1
|
Monti A, Ronca R, Campiani G, Ruvo M, Doti N. Expression, Purification, Structural and Functional Characterization of Recombinant Human Parvulin 17. Mol Biotechnol 2023; 65:337-349. [PMID: 35467256 PMCID: PMC9935730 DOI: 10.1007/s12033-022-00493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Parvulins, peptidyl-prolyl isomerase enzymes (PPIase), catalyze the cis-trans isomerization of prolyl bonds in polypeptides, contributing to folding and function regulation of many proteins. Among Parvulins, Par17, exclusively expressed in hominids, is the least examined in terms of structure, catalytic function and cellular activity. Setting the conditions for the preparation of recombinant active Par17 may therefore significantly foster future studies. Here, we comparatively evaluated the impact of several parameters, including host strains, culture media, isopropyl ß-D-1-thiogalactopyranoside concentration, post-induction incubation time and temperature, on the overexpression of Par17 in E. coli cells. A similar approach was also comparatively adopted for the preparation of the recombinant full-length Pin1 protein, the most representative Parvulin, and the catalytic domains of both enzymes. Proteins were efficiently expressed and purified to homogeneity and were subjected to a structural characterization by Size Exclusion Chromatography and Circular Dichroism. Moreover, a single-step homogeneous protease-based fluorimetric assay, potentially scalable in HTS format, has been developed for determining the peptidyl-prolyl cis-trans isomerase activity of recombinant Parvulins. Results obtained show that proteins are folded and active. These new data mark an important milestone for progressing the investigation of Parvulins.
Collapse
Affiliation(s)
- Alessandra Monti
- Instituto di Biostrutture e Bioimmagini-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Raffaele Ronca
- Instituto di Biostrutture e Bioimmagini-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Giuseppe Campiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Menotti Ruvo
- Instituto di Biostrutture e Bioimmagini-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Nunzianna Doti
- Instituto di Biostrutture e Bioimmagini-CNR, Via Pietro Castellino 111, 80131, Napoli, Italy.
| |
Collapse
|
2
|
Baumgartner LM, Erbe A, Boyle AL, Rabe M. Controlling amphipathic peptide adsorption by smart switchable germanium interfaces. Phys Chem Chem Phys 2022; 24:4809-4819. [PMID: 35147613 DOI: 10.1039/d1cp03938e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The in situ control of reversible protein adsorption to a surface is a critical step towards biofouling prevention and finds utilisation in bioanalytical applications. In this work, adsorption of peptides is controlled by employing the electrode potential induced, reversible change of germanium (100) surface termination between a hydrophobic, hydrogen terminated and a hydrophilic, hydroxyl terminated surface. This simple but effective 'smart' interface is used to direct adsorption of two peptides models, representing the naturally highly abundant structural motifs of amphipathic helices and coiled-coils. Their structural similarity coincides with their opposite overall charge and hence allows the examination of the influence of charge and hydrophobicity on adsorption. Polarized attenuated total reflection infrared (ATR-IR) spectroscopy at controlled electrode potential has been used to follow the adsorption process at physiological pH in deuterated buffer. The delicate balance of hydrophobic and electrostatic peptide/surface interactions leads to two different processes upon switching that are both observed in situ: reversible adsorption and reversible reorientation. Negatively charged peptide adsorption can be fully controlled by switching to the hydrophobic interface, while the same switch causes the positively charged, helical peptide to tilt down. This principle can be used for 'smart' adsorption control of a wider variety of proteins and peptides and hence find application, as e.g. a bioanalytical tool or functional biosensor.
Collapse
Affiliation(s)
- Laura-Marleen Baumgartner
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| | - Andreas Erbe
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany. .,Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Aimee L Boyle
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Martin Rabe
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
3
|
Lee MW, Luo EWC, Silvestre-Roig C, Srinivasan Y, Akabori K, Lemnitzer P, Schmidt NW, Lai GH, Santangelo CD, Soehnlein O, Wong GCL. Apolipoprotein Mimetic Peptide Inhibits Neutrophil-Driven Inflammatory Damage via Membrane Remodeling and Suppression of Cell Lysis. ACS NANO 2021; 15:15930-15939. [PMID: 34586780 PMCID: PMC8720511 DOI: 10.1021/acsnano.1c03978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neutrophils are crucial for host defense but are notorious for causing sterile inflammatory damage. Activated neutrophils in inflamed tissue can liberate histone H4, which was recently shown to perpetuate inflammation by permeating membranes via the generation of negative Gaussian curvature (NGC), leading to lytic cell death. Here, we show that it is possible to build peptides or proteins that cancel NGC in membranes and thereby suppress pore formation, and demonstrate that they can inhibit H4 membrane remodeling and thereby reduce histone H4-driven lytic cell death and resultant inflammation. As a demonstration of principle, we use apolipoprotein A-I (apoA-I) mimetic peptide apoMP1. X-ray structural studies and theoretical calculations show that apoMP1 induces nanoscopic positive Gaussian curvature (PGC), which interacts with the NGC induced by the N-terminus of histone H4 (H4n) to inhibit membrane permeation. Interestingly, we show that induction of PGC can inhibit membrane-permeating activity in general and "turn off" diverse membrane-permeating molecules besides H4n. In vitro experiments show an apoMP1 dose-dependent rescue of H4 cytotoxicity. Using a mouse model, we show that tissue accumulation of neutrophils, release of neutrophil extracellular traps (NETs), and extracellular H4 all strongly correlate independently with local tissue cell death in multiple organs, but administration of apoMP1 inhibits histone H4-mediated cytotoxicity and strongly prevents organ tissue damage.
Collapse
Affiliation(s)
- Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Carlos Silvestre-Roig
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kiyotaka Akabori
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Patricia Lemnitzer
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
| | - Nathan W Schmidt
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Ginkgo Bioworks, 27 Drydock Avenue, Boston, Massachusetts 02210, United States
| | - Ghee Hwee Lai
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551
| | - Christian D Santangelo
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Physics, Syracuse University, Syracuse, New York 13244, United States
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149 Münster, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, 171 77 Stockholm, Sweden
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Protein Amphipathic Helix Insertion: A Mechanism to Induce Membrane Fission. Front Cell Dev Biol 2019; 7:291. [PMID: 31921835 PMCID: PMC6914677 DOI: 10.3389/fcell.2019.00291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
One of the fundamental features of biomembranes is the ability to fuse or to separate. These processes called respectively membrane fusion and fission are central in the homeostasis of events such as those related to intracellular membrane traffic. Proteins that contain amphipathic helices (AHs) were suggested to mediate membrane fission via shallow insertion of these helices into the lipid bilayer. Here we analyze the AH-containing proteins that have been identified as essential for membrane fission and categorize them in few subfamilies, including small GTPases, Atg proteins, and proteins containing either the ENTH/ANTH- or the BAR-domain. AH-containing fission-inducing proteins may require cofactors such as additional proteins (e.g., lipid-modifying enzymes), or lipids (e.g., phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidic acid [PA], or cardiolipin). Both PA and cardiolipin possess a cone shape and a negative charge (-2) that favor the recruitment of the AHs of fission-inducing proteins. Instead, PtdIns(4,5)P2 is characterized by an high negative charge able to recruit basic residues of the AHs of fission-inducing proteins. Here we propose that the AHs of fission-inducing proteins contain sequence motifs that bind lipid cofactors; accordingly (K/R/H)(K/R/H)xx(K/R/H) is a PtdIns(4,5)P2-binding motif, (K/R)x6(F/Y) is a cardiolipin-binding motif, whereas KxK is a PA-binding motif. Following our analysis, we show that the AHs of many fission-inducing proteins possess five properties: (a) at least three basic residues on the hydrophilic side, (b) ability to oligomerize, (c) optimal (shallow) depth of insertion into the membrane, (d) positive cooperativity in membrane curvature generation, and (e) specific interaction with one of the lipids mentioned above. These lipid cofactors favor correct conformation, oligomeric state and optimal insertion depth. The most abundant lipid in a given organelle possessing high negative charge (more negative than -1) is usually the lipid cofactor in the fission event. Interestingly, naturally occurring mutations have been reported in AH-containing fission-inducing proteins and related to diseases such as centronuclear myopathy (amphiphysin 2), Charcot-Marie-Tooth disease (GDAP1), Parkinson's disease (α-synuclein). These findings add to the interest of the membrane fission process whose complete understanding will be instrumental for the elucidation of the pathogenesis of diseases involving mutations in the protein AHs.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
5
|
Almeida C, Maniti O, Di Pisa M, Swiecicki JM, Ayala-Sanmartin J. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation. PLoS One 2019; 14:e0210985. [PMID: 30673771 PMCID: PMC6343925 DOI: 10.1371/journal.pone.0210985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/06/2019] [Indexed: 11/19/2022] Open
Abstract
Cell penetrating peptides (CPPs) are able to transport hydrophilic molecules inside cells. To reach the cytosol, the peptide associated with a cargo must cross the plasma or the endosomal membrane. Different molecular mechanisms for peptide internalisation into cells have been proposed and it is becoming clear that the cellular internalisation mechanisms are different depending on the peptide sequence and structure and the target membrane. Herein, the penetration of three peptides into large unilamellar vesicles were studied: the homeodomain derived 16-residues penetratin, nona-arginine (R9), and a small peptide containing 6 arginine and 3 tryptophan residues (RW9). The membrane models were composed of phospholipids from natural sources containing different molecular species. We observed that among the three peptides, only the amphipathic peptide RW9 was able to cross the membrane vesicles in the liquid disordered state. The changes in the distribution of the previously characterized cholesterol-pyrene probe show that cholesterol-pyrene molecules dissociate from clusters upon membrane interaction with the three peptides and that the cholesterol environment becomes more disordered in the presence of RW9. Finally, we studied the effect of the peptides on lipid ordering on giant plasma membrane vesicles. The amphipathic peptides RW9 and its longer homologue RW16 induced lipid de-packing in plasma membrane vesicles. Overall, the data suggest that a disordered membrane favours the translocation of RW9, that the membrane cholesterol is redistributed during peptide interaction, and that the peptide amphipathic character is important to increase membrane fluidity and peptide membrane translocation.
Collapse
Affiliation(s)
- Claudia Almeida
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Ofelia Maniti
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Margherita Di Pisa
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Jean-Marie Swiecicki
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
| | - Jesus Ayala-Sanmartin
- CNRS, Sorbonne Université, École Normale Supérieure, Université PSL, Laboratoire des Biomolécules, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Anderson CM, Cardenas A, Elber R, Webb LJ. Preferential Equilibrium Partitioning of Positively Charged Tryptophan into Phosphatidylcholine Bilayer Membranes. J Phys Chem B 2019; 123:170-179. [PMID: 30481465 PMCID: PMC6331081 DOI: 10.1021/acs.jpcb.8b09872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/19/2018] [Indexed: 11/29/2022]
Abstract
The interactions between small molecules and lipid bilayers play a critical role in the function of cellular membranes. Understanding how a small molecule interacts with the lipid bilayer differently based on its charge reveals primordial mechanisms of transport across membranes and assists in the design of drug molecules that can penetrate cells. We have previously reported that tryptophan permeated through a phosphatidylcholine lipid bilayer membrane at a faster rate when it was positively charged (Trp+) than when negatively charged (Trp-), which corresponded to a lower potential of mean force (PMF) barrier determined through simulations. In this report, we demonstrate that Trp+ partitions into the lipid bilayer membrane to a greater degree than Trp- by interacting with the ester linkage of a phosphatidylcholine lipid, where it is stabilized by the electron withdrawing glycerol functional group. These results are in agreement with tryptophan's known role as an anchor for transmembrane proteins, though the tendency for binding of a positively charged tryptophan is surprising. We discuss the implications of our results on the mechanisms of unassisted permeation and penetration of small molecules within and across lipid bilayer membranes based on molecular charge, shape, and molecular interactions within the bilayer structure.
Collapse
Affiliation(s)
- Cari M. Anderson
- Department
of Chemistry, Institute for Computational Engineering and Sciences, Institute for Cellular
and Molecular Biology, Texas Materials Institute, The University of Texas at Austin, 2506 Speedway STOP A5300, Austin, Texas 78712, United States
| | - Alfredo Cardenas
- Department
of Chemistry, Institute for Computational Engineering and Sciences, Institute for Cellular
and Molecular Biology, Texas Materials Institute, The University of Texas at Austin, 2506 Speedway STOP A5300, Austin, Texas 78712, United States
| | - Ron Elber
- Department
of Chemistry, Institute for Computational Engineering and Sciences, Institute for Cellular
and Molecular Biology, Texas Materials Institute, The University of Texas at Austin, 2506 Speedway STOP A5300, Austin, Texas 78712, United States
| | - Lauren J. Webb
- Department
of Chemistry, Institute for Computational Engineering and Sciences, Institute for Cellular
and Molecular Biology, Texas Materials Institute, The University of Texas at Austin, 2506 Speedway STOP A5300, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Koukalová A, Pokorná Š, Boyle AL, Lopez Mora N, Kros A, Hof M, Šachl R. Distinct roles of SNARE-mimicking lipopeptides during initial steps of membrane fusion. NANOSCALE 2018; 10:19064-19073. [PMID: 30288507 DOI: 10.1039/c8nr05730c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A model system for membrane fusion, inspired by SNARE proteins and based on two complementary lipopeptides CPnE4 and CPnK4, has been recently developed. It consists of cholesterol (C), a poly(ethylene glycol) linker (Pn) and either a cationic peptide K4 (KIAALKE)4 or an anionic peptide E4 (EIAALEK)4. In this paper, fluorescence spectroscopy is used to decipher distinct but complementary roles of these lipopeptides during early stages of membrane fusion. Molecular evidence is provided that different distances of E4 in CPnE4 and K4 in CPnK4 from the bilayer represent an important mechanism, which enables fusion. Whereas E4 is exposed to the bulk and solely promotes membrane binding of CPnK4, K4 loops back to the lipid-water interface where it fulfills two distinct roles: it initiates bilayer contact by binding to CPnE4 containing bilayers; and it initiates fusion by modulating the bilayer properties. The interaction between CPnE4 and CPnK4 is severely down-regulated by binding of K4 to the bilayer and possible only if the lipopeptides approach each other as constituents of different bilayers. When the complementary lipopeptides are localized in the same bilayer, hetero-coiling is disabled. These data provide crucial insights as to how fusion is initiated and highlight the importance of both peptides in this process.
Collapse
Affiliation(s)
- Alena Koukalová
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, Prague, 182 23, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fuentes LA, Beck WHJ, Tsujita M, Weers PMM. Charged Residues in the C-Terminal Domain of Apolipoprotein A-I Modulate Oligomerization. Biochemistry 2018; 57:2200-2210. [PMID: 29578333 DOI: 10.1021/acs.biochem.7b01052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Charged residues of the C-terminal domain of human apolipoprotein A-I (apoA-I) were targeted by site-directed mutagenesis. A series of mutant proteins was engineered in which lysine residues (Lys 195, 206, 208, 226, 238, and 239) or glutamate residues (Glu 234 and 235) were replaced by glutamine. The amino acid substitutions did not result in changes in secondary structure content or protein stability. Cross-linking and size-exclusion chromatography showed that the mutations resulted in reduced self-association, generating a predominantly monomeric apoA-I when five or six lysine residues were substituted. The rate of phosphatidylcholine vesicle solubilization was enhanced for all variants, with approximately a threefold rate enhancement for apoA-I lacking Lys 206, 208, 238, and 239, or Glu 234 and 235. Single or double mutations did not change the ability to protect lipolyzed low density lipoprotein from aggregation, but variants lacking >4 lysine residues were less effective in preventing lipoprotein aggregation. ApoA-I mediated cellular lipid efflux from wild-type mice macrophage foam cells was decreased for the variant with five lysine mutations. However, this protein was more effective in releasing cellular phosphatidylcholine and sphingomyelin from Abca1-null mice macrophage foam cells. This suggests that the mutations caused changes in the interaction with ABCA1 transporters and that membrane microsolubilization was primarily responsible for lipid efflux in cells lacking ABCA1. Taken together, this study indicates that ionic interactions in the C-terminal domain of apoA-I favor self-association and that monomeric apoA-I is more active in solubilizing phospholipid bilayers.
Collapse
Affiliation(s)
- Lukas A Fuentes
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| | - Wendy H J Beck
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| | - Maki Tsujita
- Department of Biochemistry , Nagoya City University Graduate School of Medical Sciences , Aichi 467-8601 , Japan
| | - Paul M M Weers
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| |
Collapse
|
9
|
Rabe M, Aisenbrey C, Pluhackova K, de Wert V, Boyle AL, Bruggeman DF, Kirsch SA, Böckmann RA, Kros A, Raap J, Bechinger B. A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion. Biophys J 2016; 111:2162-2175. [PMID: 27851940 PMCID: PMC5113151 DOI: 10.1016/j.bpj.2016.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022] Open
Abstract
A system based on two designed peptides, namely the cationic peptide K, (KIAALKE)3, and its complementary anionic counterpart called peptide E, (EIAALEK)3, has been used as a minimal model for membrane fusion, inspired by SNARE proteins. Although the fact that docking of separate vesicle populations via the formation of a dimeric E/K coiled-coil complex can be rationalized, the reasons for the peptides promoting fusion of vesicles cannot be fully explained. Therefore it is of significant interest to determine how the peptides aid in overcoming energetic barriers during lipid rearrangements leading to fusion. In this study, investigations of the peptides' interactions with neutral PC/PE/cholesterol membranes by fluorescence spectroscopy show that tryptophan-labeled K∗ binds to the membrane (KK∗ ∼6.2 103 M-1), whereas E∗ remains fully water-solvated. 15N-NMR spectroscopy, depth-dependent fluorescence quenching, CD-spectroscopy experiments, and MD simulations indicate a helix orientation of K∗ parallel to the membrane surface. Solid-state 31P-NMR of oriented lipid membranes was used to study the impact of peptide incorporation on lipid headgroup alignment. The membrane-immersed K∗ is found to locally alter the bilayer curvature, accompanied by a change of headgroup orientation relative to the membrane normal and of the lipid composition in the vicinity of the bound peptide. The NMR results were supported by molecular dynamics simulations, which showed that K reorganizes the membrane composition in its vicinity, induces positive membrane curvature, and enhances the lipid tail protrusion probability. These effects are known to be fusion relevant. The combined results support the hypothesis for a twofold role of K in the mechanism of membrane fusion: 1) to bring opposing membranes into close proximity via coiled-coil formation and 2) to destabilize both membranes thereby promoting fusion.
Collapse
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands.
| | | | - Kristyna Pluhackova
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vincent de Wert
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Aimee L Boyle
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Didjay F Bruggeman
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Sonja A Kirsch
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Kros
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Jan Raap
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Leiden, the Netherlands
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS UMR7177, Institut de Chimie, Strasbourg, France.
| |
Collapse
|
10
|
Ghio S, Kamp F, Cauchi R, Giese A, Vassallo N. Interaction of α-synuclein with biomembranes in Parkinson's disease--role of cardiolipin. Prog Lipid Res 2015; 61:73-82. [PMID: 26703192 DOI: 10.1016/j.plipres.2015.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS-lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer. Moreover, we assert that the interaction of αS with a liquid-disordering phospholipid uniquely enriched in mitochondrial membranes, namely cardiolipin (1,3-diphosphatidyl-sn-glycerol, CL), helps target the αS oligomeric complexes intracellularly to mitochondria. Binding mediated by CL may thus represent an important pathomechanism by which cytosolic αS could physically associate with mitochondrial membranes and disrupt their integrity. Impaired mitochondrial function culminates in a cellular bioenergetic crisis and apoptotic death. To conclude, we advocate the accelerated discovery of new drugs targeting this pathway in order to restore mitochondrial function in PD.
Collapse
Affiliation(s)
- Stephanie Ghio
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Frits Kamp
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University & DZNE, 81377 Munich, Germany
| | - Ruben Cauchi
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Armin Giese
- Zentrum für Neuropathologie und Prionforschung, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta.
| |
Collapse
|
11
|
Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1. mBio 2015; 6:e01188-15. [PMID: 26330516 PMCID: PMC4556811 DOI: 10.1128/mbio.01188-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins’ differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell’s inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by PspA and Vipp1 is driven by two physio-chemical signals, one of which is membrane stress specific. Our work points to alleviation of membrane stored curvature elastic stress by amphipathic helix insertions as an attractive mechanism for membrane maintenance by PspA and Vipp1. Furthermore, the identification of a physical, stress-related membrane signal suggests a unilateral mechanism that promotes both binding of PspA and induction of the Psp response.
Collapse
|
12
|
Do TD, Chamas A, Zheng X, Barnes A, Chang D, Veldstra T, Takhar H, Dressler N, Trapp B, Miller K, McMahon A, Meredith SC, Shea JE, Lazar Cantrell K, Bowers MT. Elucidation of the Aggregation Pathways of Helix-Turn-Helix Peptides: Stabilization at the Turn Region Is Critical for Fibril Formation. Biochemistry 2015; 54:4050-62. [PMID: 26070092 DOI: 10.1021/acs.biochem.5b00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aggregation of proteins to fiberlike aggregates often involves a transformation of native monomers to β-sheet-rich oligomers. This general observation underestimates the importance of α-helical segments in the aggregation cascade. Here, using a combination of experimental techniques and accelerated molecular dynamics simulations, we investigate the aggregation of a 43-residue, apolipoprotein A-I mimetic peptide and its E21Q and D26N mutants. Our study indicates a strong propensity of helical segments not to adopt cross-β-fibrils. The helix-turn-helix monomeric conformation of the peptides is preserved in the mature fibrils. Furthermore, we reveal opposite effects of mutations on and near the turn region in the self-assembly of these peptides. We show that the E21-R24 salt bridge is a major contributor to helix-turn-helix folding, subsequently leading to abundant fibril formation. On the other hand, the K19-D26 interaction is not required to fold the native helix-turn-helix peptide. However, removal of the charged D26 residue decreases the stability of the helix-turn-helix monomer and consequently reduces the level of aggregation. Finally, we provide a more refined assembly model for the helix-turn-helix peptides from apolipoprotein A-I based on the parallel stacking of helix-turn-helix dimers.
Collapse
Affiliation(s)
| | | | | | - Aaron Barnes
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Dayna Chang
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Tjitske Veldstra
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Harmeet Takhar
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Nicolette Dressler
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Benjamin Trapp
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Kylie Miller
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Audrene McMahon
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | | | | | - Kristi Lazar Cantrell
- §Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | | |
Collapse
|
13
|
Versluis F, Voskuhl J, Vos J, Friedrich H, Ravoo BJ, Bomans PHH, Stuart MCA, Sommerdijk NAJM, Kros A. Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes. SOFT MATTER 2014; 10:9746-9751. [PMID: 25367891 DOI: 10.1039/c4sm01801j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Controlled fusion events between natural membranes composed of phospholipids with synthetic unnatural membranes will yield valuable fundamental information on the mechanism of membrane fusion. Here, fusion between vastly different phospholipid liposomes and cyclodextrin amphiphile based vesicles (CDVs) controlled by a pair of coiled coil forming lipidated peptides was investigated. Fusion events were characterized using lipid and content mixing assays and the resulting hybrid assemblies were characterized with cryo-TEM imaging. The secondary/quaternary structure of the lipidated peptides at the membrane interface was studied using circular dichroism spectroscopy. This is the first example of targeted fusion between natural and non-natural bilayer membranes and the in situ formation of hybrid CDV-liposome structures is of interest as it yields fundamental information about the mechanism through which fusion proceeds.
Collapse
Affiliation(s)
- Frank Versluis
- Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, P. O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rabe M, Schwieger C, Zope HR, Versluis F, Kros A. Membrane interactions of fusogenic coiled-coil peptides: implications for lipopeptide mediated vesicle fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7724-7735. [PMID: 24914996 DOI: 10.1021/la500987c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fusion of lipid membranes is an important natural process for the intra- and intercellular exchange of molecules. However, little is known about the actual fusion mechanism at the molecular level. In this study we examine a system that models the key features of this process. For the molecular recognition between opposing membranes two membrane anchored heterodimer coiled-coil forming peptides called 'E' (EIAALEK)3 and 'K' (KIAALKE)3 were used. Lipid monolayers and IR reflection absorption spectroscopy (IRRAS) revealed the interactions of the peptides 'E', 'K', and their parallel coiled-coil complex 'E/K' with the phospholipid membranes and thereby mimicked the pre- and postfusion states, respectively. The peptides adopted α-helical structures and were incorporated into the monolayers with parallel orientation. The strength of binding to the monolayer differed for the peptides and tethering them to the membrane increased the interactions even further. Remarkably, these interactions played a role even in the postfusion state. These findings shed light on important mechanistic details of the membrane fusion process in this model system. Furthermore, their implications will help to improve the rational design of new artificial membrane fusion systems, which have a wide range of potential applications in supramolecular chemistry and biomedicine.
Collapse
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Peter B, Fanucchi S, Dirr HW. A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:405-14. [DOI: 10.1007/s00249-014-0972-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022]
|
16
|
Maniti O, Piao HR, Ayala-Sanmartin J. Basic cell penetrating peptides induce plasma membrane positive curvature, lipid domain separation and protein redistribution. Int J Biochem Cell Biol 2014; 50:73-81. [DOI: 10.1016/j.biocel.2014.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 11/27/2022]
|
17
|
Rawat A, Harishchandran A, Nagaraj R. Fatty acyl chain-dependent but charge-independent association of the SH4 domain of Lck with lipid membranes. J Biosci 2013; 38:63-71. [PMID: 23385814 DOI: 10.1007/s12038-012-9288-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The SH4 domain of Src family of nonreceptor protein tyrosine kinases represents the extreme N-terminal 1-16 amino acid region which mediates membrane association of these proteins and facilitates their functions. The SH4 domains among Src members lack well-defined sequence consensus and vary in the net charge. However, they readily anchor to the cytoplasmic face of the plasma membrane upon fatty acid acylation. Here, we report the membrane association of differentially acylated SH4 domain of Lck kinase, which has net negative charge at physiological pH. Our results suggest that despite the net negative charge, the SH4 domain of Lck associates with membranes upon fatty acid acylation. While myristoylation at the N-terminus is sufficient for providing membrane anchorage, multiple acylation determines orientation of the peptide chain with respect to the lipid bilayer. Hence, fatty acylation serves more than just a lipid anchor. It has an important role in regulating the spatial orientation of the peptide domain with respect to the lipid bilayer, which could be important for the interaction of the other domains of these kinases with their partners.
Collapse
Affiliation(s)
- Anoop Rawat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | |
Collapse
|
18
|
Miyazaki M, Tajima Y, Ishihama Y, Handa T, Nakano M. Effect of phospholipid composition on discoidal HDL formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1340-6. [DOI: 10.1016/j.bbamem.2013.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
19
|
Pfefferkorn CM, Jiang Z, Lee JC. Biophysics of α-synuclein membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:162-71. [PMID: 21819966 PMCID: PMC3249522 DOI: 10.1016/j.bbamem.2011.07.032] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 12/14/2022]
Abstract
Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Candace M. Pfefferkorn
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhiping Jiang
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer C. Lee
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Shen X, Li S, Du Y, Mao X, Li Y. The N-terminal hydrophobic segment of Streptomyces coelicolor FtsY forms a transmembrane structure to stabilize its membrane localization. FEMS Microbiol Lett 2012; 327:164-71. [DOI: 10.1111/j.1574-6968.2011.02478.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/26/2011] [Accepted: 12/01/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xueling Shen
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Shanzhen Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Yiling Du
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Xuming Mao
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| | - Yongquan Li
- Institute of Biochemistry; College of Life Sciences; Zhejiang University; Hangzhou; China
| |
Collapse
|
21
|
Ozawa M, Handa T, Nakano M. Effect of Cholesterol on Binding of Amphipathic Helices to Lipid Emulsions. J Phys Chem B 2011; 116:476-82. [DOI: 10.1021/jp207062h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mai Ozawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsurou Handa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Nakano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Caulfield TR. Inter-ring rotation of apolipoprotein A-I protein monomers for the double-belt model using biased molecular dynamics. J Mol Graph Model 2011; 29:1006-14. [PMID: 21570882 DOI: 10.1016/j.jmgm.2011.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 03/29/2011] [Accepted: 04/19/2011] [Indexed: 02/04/2023]
Abstract
The double belt model for lipid-bound discoidal apolipoprotein A-I consists of two alpha-helical monomers bound about an unilamellar bilayer of lipids. Previous work, based on salt bridge calculations, has demonstrated that the L5/5 registration, Milano mutant, and Paris mutant are preferred conformations for apolipoprotein A-I. The salt bridge scoring indicated better energetic scoring in these alignments. The Paris (R151C) and Milano (R173C) mutants indicate a mode of change must be available. To find proper registration, one proposed change is a 'rotationally' independent circular motion of the two protein monomers about the lipid unilamellar bilayer core. Here, we present computational data for independent inter-ring rotation of the two alpha-helical monomers about the lipid unilamellar bilayer core. The simulations presented here support the existing double-belt model. We find the rotation of the two protein monomers is able to occur with biasing. We determine that a cysteine mutant at Glu107 as a possible target for future mutational studies. Since HDL remodeling is necessary for cholesterol transport, our model for remodeling through dynamics has substantial biomedical implications.
Collapse
Affiliation(s)
- Thomas R Caulfield
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
23
|
Miyazaki M, Tajima Y, Handa T, Nakano M. Static and Dynamic Characterization of Nanodiscs with Apolipoprotein A-I and Its Model Peptide. J Phys Chem B 2010; 114:12376-82. [DOI: 10.1021/jp102074b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masakazu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Tajima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsurou Handa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Nakano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Pfefferkorn CM, Lee JC. Tryptophan probes at the alpha-synuclein and membrane interface. J Phys Chem B 2010; 114:4615-22. [PMID: 20229987 DOI: 10.1021/jp908092e] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding how environmental factors affect the conformational dynamics of alpha-synuclein (alpha-syn) is of great importance because the accumulation and deposit of aggregated alpha-syn in the brain are intimately connected to Parkinson's disease etiology. Measurements of steady-state and time-resolved fluorescence of single tryptophan-containing alpha-syn variants have revealed distinct phospholipid vesicle and micelle interactions at residues 4, 39, 94, and 125. Our circular dichroism data confirm that Trp mutations do not affect alpha-syn membrane binding properties (apparent association constant K(a)app approximately 1 x 10(7) M(-1) for all synucleins) saturating at an estimated lipid-to-protein molar ratio of 380 or approximately 120 proteins covering approximately 7% of the surface area of an 80 nm diameter vesicle. Fluorophores at positions 4 and 94 are the most sensitive to the lipid bilayer with pronounced spectral blue-shifts (W4: Delta(lambda)max approximately 23 nm; W94: Delta(lambda)max approximately 10 nm) and quantum yield increases (W4, W94: approximately 3 fold), while W39 and W125 remain primarily water-exposed. Time-resolved fluorescence data show that all sites (except W125) have subpopulations that interact with the membrane.
Collapse
Affiliation(s)
- Candace M Pfefferkorn
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
25
|
Woys AM, Lin YS, Reddy AS, Xiong W, de Pablo JJ, Skinner JL, Zanni MT. 2D IR Line Shapes Probe Ovispirin Peptide Conformation and Depth in Lipid Bilayers. J Am Chem Soc 2010; 132:2832-8. [DOI: 10.1021/ja9101776] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Yu-Shan Lin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Allam S. Reddy
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Wei Xiong
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Juan J. de Pablo
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - James L. Skinner
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| |
Collapse
|
26
|
Drin G, Antonny B. Amphipathic helices and membrane curvature. FEBS Lett 2009; 584:1840-7. [PMID: 19837069 DOI: 10.1016/j.febslet.2009.10.022] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/09/2009] [Indexed: 01/29/2023]
Abstract
Numerous data have been collected on lipid-binding amphipathic helices involved in membrane-remodeling machineries and vesicular transport. Here we describe how, with regard to lipid composition, the physicochemical features of some amphipathic helices explain their ability to recognize membrane curvature or to participate in membrane remodeling. We propose that sensing highly-curved membranes requires that the polar and hydrophobic faces of the helix do not cooperate in lipid binding. A more detailed description of the interaction between amphipathic helices and lipids is however needed; notably to explain how new helices contribute to detection of modest changes in curvature or even negative curvature.
Collapse
Affiliation(s)
- Guillaume Drin
- Université de Nice-Sophia Antipolis and CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | | |
Collapse
|
27
|
Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. PLANT PHYSIOLOGY 2009; 150:1503-14. [PMID: 19439573 PMCID: PMC2705017 DOI: 10.1104/pp.109.136697] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/06/2009] [Indexed: 05/18/2023]
Abstract
Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. We demonstrated previously that maize (Zea mays) DHNs bind preferentially to anionic phospholipid vesicles; this binding is accompanied by an increase in alpha-helicity of the protein, and adoption of alpha-helicity can be induced by sodium dodecyl sulfate. All DHNs contain at least one "K-segment," a lysine-rich 15-amino acid consensus sequence. The K-segment is predicted to form a class A2 amphipathic alpha-helix, a structural element known to interact with membranes and proteins. Here, three K-segment deletion proteins of maize DHN1 were produced. Lipid vesicle-binding assays revealed that the K-segment is required for binding to anionic phospholipid vesicles, and adoption of alpha-helicity of the K-segment accounts for most of the conformational change of DHNs upon binding to anionic phospholipid vesicles or sodium dodecyl sulfate. The adoption of structure may help stabilize cellular components, including membranes, under stress conditions.
Collapse
Affiliation(s)
- Myong-Chul Koag
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521-0124, USA
| | | | | | | | | | | |
Collapse
|
28
|
Vasquez LJ, Abdullahi GE, Wan CPL, Weers PMM. Apolipophorin III lysine modification: Effect on structure and lipid binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1901-6. [PMID: 19450543 DOI: 10.1016/j.bbamem.2009.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/05/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
Apolipophorin III (apoLp-III) from Locusta migratoria was used as a model to investigate apolipoprotein lipid binding interactions. ApoLp-III contains eight lysine residues, of which seven are located on one side of the protein. To investigate the role of positive charges on lipid binding, lysine residues were acetylated by acetic anhydride. The degree of acetylation was analyzed by SDS-PAGE and MALDI-TOF, indicating a maximum of eight acetyl additions. Modified apoLp-III remained alpha-helical, but displayed a decreased alpha-helical content (from 78 to 54%). Acetylation resulted in a slight increase in protein stability, as indicated by a change in the midpoint of guanidine-HCl induced denaturation from 0.55 (unmodified) to 0.65 M (acetylated apoLp-III). Lipid bound apoLp-III, either acetylated or unmodified, displayed similar increases in helical content and midpoint of guanidine-HCl-induced denaturation of approximately 4 M. The ability to solubilize vesicles of dimyristoylphosphatidylcholine remained unchanged. However, the rate to solubilize dimyristoylphosphatidylglycerol vesicles was reduced two-fold. In addition, a decreased ability to stabilize diacylglycerol-enriched low density lipoproteins was observed. This indicated that lysine residues are not critical for the protein's ability to bind to zwitterionic phospholipids. Since binding interactions with ionic phospholipids and lipoproteins were affected by acetylation, lysine side-chains may play a modulating role in the interaction with more complex lipid surfaces encountered in vivo.
Collapse
Affiliation(s)
- Lesley J Vasquez
- Department of Chemistry and Biochemistry, 1250 Bellflower Blvd, California State University Long Beach, Long Beach, CA 90840, USA
| | | | | | | |
Collapse
|
29
|
Braig D, Bär C, Thumfart JO, Koch HG. Two cooperating helices constitute the lipid-binding domain of the bacterial SRP receptor. J Mol Biol 2009; 390:401-13. [PMID: 19414018 DOI: 10.1016/j.jmb.2009.04.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/02/2009] [Accepted: 04/28/2009] [Indexed: 11/19/2022]
Abstract
Protein targeting by the bacterial signal recognition particle requires the specific interaction of the signal recognition particle (SRP)-ribosome-nascent chain complex with FtsY, the bacterial SRP receptor. Although FtsY in Escherichia coli lacks a transmembrane domain, the membrane-bound FtsY displays many features of an integral membrane protein. Our data reveal that it is the cooperative action of two lipid-binding helices that allows this unusually strong membrane contact. Helix I comprises the first 14 amino acids of FtsY and the second is located at the interface between the A- and the N-domain of FtsY. We show by site-directed cross-linking and binding assays that both helices bind to negatively charged phospholipids, with a preference for phosphatidyl glycerol. Despite the strong lipid binding, helix I does not seem to be completely inserted into the lipid phase, but appears to be oriented parallel with the membrane surface. The two helices together with the connecting linker constitute an independently folded domain, which maintains its lipid binding even in the absence of the conserved NG-core of FtsY. In summary, our data reveal that the two consecutive lipid-binding helices of FtsY can provide a membrane contact that does not differ significantly in stability from that provided by a transmembrane domain. This explains why the bacterial SRP receptor does not require an integral beta-subunit for membrane binding.
Collapse
Affiliation(s)
- David Braig
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | |
Collapse
|
30
|
Chen S, Fan Y, Shen X, Sun P, Jiang G, Shen Y, Xue W, Li Y, Chen X. A molecular modeling study of the interaction between SRP-receptor complex and peptide translocon. Biochem Biophys Res Commun 2008; 377:346-350. [DOI: 10.1016/j.bbrc.2008.09.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
|
31
|
Stavrakoudis A. Molecular dynamics simulations of an apoliprotein A–I derived peptide in explicit water. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Carnemolla R, Ren X, Biswas TK, Meredith SC, Reardon CA, Wang J, Getz GS. The specific amino acid sequence between helices 7 and 8 influences the binding specificity of human apolipoprotein A-I for high density lipoprotein (HDL) subclasses: a potential for HDL preferential generation. J Biol Chem 2008; 283:15779-88. [PMID: 18385132 PMCID: PMC2414305 DOI: 10.1074/jbc.m710244200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/01/2008] [Indexed: 02/02/2023] Open
Abstract
Humans have two major high density lipoprotein (HDL) sub-fractions, HDL(2) and HDL(3), whereas mice have a monodisperse HDL profile. Epidemiological evidence has suggested that HDL(2) is more atheroprotective; however, currently there is no direct experimental evidence to support this postulate. The amino acid sequence of apoA-I is a primary determinant of HDL subclass formation. The majority of the alpha-helical repeats in human apoA-I are proline-punctuated. A notable exception is the boundary between helices 7 and 8, which is located in the transitional segment between the stable N-terminal domain and the C-terminal hydrophobic domain. In this study we ask whether the substitution of a proline-containing sequence (PCS) separating other helices in human apoA-I for the non-proline-containing sequence (NPCS) between helices 7 and 8 (residues 184-190) influences HDL subclass association. The human apoA-I mutant with PCS2 replacing NPCS preferentially bound to HDL(2). In contrast, the mutant where PCS3 replaced NPCS preferentially associated with HDL(3). Thus, the specific amino acid sequence between helices 7 and 8 influences HDL subclass association. The wild-type and mutant proteins exhibited similar physicochemical properties except that the two mutants displayed greater lipid-associated stability versus wild-type human apoA-I. These results focus new attention on the influence of the boundary between helices 7 and 8 on the properties of apoA-I. The expression of these mutants in mice may result in the preferential generation of HDL(2) or HDL(3) and allow us to examine experimentally the anti-atherogenicity of the HDL subclasses.
Collapse
Affiliation(s)
- Ronald Carnemolla
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| | - Xuefeng Ren
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| | - Tapan K. Biswas
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| | - Stephen C. Meredith
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| | - Catherine A. Reardon
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| | - Jianjun Wang
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| | - Godfrey S. Getz
- Department of Pathology and the
Committee of Molecular Metabolism and Nutrition,
The University of Chicago, Chicago, Illinois 60637 and the
Department of Biochemistry and Molecular
Biology, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
33
|
Tu CF, Yan YT, Wu SY, Djoko B, Tsai MT, Cheng CJ, Yang RB. Domain and Functional Analysis of a Novel Platelet-Endothelial Cell Surface Protein, SCUBE1. J Biol Chem 2008; 283:12478-88. [DOI: 10.1074/jbc.m705872200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Yi D, Guoming L, Gao L, Wei L. Interaction of arginine oligomer with model membrane. Biochem Biophys Res Commun 2007; 359:1024-9. [PMID: 17572387 DOI: 10.1016/j.bbrc.2007.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 06/04/2007] [Indexed: 11/17/2022]
Abstract
Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.
Collapse
Affiliation(s)
- Dandan Yi
- Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No.13, Hangkong Road, Wuhan 430040, China.
| | | | | | | |
Collapse
|
35
|
Drin G, Casella JF, Gautier R, Boehmer T, Schwartz TU, Antonny B. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 2007; 14:138-46. [PMID: 17220896 DOI: 10.1038/nsmb1194] [Citation(s) in RCA: 453] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 12/26/2006] [Indexed: 11/09/2022]
Abstract
The Golgi-associated protein ArfGAP1 has an unusual membrane-adsorbing amphipathic alpha-helix: its polar face is weakly charged, containing mainly serine and threonine residues. We show that this feature explains the specificity of ArfGAP1 for curved versus flat lipid membranes. We built an algorithm to identify other potential amphipathic alpha-helices rich in serine and threonine residues in protein databases. Among the identified sequences, we show that three act as membrane curvature sensors. In the golgin GMAP-210, the sensor may serve to trap small vesicles at the end of a long coiled coil. In Osh4p/Kes1p, which transports sterol between membranes, the sensor controls access to the sterol-binding pocket. In the nucleoporin Nup133, the sensor corresponds to an exposed loop of a beta-propeller structure. Ser/Thr-rich amphipathic helices thus define a general motif used by proteins of various functions for sensing membrane curvature.
Collapse
Affiliation(s)
- Guillaume Drin
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
36
|
Gibbons WJ, Karp ES, Cellar NA, Minto RE, Lorigan GA. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling. Biophys J 2005; 90:1249-59. [PMID: 16326900 PMCID: PMC1367276 DOI: 10.1529/biophysj.105.067884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal delta12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L(alpha) phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8 degrees with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a peptide-bilayer model useful in the consideration of local protein folding in the microsomal desaturases, and presents a model of arginine and tyrosine control of transmembrane protein stability and insertion.
Collapse
Affiliation(s)
- William J Gibbons
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
37
|
Gariani T, Samuelsson T, Sauer-Eriksson AE. Conformational variability of the GTPase domain of the signal recognition particle receptor FtsY. J Struct Biol 2005; 153:85-96. [PMID: 16343944 DOI: 10.1016/j.jsb.2005.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/20/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Abstract
The prokaryotic signal recognition particle Ffh and its receptor FtsY allow targeting of proteins into or across the plasma membrane. The targeting process is GTP dependent and the two proteins constitute a distinct GTPase family. The receptor FtsY is composed of A and NG domains where the NG's GTPase domain plays a critical role in the targeting process. In this study, we describe two X-ray structures determined independently of each other of the NG domain of FtsY from Mycoplasma mycoides (MmFtsY). The two structures are markedly different in three of the nucleotide-binding segments, GI (P-loop), GII, and GIII, making only one of the structures compatible with nucleotide binding. Interestingly, the two distinct conformations of the nucleotide-binding segments of MmFtsY are similar to the apo- and ADP-loaded forms of certain ATPases. The structure of the extended interface between the A and NG domains of MmFtsY provides new insights into the role of the A domain for phospholipid interaction.
Collapse
Affiliation(s)
- Talal Gariani
- Umeå Centre for Molecular Pathogenesis, Umeå University, Sweden
| | | | | |
Collapse
|
38
|
Li L, Chen J, Mishra VK, Kurtz JA, Cao D, Klon AE, Harvey SC, Anantharamaiah GM, Segrest JP. Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity. J Mol Biol 2004; 343:1293-311. [PMID: 15491614 DOI: 10.1016/j.jmb.2004.09.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/24/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
We recently proposed an all-atom model for apolipoprotein (apo) A-I in discoidal high-density lipoprotein in which two monomers form stacked antiparallel helical rings rotationally aligned by interhelical salt-bridges. The model can be derived a priori from the geometry of a planar bilayer disc that constrains the hydrophobic face of a continuous amphipathic alpha helix in lipid-associated apoA-I to a plane inside of an alpha-helical torus. This constrains each apoA-I monomer to a novel conformation, that of a slightly unwound, curved, planar amphipathic alpha 11/3 helix (three turns per 11 residues). Using non-denaturing gradient gel electrophoresis, we show that dimyristoylphosphocholine discs containing two apoA-I form five distinct particles with maximal Stokes diameters of 98 A (R2-1), 106 A (R2-2), 110 A (R2-3), 114 A (R2-4) and 120 A (R2-5). Further, we show that the Stokes diameters of R2-1 and R2-2 are independent of the N-terminal 43 residues (the flexible domain) of apoA-I, while the flexible domain is necessary and sufficient for the formation of the three larger complexes. On the basis of these results, the conformation of apoA-I on the R2-2 disc can be modeled accurately as an amphipathic helical double belt extending the full length of the lipid-associating domain with N and C-terminal ends in direct contact. The smallest of the discs, R2-1, models as the R2-2 conformation with an antiparallel 15-18 residue pairwise segment of helixes hinged off the disc edge. The conformations of full-length apoA-I on the flexible domain-dependent discs (R2-3, R2-4 and R2-5) model as the R2-2 conformation extended on the disc edge by one, two or three of the 11-residue tandem amphipathic helical repeats (termed G1, G2 and G3), respectively, contained within the flexible domain. Although we consider these results to favor the double belt model, the topographically very similar hairpin-belt model cannot be ruled out entirely.
Collapse
Affiliation(s)
- Ling Li
- Department of Medicine, UAB Medical Center, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saito H, Lund-Katz S, Phillips MC. Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Prog Lipid Res 2004; 43:350-80. [PMID: 15234552 DOI: 10.1016/j.plipres.2004.05.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Exchangeable apolipoproteins function in lipid transport as structural components of lipoprotein particles, cofactors for enzymes and ligands for cell-surface receptors. Recent findings with apoA-I and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related. Characteristically, these proteins contain a series of proline-punctuated, 11- or 22-amino acid, amphipathic alpha-helical repeats that can adopt a helix bundle conformation in the lipid-free state. The amino- and carboxyl-terminal regions form separate domains with the latter being primarily responsible for lipid binding. Interaction with lipid induces changes in the conformation of the amino-terminal domain leading to alterations in function; for example, opening of the amino-terminal four-helix bundle in apolipoprotein E upon lipid binding is associated with enhanced receptor-binding activity. The concept of a two-domain structure for the larger exchangeable apolipoproteins is providing new molecular insights into how these apolipoproteins interact with lipids and other proteins, such as receptors. The ways in which structural changes induced by lipid interaction modulate the functionality of these apolipoproteins are reviewed.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Lipid Research Group, The Children's Hospital of Philadelphia, Abramson Research Center, Suite 1102, 3615 Civic Center Boulevard, University of Pennsylvania School of Medicine, Philadelphia, 19104-4318, USA
| | | | | |
Collapse
|
40
|
Fernández-Carneado J, Kogan MJ, Pujals S, Giralt E. Amphipathic peptides and drug delivery. Biopolymers 2004; 76:196-203. [PMID: 15054899 DOI: 10.1002/bip.10585] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The discovery of cell-penetrating peptides as gene delivery systems and the interest in the mechanism by which these vectors cross the cell membrane have generated a large number of studies. Among the parameters involved in the translocation process, controversy has arisen about the role of the amphipathicity of the carriers in the interaction and reorganization of the cell membrane. In this review we have summarized the vectors with primary or secondary amphipathicity related to secondary structure. Some of the insights into the relationship between the aggregation state of the peptide at the concentrations used for internalization studies and its interaction with the cell membrane result from our contribution to the field with a new family of amphipathic proline-rich peptides.
Collapse
Affiliation(s)
- Jimena Fernández-Carneado
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Saito H, Dhanasekaran P, Nguyen D, Deridder E, Holvoet P, Lund-Katz S, Phillips MC. α-Helix Formation Is Required for High Affinity Binding of Human Apolipoprotein A-I to Lipids. J Biol Chem 2004; 279:20974-81. [PMID: 15020600 DOI: 10.1074/jbc.m402043200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) A-I is thought to undergo a conformational change during lipid association that results in the transition of random coil to alpha-helix. Using a series of deletion mutants lacking different regions along the molecule, we examined the contribution of alpha-helix formation in apoA-I to the binding to egg phosphatidylcholine (PC) small unilamellar vesicles (SUV). Binding isotherms determined by gel filtration showed that apoA-I binds to SUV with high affinity and deletions in the C-terminal region markedly decrease the affinity. Circular dichroism measurements demonstrated that binding to SUV led to an increase in alpha-helix content, but the helix content was somewhat less than in reconstituted discoidal PC.apoA-I complexes for all apoA-I variants, suggesting that the helical structure of apoA-I on SUV is different from that in discs. Isothermal titration calorimetry showed that the binding of apoA-I to SUV is accompanied by a large exothermic heat and deletions in the C-terminal regions greatly decrease the heat. Analysis of the rate of release of heat on binding, as well as the kinetics of quenching of tryptophan fluorescence by brominated PC, indicated that the opening of the N-terminal helix bundle is a rate-limiting step in apoA-I binding to the SUV surface. Significantly, the correlation of thermodynamic parameters of binding with the increase in the number of helical residues revealed that the contribution of alpha-helix formation upon lipid binding to the enthalpy and the free energy of the binding of apoA-I is -1.1 and -0.04 kcal/mol per residue, respectively. These results indicate that alpha-helix formation, especially in the C-terminal regions, provides the energetic source for high affinity binding of apoA-I to lipids.
Collapse
Affiliation(s)
- Hiroyuki Saito
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Abramson Research Center, 3625 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Chamberlain AK, Lee Y, Kim S, Bowie JU. Snorkeling Preferences Foster an Amino Acid Composition Bias in Transmembrane Helices. J Mol Biol 2004; 339:471-9. [PMID: 15136048 DOI: 10.1016/j.jmb.2004.03.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 03/21/2004] [Indexed: 11/28/2022]
Abstract
By analyzing transmembrane (TM) helices in known structures, we find that some polar amino acids are more frequent at the N terminus than at the C terminus. We propose the asymmetry occurs because most polar amino acids are better able to snorkel their polar atoms away from the membrane core at the N terminus than at the C terminus. Two findings lead us to this proposition: (1) side-chain conformations are influenced strongly by the N or C-terminal position of the amino acid in the bilayer, and (2) the favored snorkeling direction of an amino acid correlates well with its N to C-terminal composition bias. Our results suggest that TM helix predictions should incorporate an N to C-terminal composition bias, that rotamer preferences of TM side-chains are position-dependent, and that the ability to snorkel influences the evolutionary selection of amino acids for the helix N and C termini.
Collapse
Affiliation(s)
- Aaron K Chamberlain
- Department of Chemistry and Biochemistry, UCLA-DOE Center for Genomics and Proteomics, Molecular Biology Institute, Boyer Hall, 611 Charles E. Young Drive E, Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
43
|
Mozsolits H, Lee TH, Clayton AHA, Sawyer WH, Aguilar MI. The membrane-binding properties of a class A amphipathic peptide. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2004; 33:98-108. [PMID: 12879312 DOI: 10.1007/s00249-003-0332-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 05/12/2003] [Accepted: 05/13/2003] [Indexed: 10/26/2022]
Abstract
The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide-membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.
Collapse
Affiliation(s)
- H Mozsolits
- Department of Biochemistry and Molecular Biology, Monash University, 3800 Clayton, Vic, Australia
| | | | | | | | | |
Collapse
|
44
|
Widera A, Norouziyan F, Shen WC. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 2003; 55:1439-66. [PMID: 14597140 DOI: 10.1016/j.addr.2003.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
Collapse
Affiliation(s)
- A Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
45
|
Rojo N, Gómara MJ, Alsina MA, Haro I. Lipophilic derivatization of synthetic peptides belonging to NS3 and E2 proteins of GB virus-C (hepatitis G virus) and its effect on the interaction with model lipid membranes. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2003; 61:318-30. [PMID: 12753379 DOI: 10.1034/j.1399-3011.2003.00060.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The synthesis by solid-phase methodologies of peptides belonging to structural and non-structural proteins of GB virus C as well as its N-alpha-acylation with myristate and palmitate fatty acids is described. To explore the peptide-lipid interactions we have used liposomes composed of dipalmitoylphosphatidylcholine as model membranes and complementary spectroscopic and calorimetric techniques. Our results show that structural and more clearly the structural lipophilic peptide sequences incorporated into lipid bilayers perturb the packing of lipids and affect their thermotropic properties, more than the non-structural selected sequence. However, the binding of the synthetic sequences to lipid membranes occurred without any restructuration of the peptides.
Collapse
Affiliation(s)
- N Rojo
- Department of Peptide and Protein Chemistry, IIQAB-CSIC, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Mukai Y, Matsushita Y, Niidome T, Hatekeyama T, Aoyag H. Parallel and antiparallel dimers of magainin 2: their interaction with phospholipid membrane and antibacterial activity. J Pept Sci 2002; 8:570-7. [PMID: 12450326 DOI: 10.1002/psc.416] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Magainin 2 (M2) forms pores by associating with several other M2 molecules in lipid membranes and shows antibacterial activity. To examine the effect of M2 dimerization on biological activity and membrane interaction, parallel and antiparallel M2 dimers were prepared from two monomeric precursors. Antibacterial and haemolytic activities were enhanced by dimerization. CD measurements showed that both dimers and monomers have an alpha-helical structure in the presence of lipid vesicles. Tryptophan fluorescence shift and KI quenching studies showed that all the peptides were more deeply embedded in acidic liposomes than in neutral liposomes. Experiments on dye-leakage activity and membrane translocation of peptides suggest that dimers and monomers form pores through lipid membranes, although the pore formation may be accompanied by membrane disturbance. Although dimerization of M2 increased the interaction activity with lipid membranes, no appreciable difference between the activities of parallel and antiparallel M2 dimers was observed.
Collapse
Affiliation(s)
- Yasuhiro Mukai
- Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
47
|
Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 2002; 3:256-66. [PMID: 11994745 DOI: 10.1038/nrm778] [Citation(s) in RCA: 584] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to take up substances from the surrounding environment not only provides cells with vital nutrients, but also enables the selective transport of substances from one compartment to another. Megalin and cubilin are two structurally different endocytic receptors that interact to serve such functions. Evidence has accumulated in recent years to indicate that these receptors have important functions in both normal physiology and pathology.
Collapse
Affiliation(s)
- Erik Ilsø Christensen
- Department of Cell Biology, University of Aarhus, University Park, Building 234, DK-8000 Aarhus C, ;
| | | |
Collapse
|
48
|
Drin G, Temsamani J. Translocation of protegrin I through phospholipid membranes: role of peptide folding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:160-70. [PMID: 11853682 DOI: 10.1016/s0005-2736(01)00447-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protegrin PG-1, belonging to the family of beta-stranded antimicrobial peptides, exerts its activity by forming pores in the target biological membranes. Linear analogues derived from PG-1 do not form pores in the phospholipid membranes and have been used successfully to deliver therapeutic compounds into eucaryotic cells. In this paper, the translocation of PG-1 and of a linear analogue through artificial phospholipid membranes was investigated, leading to a possible mechanism for the activity of these peptidic vectors. We report here that [12W]PG-1, a fluorescent analogue of PG-1, is able to translocate through lipid bilayers and we demonstrate that this property depends on its secondary structure. Our results agree with the recent mechanism proposed for the translocation and permeabilisation activities of several helical and beta-stranded peptides. In addition, our data corroborate recent work suggesting that certain protegrin-derived vectors enter into endothelial cells by adsorptive-mediated endocytosis.
Collapse
Affiliation(s)
- Guillaume Drin
- Synt:em, Parc Scientifique Georges Besse, 3000 Nîmes, France.
| | | |
Collapse
|
49
|
London E, Ladokhin AS. Measuring the depth of amino acid residues in membrane-inserted peptides by fluorescence quenching. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52006-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
50
|
Experimental and computational studies of the interactions of amphipathic peptides with lipid surfaces. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|