1
|
Bragina NA, Chupin VV. Methods of synthesis of deuterium-labelled lipids. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1997v066n11abeh000369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Song J, Lee MS, Carlberg I, Vener AV, Markley JL. Micelle-induced folding of spinach thylakoid soluble phosphoprotein of 9 kDa and its functional implications. Biochemistry 2006; 45:15633-43. [PMID: 17176085 PMCID: PMC2533273 DOI: 10.1021/bi062148m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thylakoid soluble phosphoprotein of 9 kDa (TSP9) has been identified as a plant-specific protein in the photosynthetic thylakoid membrane (Carlberg et al. (2003) Proc. Natl. Acad. Sci. 100, 757-762). Nonphosphorylated TSP9 is associated with the membrane, whereas, after light-induced phosphorylation, a fraction of the phosphorylated TSP9 is released into the aqueous stroma. By NMR spectroscopy, we have determined the structural features of nonphosphorylated TSP9 both in aqueous solution and in membrane mimetic micelles. The results show that both wild type nonphosphorylated TSP9 and a triple-mutant (T46E + T53E + T60E) mimic of the triphosphorylated form of TSP9 are disordered under aqueous conditions, but adopt an ordered conformation in the presence of detergent micelles. The micelle-induced structural features, which are similar in micelles either of SDS or dodecylphosphocholine (DPC), consist of an N-terminal alpha-helix, which may represent the primary site of interaction between TSP9 and binding partners, and a less structured helical turn near the C-terminus. These structured elements contain mainly hydrophobic residues. NMR relaxation data for nonphosphorylated TSP9 in SDS micelles indicated that the molecule is highly flexible with the highest order in the N-terminal alpha-helix. Intermolecular NOE signals, as well as spin probe-induced broadening of NMR signals, demonstrated that the SDS micelles contact both the structured and a portion of the unstructured regions of TSP9, in particular, those containing the three phosphorylation sites (T46, T53, and T60). This interaction may explain the selective dissociation of phosphorylated TSP9 from the membrane. Our study presents a structural model for the role played by the structured and unstructured regions of TSP9 in its membrane association and biological function.
Collapse
Affiliation(s)
| | | | | | | | - John L Markley
- * To whom correspondence should be addressed: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706. Telephone: (608) 263-9349. Fax: (608) 262-3759. E-mail:
| |
Collapse
|
3
|
Rigby-Singleton SM, Davies MC, Harris H, O'Shea P, Allen S. Visualizing the solubilization of supported lipid bilayers by an amphiphilic peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:6273-9. [PMID: 16800686 DOI: 10.1021/la060114+] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The effect of the presequence peptide of cytochrome c oxidase subunit IV (p25) on supported phospholipid bilayers (SPBs) was visualized using atomic force microscopy (AFM). The presequence was found to cause the complete disruption of supported bilayers containing neutral lipids. At relatively low concentrations of presequence, the peptide was found to bind to the membrane, coalescing to form microdomains within the liquid-crystalline bilayer that were located predominantly at bilayer-mica boundaries. Further increases in peptide concentration resulted in the formation of holes within the SPB that were spanned by an interpenetrating network of narrower regions of the bilayer, which, at higher applied peptide concentrations, were observed to disappear through a budding process, ultimately leading to the formation of spherical structures at yet higher peptide concentrations. Within this paper, the impact the presequence has upon the structure and order of the membrane is discussed, as is the potential implication of this apparent solubilization process on the translocation of cytochrome c oxidase into the inner mitochondrial membrane.
Collapse
|
4
|
Moberg P, Nilsson S, Ståhl A, Eriksson AC, Glaser E, Mäler L. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia. J Mol Biol 2004; 336:1129-40. [PMID: 15037074 DOI: 10.1016/j.jmb.2004.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 12/18/2003] [Accepted: 01/07/2004] [Indexed: 11/19/2022]
Abstract
We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.
Collapse
Affiliation(s)
- Per Moberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Wu J, So SP, Ruan KH. Determination of the membrane contact residues and solution structure of the helix F/G loop of prostaglandin I2 synthase. Arch Biochem Biophys 2003; 411:27-35. [PMID: 12590920 DOI: 10.1016/s0003-9861(02)00728-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From our topological arrangement model of prostaglandin I(2) synthase (PGIS) created by homology modeling and topology studies, we hypothesized that the helix F/G loop of PGIS contains a membrane contact region distinct from the N-terminal membrane anchor domain. To provide direct experimental data we have explored the relationship between the endoplasmic reticulum (ER) membrane and the PGIS F/G loop using a constrained synthetic peptide to mimic PGIS residues 208-230 cyclized on both ends through a disulfide bond with added Cys residues. The solution structure and the residues important for membrane contact of the constrained PGIS F/G loop peptide were investigated by high-resolution 1H two-dimensional nuclear magnetic resonance (2D NMR) experiments and a spin label incorporation technique. Through the combination of 2D NMR experiments in the presence of dodecylphosphocholine (DPC) micelles used to mimic the membrane environment, complete 1H NMR assignments of the F/G loop segment have been obtained and the solution structure of the peptide has been determined. The PGIS F/G loop segment shows a defined helix turn helix conformation, which is similar to the three-dimensional crystallography structure of P450BM3 in the corresponding region. The orientation and the residues contacted with the membrane of the PGIS F/G loop were evaluated from the effect of incorporation of a spin-labeled 12-doxylstearate into the DPC micelles with the peptide. Three residues in the peptide corresponding to the PGIS residues L217 (L11), L222 (L16), and V224 (V18) have been demonstrated to contact the DPC micelles, which implies that the residues are involved in contact with the ER membrane in the native membrane-bound PGIS. These results provided the first experimental evidence to localize the membrane contact residues in the F/G loop region of microsomal P450 and are valuable to further define and understand the membrane topology of PGIS and those of other microsomal P450s in the native membrane environment.
Collapse
Affiliation(s)
- Jiaxin Wu
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030, USA
| | | | | |
Collapse
|
6
|
Monticelli L, Pedini D, Schievano E, Mammi S, Peggion E. Interaction of bombolitin II with a membrane-mimetic environment: an NMR and molecular dynamics simulation approach. Biophys Chem 2002; 101-102:577-91. [PMID: 12488028 DOI: 10.1016/s0301-4622(02)00174-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bombolitins are five natural heptadecapeptides originally isolated from the venom of a bumblebee. They induce lysis of erythrocytes and liposomes and increase the activity of phospholipase A(2) (PLA(2)), that plays an important role in the early steps of the inflammatory process. It has been proposed that PLA(2) activation depends on the alteration of the physical state of the membrane. Bombolitin II folds into an alpha-helix in a membrane mimicking environment constituted by sodium dodecyl sulfate micelles (Macromol. Chem. Phys., 196 (1995) 2827). In the present work, the topological orientation of the peptide relative to the micelle was determined, using three spin probes localized in different positions of the water/micelle system. The reduction in intensity of the 1H NMR signals clearly demonstrated that the peptide is located on the surface of the micelle, with its helical axis parallel to the interface. Only a small portion of the helix is exposed to the aqueous environment. Results from NMR experiments were confirmed by molecular dynamics simulations, performed using a two-phase water/decane simulation cell. The timescale for the reorientation of the peptide was between 120 and 450 ps, depending on the starting position of the peptide.
Collapse
Affiliation(s)
- Luca Monticelli
- Department of Organic Chemistry, University of Padova, Biopolymer Research Center, CNR, 35131 Padua, Italy
| | | | | | | | | |
Collapse
|
7
|
Stribinskis V, Gao GJ, Ellis SR, Martin NC. Rpm2, the protein subunit of mitochondrial RNase P in Saccharomyces cerevisiae, also has a role in the translation of mitochondrially encoded subunits of cytochrome c oxidase. Genetics 2001; 158:573-85. [PMID: 11404323 PMCID: PMC1461690 DOI: 10.1093/genetics/158.2.573] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa(3) cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.
Collapse
Affiliation(s)
- V Stribinskis
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
8
|
Whitehead TL, Jones LM, Hicks RP. Effects of the incorporation of CHAPS into SDS micelles on neuropeptide-micelle binding: separation of the role of electrostatic interactions from hydrophobic interactions. Biopolymers 2001; 58:593-605. [PMID: 11285556 DOI: 10.1002/1097-0282(200106)58:7<593::aid-bip1033>3.0.co;2-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is well known that neuropeptides interact with lipid vesicles in a manner similar to biological membranes, with electrostatic interactions between the two providing a mechanism for concentrating the peptide at the vesicle's surface, followed by hydrophobic interactions between the peptide and the core of the vesicle that induce and stabilize secondary structure motifs. In an effort to understand these interactions to a greater extent, our group has developed a series of anionic micelles (SDS) containing various concentrations of the bile salt CHAPS, which is used as a model for cholesterol. The incorporation of CHAPS into the hydrophobic core of these micelles should alter the degree to which the neuropeptide can insert itself, affecting structure. These interactions were investigated using two-dimensional NMR, pulse-field gradient (PFG) NMR, and molecular modeling experiments. The results of this study clearly indicate that electrostatic and hydrophobic interactions between the micelle and neuropeptide are completely independent of one another. Increasing the concentration of CHAPS to 15 mM in the micelles blocks the insertion of the hydrophobic side chains of the neuropeptide into the hydrophobic core of the micelles. The electrostatic interactions as determined by diffusion measurements are not affected by the presence of increasing CHAPS concentration. Our observations are consistent with the predictions of Seelig (A. Seelig and J. Seelig, "Interaction of Drugs and Peptides with the Lipid Membrane," in Structure and Function of 7TM Receptors, T. W. Schwartz, S. A. Hjorth, and T. S. Kastrup, Eds., Munksgaard: Location, 1996).
Collapse
Affiliation(s)
- T L Whitehead
- Department of Chemistry, Mail Stop 9573, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
9
|
Donate F, Yañez AJ, Iriarte A, Martinez-Carrion M. Interaction of the precursor to mitochondrial aspartate aminotransferase and its presequence peptide with model membranes. J Biol Chem 2000; 275:34147-56. [PMID: 10938277 DOI: 10.1074/jbc.m004494200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The possible contribution of the mature portion of a mitochondrial precursor protein to its interaction with membrane lipids is unclear. To address this issue, we examined the interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) and of a synthetic peptide corresponding to the 29-residue presequence peptide (mAAT-pp) with anionic phospholipid vesicles. The affinity of mAAT-pp and pmAAT for anionic vesicles is nearly identical. Results obtained by analyzing the effect of mAAT-pp or full-length pmAAT on either the permeability or microviscosity of the phospholipid vesicles are consistent with only a shallow insertion of the presequence peptide in the bilayer. Analysis of the quenching of Trp-17 fluorescence by brominated phospholipids reveals that this presequence residue inserts to a depth of approximately 9 A from the center of the bilayer. Furthermore, in membrane-bound pmAAT or mAAT-pp, both Arg-8 and Arg-28 are accessible to the solvent. These results suggest that the presequence segment lies close to the surface of the membrane and that the mature portion of the precursor protein has little effect on the affinity or mode of binding of the presequence to model membranes. In the presence of vesicles, mAAT-pp adopts considerable alpha-helical structure. Hydrolysis by trypsin after Arg-8 results in the dissociation of the remaining 21-residue C-terminal peptide fragment from the membrane bilayer, suggesting that the N-terminal portion of the presequence is essential for membrane binding. Based on these results, we propose that the presequence peptide may contain dual recognition elements for both the lipid and import receptor components of the mitochondrial membrane.
Collapse
Affiliation(s)
- F Donate
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
10
|
De Jongh HH. The helix nucleation site and propensity of the synthetic mitochondrial presequence of ornithine carbamoyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5796-804. [PMID: 10971591 DOI: 10.1046/j.1432-1327.2000.01654.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study describes the helix nucleation site and helix propagation of the amphiphilic helical structure of the mitochondrial presequence of rat ornithine carbamoyltransferase. We investigated this property of the 32-residue synthetic presequence using CD and 2D-HR NMR techniques by determining the structure as a function of the concentration of trifluoroethanol. It was found that the hydrophobic cluster Ile7-Leu8-Leu9 forms the helix nucleation site, expanding to include residues Asn4 to Lys16 when the concentration of trifluoroethanol is increased from 10 to 30%. At higher trifluoroethanol concentrations an increased 'stiffening' of the polypeptide backbone (to Arg26) is observed. In addition, by recording CD spectra at different trifluoroethanol concentrations as a function of temperature, it was found that the equilibrium constant between helix and random coil formation for this peptide exhibits a strong temperature dependence with maximum values between 20 and 30 degrees C. Comparison of these equilibrium constants with those of homopolymers stressed the unique character of the mitochondrial presequence. The findings are discussed in relation to the molecular recognition events at different stages of the transport process of this protein into mitochondria.
Collapse
Affiliation(s)
- H H De Jongh
- Wageningen Centre for Food Sciences and Centre for Protein Technology, Wageningen University, the Netherlands.
| |
Collapse
|
11
|
Abstract
Solid-state nmr spectroscopy provides a robust method for investigating polypeptides that have been prepared by chemical synthesis and that are immobilized by strong interactions with solid surfaces or large macroscopic complexes. Solid-state nmr spectroscopy has been widely used to investigate membrane polypeptides or peptide aggregates such as amyloid fibrils. Whereas magic angle spinning solid-state nmr spectroscopy allows one to measure distances and dihedral angles with high accuracy, static membrane samples that are aligned with respect to the magnetic field direction allow one to determine the secondary structure of bound polypeptides and their orientation with respect to the bilayer normal. Peptide dynamics and the effect of polypeptides on the macroscopic phase preference of phospholipid membranes have been investigated in nonoriented samples. Investigations of the structure and topology of membrane channels, peptide antibiotics, signal sequences as well as model systems that allow one to dissect the interaction contributions in phospholipid membranes will be presented in greater detail.
Collapse
Affiliation(s)
- B Bechinger
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18A, 82152 Marinsried, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Perrine SA, Whitehead TL, Hicks RP, Szarek JL, Krause JE, Simmons MA. Solution structures in SDS micelles and functional activity at the bullfrog substance P receptor of ranatachykinin peptides. J Med Chem 2000; 43:1741-53. [PMID: 10794691 DOI: 10.1021/jm000093v] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A set of novel tachykinin-like peptides has been isolated from bullfrog brain and gut. These compounds, ranatachykinin A (RTKA), ranatachykinin B (RTKB), and ranatachykinin C (RTKC), were named for their source, Rana catesbeiana, and their homology to the tachykinin peptide family. We present the first report of the micelle-bound structures and pharmacological actions of the RTKs. Generation of three-dimensional structures of the RTKs in a membrane-model environment using (1)H NMR chemical shift assignments, two-dimensional NMR techniques, and molecular dynamics and simulated annealing procedures allowed for the determination of possible prebinding ligand conformations. RTKA, RTKB, and RTKC were determined to be helical from the midregion to the C-terminus (residues 4-10), with a large degree of flexibility in the N-terminus and minor dynamic fraying at the end of the C-terminus. The pharmacological effects of the RTKs were studied by measuring the elevation of intracellular Ca(2+) in Chinese hamster ovarian cells stably transfected with the bullfrog substance P receptor (bfSPR). All of the RTKs tested elicited Ca(2+) elevations with a rank order of maximal effect of RTKA >/= SP > RTKC >/= RTKB. A high concentration (1 microM) of the neuropeptides produced varying degrees of desensitization to a subsequent challenge with the same or different peptide, while a low concentration (1 pM) produced sensitization at the bfSPR. Our data suggest differences in amino acid side chains and their charged states at the C-terminal sequence or differences in secondary structure at the N-terminus, which do not overlap according to the findings in this paper, may explain the differing degree and type of receptor activation seen at the bfSPR.
Collapse
Affiliation(s)
- S A Perrine
- Department of Pharmacology, Marshall University School of Medicine and Huntington VA Medical Center, 1542 Spring Valley Drive, Huntington, West Virginia 25704, USA
| | | | | | | | | | | |
Collapse
|
13
|
Schleiff E. Signals and receptors--the translocation machinery on the mitochondrial surface. J Bioenerg Biomembr 2000; 32:55-66. [PMID: 11768763 DOI: 10.1023/a:1005512412404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most proteins involved in mitochondrial biogenesis are encoded by the genome of the nucleus. They are synthesized in the cytosol and have to be transported toward and, subsequently, imported into the organelle. This targeting and import process is initiated by the specific mitochondrial targeting signal, which differs pending on the final localization of the protein. The preprotein will be recognized by cytosolic proteins, which function in transport toward the mitochondria and in maintaining the import competent state of the preprotein. The precursor will be transferred onto a multicomponent complex on the outer mitochondrial membrane, formed by receptor proteins and the general insertion pore (GIP). Some proteins are directly sorted into the outer membrane whereas the majority will be transported over the outer membrane through the import channel followed by further distribution of those proteins.
Collapse
Affiliation(s)
- E Schleiff
- Department of Biochemistry, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Krimm I, Gans P, Hernandez JF, Arlaud GJ, Lancelin JM. A coil-helix instead of a helix-coil motif can be induced in a chloroplast transit peptide from Chlamydomonas reinhardtii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:171-80. [PMID: 10491171 DOI: 10.1046/j.1432-1327.1999.00701.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A synthetic peptide MQVTMKSSAVSGQRVGGARVATRSVRRAQLQV corresponding to the 32 amino acid chloroplast transit sequence of the ribulose bisphosphatase carboxylase/oxygenase activase preprotein from Chlamydomonas reinhardtii, required for translocation through the envelope of the chloroplast, has been characterized structurally using CD and NMR under the same experimental conditions as used previously for the 32 amino acid presequence of preferredoxin from the same organism [Lancelin, J.-M., Bally, I., Arlaud, G. J., Blackledge, M., Gans, P., Stein, M. & Jacquot, J.-P. (1994) FEBS Lett. 343, 261-266]. The peptide is found to undergo a conformational transition in aqueous 2,2,2-trifluoroethanol, characterized by three turns of amphiphilic alpha-helix in the C-terminal region preceded by a disordered coil in the N-terminal region. Compared with the preferredoxin transit peptide, the helical and coiled domains are arranged in the reverse order along the peptide sequence, but the positively charged groups are distributed analogously as well as the hydrophobic residues within the amphiphilic alpha-helix. It is proposed that such coil-helix or helix-coil motifs, occasionally repeated, could be an intrinsic structural feature of chloroplastic transit peptides, adapted to the proper translocase and possibly to each nuclear-encoded chloroplast preproteins. This feature may distinguish chloroplastic transit sequences from the other organelle-targeting peptides in the eukaryotic green alga C. reinhardtii, particularly the mitochondrial transit sequences.
Collapse
Affiliation(s)
- I Krimm
- Laboratoire de RMN Biomoléculaire associé au CNRS, Université Claude Bernard-Lyon 1 and Ecole Supérieure de Chimie Physique et Electronique de Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|
15
|
Chen XJ, Clark-Walker GD. The petite mutation in yeasts: 50 years on. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:197-238. [PMID: 10494627 DOI: 10.1016/s0074-7696(08)62397-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fifty years ago it was reported that baker's yeast, Saccharomyces cerevisiae, can form "petite colonie" mutants when treated with the DNA-targeting drug acriflavin. To mark the jubilee of studies on cytoplasmic inheritance, a review of the early work will be presented together with some observations on current developments. The primary emphasis is to address the questions of how loss of mtDNA leads to lethality (rho 0-lethality) in petite-negative yeasts and how S. cerevisiae tolerates elimination of mtDNA. Recent investigation have revealed that rho 0-lethality can be suppressed by specific mutations in the alpha, beta, and gamma subunits of the mitochondrial F1-ATPase of the petite-negative yeast Kluyveromyces lactis and by the nuclear ptp alleles in Schizosaccharomyces pombe. In contrast, inactivation of genes coding for F1-ATPase alpha and beta subunits and disruption of AAC2, PGS1/PEL1, and YME1 genes in S. cerevisiae convert this petite-positive yeast into a petite-negative form. Studies on nuclear genes affecting dependence on mtDNA have provided important insight into the functions provided by the mitochondrial genome and the maintenance of structural and functional integrity of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- X J Chen
- Molecular and Cellular Genetics Group, Research School of Biological Sciences, Australian National University, ACT, Australia
| | | |
Collapse
|
16
|
Ni L, Heard TS, Weiner H. In vivo mitochondrial import. A comparison of leader sequence charge and structural relationships with the in vitro model resulting in evidence for co-translational import. J Biol Chem 1999; 274:12685-91. [PMID: 10212250 DOI: 10.1074/jbc.274.18.12685] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The positive charges and structural properties of the mitochondrial leader sequence of aldehyde dehydrogenase have been extensively studied in vitro. The results of these studies showed that increasing the helicity of this leader would compensate for reduced import from positive charge substitutions of arginine with glutamine or the insertion of negative charged residues made in the native leader. In this in vivo study, utilizing the green fluorescent protein (GFP) as a passenger protein, import results showed the opposite effect with respect to helicity, but the results from mutations made within the native leader sequence were consistent between the in vitro and in vivo experiments. Leader mutations that reduced the efficiency of import resulted in a cytosolic accumulation of a truncated GFP chimera that was fluorescent but devoid of a mitochondrial leader. The native leader efficiently imported before GFP could achieve a stable, import-incompetent structure, suggesting that import was coupled with translation. As a test for a co-translational mechanism, a chimera of GFP that contained the native leader of aldehyde dehydrogenase attached at the N terminus and a C-terminal endoplasmic reticulum targeting signal attached to the C terminus of GFP was constructed. This chimera was localized exclusively to mitochondria. The import result with the dual signal chimera provides support for a co-translational mitochondrial import pathway.
Collapse
Affiliation(s)
- L Ni
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
17
|
Chang SC, Heacock PN, Mileykovskaya E, Voelker DR, Dowhan W. Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J Biol Chem 1998; 273:14933-41. [PMID: 9614098 DOI: 10.1074/jbc.273.24.14933] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, cardiolipin (CL) synthase catalyzes the final step in the synthesis of CL from phosphatidylglycerol and CDP-diacylglycerol. CL and its synthesis are localized predominantly to the mitochondrial inner membrane, and CL is generally thought to be an essential component of many mitochondrial processes. By using homology searches for genes potentially encoding phospholipid biosynthetic enzymes, we have cloned the gene (CLS1) encoding CL synthase in Saccharomyces cerevisiae. Overexpression of the CLS1 gene under its endogenous promoter or the inducible GAL1 promoter in yeast and expression of CLS1 in baculovirus-infected insect cells resulted in elevated CL synthase activity. Disruption of the CLS1 gene in a haploid yeast strain resulted in the loss of CL synthase activity, no detectable CL, a 5-fold elevation in phosphatidylglycerol levels, and lack of staining of mitochondria by a dye with high affinity for CL. The cls1::TRP1 null mutant grew on both fermentable and non-fermentable carbon sources but more poorly on the latter. The level and activity of cytochrome c oxidase was normal, and a dye whose accumulation is dependent on membrane proton electrochemical potential effectively stained the mitochondria. These results definitively identify the gene encoding the CL synthase of yeast.
Collapse
Affiliation(s)
- S C Chang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | | | |
Collapse
|
18
|
Chang SC, Heacock PN, Clancey CJ, Dowhan W. The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J Biol Chem 1998; 273:9829-36. [PMID: 9545322 DOI: 10.1074/jbc.273.16.9829] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylglycerophosphate (PG-P) synthase catalyzes the synthesis of PG-P from CDP-diacylglycerol and sn-glycerol 3-phosphate and functions as the committed and rate-limiting step in the biosynthesis of cardiolipin (CL). In eukaryotic cells, CL is found predominantly in the inner mitochondrial membrane and is generally thought to be an essential component of many mitochondrial functions. We have determined that the PEL1 gene (now renamed PGS1), previously proposed to encode a second phosphatidylserine synthase of yeast (Janitor, M., Jarosch, E., Schweyen, R. J., and Subik, J. (1995) Yeast 13, 1223-1231), in fact encodes a PG-P synthase of Saccharomyces cerevisiae. Overexpression of the PGS1 gene product under the inducible GAL1 promoter resulted in a 14-fold increase in in vitro PG-P synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast did not lead to a loss of viability but did result in a dependence on a fermentable carbon source for growth, a temperature sensitivity for growth, and a petite lethal phenotype. The pgs1 null mutant exhibited no detectable in vitro PG-P synthase activity and no detectable CL or phosphatidylglycerol (PG); significant CL synthase activity was still present. The growth arrest phenotype and lack of PG-P synthase activity of a pgsA null allele of Escherichia coli was corrected by an N-terminal truncated derivative of the yeast PG-P synthase. These results unequivocally demonstrate that the PGS1 gene encodes the major PG-P synthase of yeast and that neither PG nor CL are absolutely essential for cell viability but may be important for normal mitochondrial function.
Collapse
Affiliation(s)
- S C Chang
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, USA
| | | | | | | |
Collapse
|
19
|
Lin Y, Wu KK, Ruan KH. Characterization of the secondary structure and membrane interaction of the putative membrane anchor domains of prostaglandin I2 synthase and cytochrome P450 2C1. Arch Biochem Biophys 1998; 352:78-84. [PMID: 9521818 DOI: 10.1006/abbi.1998.0599] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin I2 synthase (PGIS) produces prostaglandin I2 (PGI2) which has opposite actions on platelet aggregatory and vasoconstrictive properties compared to thromboxane A2 (TXA2) produced from the same substrate by another P450 enzyme, thromboxane A2 synthase (TXAS). PGIS and TXAS have only 16% amino acid sequence identity. Hydropathy analysis suggests that the putative NH2-terminal membrane anchor domain of PGIS is similar to many other membrane-bound microsomal P450s, which are believed to be anchored by a single transmembrane segment, and thus different from the TXAS anchor, which appears to have two transmembrane segments. To characterize the membrane anchor function of the PGIS NH2-terminal region, we have used the peptidoliposome reconstitution assay to identify the membrane anchor segment in the PGIS NH2-terminal domain and compared it with the anchor segment of P450 2C1. Four peptides, mimicking putative NH2-terminal membrane anchor segments of PGIS and P450 2C1, containing residues 1-28 (PGIS-LP1 and P450 2C1-LP1) or residues 25-54 (PGIS-LP2 and P450 2C1-LP2), were synthesized and their ability to insert in a lipid bilayer was evaluated. The results indicated that both LP1 peptides of PGIS and P450 2C1 became bound to the lipid bilayer, whereas both LP2 peptides did not bind the lipid. The two LP1 peptides were further characterized as to their conformation using CD spectroscopy. Helical structure induced in these peptides by addition of trifluoroethanol, dodecylphosphocholine, or incorporation into liposomes indicated that these segments tend to adopt a helical structure in a hydrophobic environment and thus could function as membrane anchor segments. These results support the hypothesis that PGIS and TXAS interact with the endoplasmic reticulum membrane in different ways, in which the NH2-terminal anchor domain of PGIS, as with P450 2C1, appears to have a single transmembrane segment.
Collapse
Affiliation(s)
- Y Lin
- Department of Internal Medicine, University of Texas, Health Sciences Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
20
|
Li L, Karlsson OP, Wieslander A. Activating amphiphiles cause a conformational change of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes according to proteolytic digestion. J Biol Chem 1997; 272:29602-6. [PMID: 9368025 DOI: 10.1074/jbc.272.47.29602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1,2-Diacylglycerol 3-glucosyltransferase synthesizes the major nonbilayer-prone lipid monoglucosyldiacylglycerol (MGlcDAG) in the membrane of Acholeplasma laidlawii, which is important for the spontaneous curvature, and is a regulatory site for the lipid surface charge density. A potential connection between activity and a conformational change of this enzyme, governed by essential lipid activators, was studied with purified MGlcDAG synthase in different lipid aggregates. Critical fractions of anionic phospholipids 1, 2-dioleoyl-phosphatidylglycerol (DOPG) and 1,2-dioleoyl-phosphatidylserine (DOPS) were essential for the restoration of enzyme activity, while the zwitterionic 1,2-dioleoyl-phosphatidylcholine (DOPC) and the uncharged diglucosyldiacylglycerol (DGlcDAG) were not. Proteolytic resistance had a very good correlation with the enzyme activity in various lipid-CHAPS mixed micelles. Anionic lipids DOPG and DOPS could protect the exposed MGlcDAG synthase from digestion, whereas DOPC and DGlcDAG could not. Similar features were observed in liposome bilayers. Likewise, the detergent dodecylphosphoglycerol (PGD), with a phosphatidylglycerol-like headgroup, could also stimulate the MGlcDAG synthase activity efficiently with a concomitant protection toward proteolytic digestion. Neither proteolytic resistance nor restored enzyme activity was observed using soluble glycerol 3-phosphate. It is concluded that in addition to critical amounts, both the negatively charged headgroup and hydrophobic chains of the activator amphiphiles, but not a certain aggregate curvature, seem necessary for a proper conformation and the resulting active state of the MGlcDAG synthase.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry, Umeâ University, S-901 87 Umeâ, Sweden
| | | | | |
Collapse
|
21
|
Abstract
A thermodynamic model describing formation of alpha-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining alpha-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The alpha-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each alpha-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set 1] and [set 2]) and for 30 mostly alpha-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix-coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix-coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area.
Collapse
Affiliation(s)
- A L Lomize
- College of Pharmacy, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
22
|
Bechinger B. Structure and dynamics of the M13 coat signal sequence in membranes by multidimensional high-resolution and solid-state NMR spectroscopy. Proteins 1997; 27:481-92. [PMID: 9141129 DOI: 10.1002/(sici)1097-0134(199704)27:4<481::aid-prot2>3.0.co;2-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an alpha-helix content of approximately 42%. The alpha-helix comprises an uninterrupted hydrophobic stretch of < or = 12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15-75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10(-4) seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed.
Collapse
Affiliation(s)
- B Bechinger
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany.
| |
Collapse
|
23
|
Abstract
Phospholipids play multiple roles in cells by establishing the permeability barrier for cells and cell organelles, by providing the matrix for the assembly and function of a wide variety of catalytic processes, by acting as donors in the synthesis of macromolecules, and by actively influencing the functional properties of membrane-associated processes. The function, at the molecular level, of phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin in specific cellular processes is reviewed, with a focus on the results of combined molecular genetic and biochemical studies in Escherichia coli. These results are compared with primarily biochemical data supporting similar functions for these phospholipids in eukaryotic organisms. The wide range of processes in which specific involvement of phospholipids has been documented explains the need for diversity in phospholipid structure and why there are so many membrane lipids.
Collapse
Affiliation(s)
- W Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School 77225, USA.
| |
Collapse
|
24
|
Luciano P, Géli V. The mitochondrial processing peptidase: function and specificity. Cell Mol Life Sci 1996; 52:1077-82. [PMID: 8988249 DOI: 10.1007/bf01952105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Targeting signals of mitochondrial precursors are cleaved in the matrix during or after import by the mitochondrial processing peptidase (MPP). This enzyme consists of two nonidentical alpha- and beta-subunits each of molecular weight of about 50 kDa. In mammals and fungi, MPP is soluble in the matrix, whereas in plants the enzyme is part of the cytochrome bc1 complex. MPP is a metalloendopeptidase which has been classified as a member of the pitrilysin family on the basis of the HXXEHX76E zinc-binding motif present in beta-MPP. Both subunits of MPP are required for processing activity. The alpha-subunit of MPP, which probably recognizes a three-dimensional motif adopted by the presequence, presents the presequence to beta-MPP, which carries the catalytic active site. MPP acts as an endoprotease on chemically synthesized peptides corresponding to mitochondrial presequences. Matrix-targeting signals and MPP cleavage signals seem to be distinct, although the two signals may overlap within a given presequence. The structural element helix-turn-helix, that cleavable presequences adopt in a membrane mimetic environment, may be required for processing but is not sufficient for proteolysis. Binding of the presequence by alpha-MPP tolerates a high degree of mutations of the presequence. alpha-MPP may present a degenerated cleavage site motif to beta-MPP in an accessible conformation for processing. The conformation of mitochondrial presequences bound to MPP remains largely unknown.
Collapse
Affiliation(s)
- P Luciano
- Laboratoire d'Ingéniérie des Systèmes Macromoléculaires, CNRS, Marseille, France
| | | |
Collapse
|
25
|
Lancelin JM, Gans P, Bouchayer E, Bally I, Arlaud GJ, Jacquot JP. NMR structures of a mitochondrial transit peptide from the green alga Chlamydomonas reinhardtii. FEBS Lett 1996; 391:203-8. [PMID: 8706917 DOI: 10.1016/0014-5793(96)00734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 26-amino-acid pre-sequence of the ATP synthase beta subunit that directs the protein from the cytosol to mitochondria in the unicellular green alga Chlamydomonas reinhardtii has been synthesised and analysed using NMR spectroscopy/circular dichroism and compared to a chloroplast transit peptide from the same organism. The results demonstrate that the peptide, though mainly unstructured in water, undergoes a strong conformational change in a 36% water/64% 2,2,2-trifluoroethanol mixture. In this solvent condition, an alpha-helix was characterised by NMR from residue 2 to 26. Structure calculations under NMR restraints lead to a population of models of which 60% are kinked at position 9-10. Structural analysis indicates two hydrophobic sectors on the models with a discontinuity at the 9-10 kink level. The structures suggest a different interaction mode with the mitochondrial membrane compared to the chloroplast transit peptide.
Collapse
Affiliation(s)
- J M Lancelin
- Institut de Biologie Structurale CEA-CNRS, Grenoble, France.
| | | | | | | | | | | |
Collapse
|