1
|
Bhattacharjee K, Gopi S, Naganathan AN. A Disordered Loop Mediates Heterogeneous Unfolding of an Ordered Protein by Altering the Native Ensemble. J Phys Chem Lett 2020; 11:6749-6756. [PMID: 32787218 DOI: 10.1021/acs.jpclett.0c01848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high flexibility of long disordered or partially structured loops in folded proteins allows for entropic stabilization of native ensembles. Destabilization of such loops could alter the native ensemble or promote alternate conformations within the native ensemble if the ordered regions themselves are held together weakly. This is particularly true of downhill folding systems that exhibit weak unfolding cooperativity. Here, we combine experimental and computational methods to probe the response of the native ensemble of a helical, downhill folding domain PDD, which harbors an 11-residue partially structured loop, to perturbations. Statistical mechanical modeling points to continuous structural changes on both temperature and mutational perturbations driven by entropic stabilization of partially structured conformations within the native ensemble. Long time-scale simulations of the wild-type protein and two mutants showcase a remarkable conformational switching behavior wherein the parallel helices in the wild-type protein sample an antiparallel orientation in the mutants, with the C-terminal helix and the loop connecting the helices displaying high flexibility, disorder, and non-native interactions. We validate these computational predictions via the anomalous fluorescence of a native tyrosine located at the interface of the helices. Our observations highlight the role of long loops in determining the unfolding mechanisms, sensitivity of the native ensembles to mutational perturbations and provide experimentally testable predictions that can be explored in even two-state folding systems.
Collapse
Affiliation(s)
- Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Lampe JN. Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques. Front Pharmacol 2017; 8:521. [PMID: 28848438 PMCID: PMC5550701 DOI: 10.3389/fphar.2017.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
In recent years, a growing appreciation has developed for the importance of protein-protein interactions to modulate the function of drug metabolizing enzymes. Accompanied with this appreciation, new methods and technologies have been designed for analyzing protein-protein interactions both in vitro and in vivo. These technologies have been applied to several classes of drug metabolizing enzymes, including: cytochrome P450's (CYPs), monoamine oxidases (MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and sulfotransferases (SULTs). In this review, we offer a brief description and assessment of the impact of many of these technologies to the study of protein-protein interactions in drug disposition. The still expanding list of these techniques and assays has the potential to revolutionize our understanding of how these enzymes carry out their important functions in vivo.
Collapse
Affiliation(s)
- Jed N Lampe
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical CenterKansas City, MO, United States
| |
Collapse
|
3
|
Profantová B, Coïc YM, Profant V, Štěpánek J, Kopecký V, Turpin PY, Alpert B, Zentz C. Organization of the MADS box from human SRF revealed by tyrosine perturbation. J Phys Chem B 2015; 119:1793-801. [PMID: 25558766 DOI: 10.1021/jp508897p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MADS box family transcription factors are involved in signal transduction and development control through DNA specific sequence recognition. The DNA binding domain of these proteins contains a conservative 55-60 amino acid sequence which defines the membership of this large family. Here we present a thorough study of the MADS segment of serum response factor (MADS(SRF)). Fluorescence, UV-absorption, and Raman spectroscopy studies were performed in order to disclose its behavior and basic functional properties in an aqueous environment. The secondary structure of MADS(SRF) estimated by analysis of Raman spectra and supported by CD has revealed only the C-terminal part as homologous with those of free core-SRF, while the N-terminal part has lost the stable α-helical structure found in both the free core-SRF and its specific complex with DNA. The three tyrosine residues of the MADS(SRF) were used as spectroscopic inner probes. The effect of environmental conditions, especially pH variations and addition of variously charged quenchers, on their spectra was examined. Two-component fluorescence quenching was revealed using factor analysis and corresponding Stern-Volmer constants determined. Factor analysis of absorbance and fluorescence pH titration led to determination of three dissociation constants pKa1 = 6.4 ± 0.2, pKa2 = 7.3 ± 0.2, and pKa3 = 9.6 ± 0.6. Critical comparison of all experiments identified the deprotonation of His193 hydrogen bonded to Tyr195 as a candidate for pKa1 (and that of Tyr158 as a candidate for pKa2). Within MADS(SRF), His193 is a key intermediary between the N-terminal primary DNA binding element and the hydrophobic C-terminal protein dimerization element.
Collapse
Affiliation(s)
- Barbora Profantová
- Lab. Jean Perrin, CNRS UMR 8237, UPMC Université Paris 6 , 4 place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bobone S, van de Weert M, Stella L. A reassessment of synchronous fluorescence in the separation of Trp and Tyr contributions in protein emission and in the determination of conformational changes. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Honaker MT, Acchione M, Sumida JP, Atkins WM. Ensemble perspective for catalytic promiscuity: calorimetric analysis of the active site conformational landscape of a detoxification enzyme. J Biol Chem 2011; 286:42770-42776. [PMID: 22002059 DOI: 10.1074/jbc.m111.304386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enzymological paradigms have shifted recently to acknowledge the biological importance of catalytic promiscuity. However, catalytic promiscuity is a poorly understood property, and no thermodynamic treatment has described the conformational landscape of promiscuous versus substrate-specific enzymes. Here, two structurally similar glutathione transferase (GST, glutathione S-transferase) isoforms with high specificity or high promiscuity are compared. Differential scanning calorimetry (DSC) indicates a reversible low temperature transition for the promiscuous GSTA1-1 that is not observed with substrate-specific GSTA4-4. This transition is assigned to rearrangement of the C terminus at the active site of GSTA1-1 based on the effects of ligands and mutations. Near-UV and far-UV circular dichroism indicate that this transition is due to repacking of tertiary contacts with the remainder of the subunit, rather than "unfolding" of the C terminus per se. Analysis of the DSC data using a modified Landau theory indicates that the local conformational landscape of the active site of GSTA1-1 is smooth, with barrierless transitions between states. The partition function of the C-terminal states is a broad unimodal distribution at all temperatures within this DSC transition. In contrast, the remainder of the GSTA1-1 subunit and the GSTA4-4 protein exhibit folded and unfolded macrostates with a significant energy barrier separating them. Their partition function includes a sharp unimodal distribution of states only at temperatures that yield either folded or unfolded macrostates. At intermediate temperatures the partition function includes a bimodal distribution. The barrierless rearrangement of the GSTA1-1 active site within a local smooth energy landscape suggests a thermodynamic basis for catalytic promiscuity.
Collapse
Affiliation(s)
- Matthew T Honaker
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - Mauro Acchione
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - John P Sumida
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610.
| |
Collapse
|
6
|
Ma Z, Cowart DM, Scott RA, Giedroc DP. Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis. Biochemistry 2009; 48:3325-34. [PMID: 19249860 DOI: 10.1021/bi900115w] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis CsoR (Bsu CsoR) is a copper-sensing transcriptional repressor that regulates the expression of the copZA operon encoding a copper chaperone and a Cu efflux P-type ATPase, respectively. Bsu CsoR is a homologue of Mycobacterium tuberculosis CsoR (Mtb CsoR), representative of a large Cu(I)-sensing regulatory protein family. We show here that Bsu CsoR binds approximately 1 mol equiv of Cu(I) per monomer in vitro with an affinity >or=10(21) M(-1). X-ray absorption spectroscopy shows Cu(I) adopts a trigonal S(2)N coordination like Mtb CsoR. Both apo and Cu(I)-bound Bsu CsoR are stable tetramers in the low micromolar monomer concentration range by sedimentation velocity and equilibrium ultracentrifugation. Apo-Bsu CsoR binds to a pseudopalindromic 30 bp copZA operator-promoter DNA with a stoichiometry of two tetramers per DNA and stepwise affinities of K(1)(apo) = 3.1(+/-0.8) x 10(7) M(-1) and K(2)(apo) = 8.3 (+/-2.2) x 10(7) M(-1) (0.4 M NaCl, 25 degrees C, pH 6.5). Cu(I) Bsu CsoR binds to the same DNA with greatly reduced affinities, K(1)(Cu) = 2.9(+/-0.4) x 10(6) M(-1) and K(2)(Cu) <or= 1.0 x 10(5) M(-1) consistent with a copper-dependent derepression model. This Cu-dependent regulation is abrogated by a "second shell" Glu90-to-Ala substitution. Bsu CsoR binds Ni(II) with very high affinity but forms a non-native coordination geometry, as does Co(II) and likely Zn(II); none of these metals strongly regulates copZA operator DNA binding in vitro. The implications of these findings on the specificity of metal-sensing sites in CsoR/RcnR proteins are discussed.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | | | |
Collapse
|
7
|
Pastor I, Prieto M, Mateo CR. Effect of Sol−Gel Confinement on the Structural Dynamics of the Enzyme Bovine Cu,Zn Superoxide Dismutase. J Phys Chem B 2008; 112:15021-8. [DOI: 10.1021/jp805368s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Isabel Pastor
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202-Elche, Spain, and Centro de Química-Física Molecular and IN- Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| | - Manuel Prieto
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202-Elche, Spain, and Centro de Química-Física Molecular and IN- Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| | - C. Reyes Mateo
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202-Elche, Spain, and Centro de Química-Física Molecular and IN- Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001, Lisboa, Portugal
| |
Collapse
|
8
|
Baiocco P, Gourlay LJ, Angelucci F, Fontaine J, Hervé M, Miele AE, Trottein F, Brunori M, Bellelli A. Probing the Mechanism of GSH Activation in Schistosoma haematobium Glutathione-S-transferase by Site-directed Mutagenesis and X-ray Crystallography. J Mol Biol 2006; 360:678-89. [PMID: 16777141 DOI: 10.1016/j.jmb.2006.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 11/17/2022]
Abstract
During turnover, the catalytic tyrosine residue (Tyr10) of the sigma class Schistosoma haematobium wild-type glutathione-S-transferase is expected to switch alternately in and out of the reduced glutathione-binding site (G-site). The Tyrout10 conformer forms a pi-cation interaction with the guanidinium group of Arg21. As in other similar glutathione-S-transferases, the catalytic Tyr has a low pKa of 7.2. In order to investigate the catalytic role of Tyr10, and the structural and functional roles of Arg21, we carried out structural studies on two Arg21 mutants (R21L and R21Q) and a Tyr10 mutant, Y10F. Our crystallographic data for the two Arg21 mutants indicate that only the Tyrout10 conformation is populated, thereby excluding a role of Arg21 in the stabilisation of the out conformation. However, Arg21 was confirmed to be catalytically important and essential for the low pKa of Tyr10. Upon comparison with structural data generated for reduced glutathione-bound and inhibitor-bound wild-type enzymes, it was observed that the orientations of Tyr10 and Arg35 are concerted and that, upon ligand binding, minor rearrangements occur within conserved residues in the active site loop. These rearrangements are coupled to quaternary rigid-body movements at the dimer interface and alterations in the localisation and structural order of the C-terminal domain.
Collapse
Affiliation(s)
- Paola Baiocco
- Department of Biochemical Sciences A. Rossi Fanelli and Istituto Pasteur- Fondazione Cenci Bolognetti, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Angelucci F, Baiocco P, Brunori M, Gourlay L, Morea V, Bellelli A. Insights into the Catalytic Mechanism of Glutathione S-Transferase: The Lesson from Schistosoma haematobium. Structure 2005; 13:1241-6. [PMID: 16154081 DOI: 10.1016/j.str.2005.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 06/19/2005] [Accepted: 06/20/2005] [Indexed: 11/21/2022]
Abstract
Glutathione S-transferases (GSTs) are involved in detoxification of xenobiotic compounds and in the biosynthesis of important metabolites. All GSTs activate glutathione (GSH) to GS(-); in many GSTs, this is accomplished by a Tyr at H-bonding distance from the sulfur of GSH. The high-resolution structure of GST from Schistosoma haematobium revealed that the catalytic Tyr occupies two alternative positions, one external, involving a pi-cation interaction with the conserved Arg21, and the other inside the GSH binding site. The interaction with Arg21 lowers the pK(a) of the catalytic Tyr10, as required for catalysis. Examination of several other GST structures revealed the presence of an external pocket that may accommodate the catalytic Tyr, and suggested that the change in conformation and acidic properties of the catalytic Tyr may be shared by other GSTs. Arginine and two other residues of the external pocket constitute a conserved structural motif, clearly identified by sequence comparison.
Collapse
Affiliation(s)
- Francesco Angelucci
- Istituto di Biologia e Patologia Molecolari del CNR, Department of Biochemical Sciences A. Rossi Fanelli, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Lee WI, Fung HL. Mechanism-based partial inactivation of glutathione S-transferases by nitroglycerin: tyrosine nitration vs sulfhydryl oxidation. Nitric Oxide 2003; 8:103-10. [PMID: 12620373 DOI: 10.1016/s1089-8603(02)00183-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver glutathione-S-transferases (GSTs) are responsible for the detoxification of electrophiles, and specifically for the metabolism of orally administered organic nitrates such as nitroglycerin (NTG). Recent studies showed that reactive nitrogen species produced by tetranitromethane (TNM), peroxynitrite, or the myeloperoxidase/H2O2/nitrite system can inactivate GST. It is not known whether NTG can similarly inactivate liver GSTs, and if shown, by what mechanism(s). We incubated purified GSTs with NTG, S-nitroso-N-acetylpenicillamine (SNAP), TNM, or vehicle (5% dextrose, D5W), followed by determination of GST activity. Incubation of GST with NTG and TNM caused significant decreases in GST activity whereas no changes were observed with SNAP or D5W. The relative GST activity (vs preincubation) was 73+/-14% for NTG, 37+/-8% for TNM, 98+/-13% for SNAP, and 98+/-9% for D5W, respectively. Exogenous glutathione (GSH) prevented both NTG- and TNM-induced changes in GST activity, consistent with the observed oxidative modification of GST, such as -SH oxidation and dimerization of oxidized GST. In contrast, NTG and TNM exhibited substantial differences in their ability to nitrate tyrosine (TYR) sites in GST. These results demonstrated that NTG can reduce the activity of its own metabolizing enzyme such as GST and this inhibitory effect of NTG was unlikely to be mediated through NO, as such, since SNAP had no effect on GST activity. The partial inactivation of GST by NTG appeared to involve -SH oxidation, but not TYR nitration. These findings provided the first evidence of mechanism-based protein inactivation by NTG, and may lend insight into the hepatic metabolism of NTG and other organic nitrates after repeated oral exposure.
Collapse
Affiliation(s)
- Woo In Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 14260, Buffalo, NY 14260, USA.
| | | |
Collapse
|
11
|
Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S. The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2449-2456. [PMID: 12177338 DOI: 10.1099/00221287-148-8-2449] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ferric uptake regulator (Fur) of Pseudomonas aeruginosa was expressed in Escherichia coli in its native form and as a fusion to the maltose-binding protein (MBP). Fur from the MBP fusion bound to MBP after proteolytic cleavage, and the two could only be separated by partial unfolding. The refolded protein was in the same conformation as native protein (as judged by circular dichroism and fluorescence spectroscopies) and was fully active in DNA-binding assays. As-prepared native Fur contained small amounts of Zn(2+) that were easily removed by treatment with EDTA, and apo-protein could be reconstituted with approximately one Zn(2+) ion per monomer. Thus, the P. aeruginosa Fur can probably accommodate a single Zn(2+) ion bound to the metal-sensing site. The single cysteine residue of P. aeruginosa Fur aligns with a cysteine in other members of the Fur family that is essential for activity of the E. coli protein, and is believed to provide one of the ligands to a structural Zn(2+) ion. This cysteine residue was shown to be dispensable for the in vivo activity of P. aeruginosa Fur, which is consistent with the suggestion that the P. aeruginosa protein does not contain a structural Zn(2+) ion. Members of the Fur family contain a highly conserved His-His-Asp-His motif. Alanine substitutions of residues in this motif showed His-87 and His-89 of P. aeruginosa Fur to be essential for activity, whilst His-86 and Asp-88 are partially dispensable.
Collapse
Affiliation(s)
- Allison C Lewin
- School of Biological Sciences1 and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Phillip A Doughty
- School of Biological Sciences1 and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Lynda Flegg
- School of Biological Sciences1 and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Geoffrey R Moore
- School of Biological Sciences1 and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stephen Spiro
- School of Biological Sciences1 and School of Chemical Sciences2, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Nieslanik BS, Ibarra C, Atkins WM. The C-terminus of glutathione S-transferase A1-1 is required for entropically-driven ligand binding. Biochemistry 2001; 40:3536-43. [PMID: 11297419 PMCID: PMC1866267 DOI: 10.1021/bi001869x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of a hydrophobic glutathione product conjugate to rGST A1-1 proceeds via a two-step mechanism, including rapid ligand docking, followed by a slow isomerization to the final [GST.ligand] complex, which involves the localization of the flexible C-terminal helix. These kinetically resolved steps have been observed previously by stopped-flow fluorescence with the wild-type rGST A1-1, which contains a native Trp-21 approximately 20 A from the ligand binding site at the intrasubunit domain-domain interface. To confirm this binding mechanism, as well as elucidate the effects of truncation of the C-terminus, we have further characterized the binding and dissociation of the glutathione-ethacrynic acid product conjugate (GS-EA) to wild-type, F222W:W21F, and Delta209-222 rGST A1-1 and wild-type hGST A1-1. Although modest kinetic differences were observed between the hGST A1-1 and rGST A1-1, stopped-flow binding studies with GS-EA verified that the two-step mechanism of ligand binding is not unique to the GST A1-1 isoform from rat. An F222W:W21F rGST A1-1 double mutant provides a direct fluorescence probe of changes in the environment of the C-terminal residue. The observation of two relaxation times during ligand binding and dissociation to F222W:W21F suggests that the C-terminus has an intermediate conformation following ligand docking, which is distinct from its conformation in the apoenzyme or localized helical state. For the wild-type, Delta209-222, and F222W:W21F proteins, variable-temperature stopped-flow experiments were performed and activation parameters calculated for the individual steps of the binding reaction. Activation parameters for the binding reaction coordinate illustrate that the C-terminus provides a significant entropic contribution to ligand binding, which is completely realized within the initial docking step of the binding mechanism. In contrast, the slow isomerization step is enthalpically driven. The partitioning of entropic and enthalpic components of binding energy was confirmed by isothermal titration calorimetry with wild-type and Delta209-222 rGST A1-1.
Collapse
Affiliation(s)
- Brenda S. Nieslanik
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195
| | - Catherine Ibarra
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195
| | - William M. Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195
| |
Collapse
|
13
|
Adman ET, Le Trong I, Stenkamp RE, Nieslanik BS, Dietze EC, Tai G, Ibarra C, Atkins WM. Localization of the C-terminus of rat glutathione S-transferase A1-1: crystal structure of mutants W21F and W21F/F220Y. Proteins 2001; 42:192-200. [PMID: 11119643 DOI: 10.1002/1097-0134(20010201)42:2<192::aid-prot60>3.0.co;2-#] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Twelve C-terminal residues of human glutathione S-transferase A1-1 form a helix in the presence of glutathione-conjugate, or substrate alone, and partly cover the active site. According to X-ray structures, the helix is disordered in the absence of glutathione, but it is not known if it is helical and delocalized, or in a random-coil conformation. Mutation to a tyrosine of residue 220 within this helix was previously shown to affect the pK(a) of Tyr-9 at the active site, in the apo form of the enzyme, and it was proposed that an on-face hydrogen bond between Tyr-220 and Tyr-9 provided a means for affecting this pK(a). In the current study, X-ray structures of the W21F and of the C-terminal mutation, W21F/F220Y, with glutathione sulfonate bound, show that the C-terminal helix is disordered (or delocalized) in the W21F crystal but is visible and ordered in a novel location, a crystal packing crevice, in one of three monomers in the W21F/F220Y crystal, and the proposed hydrogen bond is not formed. Fluorescence spectroscopy studies using an engineered F222W mutant show that the C-terminus remains delocalized in the absence of glutathione or when only the glutathione binding site is occupied, but is ordered and localized in the presence of substrate or conjugate, consistent with these and previous crystallographic studies. Proteins 2001;42:192-200.
Collapse
Affiliation(s)
- E T Adman
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ishigai M, Langridge JI, Bordoli RS, Gaskell SJ. Noncovalent associations of glutathione S-transferase and ligands: a study using electrospray quadrupole/time-of-flight mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2000; 11:606-614. [PMID: 10883816 DOI: 10.1016/s1044-0305(00)00127-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Human glutathione S-transferase A1-1 was observed predominantly as dimeric ions (51 kDa) during electrospray mass spectrometric analysis from aqueous solution at pH 7.4, in keeping with the known dimeric structure in solution. When analyses were performed on solutions of the enzyme containing glutathione (GSH), noncovalent adducts of protein dimer and one or two ligand molecules were observed; each mass increment, which exceeded the mass of GSH alone, was provisionally interpreted to indicate concomitant association of two water molecules per bound GSH. Noncovalent adducts of ligand and protein dimer were similarly observed for oxidized glutathione and for two glutathione inhibitors, both incorporating substituted thiol structures. In these instances, the mass increments exactly matched the ligand masses, suggesting that the apparent concomitant binding of water was associated with the presence in the ligand of a free thiol group. Collisionally activated decomposition during tandem mass spectrometry analyses of noncovalent adducts incorporating protein dimer and ligands yielded initially the denuded dimer; at higher collision energies the monomer and a protein fragment were formed.
Collapse
Affiliation(s)
- M Ishigai
- Michael Barber Centre for Mass Spectrometry, UMIST, Manchester, United Kingdom
| | | | | | | |
Collapse
|
15
|
Nieslanik BS, Atkins WM. The catalytic Tyr-9 of glutathione S-transferase A1-1 controls the dynamics of the C terminus. J Biol Chem 2000; 275:17447-51. [PMID: 10751412 DOI: 10.1074/jbc.m002083200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glutathione S-transferase enzymes (GSTs) have a tyrosine or serine residue at their active site that hydrogen bonds to and stabilizes the thiolate anion of glutathione, GS(-). The importance of this hydrogen bond is obvious, in light of the enhanced nucleophilicity of GS(-) versus the protonated thiol. Several A-class GSTs contain a C-terminal segment that undergoes a ligand-dependent local folding reaction. Here, we demonstrate the effects of the Y9F substitution on binding affinity for glutathione conjugates and on rates of the order-disorder transition of the C terminus in rat GST A1-1. The equilibrium binding affinity of the glutathione conjugate, GS-NBD (NBD-Cl, 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole), was decreased from 4.09 microm to 0.641 microm upon substitution of Tyr-9 with Phe. This result was supported by isothermal titration calorimetry, with K(d) values of 1.51 microm and 0.391 microm for wild type and Y9F, respectively. The increase in binding affinity for the mutant is associated with dramatic decreases in rates for the C-terminal order-disorder transition, based on a stopped-flow kinetic analysis. The same effects were observed, qualitatively, for a second GSH conjugate, GS-ethacrynic acid. Apparently, the phenolic hydroxyl group of Tyr-9 is critical for orchestrating C-terminal dynamics and efficient product release, in addition to its role in lowering the pK(a) of GSH.
Collapse
Affiliation(s)
- B S Nieslanik
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
16
|
Sackett DL, Ruvinov SB, Thompson J. N5-(L-1-carboxyethyl)-L-ornithine synthase: physical and spectral characterization of the enzyme and its unusual low pKa fluorescent tyrosine residues. Protein Sci 1999; 8:2121-9. [PMID: 10548058 PMCID: PMC2144144 DOI: 10.1110/ps.8.10.2121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.
Collapse
Affiliation(s)
- D L Sackett
- Laboratory of Integrative and Medical Biophysics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4855, USA.
| | | | | |
Collapse
|
17
|
Khojasteh-Bakht SC, Nelson SD, Atkins WM. Glutathione S-transferase catalyzes the isomerization of (R)-2-hydroxymenthofuran to mintlactones. Arch Biochem Biophys 1999; 370:59-65. [PMID: 10496977 DOI: 10.1006/abbi.1999.1361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
(R)-(+)-Menthofuran is the proximate toxic metabolite of pulegone, the major constituent of the pennyroyal oil, that contributes significantly to the hepatotoxicity resulting from ingestion of this folklore abortifacient pennyroyal oil. Recently, menthofuran was shown to be metabolized by cytochrome P450 to form (R)-2-hydroxymenthofuran. In this paper it is demonstrated that glutathione S-transferase (GST) catalyzes the tautomerization of 2-hydroxymenthofuran to mintlactone and isomintlactone, apparently without the formation of stable glutathione (GSH) conjugates. The reaction strictly required GSH; S-methyl GSH, which binds to the active site and leaves the active site Tyr-9 partly ionized, did not support GST-catalyzed isomerization. It was also determined that the tautomerization reaction requires the active site tyrosine, Tyr-9. The rat GSTA1-1 mutant (Y9F), with the active site tyrosine replaced with phenylalanine, demonstrated no catalytic activity. Rat cytosolic GST A1-1, in the presence of GSH, tautomerized 2-hydroxymenthofuran with apparent K(M) and V(max) values of 110 microM and 190 nmol/min/nmol GST, respectively. However, the site-directed mutant (F220Y), in which Tyr-9 and GSH in the binary complex [GST. GSH] have lower pK(a)s, exhibited K(M) and V(max) values of 97 microM and 280 nmol/min/nmol GST, respectively. Similarly, human liver cytosol catalyzed the tautomerization of 2-hydroxymenthofuran in a GST-dependent reaction. The mechanism most consistent with the data is a general-base catalyzed isomerization with GS(-) serving to deprotonate the substrate to initiate the reaction.
Collapse
Affiliation(s)
- S C Khojasteh-Bakht
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, 98195-7610, USA
| | | | | |
Collapse
|
18
|
Berry L, Stafford A, Fredenburgh J, O'Brodovich H, Mitchell L, Weitz J, Andrew M, Chan AK. Investigation of the anticoagulant mechanisms of a covalent antithrombin-heparin complex. J Biol Chem 1998; 273:34730-6. [PMID: 9856996 DOI: 10.1074/jbc.273.52.34730] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we developed a covalent antithrombin-heparin complex (ATH) as a possible treatment for respiratory distress syndrome. ATH reacted rapidly with thrombin and efficiently catalyzed the inhibition of either thrombin or factor Xa by exogenous antithrombin. In order to investigate mechanisms for the conjugate's unusual anticoagulant properties, changes in fluorescence due to covalent linkage or addition of exogenous antithrombin were studied in relation to reaction with thrombin derivatives or factor Xa. The emission spectrum of ATH was similar to that of antithrombin plus heparin mixtures. ATH quickly inhibited thrombin or factor Xa activities, as measured by a fluorogenic substrate. Fluorescein-labeled heparin was displaced from either thrombin or active site blocked thrombin by ATH, indicating that thrombin must bind to the conjugate's heparin moiety. Interaction of thrombin with ATH's heparin component was confirmed by a slow reaction rate of conjugate with a thrombin mutant that has weak heparin binding. Total intrinsic fluorescence increased when exogenous antithrombin was added to ATH, indicating that the catalytic mechanism may occur through a second inhibitor binding site. Thus, ATH reacts directly with thrombin through a bridge mechanism and probably catalyzes the reaction of thrombin with antithrombin by a second binding sequence on its heparin chain.
Collapse
Affiliation(s)
- L Berry
- Hamilton Civic Hospitals Research Centre, Hamilton, Ontario L8V 1C3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stella L, Caccuri AM, Rosato N, Nicotra M, Lo Bello M, De Matteis F, Mazzetti AP, Federici G, Ricci G. Flexibility of helix 2 in the human glutathione transferase P1-1. time-resolved fluorescence spectroscopy. J Biol Chem 1998; 273:23267-73. [PMID: 9722558 DOI: 10.1074/jbc.273.36.23267] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Time-resolved fluorescence spectroscopy and site-directed mutagenesis have been used to probe the flexibility of alpha-helix 2 (residues 35-46) in the apo structure of the human glutathione transferase P1-1 (EC 2.5.1.18) as well as in the binary complex with the natural substrate glutathione. Trp-38, which resides on helix 2, has been exploited as an intrinsic fluorescent probe of the dynamics of this region. A Trp-28 mutant enzyme was studied in which the second tryptophan of glutathione transferase P1-1 is replaced by histidine. Time-resolved fluorescence data indicate that, in the absence of glutathione, the apoenzyme exists in at least two different families of conformational states. The first one (38% of the total population) corresponds to a number of slightly different conformations of helix 2, in which Trp-38 resides in a polar environment showing an average emission wavelength of 350 nm. The second one (62% of the total population) displays an emission centered at 320 nm, thus suggesting a quite apolar environment near Trp-38. The interconversion between these two conformations is much slower than 1 ns. In the presence of saturating glutathione concentrations, the equilibrium is shifted toward the apolar component, which is now 83% of the total population. The polar conformers, on the other hand, do not change their average decay lifetime, but the distribution becomes wider, indicating a slightly increased rigidity. These data suggest a central role of conformational transitions in the binding mechanism, and are consistent with NMR data (Nicotra, M., Paci, M., Sette, M., Oakley, A. J., Parker, M. W., Lo Bello, M., Caccuri, A. M., Federici, G., and Ricci, G. (1998) Biochemistry 37, 3020-3027) and pre-steady state kinetic experiments (Caccuri, A. M., Lo Bello, M., Nuccetelli, M., Nicotra, M., Rossi, P., Antonini, G., Federici, G., and Ricci, G. (1998) Biochemistry 37, 3028-3034) indicating the existence of a pre-complex in which GSH is not firmly bound to the active site.
Collapse
Affiliation(s)
- L Stella
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata," Via della Ricerca Scientifica 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
van der Aar EM, Tan KT, Commandeur JN, Vermeulen NP. Strategies to characterize the mechanisms of action and the active sites of glutathione S-transferases: a review. Drug Metab Rev 1998; 30:569-643. [PMID: 9710706 DOI: 10.3109/03602539808996325] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- E M van der Aar
- Leiden/Amsterdam Center for Drug Research Department of Pharmacochemistry, Vrije Universiteit, The Netherlands
| | | | | | | |
Collapse
|
21
|
Atkins WM, Dietze EC, Ibarra C. Pressure-dependent ionization of Tyr 9 in glutathione S-transferase A1-1: contribution of the C-terminal helix to a "soft" active site. Protein Sci 1997; 6:873-81. [PMID: 9098897 PMCID: PMC2144754 DOI: 10.1002/pro.5560060414] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glutathione S-transferase (GST) isozyme A1-1 contains at its active site a catalytic tyrosine, Tyr9, which hydrogen bonds to, and stabilizes, the thiolate form of glutathione, GS-. In the substrate-free GST A1-1, the Tyr 9 has an unusually low pKa, approximately 8.2, for which the ionization to tyrosinate is monitored conveniently by UV and fluorescence spectroscopy in the tryptophan-free mutant, W21F. In addition, a short alpha-helix, residues 208-222, provides part of the GSH and hydrophobic ligand binding sites, and the helix becomes "disordered" in the absence of ligands. Here, hydrostatic pressure has been used to probe the conformational dynamics of the C-terminal helix, which are apparently linked to Tyr 9 ionization. The extent of ionization of Tyr 9 at pH 7.6 is increased dramatically at low pressures (p1/2 = 0.52 kbar), based on fluorescence titration of Tyr 9. The mutant protein W21F:Y9F exhibits no changes in tyrosine fluorescence up to 1.2 kbar; pressure specifically ionizes Tyr 9. The volume change, delta V, for the pressure-dependent ionization of Tyr 9 at pH 7.6, 19 degrees C, was -33 +/- 3 mL/mol. In contrast, N-acetyl tyrosine exhibits a delta V for deprotonation of -11 +/- 1 mL/mol, beginning from the same extent of initial ionization, pH 9.5. The pressure-dependent ionization is completely reversible for both Tyr 9 and N-acetyl tyrosine. Addition of S-methyl GSH converted the "soft" active site to a noncompressible site that exhibited negligible pressure-dependent ionization of Tyr 9 below 0.8 kbar. In addition, Phe 220 forms part of an "aromatic cluster" with Tyr 9 and Phe 10, and interactions among these residues were hypothesized to control the order of the C-terminal helix. The amino acid substitutions F220Y, F2201, and F220L afford proteins that undergo pressure-dependent ionization of Tyr 9 with delta V values of 31 +/- 2 mL/mol, 43 +/- 3 mL/mol, and 29 +/- 2 mL/mol, respectively. The p1/2 values for Tyr 9 ionization were 0.61 kbar, 0.41 kbar, and 0.46 kbar for F220Y, F220I, and F220L, respectively. Together, the results suggest that the C-terminal helix is conformationally heterogeneous in the absence of ligands. The conformations differ little in free energy, but they are significantly different in volume, and mutations at Phe 220 control the conformational distribution.
Collapse
Affiliation(s)
- W M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle 98195-7610, USA.
| | | | | |
Collapse
|