temporal order of conformational transitions and binding events can only be inferred in special cases. In this article, we present general equations that describe the dominant chemical relaxation kinetics for all protein and ligand concentrations. Our general equations allow to clearly infer from relaxation data whether a conformational transition occurs prior to a binding event, or after the binding event.
Collapse
Affiliation(s)
- Fabian Paul
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- Free University Berlin, Department of Mathematics and Computer Science, Berlin, Germany
- * E-mail: (FP); (TRW)
| | - Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- * E-mail: (FP); (TRW)
| |
Collapse
|
15
|
Structural insight into the glucokinase-ligands interactions. Molecular docking study. Comput Biol Chem 2016; 64:281-296. [PMID: 27522106 DOI: 10.1016/j.compbiolchem.2016.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 11/22/2022]
Abstract
Glucokinase (GK) plays a key role in the regulation of hepatic glucose metabolism. Inactivation of GK is associated with diabetes, and an increase of its activity is linked to hypoglycemia. Possibility to regulate the GK activity using small chemical compounds as allosteric activators induces the scientific interest to the study of the activation mechanism and to the development of new allosteric glucokinase activators. Interaction of glucokinase with ligands is the first step of the complicated mechanism of regulation of the GK functioning. In this paper, we study the interaction of GK with native (glucose) and synthetic (allosteric activators) ligands using molecular docking method. Calculations demonstrate the ability of molecular docking programs to accurately reproduce crystallized ligand poses and conformations and to calculate a free energy of binding with satisfactory accuracy. Correlation between the free energy of binding and the bioactivity of activators is discussed. These results provide a new insight into protein-ligand interactions and can be used for the engineering of new activators.
Collapse
|
16
|
Mollica L, Theret I, Antoine M, Perron-Sierra F, Charton Y, Fourquez JM, Wierzbicki M, Boutin JA, Ferry G, Decherchi S, Bottegoni G, Ducrot P, Cavalli A. Molecular Dynamics Simulations and Kinetic Measurements to Estimate and Predict Protein-Ligand Residence Times. J Med Chem 2016; 59:7167-76. [PMID: 27391254 DOI: 10.1021/acs.jmedchem.6b00632] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.
Collapse
Affiliation(s)
- Luca Mollica
- CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy
| | - Isabelle Theret
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Mathias Antoine
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | | | - Yves Charton
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean-Marie Fourquez
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Michel Wierzbicki
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Gilles Ferry
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Sergio Decherchi
- CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy.,BiKi Technologies S.r.l. via XX Settembre 33/10 16121 Genova, Italy
| | - Giovanni Bottegoni
- CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy.,BiKi Technologies S.r.l. via XX Settembre 33/10 16121 Genova, Italy
| | - Pierre Ducrot
- Institut de Recherches Servier , 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Andrea Cavalli
- CompuNet, Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy.,Department of Pharmacy and Biotechnology, University of Bologna , via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
17
|
Abstract
Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following Review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery.
Collapse
Affiliation(s)
- George P. Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
18
|
Closa F, Gosse C, Jullien L, Lemarchand A. Identification of two-step chemical mechanisms using small temperature oscillations and a single tagged species. J Chem Phys 2015; 142:174108. [PMID: 25956091 DOI: 10.1063/1.4919632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to identify two-step chemical mechanisms, we propose a method based on a small temperature modulation and on the analysis of the concentration oscillations of a single tagged species involved in the first step. The thermokinetic parameters of the first reaction step are first determined. Then, we build test functions that are constant only if the chemical system actually possesses some assumed two-step mechanism. Next, if the test functions plotted using experimental data are actually even, the mechanism is attributed and the obtained constant values provide the rate constants and enthalpy of reaction of the second step. The advantage of the protocol is to use the first step as a probe reaction to reveal the dynamics of the second step, which can hence be relieved of any tagging. The protocol is anticipated to apply to many mechanisms of biological relevance. As far as ligand binding is considered, our approach can address receptor conformational changes or dimerization as well as competition with or modulation by a second partner. The method can also be used to screen libraries of untagged compounds, relying on a tracer whose concentration can be spectroscopically monitored.
Collapse
Affiliation(s)
- F Closa
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Physique Théorique de la Matière Condensée, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| | - C Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, route de Nozay, 91460 Marcoussis, France
| | - L Jullien
- Department of Chemistry, Ecole Normale Supérieure - PSL Research University, 24 rue Lhomond, 75005 Paris, France
| | - A Lemarchand
- Sorbonne Universités, UPMC Univ. Paris 06, Laboratoire de Physique Théorique de la Matière Condensée, 4 place Jussieu, case courrier 121, 75252 Paris Cedex 05, France
| |
Collapse
|
19
|
19F nuclear magnetic resonance screening of glucokinase activators. Anal Biochem 2015; 477:62-8. [DOI: 10.1016/j.ab.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
|
20
|
Park K, Lee BM, Hyun KH, Han T, Lee DH, Choi HH. Design and Synthesis of Acetylenyl Benzamide Derivatives as Novel Glucokinase Activators for the Treatment of T2DM. ACS Med Chem Lett 2015; 6:296-301. [PMID: 25815149 DOI: 10.1021/ml5004712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023] Open
Abstract
Novel acetylenyl-containing benzamide derivatives were synthesized and screened using an in vitro assay measuring increases in glucokinase activity stimulated by 10 mM glucose concentration and glucose uptake in rat hepatocytes. Lead optimization of an acetylenyl benzamide series led to the discovery of several active compounds via in vitro enzyme assays (EC50 < 40 nM) and in vivo OGTT assays (AUC reduction > 40% at 50 mg/kg). Of the active compounds tested, 3-(3-amino-phenylethynyl)-5-(2-methoxy-1-methyl-ethoxy)-N-(1-methyl-1H-pyrazol-3-yl)-benzamide (19) was identified as a potent glucokinase activator exhibiting an EC50 of 27 nM and eliciting a 2.16-fold increase in glucose uptake. Compound 19 caused a glucose AUC reduction of 47.4% (30 mg/kg) in an OGTT study in C57BL/6J mice compared to 22.6% for sitagliptin (30 mg/kg). Single treatment of the compound 19 in C57BL/6J mice elicited basal glucose lowering activity without any significant evidence for hypoglycemia risk. Compound 19 was therefore selected as a candidate for further preclinical development for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kaapjoo Park
- Yuhan Research Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Byoung Moon Lee
- Yuhan Research Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kwan Hoon Hyun
- Yuhan Research Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Taedong Han
- Yuhan Research Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Hoon Lee
- Yuhan Research Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyun Ho Choi
- Yuhan Research Institute, 25, Tapsil-ro 35beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
A unique hexokinase in Cryptosporidium parvum, an apicomplexan pathogen lacking the Krebs cycle and oxidative phosphorylation. Protist 2014; 165:701-14. [PMID: 25216472 DOI: 10.1016/j.protis.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023]
Abstract
Cryptosporidium parvum may cause virtually untreatable infections in AIDS patients, and is recently identified as one of the top four diarrheal pathogens in children in developing countries. Cryptosporidium differs from other apicomplexans (e.g., Plasmodium and Toxoplasma) by lacking many metabolic pathways including the Krebs cycle and cytochrome-based respiratory chain, thus relying mainly on glycolysis for ATP production. Here we report the molecular and biochemical characterizations of a hexokinase in C. parvum (CpHK). Our phylogenetic reconstructions indicated that apicomplexan hexokinases including CpHK were highly divergent from those of humans and animals (i.e., at the base of the eukaryotic clade). CpHK displays unique kinetic features that differ from those in mammals and Toxoplasma gondii (TgHK) in the preference towards various hexoses and its capacity to use ATP and other NTPs. CpHK also displays substrate inhibition by ATP. Moreover, 2-deoxy-D-glucose (2DG) could not only inhibit the CpHK activity, but also the parasite growth in vitro at concentrations nontoxic to host cells (IC(50) = 0.54 mM). While the exact action of 2-deoxy-D-glucose on the parasite is subject to further verification, our data suggest that CpHK and the glycolytic pathway may be explored for developing anti-cryptosporidial therapeutics.
Collapse
|
22
|
Analysis of the co-operative interaction between the allosterically regulated proteins GK and GKRP using tryptophan fluorescence. Biochem J 2014; 459:551-64. [PMID: 24568320 PMCID: PMC4109836 DOI: 10.1042/bj20131363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatic glucose phosphorylation by GK (glucokinase) is regulated by GKRP (GK regulatory protein). GKRP forms a cytosolic complex with GK followed by nuclear import and storage, leading to inhibition of GK activity. This process is initiated by low glucose, but reversed nutritionally by high glucose and fructose or pharmacologically by GKAs (GK activators) and GKRPIs (GKRP inhibitors). To study the regulation of this process by glucose, fructose-phosphate esters and a GKA, we measured the TF (tryptophan fluorescence) of human WT (wild-type) and GKRP-P446L (a mutation associated with high serum triacylglycerol) in the presence of non-fluorescent GK with its tryptophan residues mutated. Titration of GKRP-WT by GK resulted in a sigmoidal increase in TF, suggesting co-operative PPIs (protein-protein interactions) perhaps due to the hysteretic nature of GK. The affinity of GK for GKRP was decreased and binding co-operativity increased by glucose, fructose 1-phosphate and GKA, reflecting disruption of the GK-GKRP complex. Similar studies with GKRP-P446L showed significantly different results compared with GKRP-WT, suggesting impairment of complex formation and nuclear storage. The results of the present TF-based biophysical analysis of PPIs between GK and GKRP suggest that hepatic glucose metabolism is regulated by a metabolite-sensitive drug-responsive co-operative molecular switch, involving complex formation between these two allosterically regulated proteins.
Collapse
|
23
|
Sun Y, Yin S, Feng Y, Li J, Zhou J, Liu C, Zhu G, Guo Z. Molecular basis of the general base catalysis of an α/β-hydrolase catalytic triad. J Biol Chem 2014; 289:15867-79. [PMID: 24737327 DOI: 10.1074/jbc.m113.535641] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-histidine-aspartate triad is well known for its covalent, nucleophilic catalysis in a diverse array of enzymatic transformations. Here we show that its nucleophilicity is shielded and its catalytic role is limited to being a specific general base by an open-closed conformational change in the catalysis of (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (or MenH), a typical α/β-hydrolase fold enzyme in the vitamin K biosynthetic pathway. This enzyme is found to adopt an open conformation without a functional triad in its ligand-free form and a closed conformation with a fully functional catalytic triad in the presence of its reaction product. The open-to-closed conformational transition involves movement of half of the α-helical cap domain, which causes extensive structural changes in the α/β-domain and forces the side chain of the triad histidine to adopt an energetically disfavored gauche conformation to form the functional triad. NMR analysis shows that the inactive open conformation without a triad prevails in ligand-free solution and is converted to the closed conformation with a properly formed triad by the reaction product. Mutation of the residues crucial to this open-closed transition either greatly decreases or completely eliminates the enzyme activity, supporting an important catalytic role for the structural change. These findings suggest that the open-closed conformational change tightly couples formation of the catalytic triad to substrate binding to enhance the substrate specificities and simultaneously shield the nucleophilicity of the triad, thus allowing it to expand its catalytic power beyond the nucleophilic catalysis.
Collapse
Affiliation(s)
- Yueru Sun
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| | - Shuhui Yin
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| | - Yitao Feng
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| | - Jie Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Changdong Liu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and Division of Life Sciences, and
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and Division of Life Sciences, and
| | - Zhihong Guo
- From the Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (SAR), China and
| |
Collapse
|
24
|
Park K, Lee BM, Hyun KH, Lee DH, Choi HH, Kim H, Chong W, Kim KB, Nam SY. Discovery of 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methylpyridin-2-yl)-benzamide as a novel glucokinase activator (GKA) for the treatment of type 2 diabetes mellitus. Bioorg Med Chem 2014; 22:2280-93. [DOI: 10.1016/j.bmc.2014.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 02/05/2023]
|
25
|
Kaminski MT, Schultz J, Waterstradt R, Tiedge M, Lenzen S, Baltrusch S. Glucose-induced dissociation of glucokinase from its regulatory protein in the nucleus of hepatocytes prior to nuclear export. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:554-64. [DOI: 10.1016/j.bbamcr.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/18/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
|
26
|
The ubiquitin-proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic β-cells. Biochem J 2014; 456:173-84. [PMID: 24028089 DOI: 10.1042/bj20130262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system is important to maintain pancreatic β-cell function. Inhibition of the proteasome significantly reduced glucose-induced insulin secretion. Key regulators of the stimulus/secretion cascade seem to be affected by protein misfolding if the proteasome is down-regulated as recently reported in humans with Type 2 diabetes. It remains unknown, however, whether the glucose sensor enzyme glucokinase is involved in this process. A direct interaction between glucokinase and ubiquitin could be shown in vivo by FRET, suggesting regulation of glucokinase by the proteasome. After proteasome inhibition glucokinase activity was significantly reduced in MIN6 cells, whereas the protein content was increased, indicating protein misfolding. Enhancing the availability of chaperones by cyclohexamide could induce refolding and restored glucokinase activity. Glucokinase aggregation due to proteasome blocking with MG132, bortezomib, epoxomicin or lactacystin could be detected in MIN6 cells, primary β-cells and hepatocytes using fluorescence-based assays. Glucokinase aggresome formation proceeded microtubule-assisted and was avoided by cyclohexamide. Thus the results of the present study provide support for glucokinase misfolding and aggregation in case of a diminished capacity of the ubiquitin-proteasome system in pancreatic β-cells. In the Type 2 diabetic situation this could contribute to reduced glucose-induced insulin secretion.
Collapse
|
27
|
Szlyk B, Braun CR, Ljubicic S, Patton E, Bird GH, Osundiji MA, Matschinsky FM, Walensky LD, Danial NN. A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Nat Struct Mol Biol 2013; 21:36-42. [PMID: 24317490 DOI: 10.1038/nsmb.2717] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/15/2013] [Indexed: 01/10/2023]
Abstract
Glucokinase (GK) is a glucose-phosphorylating enzyme that regulates insulin release and hepatic metabolism, and its loss of function is implicated in diabetes pathogenesis. GK activators (GKAs) are attractive therapeutics in diabetes; however, clinical data indicate that their benefits can be offset by hypoglycemia, owing to marked allosteric enhancement of the enzyme's glucose affinity. We show that a phosphomimetic of the BCL-2 homology 3 (BH3) α-helix derived from human BAD, a GK-binding partner, increases the enzyme catalytic rate without dramatically changing glucose affinity, thus providing a new mechanism for pharmacologic activation of GK. Remarkably, BAD BH3 phosphomimetic mediates these effects by engaging a new region near the enzyme's active site. This interaction increases insulin secretion in human islets and restores the function of naturally occurring human GK mutants at the active site. Thus, BAD phosphomimetics may serve as a new class of GKAs.
Collapse
Affiliation(s)
- Benjamin Szlyk
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Craig R Braun
- 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2]
| | - Sanda Ljubicic
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elaura Patton
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory H Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mayowa A Osundiji
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Loren D Walensky
- 1] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Pediatric Oncology, Children's Hospital, Boston, Massachusetts, USA
| | - Nika N Danial
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Hofmeister-Brix A, Kollmann K, Langer S, Schultz J, Lenzen S, Baltrusch S. Identification of the ubiquitin-like domain of midnolin as a new glucokinase interaction partner. J Biol Chem 2013; 288:35824-39. [PMID: 24187134 DOI: 10.1074/jbc.m113.526632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase acts as a glucose sensor in pancreatic beta cells. Its posttranslational regulation is important but not yet fully understood. Therefore, a pancreatic islet yeast two-hybrid library was produced and searched for glucokinase-binding proteins. A protein sequence containing a full-length ubiquitin-like domain was identified to interact with glucokinase. Mammalian two-hybrid and fluorescence resonance energy transfer analyses confirmed the interaction between glucokinase and the ubiquitin-like domain in insulin-secreting MIN6 cells and revealed the highest binding affinity at low glucose. Overexpression of parkin, an ubiquitin E3 ligase exhibiting an ubiquitin-like domain with high homology to the identified, diminished insulin secretion in MIN6 cells but had only some effect on glucokinase activity. Overexpression of the elucidated ubiquitin-like domain or midnolin, containing exactly this ubiquitin-like domain, significantly reduced both intrinsic glucokinase activity and glucose-induced insulin secretion. Midnolin has been to date classified as a nucleolar protein regulating mouse development. However, we could not confirm localization of midnolin in nucleoli. Fluorescence microscopy analyses revealed localization of midnolin in nucleus and cytoplasm and co-localization with glucokinase in pancreatic beta cells. In addition we could show that midnolin gene expression in pancreatic islets is up-regulated at low glucose and that the midnolin protein is highly expressed in pancreatic beta cells and also in liver, muscle, and brain of the adult mouse and cell lines of human and rat origin. Thus, the results of our study suggest that midnolin plays a role in cellular signaling of adult tissues and regulates glucokinase enzyme activity in pancreatic beta cells.
Collapse
Affiliation(s)
- Anke Hofmeister-Brix
- From the Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany and
| | | | | | | | | | | |
Collapse
|
29
|
Vogt AD, Pozzi N, Chen Z, Di Cera E. Essential role of conformational selection in ligand binding. Biophys Chem 2013; 186:13-21. [PMID: 24113284 DOI: 10.1016/j.bpc.2013.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022]
Abstract
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States.
| |
Collapse
|
30
|
Bowler JM, Hervert KL, Kearley ML, Miller BG. Small-Molecule Allosteric Activation of Human Glucokinase in the Absence of Glucose. ACS Med Chem Lett 2013; 4. [PMID: 24294411 DOI: 10.1021/ml400061x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Synthetic allosteric activators of human glucokinase are receiving considerable attention as potential diabetes therapeutic agents. Although their mechanism of action is not fully understood, structural studies suggest that activator association requires prior formation of a binary enzyme-glucose complex. Here, we demonstrate that three previously described activators associate with glucokinase in a glucose-independent fashion. Transient-state kinetic assays reveal a lag in enzyme progress curves that is systematically reduced when the enzyme is preincubated with activators. Isothermal titration calorimetry demonstrates that activator binding is enthalpically driven for all three compounds, whereas the entropic changes accompanying activator binding can be favorable or unfavorable. Viscosity variation experiments indicate that the kcat value of glucokinase is almost fully limited by product release, both in the presence and absence of activators, suggesting that activators impact a step preceding product release. The observation of glucose-independent allosteric activation of glucokinase has important implications for the refinement of future diabetes therapeutics and for the mechanism of kinetic cooperativity of mammalian glucokinase.
Collapse
Affiliation(s)
- Joseph M. Bowler
- Department of Chemistry and
Biochemistry, Florida State University,
Tallahassee, Florida 32306, United States
| | - Katherine L. Hervert
- Department of Chemistry, Ohio Wesleyan University, Delaware, Ohio 43015, United
States
| | - Mark L. Kearley
- Department of Chemistry and
Biochemistry, Florida State University,
Tallahassee, Florida 32306, United States
| | - Brian G. Miller
- Department of Chemistry and
Biochemistry, Florida State University,
Tallahassee, Florida 32306, United States
| |
Collapse
|
31
|
Conformational transition pathway in the activation process of allosteric glucokinase. PLoS One 2013; 8:e55857. [PMID: 23409066 PMCID: PMC3567010 DOI: 10.1371/journal.pone.0055857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/03/2013] [Indexed: 12/11/2022] Open
Abstract
Glucokinase (GK) is a glycolytic enzyme that plays an important role in regulating blood glucose level, thus acting as a potentially attractive target for drug discovery in the treatment of diabetes of the young type 2 and persistent hyperinsulinemic hypoglycemia of infancy. To characterize the activation mechanism of GK from the super-open state (inactive state) to the closed state (active state), a series of conventional molecular dynamics (MD) and targeted MD (TMD) simulations were performed on this enzyme. Conventional MD simulation showed a specific conformational ensemble of GK when the enzyme is inactive. Seven TMD simulations depicted a reliably conformational transition pathway of GK from the inactive state to the active state, and the components important to the conformational change of GK were identified by analyzing the detailed structures of the TMD trajectories. In combination with the inactivation process, our findings showed that the whole conformational pathway for the activation-inactivation-activation of GK is a one-direction circulation, and the active state is less stable than the inactive state in the circulation. Additionally, glucose was demonstrated to gradually modulate its binding pose with the help of residues in the large domain and connecting region of GK during the activation process. Furthermore, the obtained energy barriers were used to explain the preexisting equilibrium and the slow binding kinetic process of the substrate by GK. The simulated results are in accordance with the recent findings from the mutagenesis experiments and kinetic analyses. Our observations reveal a complicated conformational process in the allosteric protein, resulting in new knowledge about the delicate mechanisms for allosteric biological macromolecules that will be useful in drug design for targeting allosteric proteins.
Collapse
|
32
|
Larion M, Salinas RK, Bruschweiler-Li L, Miller BG, Brüschweiler R. Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol 2012; 10:e1001452. [PMID: 23271955 PMCID: PMC3525530 DOI: 10.1371/journal.pbio.1001452] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Analysis of the functional dynamics of human glucokinase reveals that a slow order-disorder transition governs monomeric kinetic cooperativity in response to glucose concentrations. Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity–onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder–order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder–order cycle of the small domain as a “time-delay loop,” which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions. Glucokinase is a key metabolic enzyme that functions as the body's principal glucose sensor. Glucokinase regulates the rate at which insulin is secreted by the pancreas by using a unique but poorly understood cooperative kinetic response to increasing glucose concentrations. The physiological importance of this enzyme is underlined by the fact that mutations in the glucokinase gene lead to maturity-onset diabetes of the young type II (MODY II), permanent neonatal diabetes mellitus (PNDM), and hypoglycemic hyperinsulinemia of infancy (HI). In this study, we use cutting-edge high-resolution nuclear magnetic resonance methods to understand how the kinetic properties of glucokinase contribute to glucose homeostasis. We also seek to understand how a class of recently discovered small-molecule drugs, which hold promise as therapeutics for type 2 diabetes, function to enhance glucokinase activity. Our results suggest that glucokinase samples a range of conformational states in the absence of glucose. However, in the presence of glucose or a small-molecule activator, the enzyme population shifts towards a more narrow, well-structured ensemble of states. Our findings provide a new model for glucokinase cooperative kinetics, which relies on a slow order–disorder transition in response to glucose concentrations. These results also reveal a universal mechanism of glucokinase activation, which may inform the development of new antidiabetic agents.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Roberto Kopke Salinas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Lei Bruschweiler-Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - Brian G. Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (BGM); (RB)
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (BGM); (RB)
| |
Collapse
|
33
|
Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 2012; 51:5894-902. [PMID: 22775458 DOI: 10.1021/bi3006913] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on whether it decreases or increases, respectively, with the ligand concentration, [L]. However, this simple conclusion based on the rapid equilibrium approximation is not valid in general. Here we show that conformational selection is associated with a rich repertoire of kinetic properties, with k(obs) decreasing or increasing with [L] depending on the relative magnitude of the rate of ligand dissociation, k(off), and the rate of conformational isomerization, k(r). We prove that, even for the simplest two-step mechanism of ligand binding, a decrease in k(obs) with [L] is unequivocal evidence of conformational selection, but an increase in k(obs) with [L] is not unequivocal evidence of induced fit. Ligand binding to glucokinase, thrombin, and its precursor prethrombin-2 are used as relevant examples. We conclude that conformational selection as a mechanism for a ligand binding to its target may be far more common than currently believed.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | |
Collapse
|
34
|
Baltrusch S, Schmitt H, Brix A, Langer S, Lenzen S. Additive activation of glucokinase by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and the chemical activator LY2121260. Biochem Pharmacol 2012; 83:1300-6. [DOI: 10.1016/j.bcp.2012.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
|
35
|
Zelent B, Buettger C, Grimsby J, Sarabu R, Vanderkooi JM, Wand AJ, Matschinsky FM. Thermal stability of glucokinase (GK) as influenced by the substrate glucose, an allosteric glucokinase activator drug (GKA) and the osmolytes glycerol and urea. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:769-84. [PMID: 22446163 DOI: 10.1016/j.bbapap.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/15/2012] [Accepted: 03/05/2012] [Indexed: 11/27/2022]
Abstract
We investigated how glycerol, urea, glucose and a GKA influence kinetics and stability of wild-type and mutant GK. Glycerol and glucose stabilized GK additively. Glycerol barely affected the TF spectra of all GKs but decreased k(cat), glucose S(0.5) and K(D) values and ATP K(M) while leaving cooperativity unchanged. Glycerol sensitized all GKs to GKA as shown by TF. Glucose increased TF of GKs without influence of glycerol on the effect. Glycerol and GKA affected kinetics and binding additively. The activation energies for thermal denaturation of GK were a function of glucose with K(D)s of 3 and 1mM without and with glycerol, respectively. High urea denatured wild type GK reversibly at 20 and 60°C and urea treatment of irreversibly heat denatured GK allowed refolding as demonstrated by TF including glucose response. We concluded: Glycerol stabilizes GK indirectly without changing the folding structure of the apoenzyme, by restructuring the surface water of the protein, whereas glucose stabilizes GK directly by binding to its substrate site and inducing a compact conformation. Glucose or glycerol (alone or combined) is unable to prevent irreversible heat denaturation above 40°C. However, urea denatures GK reversibly even at 60°C by binding to the protein backbone and directly interacting with hydrophobic side chains. It prevents irreversible aggregation allowing complete refolding when urea is removed. This study establishes the foundation for exploring numerous instability mutants among the more than 600 variant GKs causing diabetes in animals and humans.
Collapse
Affiliation(s)
- B Zelent
- Department of Biochemistry and Biophysics and Diabetes Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Modulation of glucokinase by glucose, small-molecule activator and glucokinase regulatory protein: steady-state kinetic and cell-based analysis. Biochem J 2012; 441:881-7. [PMID: 22044397 DOI: 10.1042/bj20110721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GK (glucokinase) is an enzyme central to glucose metabolism that displays positive co-operativity to substrate glucose. Small-molecule GKAs (GK activators) modulate GK catalytic activity and glucose affinity and are currently being pursued as a treatment for Type 2 diabetes. GK progress curves monitoring product formation are linear up to 1 mM glucose, but biphasic at 5 mM, with the transition from the lower initial velocity to the higher steady-state velocity being described by the rate constant kact. In the presence of a liver-specific GKA (compound A), progress curves at 1 mM glucose are similar to those at 5 mM, reflecting activation of GK by compound A. We show that GKRP (GK regulatory protein) is a slow tight-binding inhibitor of GK. Analysis of progress curves indicate that this inhibition is time dependent, with apparent initial and final Ki values being 113 and 12.8 nM respectively. When GK is pre-incubated with glucose and compound A, the inhibition observed by GKRP is time dependent, but independent of GKRP concentration, reflecting the GKA-controlled transition between closed and open GK conformations. These data are supported by cell-based imaging data from primary rat hepatocytes. This work characterizes the modulation of GK by a novel GKA that may enable the design of new and improved GKAs.
Collapse
|
37
|
Larion M, Miller BG. Homotropic allosteric regulation in monomeric mammalian glucokinase. Arch Biochem Biophys 2012; 519:103-11. [PMID: 22107947 PMCID: PMC3294010 DOI: 10.1016/j.abb.2011.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
Glucokinase catalyzes the ATP-dependent phosphorylation of glucose, a chemical transformation that represents the rate-limiting step of glycolytic metabolism in the liver and pancreas. Glucokinase is a central regulator of glucose homeostasis as evidenced by its association with two disease states, maturity onset diabetes of the young (MODY) and persistent hyperinsulinemia of infancy (PHHI). Mammalian glucokinase is subject to homotropic allosteric regulation by glucose-the steady-state velocity of glucose-6-phosphate production is not hyperbolic, but instead displays a sigmoidal response to increasing glucose concentrations. The positive cooperativity displayed by glucokinase is intriguing since the enzyme functions as a monomer under physiological conditions and contains only a single binding site for glucose. Despite the existence of several models of kinetic cooperativity in monomeric enzymes, a consensus has yet to be reached regarding the mechanism of allosteric regulation in glucokinase. Experimental evidence collected over the last 45 years by a number of investigators supports a link between cooperativity and slow conformational reorganizations of the glucokinase scaffold. In this review, we summarize advances in our understanding of glucokinase allosteric regulation resulting from recent X-ray crystallographic, pre-equilibrium kinetic and high-resolution nuclear magnetic resonance investigations. We conclude with a brief discussion of unanswered questions regarding the mechanistic basis of kinetic cooperativity in mammalian glucokinase.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
38
|
Liu S, Ammirati MJ, Song X, Knafels JD, Zhang J, Greasley SE, Pfefferkorn JA, Qiu X. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations. J Biol Chem 2012; 287:13598-610. [PMID: 22298776 DOI: 10.1074/jbc.m111.274126] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human glucokinase (GK) is a principal regulating sensor of plasma glucose levels. Mutations that inactivate GK are linked to diabetes, and mutations that activate it are associated with hypoglycemia. Unique kinetic properties equip GK for its regulatory role: although it has weak basal affinity for glucose, positive cooperativity in its binding of glucose causes a rapid increase in catalytic activity when plasma glucose concentrations rise above euglycemic levels. In clinical trials, small molecule GK activators (GKAs) have been efficacious in lowering plasma glucose and enhancing glucose-stimulated insulin secretion, but they carry a risk of overly activating GK and causing hypoglycemia. The theoretical models proposed to date attribute the positive cooperativity of GK to the existence of distinct protein conformations that interconvert slowly and exhibit different affinities for glucose. Here we report the respective crystal structures of the catalytic complex of GK and of a GK-glucose complex in a wide open conformation. To assess conformations of GK in solution, we also carried out small angle x-ray scattering experiments. The results showed that glucose dose-dependently converts GK from an apo conformation to an active open conformation. Compared with wild type GK, activating mutants required notably lower concentrations of glucose to be converted to the active open conformation. GKAs decreased the level of glucose required for GK activation, and different compounds demonstrated distinct activation profiles. These results lead us to propose a modified mnemonic model to explain cooperativity in GK. Our findings may offer new approaches for designing GKAs with reduced hypoglycemic risk.
Collapse
Affiliation(s)
- Shenping Liu
- Structural Biology and Biophysics, Pfizer Groton Laboratories, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
GK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex. GKAs did activate and GKRP did inhibit normal GK, whereas its TF was doubled by glucose saturation. However, the enzyme kinetics, GKRP inhibition, TF enhancement by glucose and responsiveness to GKA of the selected mutants varied greatly. Two predominant response patterns were identified accounting for nearly all mutants: (i) GK mutants with a normal or close to normal response to GKA, normally low basal TF (indicating an open conformation), some variability of kinetic parameters (k(cat), glucose S(0.5), h and ATP K(m)), but usually strong GKRP inhibition (13/31); and (ii) GK mutants that are refractory to GKAs, exhibit relatively high basal TF (indicating structural compaction and partial closure), usually show strongly enhanced catalytic activity primarily due to lowering of the glucose S(0.5), but with reduced or no GKRP inhibition in most cases (14/31). These results and those of previous studies are best explained by envisioning a common allosteric regulator region with spatially non-overlapping GKRP- and GKA-binding sites.
Collapse
|
40
|
Petit P, Antoine M, Ferry G, Boutin JA, Lagarde A, Gluais L, Vincentelli R, Vuillard L. The active conformation of human glucokinase is not altered by allosteric activators. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:929-35. [PMID: 22101819 DOI: 10.1107/s0907444911036729] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/09/2011] [Indexed: 11/10/2022]
Abstract
Glucokinase (GK) catalyses the formation of glucose 6-phosphate from glucose and ATP. A specific feature of GK amongst hexokinases is that it can cycle between active and inactive conformations as a function of glucose concentration, resulting in a unique positive kinetic cooperativity with glucose, which turns GK into a unique key sensor of glucose metabolism, notably in the pancreas. GK is a target of antidiabetic drugs aimed at the activation of GK activity, leading to insulin secretion. Here, the first structures of a GK-glucose complex without activator, of GK-glucose-AMP-PNP and of GK-glucose-AMP-PNP with a bound activator are reported. All these structures are extremely similar, thus demonstrating that binding of GK activators does not result in conformational changes of the active protein but in stabilization of the active form of GK.
Collapse
Affiliation(s)
- Pierre Petit
- BioXtal, PX Unit, c/o AFMB, UMR 6098, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schmitt H, Lenzen S, Baltrusch S. Glucokinase mediates coupling of glycolysis to mitochondrial metabolism but not to beta cell damage at high glucose exposure levels. Diabetologia 2011; 54:1744-55. [PMID: 21484215 DOI: 10.1007/s00125-011-2133-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/02/2011] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Glucose is the main stimulus of insulin secretion in pancreatic beta cells. However, high glucose has also been considered to damage beta cells. In this study we examined, with special emphasis on the role of the glucose sensor enzyme glucokinase, whether elevated glucose metabolism evokes toxicity to beta cells. METHODS RINm5F-R-EYFP-GK cells, producing glucokinase in response to a synthetic inducer, and rat beta cells were incubated at different glucose concentrations. Glucokinase enzyme activity, insulin secretion, cell viability and mitochondrial metabolism were analysed. RESULTS Glucokinase production evoked a concentration-dependent increase in glucose-induced insulin secretion from RINm5F-R-EYFP-GK cells without reducing cell viability. Pre-culture at high glucose (30 mmol/l) in the absence of high concentrations of NEFA neither reduced viability nor significantly increased apoptosis in RINm5F-R-EYFP-GK cells and rat beta cells. The integrity of the mitochondrial respiratory chain and mitochondrial dynamics, namely fusion and fission, were not impaired by high glucose pre-culture. As previously demonstrated in mouse beta cells, pre-culture at high glucose significantly decreased the mitochondrial membrane potential heterogeneity in RINm5F-R-EYFP-GK cells. Indeed, after starvation, in response to glucose, rat beta cells and RINm5F-R-EYFP-GK cells with glucokinase production pre-cultured for 48 h at high glucose showed the fastest increase in the mitochondrial membrane potential. CONCLUSIONS/INTERPRETATION Our experiments do not support the hypothesis that glucokinase and the glucose metabolism on its own act as a mediator of beta cell toxicity. By contrast, rather a beneficial effect on glucose-induced insulin secretion after glucokinase production was observed, based on an improved coupling of the glucose stimulus to the mitochondrial metabolism.
Collapse
Affiliation(s)
- H Schmitt
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | | | | |
Collapse
|
42
|
Molnes J, Teigen K, Aukrust I, Bjørkhaug L, Søvik O, Flatmark T, Njølstad PR. Binding of ATP at the active site of human pancreatic glucokinase--nucleotide-induced conformational changes with possible implications for its kinetic cooperativity. FEBS J 2011; 278:2372-86. [PMID: 21569204 PMCID: PMC3531626 DOI: 10.1111/j.1742-4658.2011.08160.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucokinase (GK) is the central player in glucose-stimulated insulin release from pancreatic β-cells, and catalytic activation by α-d-glucose binding has a key regulatory function. Whereas the mechanism of this activation is well understood, on the basis of crystal structures of human GK, there are no similar structural data on ATP binding to the ligand-free enzyme and how it affects its conformation. Here, we report on a conformational change induced by the binding of adenine nucleotides to human pancreatic GK, as determined by intrinsic tryptophan fluorescence, using the catalytically inactive mutant form T228M to correct for the inner filter effect. Adenosine-5′-(β,γ-imido)triphosphate and ATP bind to the wild-type enzyme with apparent [L]0.5 (ligand concentration at half-maximal effect) values of 0.27 ± 0.02 mm and 0.78 ± 0.14 mm, respectively. The change in protein conformation was further supported by ATP inhibition of the binding of the fluorescent probe 8-anilino-1-naphthalenesulfonate and limited proteolysis by trypsin, and by molecular dynamic simulations. The simulations provide a first insight into the dynamics of the binary complex with ATP, including motion of the flexible surface/active site loop and partial closure of the active site cleft. In the complex, the adenosine moiety is packed between two α-helices and stabilized by hydrogen bonds (with Thr228, Thr332, and Ser336) and hydrophobic interactions (with Val412 and Leu415). Combined with enzyme kinetic analyses, our data indicate that the ATP-induced changes in protein conformation may have implications for the kinetic cooperativity of the enzyme.
Collapse
Affiliation(s)
- Janne Molnes
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | |
Collapse
|
43
|
Matschinsky FM, Zelent B, Doliba NM, Kaestner KH, Vanderkooi JM, Grimsby J, Berthel SJ, Sarabu R. Research and development of glucokinase activators for diabetes therapy: theoretical and practical aspects. Handb Exp Pharmacol 2011:357-401. [PMID: 21484579 DOI: 10.1007/978-3-642-17214-4_15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucokinase Glucokinase (GK GK ; EC 2.7.1.1.) phosphorylates and regulates glucose metabolism in insulin-producing pancreatic beta-cells, hepatocytes, and certain cells of the endocrine and nervous systems allowing it to play a central role in glucose homeostasis glucose homeostasis . Most importantly, it serves as glucose sensor glucose sensor in pancreatic beta-cells mediating glucose-stimulated insulin biosynthesis and release and it governs the capacity of the liver to convert glucose to glycogen. Activating and inactivating mutations of the glucokinase gene cause autosomal dominant hyperinsulinemic hypoglycemia and hypoinsulinemic hyperglycemia in humans, respectively, illustrating the preeminent role of glucokinase in the regulation of blood glucose and also identifying the enzyme as a potential target for developing antidiabetic drugs antidiabetic drugs . Small molecules called glucokinase activators (GKAs) glucokinase activators (GKAs) which bind to an allosteric activator allosteric activator site of the enzyme have indeed been discovered and hold great promise as new antidiabetic agents. GKAs increase the enzyme's affinity for glucose and also its maximal catalytic rate. Consequently, they stimulate insulin biosynthesis and secretion, enhance hepatic glucose uptake, and augment glucose metabolism and related processes in other glucokinase-expressing cells. Manifestations of these effects, most prominently a lowering of blood glucose, are observed in normal laboratory animals and man but also in animal models of diabetes and patients with type 2 diabetes mellitus (T2DM T2DM ) type 2 diabetes mellitus (T2DM) . These compelling concepts and results sustain a strong R&D effort by many pharmaceutical companies to generate GKAs with characteristics allowing for a novel drug treatment of T2DM.
Collapse
Affiliation(s)
- Franz M Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Institute for Diabetes, Obesity and Metabolism, 415 Curie Blvd, 605 CRB, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Larion M, Miller BG. Global fit analysis of glucose binding curves reveals a minimal model for kinetic cooperativity in human glucokinase. Biochemistry 2010; 49:8902-11. [PMID: 20828143 DOI: 10.1021/bi1008672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human pancreatic glucokinase is a monomeric enzyme that displays kinetic cooperativity, a feature that facilitates enzyme-mediated regulation of blood glucose levels in the body. Two theoretical models have been proposed to describe the non-Michaelis-Menten behavior of human glucokinase. The mnemonic mechanism postulates the existence of one thermodynamically favored enzyme conformation in the absence of glucose, whereas the ligand-induced slow transition model (LIST) requires a preexisting equilibrium between two enzyme species that interconvert with a rate constant slower than turnover. To investigate whether either of these mechanisms is sufficient to describe glucokinase cooperativity, a transient-state kinetic analysis of glucose binding to the enzyme was undertaken. A complex, time-dependent change in enzyme intrinsic fluorescence was observed upon exposure to glucose, which is best described by an analytical solution comprised of the sum of four exponential terms. Transient-state glucose binding experiments conducted in the presence of increasing glycerol concentrations demonstrate that three of the observed rate constants decrease with increasing viscosity. Global fit analyses of experimental glucose binding curves are consistent with a kinetic model that is an extension of the LIST mechanism with a total of four glucose-bound binary complexes. The kinetic model presented herein suggests that glucokinase samples multiple conformations in the absence of ligand and that this conformational heterogeneity persists even after the enzyme associates with glucose.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, FL 32306-4390, USA
| | | |
Collapse
|
45
|
Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework. Q Rev Biophys 2010; 43:295-332. [DOI: 10.1017/s0033583510000119] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractEnergy landscape theories have provided a common ground for understanding the protein folding problem, which once seemed to be overwhelmingly complicated. At the same time, the native state was found to be an ensemble of interconverting states with frustration playing a more important role compared to the folding problem. The landscape of the folded protein – the native landscape – is glassier than the folding landscape; hence, a general description analogous to the folding theories is difficult to achieve. On the other hand, the native basin phase volume is much smaller, allowing a protein to fully sample its native energy landscape on the biological timescales. Current computational resources may also be used to perform this sampling for smaller proteins, to build a ‘topographical map’ of the native landscape that can be used for subsequent analysis. Several major approaches to representing this topographical map are highlighted in this review, including the construction of kinetic networks, hierarchical trees and free energy surfaces with subsequent structural and kinetic analyses. In this review, we extensively discuss the important question of choosing proper collective coordinates characterizing functional motions. In many cases, the substates on the native energy landscape, which represent different functional states, can be used to obtain variables that are well suited for building free energy surfaces and analyzing the protein's functional dynamics. Normal mode analysis can provide such variables in cases where functional motions are dictated by the molecule's architecture. Principal component analysis is a more expensive way of inferring the essential variables from the protein's motions, one that requires a long molecular dynamics simulation. Finally, the two popular models for the allosteric switching mechanism, ‘preexisting equilibrium’ and ‘induced fit’, are interpreted within the energy landscape paradigm as extreme points of a continuum of transition mechanisms. Some experimental evidence illustrating each of these two models, as well as intermediate mechanisms, is presented and discussed.
Collapse
|
46
|
Langer S, Kaminski MT, Lenzen S, Baltrusch S. Endogenous activation of glucokinase by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is glucose dependent. Mol Endocrinol 2010; 24:1988-97. [PMID: 20702580 DOI: 10.1210/me.2010-0115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) plays a crucial role as glucose sensor in glucose-induced insulin secretion in pancreatic β-cells. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) acts as an endogenous GK activator. Therefore, the goal of this study was the analysis of GK-PFK-2/FBPase-2 complex formation and its effect on metabolic stimulus-secretion coupling in β-cells in dependence upon glucose. The interaction between GK and PFK-2/FBPase-2 was analyzed in insulin-secreting MIN6 cells with a new fluorescence-based mammalian two-hybrid system. In contrast to the commonly used mammalian two-hybrid systems that require sampling before detection, the system used allows monitoring of the effects of environmental changes on protein-protein interactions on the single-cell level. Increasing the glucose concentration in the cell culture medium from 3 to 10 and 25 mmol/liter amplified the interaction between the enzymes stepwise. Importantly, in line with these results, overexpression of PFK-2/FBPase-2 in MIN6 cells evoked only at 10 and 25 mmol/liter, an increase in insulin secretion. Furthermore, a PFK-2/FBPase-2 mutant with an abolished GK-binding motif neither showed a glucose-dependent GK binding nor was able to increase insulin secretion. The results obtained with the mammalian two-hybrid system could be confirmed by fluorescence resonance energy transfer experiments in COS cells. Furthermore, the established interaction between GK and the liver GRP served in all experiments as a control. Thus, this study clearly showed that binding and activation of GK by PFK-2/FBPase-2 in β-cells is promoted by glucose, resulting in an enhancement of insulin secretion at stimulatory glucose concentrations, without affecting basal insulin secretion.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
47
|
Larion M, Miller BG. 23-Residue C-terminal alpha-helix governs kinetic cooperativity in monomeric human glucokinase. Biochemistry 2009; 48:6157-65. [PMID: 19473033 DOI: 10.1021/bi9007534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human glucokinase is a monomeric enzyme that displays a sigmoidal steady-state kinetic response toward increasing glucose concentrations. The allosteric regulation produced by glucose is postulated to arise from the slow interconversion of multiple enzyme conformations during the course of catalysis. Crystallographic data suggest that structural rearrangements linked to glucokinase cooperativity involve a substrate-induced repositioning of an alpha-helix (alpha13) located at the C-terminus of the polypeptide. Here, we show that removal of helix alpha13 abolishes cooperativity and restores Michaelis-Menten kinetics, while reducing the k(cat) value of the wild-type enzyme by 160-fold. The impaired catalytic activity of the truncated enzyme is not rescued by the trans addition of a synthetic alpha13 peptide. Unexpectedly, the K(m glucose) value of a glucokinase variant lacking alpha13 is equivalent to the K(0.5 glucose) value of the full-length enzyme. Glucokinase steady-state kinetics is unaffected by the elongation of alpha13 via the addition of a C-terminal polyalanine tail. To explore the link between cooperativity and the primary sequence of alpha13, we randomized seven residues within the helix core. Genetic selection experiments in a glucokinase-deficient bacterium identified a variety of hyperactive alpha13 variants that display lower K(0.5 glucose) values, Hill coefficients near unity, and enhanced equilibrium binding affinities for glucose. The present results demonstrate that alpha13 plays an essential role in facilitating cooperativity. Our findings also establish a link between the primary amino acid sequence of helix alpha13 and the functional dynamics of the glucokinase scaffold that are required for allostery.
Collapse
Affiliation(s)
- Mioara Larion
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| | | |
Collapse
|