1
|
Quanrud GM, Lyu Z, Balamurugan SV, Canizal C, Wu HT, Genereux JC. Cellular Exposure to Chloroacetanilide Herbicides Induces Distinct Protein Destabilization Profiles. ACS Chem Biol 2023; 18:1661-1676. [PMID: 37427419 PMCID: PMC10367052 DOI: 10.1021/acschembio.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Herbicides in the widely used chloroacetanilide class harbor a potent electrophilic moiety, which can damage proteins through nucleophilic substitution. In general, damaged proteins are subject to misfolding. Accumulation of misfolded proteins compromises cellular integrity by disrupting cellular proteostasis networks, which can further destabilize the cellular proteome. While direct conjugation targets can be discovered through affinity-based protein profiling, there are few approaches to probe how cellular exposure to toxicants impacts the stability of the proteome. We apply a quantitative proteomics methodology to identify chloroacetanilide-destabilized proteins in HEK293T cells based on their binding to the H31Q mutant of the human Hsp40 chaperone DNAJB8. We find that a brief cellular exposure to the chloroacetanilides acetochlor, alachlor, and propachlor induces misfolding of dozens of cellular proteins. These herbicides feature distinct but overlapping profiles of protein destabilization, highly concentrated in proteins with reactive cysteine residues. Consistent with the recent literature from the pharmacology field, reactivity is driven by neither inherent nucleophilic nor electrophilic reactivity but is idiosyncratic. We discover that propachlor induces a general increase in protein aggregation and selectively targets GAPDH and PARK7, leading to a decrease in their cellular activities. Hsp40 affinity profiling identifies a majority of propachlor targets identified by competitive activity-based protein profiling (ABPP), but ABPP can only identify about 10% of protein targets identified by Hsp40 affinity profiling. GAPDH is primarily modified by the direct conjugation of propachlor at a catalytic cysteine residue, leading to global destabilization of the protein. The Hsp40 affinity strategy is an effective technique to profile cellular proteins that are destabilized by cellular toxin exposure. Raw proteomics data is available through the PRIDE Archive at PXD030635.
Collapse
Affiliation(s)
- Guy M. Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Sunil V. Balamurugan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Carolina Canizal
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Kholodar SA, Finer-Moore JS, Świderek K, Arafet K, Moliner V, Stroud RM, Kohen A. Caught in Action: X-ray Structure of Thymidylate Synthase with Noncovalent Intermediate Analog. Biochemistry 2021; 60:1243-1247. [PMID: 33829766 PMCID: PMC10627423 DOI: 10.1021/acs.biochem.1c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of 2-deoxyuridine-5'-monophosphate (dUMP) at the C5 position by the obligate dimeric thymidylate synthase (TSase) in the sole de novo biosynthetic pathway to thymidine 5'-monophosphate (dTMP) proceeds by forming a covalent ternary complex with dUMP and cosubstrate 5,10-methylenetetrahydrofolate. The crystal structure of an analog of this intermediate gives important mechanistic insights but does not explain the half-of-the-sites activity of the enzyme. Recent experiments showed that the C5 proton and the catalytic Cys are eliminated in a concerted manner from the covalent ternary complex to produce a noncovalent bisubstrate intermediate. Here, we report the crystal structure of TSase with a close synthetic analog of this intermediate in which it has partially reacted with the enzyme but in only one protomer, consistent with the half-of-the-sites activity of this enzyme. Quantum mechanics/molecular mechanics simulations confirmed that the analog could undergo catalysis. The crystal structure shows a new water 2.9 Å from the critical C5 of the dUMP moiety, which in conjunction with other residues in the network, may be the elusive general base that abstracts the C5 proton of dUMP during the reaction.
Collapse
Affiliation(s)
- Svetlana A Kholodar
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Janet S Finer-Moore
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Structural Bases for the Synergistic Inhibition of Human Thymidylate Synthase and Ovarian Cancer Cell Growth by Drug Combinations. Cancers (Basel) 2021; 13:cancers13092061. [PMID: 33923290 PMCID: PMC8123127 DOI: 10.3390/cancers13092061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Drug combinations may help overcome drug resistance, a relevant cause of failure of ovarian cancer therapy. However, designing successful combinations requires a lengthy preclinical validation process. We have analyzed combinations of 5-fluorouracil and raltitrexed, two anticancer drugs that target thymidylate synthase, a key enzyme for the nucleotide synthesis. We have observed administration sequence specific and synergistic combined effects of the two drugs against cisplatin sensitive and resistant ovarian cancer cells. However, the focus of this work was to show that a high stability of the complex of the enzyme with the two drugs, as highlighted by X-ray crystallography, and synergistic inhibition of the enzyme represent indicators, if not prerequisites, for this drug combination to be synergistically active against sensitive and resistant ovarian cancer cells. We thus propose that structural and mechanistic information acquired during the preclinical research can help predict a successful therapeutic application of a drug combination. Abstract Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.
Collapse
|
4
|
Gaurav K, Adhikary T, Satpati P. dUMP/F-dUMP Binding to Thymidylate Synthase: Human Versus Mycobacterium tuberculosis. ACS OMEGA 2020; 5:17182-17192. [PMID: 32715203 PMCID: PMC7376888 DOI: 10.1021/acsomega.0c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Thymidylate synthase is an enzyme that catalyzes deoxythymidine monophosphate (dTMP) synthesis from substrate deoxyuridine monophosphate (dUMP). Thymidylate synthase of Mycobacterium tuberculosis (MtbThyX) is structurally distinct from its human analogue human thymidylate synthase (hThyA), thus drawing attention as an attractive drug target for combating tuberculosis. Fluorodeoxyuridylate (F-dUMP) is a successful inhibitor of both MtbThyX and hThyA, thus limited by poor selectivity. Understanding the dynamics and energetics associated with substrate/inhibitor binding to thymidylate synthase in atomic details remains a fundamental unsolved problem, which is necessary for a new selective inhibitor design. Structural studies of MtbThyX and hThyA bound substrate/inhibitor complexes not only revealed the extensive specific interaction network between protein and ligands but also opened up the possibility of directly computing the energetics of the substrate versus inhibitor recognition. Using experimentally determined structures as a template, we report extensive computer simulations (∼4.5 μs) that allow us to quantitatively estimate ligand selectivity (dUMP vs F-dUMP) by MtbThyX and hThyA. We show that MtbThyX prefers deprotonated dUMP (enolate form) as the substrate, whereas hThyA binds to the keto form of dUMP. Computed energetics clearly show that MtbThyX is less selective between dUMP and F-dUMP, favoring the latter, relative to hThyA. The simulations reveal the role of tyrosine at position 135 (Y135) of hThyA in amplifying the selectivity. The protonation state of the pyrimidine base of the ligand (i.e., keto or enolate) seems to have no role in MtbThyX ligand selectivity. A molecular gate (consists of Y108, K165, H203, and a water molecule) restricts water accessibility and offers a desolvated dry ligand-binding pocket for MtbThyX. The ligand-binding pocket of hThyA is relatively wet and exposed to bulk water.
Collapse
|
5
|
Sapienza PJ, Popov KI, Mowrey DD, Falk BT, Dokholyan NV, Lee AL. Inter-Active Site Communication Mediated by the Dimer Interface β-Sheet in the Half-the-Sites Enzyme, Thymidylate Synthase. Biochemistry 2019; 58:3302-3313. [PMID: 31283187 DOI: 10.1021/acs.biochem.9b00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymidylate synthase (TS) is a dimeric enzyme conserved in all life forms that exhibits the allosteric feature of half-the-sites activity. Neither the reason for nor the mechanism of this phenomenon is understood. We used a combined nuclear magnetic resonance (NMR) and molecular dynamics approach to study a stable intermediate preceding hydride transfer, which is the rate-limiting and half-the-sites step. In NMR titrations with ligands leading to this intermediate, we measured chemical shifts of the apoenzyme (lig0), the saturated holoenzyme (lig2), and the typically elusive singly bound (lig1) states. Approximately 40 amides showed quartet patterns providing direct NMR evidence of coupling between the active site and probes >30 Å away in the distal subunit. Quartet peak patterns have symmetrical character, indicating reciprocity in communicating the first and second binding events to the distal protomer. Quartets include key catalytic residues and map to the dimer interface β-sheet, which also represents the shortest path between the two active sites. Simulations corroborate the coupling observed in solution in that there is excellent overlap between quartet residues and main-chain atoms having intersubunit cross-correlated motions. Simulations identify five hot spot residues, three of which lie at the kink in the unique β-bulge abutting the active sites on either end of the sheet. Interstrand cross-correlated motions become more organized and pronounced as the enzyme progresses from lig0 to lig1 and ultimately lig2. Coupling in the apparently symmetrical complex has implications for half-the-sites reactivity and potentially resolves the paradox of inequivalent TS active sites despite the vast majority of X-ray structures appearing to be symmetrical.
Collapse
Affiliation(s)
- Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-7355 , United States
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, School of Medicine , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - David D Mowrey
- Department of Biochemistry and Biophysics, School of Medicine , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Bradley T Falk
- Department of Biochemistry and Biophysics, School of Medicine , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Department of Biochemistry and Molecular Biology , Penn State College of Medicine , Hershey , Pennsylvania 17033 , United States.,Department of Chemistry and Department of Biomedical Engineering , The Pennsylvania State University , University Park , Pennsylvania 16801 , United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-7355 , United States.,Department of Biochemistry and Biophysics, School of Medicine , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
6
|
Structural Comparison of Enterococcus faecalis and Human Thymidylate Synthase Complexes with the Substrate dUMP and Its Analogue FdUMP Provides Hints about Enzyme Conformational Variabilities. Molecules 2019; 24:molecules24071257. [PMID: 30935102 PMCID: PMC6479881 DOI: 10.3390/molecules24071257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022] Open
Abstract
Thymidylate synthase (TS) is an enzyme of paramount importance as it provides the only de novo source of deoxy-thymidine monophosphate (dTMP). dTMP, essential for DNA synthesis, is produced by the TS-catalyzed reductive methylation of 2′-deoxyuridine-5′-monophosphate (dUMP) using N5,N10-methylenetetrahydrofolate (mTHF) as a cofactor. TS is ubiquitous and a validated drug target. TS enzymes from different organisms differ in sequence and structure, but are all obligate homodimers. The structural and mechanistic differences between the human and bacterial enzymes are exploitable to obtain selective inhibitors of bacterial TSs that can enrich the currently available therapeutic tools against bacterial infections. Enterococcus faecalis is a pathogen fully dependent on TS for dTMP synthesis. In this study, we present four new crystal structures of Enterococcus faecalis and human TSs in complex with either the substrate dUMP or the inhibitor FdUMP. The results provide new clues about the half-site reactivity of Enterococcus faecalis TS and the mechanisms underlying the conformational changes occurring in the two enzymes. We also identify relevant differences in cofactor and inhibitor binding between Enterococcus faecalis and human TS that can guide the design of selective inhibitors against bacterial TSs.
Collapse
|
7
|
Gurevic I, Islam Z, Świderek K, Trepka K, Ghosh AK, Moliner V, Kohen A. Experimental and Computational Studies Delineate the Role of Asparagine 177 in Hydride Transfer for E. coli Thymidylate Synthase. ACS Catal 2018; 8:10241-10253. [PMID: 31275729 DOI: 10.1021/acscatal.8b02554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymidylate synthase (TSase), an enzyme responsible for the de novo biosynthesis of 2'-deoxythymidine 5'-monophosphate (thymidylate, dTMP) necessary for DNA synthesis, has been a drug target for decades. TSase is a highly conserved enzyme across species ranging from very primitive organisms to mammals. Among the many conserved active site residues, an asparagine (N177, using Escherichia coli residues numbering) appears to make direct hydrogen bonds with both the C4=O4 carbonyl of the 2'-deoxyuridine 5'-monophosphate (uridylate, dUMP) substrate and its pyrimidine ring's N3. Recent studies have reassessed the TSase catalytic mechanism, focusing on the degree of negative charge accumulation at the O4 carbonyl of the substrate during two critical H-transfers - a proton abstraction and a hydride transfer. To obtain insights into the role of this conserved N177 on the hydride transfer, we examined its aspartic acid (D) and serine (S) mutants - each of which is expected to alter hydrogen bonding and charge stabilization around the C4=O4 carbonyl of the 2'-deoxyuridine 5'-monophosphate (uridylate, dUMP) substrate. Steady-state kinetics, substrate binding order studies and temperature-dependency analysis of intrinsic KIEs for the hydride transfer step of the TSase catalytic cycle suggest the active site of N177D is not precisely organized for that step. A smaller disruption was observed for N177S, which could be rationalized by partial compensation by water molecules and rearrangement of other residues toward preparation of the system for the hydride transfer under study. These experimental findings are qualitatively mirrored by QM/MM computational simulations, thereby shedding light on the sequence and synchronicity of steps in the TSase-catalyzed reaction. This information could potentially inform the design of mechanism-based drugs targeting this enzyme.
Collapse
Affiliation(s)
- Ilya Gurevic
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242-1727, United States
| | - Zahidul Islam
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242-1727, United States
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Kai Trepka
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242-1727, United States
| | - Ananda K. Ghosh
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242-1727, United States
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Amnon Kohen
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, Iowa 52242-1727, United States
| |
Collapse
|
8
|
Lee AL, Sapienza PJ. Thermodynamic and NMR Assessment of Ligand Cooperativity and Intersubunit Communication in Symmetric Dimers: Application to Thymidylate Synthase. Front Mol Biosci 2018; 5:47. [PMID: 29888227 PMCID: PMC5981203 DOI: 10.3389/fmolb.2018.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023] Open
Abstract
Thymidylate synthase (TS) is a homodimeric enzyme with evidence for negative regulation of one protomer while the other protomer acts on substrate, so called half-the-sites reactivity. The mechanisms by which multisubunit allosteric proteins communicate between protomers is not well understood, and the simplicity of dimeric systems has advantages for observing conformational and dynamic processes that functionally connect distance-separated active sites. This review considers progress in overcoming the inherent challenges of accurate thermodynamic and atomic-resolution characterization of interprotomer communication mechanisms in symmetric protein dimers, with TS used as an example. Isothermal titration calorimetry (ITC) is used to measure ligand binding cooperativity, even in cases where the two binding enthalpies are similar, and NMR spectroscopy is used to detect site-specific changes occurring in the two protomers. The NMR approach makes use of mixed-labeled dimers, enabling protomer-specific detection of signals in the singly ligated state. The rich informational content of the NMR signals from the singly ligated state, relative to the apo and saturated states, requires new considerations that do not arise in simple cases of 1:1 protein-ligand interactions.
Collapse
Affiliation(s)
- Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Finer-Moore JS, Lee TT, Stroud RM. A Single Mutation Traps a Half-Sites Reactive Enzyme in Midstream, Explaining Asymmetry in Hydride Transfer. Biochemistry 2018; 57:2786-2795. [PMID: 29717875 DOI: 10.1021/acs.biochem.8b00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Escherichia coli thymidylate synthase (EcTS), rate-determining hydride transfer from the cofactor 5,10-methylene-5,6,7,8-tetrahydrofolate to the intermediate 5-methylene-2'-deoxyuridine 5'-monophosphate occurs by hydrogen tunneling, requiring precise alignment of reactants and a closed binding cavity, sealed by the C-terminal carboxyl group. Mutations that destabilize the closed conformation of the binding cavity allow small molecules such as β-mercaptoethanol (β-ME) to enter the active site and compete with hydride for addition to the 5-methylene group of the intermediate. The C-terminal deletion mutant of EcTS produced the β-ME adduct in proportions that varied dramatically with cofactor concentration, from 50% at low cofactor concentrations to 0% at saturating cofactor conditions, suggesting communication between active sites. We report the 2.4 Å X-ray structure of the C-terminal deletion mutant of E. coli TS in complex with a substrate and a cofactor analogue, CB3717. The structure is asymmetric, with reactants aligned in a manner consistent with hydride transfer in only one active site. In the second site, CB3717 has shifted to a site where the normal cofactor would be unlikely to form 5-methylene-2'-deoxyuridine 5'-monophosphate, consistent with no formation of the β-ME adduct. The structure shows how the binding of the cofactor at one site triggers hydride transfer and borrows needed stabilization from substrate binding at the second site. It indicates pathways through the dimer interface that contribute to allostery relevant to half-sites reactivity.
Collapse
Affiliation(s)
- Janet S Finer-Moore
- Department of Biochemistry and Biophysics , University of California , San Francisco , California 94143-2240 , United States
| | - Tom T Lee
- Department of Biochemistry and Biophysics , University of California , San Francisco , California 94143-2240 , United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics , University of California , San Francisco , California 94143-2240 , United States
| |
Collapse
|
10
|
Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile. Biochem Pharmacol 2017; 135:69-78. [PMID: 28359706 DOI: 10.1016/j.bcp.2017.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/24/2017] [Indexed: 01/24/2023]
Abstract
Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), is an infection that is responsible for roughly 1.5 million deaths per year. The situation is further complicated by the wide-spread resistance to the existing first- and second-line drugs. As a result of this, it is urgent to develop new drugs to combat the resistant bacteria as well as have lower side effects, which can promote adherence to the treatment regimens. Targeting the de novo synthesis of thymidylate (dTMP) is an important pathway to develop drugs for TB. Although Mtb carries genes for two families of thymidylate synthases (TS), ThyA and ThyX, only ThyX is essential for its normal growth. Both enzymes catalyze the conversion of uridylate (dUMP) to dTMP but employ a different catalytic approach and have different structures. Also, ThyA is the only TS found in humans. This is the rationale for identifying selective inhibitors against ThyX. We exploited the NADPH oxidation to NADP+ step, catalyzed by ThyX, to develop a spectrophotometric biochemical assay. Success of the assay was demonstrated by its effectiveness (average Z'=0.77) and identification of selective ThyX inhibitors. The most potent compound is a tight-binding inhibitor with an IC50 of 710nM. Its mechanism of inhibition is analyzed in relation to the latest findings of ThyX mechanism and substrate and cofactor binding order.
Collapse
|
11
|
Świderek K, Arafet K, Kohen A, Moliner V. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer. J Chem Theory Comput 2017; 13:1375-1388. [PMID: 28192669 PMCID: PMC5371049 DOI: 10.1021/acs.jctc.6b01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
- Institute of Applied Radiation Chemistry, Lodz University of Technology , 90-924 Lodz, Poland
| | - Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Amnon Kohen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
12
|
Sapienza PJ, Lee AL. Widespread Perturbation of Function, Structure, and Dynamics by a Conservative Single-Atom Substitution in Thymidylate Synthase. Biochemistry 2016; 55:5702-5713. [PMID: 27649373 DOI: 10.1021/acs.biochem.6b00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TSase) is responsible for synthesizing the sole de novo source of dTMP in all organisms. TSase is a drug target, and as such, it has been well studied in terms of both structure and reaction mechanism. Cysteine 146 in Escherichia coli TSase is universally conserved because it serves as the nucleophile in the enzyme mechanism. Here we use the C146S mutation to probe the role of the sulfur atom in early events in the catalytic cycle beyond serving as the nucleophile. Surprisingly, the single-atom substitution severely decreases substrate binding affinity, and the unfavorable ΔΔG°bind is comprised of roughly equal enthalpic and entropic components at 25 °C. Chemical shifts in the free and dUMP-bound states show the mutation causes perturbations throughout TSase, including regions important for complex stability, in agreement with a less favorable enthalpy change. We measured the nuclear magnetic resonance methyl symmetry axis order parameter (S2axis), a proxy for conformational entropy, for TSase at all vertices of the dUMP binding/C146S mutation thermodynamic cycle and found that the calculated TΔΔS°conf is similar in sign and magnitude to the calorimetric TΔΔS°. Further, we ascribed minor resonances in wild-type-dUMP spectra to a state with a covalent bond between Sγ of C146 and C6 of dUMP and find S2axis values are unaffected by covalent bond formation, indicating this reaction step is neutral with respect to ΔS°conf. Lastly, the C146S mutation allowed us to measure cofactor analog binding by isothermal titration calorimetry without the confounding heat signature of covalent bond formation. Raltitrexed binds free and singly bound TSase with similar affinities, yet the two binding events have different enthalpy changes, providing further evidence of communication between the two active sites.
Collapse
Affiliation(s)
- Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Swiderek K, Kohen A, Moliner V. The influence of active site conformations on the hydride transfer step of the thymidylate synthase reaction mechanism. Phys Chem Chem Phys 2016; 17:30793-804. [PMID: 25868526 DOI: 10.1039/c5cp01239b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydride transfer from C6 of tetrahydrofolate to the reaction's exocyclic methylene-dUMP intermediate is the rate limiting step in thymidylate synthase (TSase) catalysis. This step has been studied by means of QM/MM molecular dynamics simulations to generate the corresponding free energy surfaces. The use of two different initial X-ray structures has allowed exploring different conformational spaces and the existence of chemical paths with not only different reactivities but also different reaction mechanisms. The results confirm that this chemical conversion takes place preferentially via a concerted mechanism where the hydride transfer is conjugated to thiol-elimination from the product. The findings also confirm the labile character of the substrate-enzyme covalent bond established between the C6 of the nucleotide substrate and a conserved cysteine residue. The calculations also reproduce and rationalize a normal H/T 2° kinetic isotope effect measured for that step. From a computational point of view, the results demonstrate that the use of an incomplete number of coordinates to describe the real reaction coordinate can render biased results.
Collapse
Affiliation(s)
- Katarzyna Swiderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain. and Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain.
| |
Collapse
|
14
|
Chemical shift imprint of intersubunit communication in a symmetric homodimer. Proc Natl Acad Sci U S A 2016; 113:9533-8. [PMID: 27466406 DOI: 10.1073/pnas.1604748113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein-ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer. A primary reason why study of interdomain signaling is challenging in oligomeric proteins is the difficulty in characterizing intermediate, singly bound species. Here, we use an NMR approach to isolate and characterize a singly ligated state ("lig1") of a homodimeric enzyme that is otherwise obscured by rapid exchange with apo and saturated forms. Mixed labeled dimers were prepared that simultaneously permit full population of the lig1 state and isotopic labeling of either protomer. Direct visualization of peaks from lig1 yielded site-specific ligand-state multiplets that provide a convenient format for assessing mechanisms of intersubunit communication from a variety of NMR measurements. We demonstrate this approach on thymidylate synthase from Escherichia coli, a homodimeric enzyme known to be half-the-sites reactive. Resolving the dUMP1 state shows that active site communication occurs not upon the first dUMP binding, but upon the second. Surprisingly, for many sites, dUMP1 peaks are found beyond the limits set by apo and dUMP2 peaks, indicating that binding the first dUMP pushes the enzyme ensemble to further conformational extremes than the apo or saturated forms. The approach used here should be generally applicable to homodimers.
Collapse
|
15
|
Kholodar SA, Kohen A. Noncovalent Intermediate of Thymidylate Synthase: Fact or Fiction? J Am Chem Soc 2016; 138:8056-9. [PMID: 27327197 DOI: 10.1021/jacs.6b03826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase is an attractive target for antibiotic and anticancer drugs due to its essential role in the de novo biosynthesis of the DNA nucleotide thymine. The enzymatic reaction is initiated by a nucleophilic activation of the substrate via formation of a covalent bond to an active site cysteine. The traditionally accepted mechanism is then followed by a series of covalently bound intermediates, where that bond is only cleaved upon product release. Recent computational and experimental studies suggest that the covalent bond between the protein and substrate is actually quite labile. Importantly, these findings predict the existence of a noncovalently bound bisubstrate intermediate, not previously anticipated, which could be the target of a novel class of drugs inhibiting DNA biosynthesis. Here we report the synthesis of the proposed intermediate and findings supporting its chemical and kinetic competence. These findings substantiate the predicted nontraditional mechanism and the potential of this intermediate as a new drug lead.
Collapse
Affiliation(s)
- Svetlana A Kholodar
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242-1727, United States
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242-1727, United States
| |
Collapse
|
16
|
Ghosh AK, Islam Z, Krueger J, Abeysinghe T, Kohen A. The general base in the thymidylate synthase catalyzed proton abstraction. Phys Chem Chem Phys 2015; 17:30867-75. [PMID: 25912171 PMCID: PMC4624062 DOI: 10.1039/c5cp01246e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.
Collapse
Affiliation(s)
- Ananda K Ghosh
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Zahidul Islam
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Jonathan Krueger
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Thelma Abeysinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Sapienza PJ, Falk BT, Lee AL. Bacterial Thymidylate Synthase Binds Two Molecules of Substrate and Cofactor without Cooperativity. J Am Chem Soc 2015; 137:14260-3. [PMID: 26517288 DOI: 10.1021/jacs.5b10128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thymidylate synthase (TSase) is a clinically important enzyme because it catalyzes synthesis of the sole de novo source of deoxy-thymidylate. Without this enzyme, cells die a "thymineless death" since they are starved of a crucial DNA synthesis precursor. As a drug target, TSase is well studied in terms of its structure and reaction mechanism. An interesting mechanistic feature of dimeric TSase is that it is "half-the-sites reactive", which is a form of negative cooperativity. Yet, the basis for this is not well-understood. Some experiments point to cooperativity at the binding steps of the reaction cycle as being responsible for the phenomenon, but the literature contains conflicting reports. Here we use ITC and NMR to resolve these inconsistencies. This first detailed thermodynamic dissection of multisite binding of dUMP to E. coli TSase shows the nucleotide binds to the free and singly bound forms of the enzyme with nearly equal affinity over a broad range of temperatures and in multiple buffers. While small but significant differences in ΔC°P for the two binding events show that the active sites are not formally equivalent, there is little-to-no allostery at the level of ΔG°bind. In addition NMR titration data reveal that there is minor intersubunit cooperativity in formation of a ternary complex with the mechanism based inhibitor, 5F-dUMP, and cofactor. Taken together, the data show that functional communication between subunits is minimal for both binding steps of the reaction coordinate.
Collapse
Affiliation(s)
- Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Bradley T Falk
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
18
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
19
|
Islam Z, Strutzenberg TS, Ghosh AK, Kohen A. Activation of Two Sequential H-transfers in the Thymidylate Synthase Catalyzed Reaction. ACS Catal 2015; 5:6061-6068. [PMID: 26576323 PMCID: PMC4643671 DOI: 10.1021/acscatal.5b01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TSase) catalyzes the de novo biosynthesis of thymidylate, a precursor for DNA, and is thus an important target for chemotherapeutics and antibiotics. Two sequential C-H bond cleavages catalyzed by TSase are of particular interest: a reversible proton abstraction from the 2'-deoxy-uridylate substrate, followed by an irreversible hydride transfer forming the thymidylate product. QM/MM calculations of the former predicted a mechanism where the abstraction of the proton leads to formation of a novel nucleotide-folate intermediate that is not covalently bound to the enzyme (Wang, Z.; Ferrer, S.; Moliner, V.; Kohen, A. Biochemistry2013, 52, 2348-2358). Existence of such intermediate would hold promise as a target for a new class of drugs. Calculations of the subsequent hydride transfer predicted a concerted H-transfer and elimination of the enzymatic cysteine (Kanaan, N.; Ferrer, S.; Marti, S.; Garcia-Viloca, M.; Kohen, A.; Moliner, V. J. Am. Chem. Soc.2011, 133, 6692-6702). A key to both C-H activations is a highly conserved arginine (R166) that stabilizes the transition state of both H-transfers. Here we test these predictions by studying the R166 to lysine mutant of E. coli TSase (R166K) using intrinsic kinetic isotope effects (KIEs) and their temperature dependence to assess effects of the mutation on both chemical steps. The findings confirmed the predictions made by the QM/MM calculations, implicate R166 as an integral component of both reaction coordinates, and thus provide critical support to the nucleotide-folate intermediate as a new target for rational drug design.
Collapse
Affiliation(s)
- Zahidul Islam
- The Department of Chemistry, The University of Iowa, Iowa City, IA 52242, U.S.A
| | | | - Ananda K. Ghosh
- The Department of Chemistry, The University of Iowa, Iowa City, IA 52242, U.S.A
| | - Amnon Kohen
- The Department of Chemistry, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
20
|
Hamdane D, Bruch E, Un S, Field M, Fontecave M. Activation of a unique flavin-dependent tRNA-methylating agent. Biochemistry 2013; 52:8949-56. [PMID: 24228791 DOI: 10.1021/bi4013879] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TrmFO is a tRNA methyltransferase that uses methylenetetrahydrofolate (CH2THF) and flavin adenine dinucleotide hydroquinone as cofactors. We have recently shown that TrmFO from Bacillus subtilis stabilizes a TrmFO-CH2-FADH adduct and an ill-defined neutral flavin radical. The adduct contains a unique N-CH2-S moiety, with a methylene group bridging N5 of the isoalloxazine ring and the sulfur of an active-site cysteine (Cys53). In the absence of tRNA substrate, this species is remarkably stable but becomes catalytically competent for tRNA methylation following tRNA addition using the methylene group as the source of methyl. Here, we demonstrate that this dormant methylating agent can be activated at low pH, and we propose that this process is triggered upon tRNA addition. The reaction proceeds via protonation of Cys53, cleavage of the C-S bond, and generation of a highly reactive [FADH(N5)═CH2]+ iminium intermediate, which is proposed to be the actual tRNA-methylating agent. This mechanism is fully supported by DFT calculations. The radical present in TrmFO is characterized here by optical and EPR/ENDOR spectroscopy approaches together with DFT calculations and is shown to be the one-electron oxidized product of the TrmFO-CH2-FADH adduct. It is also relatively stable, and its decomposition is facilitated by high pH. These results provide new insights into the structure and reactivity of the unique flavin-dependent methylating agent used by this class of enzymes.
Collapse
Affiliation(s)
- Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-FRE 3488, Collège De France , 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
21
|
Wang Z, Sapienza PJ, Abeysinghe T, Luzum C, Lee AL, Finer-Moore JS, Stroud RM, Kohen A. Mg2+ binds to the surface of thymidylate synthase and affects hydride transfer at the interior active site. J Am Chem Soc 2013; 135:7583-92. [PMID: 23611499 PMCID: PMC3674108 DOI: 10.1021/ja400761x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thymidylate synthase (TSase) produces the sole intracellular de novo source of thymidine (i.e., the DNA base T) and thus is a common target for antibiotic and anticancer drugs. Mg(2+) has been reported to affect TSase activity, but the mechanism of this interaction has not been investigated. Here we show that Mg(2+) binds to the surface of Escherichia coli TSase and affects the kinetics of hydride transfer at the interior active site (16 Å away). Examination of the crystal structures identifies a Mg(2+) near the glutamyl moiety of the folate cofactor, providing the first structural evidence for Mg(2+) binding to TSase. The kinetics and NMR relaxation experiments suggest that the weak binding of Mg(2+) to the protein surface stabilizes the closed conformation of the ternary enzyme complex and reduces the entropy of activation on the hydride transfer step. Mg(2+) accelerates the hydride transfer by ~7-fold but does not affect the magnitude or temperature dependence of the intrinsic kinetic isotope effect. These results suggest that Mg(2+) facilitates the protein motions that bring the hydride donor and acceptor together, but it does not change the tunneling ready state of the hydride transfer. These findings highlight how variations in cellular Mg(2+) concentration can modulate enzyme activity through long-range interactions in the protein, rather than binding at the active site. The interaction of Mg(2+) with the glutamyl tail of the folate cofactor and nonconserved residues of bacterial TSase may assist in designing antifolates with polyglutamyl substitutes as species-specific antibiotic drugs.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thelma Abeysinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Calvin Luzum
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Janet S. Finer-Moore
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Wang Z, Ferrer S, Moliner V, Kohen A. QM/MM calculations suggest a novel intermediate following the proton abstraction catalyzed by thymidylate synthase. Biochemistry 2013; 52:2348-58. [PMID: 23464672 DOI: 10.1021/bi400267q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cleavage of covalent C-H bonds is one of the most energetically demanding, yet biologically essential, chemical transformations. Two C-H bond cleavages are involved in the reaction catalyzed by thymidylate synthase (TSase), which provides the sole de novo source of thymidylate (i.e., the DNA base T) for most organisms. Our QM/MM free energy calculations show that the C-H → O proton transfer has three transition states that are energetically similar but structurally diverse. These characteristics are different from our previous calculation results on the C-H → C hydride transfer, providing an explanation for differences in temperature dependences of KIEs on these two C-H bond activation steps. The calculations also suggest that the traditionally proposed covalent bond between the protein and substrate (the C6-S bond) is very labile during the multistep catalytic reaction. Collective protein motions not only assist cleavage of the C6-S bond to stabilize the transition state of the proton transfer step but also rearrange the H-bond network at the end of this step to prepare the active site for subsequent chemical steps. These computational results illustrate functionalities of specific protein residues that reconcile many previous experimental observations and provide guidance for future experiments to examine the proposed mechanisms. The synchronized conformational changes in the protein and ligands observed in our simulations demonstrate participation of protein motions in the reaction coordinate of enzymatic reactions. Our computational findings suggest the existence of new reaction intermediates not covalently bound to TSase, which may lead to a new class of drugs targeting DNA biosynthesis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | | | | | | |
Collapse
|
23
|
Experimental and theoretical studies of enzyme-catalyzed hydrogen-transfer reactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012. [PMID: 22607755 DOI: 10.1016/b978-0-12-398312-1.00006-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The mechanisms of enzyme-catalyzed reactions are medicinally important and present a fascinating intellectual challenge. Many experimental and theoretical techniques can shed light on these mechanisms, and here, we shall focus on the utility of kinetic isotope effects (KIEs) to study enzymatic reactions that involve hydrogen transfers. We will provide a short background on the prevailing models to interpret KIEs and then present more detailed reviews of two model enzymes: alcohol dehydrogenase and thymidylate synthase. These two examples provide a context to describe the types of experiments and theoretical calculations that drive this field forward and the kind of information each can furnish. We emphasize the importance of cooperation between experimentalists and theoreticians to continue the progress toward a comprehensive theory of enzyme catalysis.
Collapse
|
24
|
Chuang VTG, Suno M. Levoleucovorin as replacement for leucovorin in cancer treatment. Ann Pharmacother 2012; 46:1349-57. [PMID: 23032661 DOI: 10.1345/aph.1q677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To comprehensively review the literature regarding the efficacy, safety, and costs associated with the use of levoleucovorin in cancer treatment and to assess whether levoleucovorin would be a reasonable alternative to the use of racemic leucovorin. DATA SOURCES A MEDLINE search was conducted for English-language human studies published between January 1980 and April 2012 using the terms l-LV, levoleucovorin, d,l-LV, leucovorin, folinic acid, folinate, 5-formyltetrahydrofolate, folic acid, folates, methotrexate, 5-fluorouracil, and clinical trials. STUDY SELECTION AND DATA EXTRACTION Articles pertinent to clinical trials (Phase 1, 2, 3) related to evaluating the efficacy, interchangeability, and safety of levoleucovorin were collected and their contents reviewed. DATA SYNTHESIS From these pharmacokinetics and clinical studies, information on the use of levoleucovorin as a modulator of fluorouracil as well as when combined with other antitumor agents were scrutinized and extracted for comparison with leucovorin whenever possible. Two randomized Phase 3 clinical studies comparing the efficacy and adverse effect profiles of leucovorin and levoleucovorin demonstrated that levoleucovorin is as effective as leucovorin in terms of response, toxicity, and survival. Six randomized Phase 3 clinical studies demonstrated the safety and efficacy of levoleucovorin as a modulator of fluorouracil in combination with/without other antitumor agents in colorectal cancer patients. Levoleucovorin has been studied in other cancers. These clinical Phase 1/2/3 studies demonstrated efficacy and safety of levoleucovorin in combination chemotherapeutic regimens comprising fluorouracil and other antitumor agents. CONCLUSIONS The results of the clinical studies suggest that levoleucovorin is efficacious and can be used safely in combination with fluorouracil and other antitumor agents. Levoleucovorin can be used interchangeably with leucovorin for modulating fluorouracil. The current shortage of the supply of leucovorin centered in North America renders levoleucovorin a reasonable alternative in terms of efficacy and toxicity profile, but from the perspective of cost, leucovorin remains the drug of choice.
Collapse
Affiliation(s)
- Victor Tuan Giam Chuang
- School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation & Research Institute, Curtin University, Perth, Western Australia, Australia
| | | |
Collapse
|
25
|
Pozzi C, Ferrari S, Cortesi D, Luciani R, Stroud RM, Catalano A, Costi MP, Mangani S. The structure of Enterococcus faecalis thymidylate synthase provides clues about folate bacterial metabolism. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1232-41. [PMID: 22948925 PMCID: PMC10316677 DOI: 10.1107/s0907444912026236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/10/2012] [Indexed: 11/11/2022]
Abstract
Drug resistance to therapeutic antibiotics poses a challenge to the identification of novel targets and drugs for the treatment of infectious diseases. Infections caused by Enterococcus faecalis are a major health problem. Thymidylate synthase (TS) from E. faecalis is a potential target for antibacterial therapy. The X-ray crystallographic structure of E. faecalis thymidylate synthase (EfTS), which was obtained as a native binary complex composed of EfTS and 5-formyltetrahydrofolate (5-FTHF), has been determined. The structure provides evidence that EfTS is a half-of-the-sites reactive enzyme, as 5-FTHF is bound to two of the four independent subunits present in the crystal asymmetric unit. 5-FTHF is a metabolite of the one-carbon transfer reaction catalysed by 5-formyltetrahydrofolate cyclo-ligase. Kinetic studies show that 5-FTHF is a weak inhibitor of EfTS, suggesting that the EfTS-5-FTHF complex may function as a source of folates and/or may regulate one-carbon metabolism. The structure represents the first example of endogenous 5-FTHF bound to a protein involved in folate metabolism.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Chimica, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Ferrari
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Debora Cortesi
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Rosaria Luciani
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Robert M. Stroud
- Department of Biochemistry and Biophysiscs, University of California, San Francisco, S-412C Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517, USA
| | - Alessia Catalano
- Dipartimento Farmaco-Chimico, University of Bari ‘Aldo Moro’, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Paola Costi
- Dipartimento di Scienze Farmaceutiche, University of Modena and Reggio Emilia, Via Campi 183, 41126 Modena, Italy
| | - Stefano Mangani
- Dipartimento di Chimica, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
26
|
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, 2011 ALS, Oregon State University, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
27
|
Luka Z, Pakhomova S, Loukachevitch LV, Newcomer ME, Wagner C. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:286-91. [PMID: 22037183 DOI: 10.1016/j.bbapap.2011.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
28
|
Ceh K, Demmer U, Warkentin E, Moll J, Thauer RK, Shima S, Ermler U. Structural basis of the hydride transfer mechanism in F(420)-dependent methylenetetrahydromethanopterin dehydrogenase. Biochemistry 2009; 48:10098-105. [PMID: 19761261 DOI: 10.1021/bi901104d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
F(420)-dependent methylenetetrahydromethanopterin (methylene-H(4)MPT) dehydrogenase (Mtd) of Methanopyrus kandleri is an enzyme of the methanogenic energy metabolism that catalyzes the reversible hydride transfer between methenyl-H(4)MPT(+) and methylene-H(4)MPT using coenzyme F(420) as hydride carrier. We determined the structures of the Mtd-methylene-H(4)MPT, Mtd-methenyl-H(4)MPT(+), and the Mtd-methenyl-H(4)MPT(+)-F(420)H(2) complexes at 2.1, 2.0, and 1.8 A resolution, respectively. The pterin-imidazolidine-phenyl ring system is present in a new extended but not planar conformation which is virtually identical in methenyl-H(4)MPT(+) and methylene-H(4)MPT at the current resolution. Both substrates methenyl-H(4)MPT(+) and F(420)H(2) bind in a face to face arrangement to an active site cleft, thereby ensuring a direct hydride transfer between their C14a and C5 atoms, respectively. The polypeptide scaffold does not reveal any significant conformational change upon binding of the bulky substrates but in turn changes the conformations of the substrate rings either to avoid clashes between certain ring atoms or to adjust the rings involved in hydride transfer for providing an optimal catalytic efficiency.
Collapse
Affiliation(s)
- Katharina Ceh
- Max-Planck-Institut fur Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Koehn EM, Kohen A. Flavin-dependent thymidylate synthase: a novel pathway towards thymine. Arch Biochem Biophys 2009; 493:96-102. [PMID: 19643076 DOI: 10.1016/j.abb.2009.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
For several decades only one chemical pathway was known for the de novo biosynthesis of the essential DNA nucleotide, thymidylate. This reaction catalyzed by thyA or TYMS encoded thymidylate synthases is the last committed step in the biosynthesis of thymidylate and proceeds via the reductive methylation of uridylate. However, many microorganisms have recently been shown to produce a novel, flavin-dependent thymidylate synthase encoded by the thyX gene. Preliminary structural and mechanistic studies have shown substantial differences between these deoxyuridylate-methylating enzymes. Recently, both the chemical and kinetic mechanisms of FDTS have provided further insight into the distinctions between thyA and thyX encoded thymidylate synthases. Since FDTSs are found in several severe human pathogens their unusual mechanism offers a promising future for the development of antibiotic and antiviral drugs with little effect on human thymidylate biosynthesis.
Collapse
Affiliation(s)
- Eric M Koehn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
30
|
An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 2009; 458:919-23. [PMID: 19370033 PMCID: PMC2759699 DOI: 10.1038/nature07973] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/26/2009] [Indexed: 11/15/2022]
Abstract
Biosynthesis of the DNA base thymine depends on activity of the enzyme
thymidylate synthase (TS) to catalyze the methylation of the uracil moiety of
2’-deoxyuridine-5’-monophosphate (dUMP). All known thymidylate
synthases (TSs) rely on an active site residue of the enzyme to activate
dUMP1, 2. This functionality has been demonstrated for classical TSs,
including human TS, and is instrumental in mechanism-based inhibition of these
enzymes. Here we report the first example of thymidylate biosynthesis that
occurs without an enzymatic nucleophile. This unusual biosynthetic pathway
occurs in organisms containing the thyX gene, which codes for a
flavin-dependent thymidylate synthase (FDTS), and is present in several human
pathogens3–5. Our findings indicate that the putative
active site nucleophile is not required for FDTS catalysis, and no alternative
nucleophilic residues capable of serving this function can be identified.
Instead, our findings suggest that a hydride equivalent (i.e. a proton and two
electrons) is transferred from the reduced flavin cofactor directly to the
uracil ring, followed by an isomerization of the intermediate to form the
product, 2’-deoxythymidine-5’-monophosphate (dTMP). These
observations indicate a very different chemical cascade than that of classical
TSs or any other known biological methylation. The findings and chemical
mechanism proposed here, together with available structural data, suggest that
selective inhibition of FDTSs, with little effect on human thymine biosynthesis,
should be feasible. Since several human pathogens depend on FDTS for DNA
biosynthesis, its unique mechanism makes it an attractive target for antibiotic
drugs.
Collapse
|
31
|
Arvizu-Flores AA, Sugich-Miranda R, Arreola R, Garcia-Orozco KD, Velazquez-Contreras EF, Montfort WR, Maley F, Sotelo-Mundo RR. Role of an invariant lysine residue in folate binding on Escherichia coli thymidylate synthase: calorimetric and crystallographic analysis of the K48Q mutant. Int J Biochem Cell Biol 2008; 40:2206-17. [PMID: 18403248 PMCID: PMC2533807 DOI: 10.1016/j.biocel.2008.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/20/2008] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
Abstract
Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH(2)THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The k(cat) of the K48Q mutant was 430-fold lower than wild-type TS in activity, while the K(m) for the (R)-stereoisomer of CH(2)THF was 300 microM, about 30-fold larger than K(m) from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideazafolate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutant, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild-type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH(2)THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group.
Collapse
Affiliation(s)
- Aldo A. Arvizu-Flores
- Aquatic Molecular Biology Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, México 83000
| | - Rocio Sugich-Miranda
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
| | - Rodrigo Arreola
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF 04510
| | - Karina D. Garcia-Orozco
- Aquatic Molecular Biology Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, México 83000
| | | | - William R. Montfort
- Department of Biochemistry and Molecular Biophysics, The University of Arizona, Tucson, Arizona 85721, USA
| | - Frank Maley
- Wadsworth Center, New York State Department of Health, Albany, New York, 12201, USA
| | - Rogerio R. Sotelo-Mundo
- Aquatic Molecular Biology Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, México 83000
| |
Collapse
|
32
|
Hong B, Maley F, Kohen A. Role of Y94 in proton and hydride transfers catalyzed by thymidylate synthase. Biochemistry 2007; 46:14188-97. [PMID: 17999469 DOI: 10.1021/bi701363s] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thymidylate synthase (TS) catalyzes the substitution of a carbon-bound proton in a uracil base by a methyl group to yield thymine in the de novo biosynthesis of this DNA base. The enzymatic mechanism involves making and breaking several covalent bonds. Traditionally, a conserved tyrosine (Y94 in Escherichia coli, Y146 in Lactobacillus casei, and Y135 in humans) was assumed to serve as the general base catalyzing the proton abstraction. That assumption was examined here by comparing the nature of the proton abstraction using wild-type (wt) E. coli TS (ecTS) and its Y94F mutant (with a turnover rate reduced by 2 orders of magnitude). A subsequent hydride transfer was also studied using the wt and Y94F. The physical nature of both H-transfer steps was examined by determining intrinsic kinetic isotope effects (KIEs). Surprisingly, the findings did not suggest a direct role for Y94 in the proton abstraction step. The effect of this mutation on the subsequent hydride transfer was examined by a comparison of the temperature dependency of the intrinsic KIE on both the wt and the mutant. The intrinsic KIEs for Y94F at physiological temperatures were slightly smaller than those for wt but, otherwise, were as temperature-independent, suggesting a perfectly preorganized reaction coordinate for both enzymes. At reduced temperatures, however, the KIE for the mutant increased with a decrease in temperature, indicating a poorly preorganized reaction coordinate. Other kinetic and structural properties were also compared, and the findings suggested that Y94 is part of a H-bond network that plays a critical role at a step between the proton and the hydride transfers, presumably the dissociation of H4folate from the covalently bound intermediate. The possibility that no single residue serves as the general base in question but, rather, that the whole network of H-bonds at the active site catalyzes proton abstraction is discussed.
Collapse
Affiliation(s)
- Baoyu Hong
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
33
|
Gherardini PF, Wass MN, Helmer-Citterich M, Sternberg MJE. Convergent Evolution of Enzyme Active Sites Is not a Rare Phenomenon. J Mol Biol 2007; 372:817-45. [PMID: 17681532 DOI: 10.1016/j.jmb.2007.06.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 05/14/2007] [Accepted: 06/08/2007] [Indexed: 02/03/2023]
Abstract
Since convergent evolution of enzyme active sites was first identified in serine proteases, other individual instances of this phenomenon have been documented. However, a systematic analysis assessing the frequency of this phenomenon across enzyme space is still lacking. This work uses the Query3d structural comparison algorithm to integrate for the first time detailed knowledge about catalytic residues, available through the Catalytic Site Atlas (CSA), with the evolutionary information provided by the Structural Classification of Proteins (SCOP) database. This study considers two modes of convergent evolution: (i) mechanistic analogues which are enzymes that use the same mechanism to perform related, but possibly different, reactions (considered here as sharing the first three digits of the EC number); and (ii) transformational analogues which catalyse exactly the same reaction (identical EC numbers), but may use different mechanisms. Mechanistic analogues were identified in 15% (26 out of 169) of the three-digit EC groups considered, showing that this phenomenon is not rare. Furthermore 11 of these groups also contain transformational analogues. The catalytic triad is the most widespread active site; the results of the structural comparison show that this mechanism, or variations thereof, is present in 23 superfamilies. Transformational analogues were identified for 45 of the 951 four-digit EC numbers present within the CSA and about half of these were also mechanistic analogues exhibiting convergence of their active sites. This analysis has also been extended to the whole Protein Data Bank to provide a complete and manually curated list of the all the transformational analogues whose structure is classified in SCOP. The results of this work show that the phenomenon of convergent evolution is not rare, especially when considering large enzymatic families.
Collapse
Affiliation(s)
- Pier Federico Gherardini
- Biochemistry Building, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
34
|
O’Boyle NM, Holliday GL, Almonacid DE, Mitchell JB. Using reaction mechanism to measure enzyme similarity. J Mol Biol 2007; 368:1484-99. [PMID: 17400244 PMCID: PMC3461574 DOI: 10.1016/j.jmb.2007.02.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 11/06/2006] [Accepted: 02/19/2007] [Indexed: 11/24/2022]
Abstract
The concept of reaction similarity has been well studied in terms of the overall transformation associated with a reaction, but not in terms of mechanism. We present the first method to give a quantitative measure of the similarity of reactions based upon their explicit mechanisms. Two approaches are presented to measure the similarity between individual steps of mechanisms: a fingerprint-based approach that incorporates relevant information on each mechanistic step; and an approach based only on bond formation, cleavage and changes in order. The overall similarity for two reaction mechanisms is then calculated using the Needleman-Wunsch alignment algorithm. An analysis of MACiE, a database of enzyme mechanisms, using our measure of similarity identifies some examples of convergent evolution of chemical mechanisms. In many cases, mechanism similarity is not reflected by similarity according to the EC system of enzyme classification. In particular, little mechanistic information is conveyed by the class level of the EC system.
Collapse
Affiliation(s)
- Noel M. O’Boyle
- Unilever Centre for Molecular Science Informatics, Dept of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
| | - Gemma L. Holliday
- Unilever Centre for Molecular Science Informatics, Dept of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Daniel E. Almonacid
- Unilever Centre for Molecular Science Informatics, Dept of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
| | - John B.O. Mitchell
- Unilever Centre for Molecular Science Informatics, Dept of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K
- To whom correspondence should be addressed;
| |
Collapse
|
35
|
Jarmuła A, Cieplak P, Krygowski TM, Rode W. The effect of 5-substitution in the pyrimidine ring of dUMP on the interaction with thymidylate synthase: molecular modeling and QSAR. Bioorg Med Chem 2007; 15:2346-58. [PMID: 17275316 DOI: 10.1016/j.bmc.2007.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 12/24/2006] [Accepted: 01/17/2007] [Indexed: 11/20/2022]
Abstract
Thymidylate synthase (TS) is a target enzyme for a number of anticancer agents including the 5-fluorouracil metabolite, FdUMP. The present paper reports on molecular modeling studies of the effect of substitution at C(5) position in the pyrimidine ring of the TS substrate, dUMP, on the binding affinity for the enzyme. The results of molecular dynamics simulations show that the binding of C(5) analogues of dUMP to TS in the binary complexes does not undergo changes, unless a substituent with a large steric effect, such as the propyl group, is involved. On the other hand, apparent differences in the binding of the TS cofactor, resulting from varying substitution at dUMP C(5), are observed in the modeled structures of the ternary complexes of TS. These binding characteristics are supplemented with a classical QSAR model quantifying the relation between the affinity for TS and the substituent electronic and steric effects of C(5) analogues of dUMP. Based on the findings from the present work, the perspectives for finding promising new C(5) analogues of dUMP as potential agents targeted against TS are discussed.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | | | | | | |
Collapse
|
36
|
Luka Z, Pakhomova S, Loukachevitch LV, Egli M, Newcomer ME, Wagner C. 5-methyltetrahydrofolate is bound in intersubunit areas of rat liver folate-binding protein glycine N-methyltransferase. J Biol Chem 2006; 282:4069-75. [PMID: 17158459 DOI: 10.1074/jbc.m610384200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. It is abundant in the liver, where it uses excess S-adenosylmethionine (AdoMet) to methylate glycine to N-methylglycine (sarcosine) and produces S-adenosylhomocysteine (AdoHcy), thereby controlling the methylating potential of the cell. GNMT also links utilization of preformed methyl groups, in the form of methionine, to their de novo synthesis, because it is inhibited by a specific form of folate, 5-methyltetrahydrofolate. Although the structure of the enzyme has been elucidated by x-ray crystallography of the apoenzyme and in the presence of the substrate, the location of the folate inhibitor in the tetrameric structure has not been identified. We report here for the first time the crystal structure of rat GNMT complexed with 5-methyltetrahydrofolate. In the GNMT-folate complex, two folate binding sites were located in the intersubunit areas of the tetramer. Each folate binding site is formed primarily by two 1-7 N-terminal regions of one pair of subunits and two 205-218 regions of the other pair of subunits. Both the pteridine and p-aminobenzoyl rings are located in the hydrophobic cavities formed by Tyr5, Leu207, and Met215 residues of all subunits. Binding experiments in solution also confirm that one GNMT tetramer binds two folate molecules. For the enzymatic reaction to take place, the N-terminal fragments of GNMT must have a significant degree of conformational freedom to provide access to the active sites. The presence of the folate in this position provides a mechanism for its inhibition.
Collapse
Affiliation(s)
- Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
37
|
Roberts SA, Hyatt DC, Honts JE, Changchien L, Maley GF, Maley F, Montfort WR. Structure of the Y94F mutant of Escherichia coli thymidylate synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:840-3. [PMID: 16946460 PMCID: PMC2242863 DOI: 10.1107/s1744309106029691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/30/2006] [Indexed: 11/10/2022]
Abstract
Tyr94 of Escherichia coli thymidylate synthase is thought to be involved, either directly or by activation of a water molecule, in the abstraction of a proton from C5 of the 2'-deoxyuridine 5'-monophosphate (dUMP) substrate. Mutation of Tyr94 leads to a 400-fold loss in catalytic activity. The structure of the Y94F mutant has been determined in the native state and as a ternary complex with thymidine 5'-monophosphate (dTMP) and 10-propargyl 5,8-dideazafolate (PDDF). There are no structural changes ascribable to the mutation other than loss of a water molecule hydrogen bonded to the tyrosine OH, which is consistent with a catalytic role for the phenolic OH.
Collapse
Affiliation(s)
- Sue A. Roberts
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - David C. Hyatt
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Jerry E. Honts
- Department of Biology, Drake University, Des Moines, IA 50311, USA
| | - Liming Changchien
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Gladys F. Maley
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - Frank Maley
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA
| | - William R. Montfort
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
38
|
Newby Z, Lee TT, Morse RJ, Liu Y, Liu L, Venkatraman P, Santi DV, Finer-Moore JS, Stroud RM. The role of protein dynamics in thymidylate synthase catalysis: variants of conserved 2'-deoxyuridine 5'-monophosphate (dUMP)-binding Tyr-261. Biochemistry 2006; 45:7415-28. [PMID: 16768437 PMCID: PMC2556892 DOI: 10.1021/bi060152s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme thymidylate synthase (TS) catalyzes the reductive methylation of 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate. Using kinetic and X-ray crystallography experiments, we have examined the role of the highly conserved Tyr-261 in the catalytic mechanism of TS. While Tyr-261 is distant from the site of methyl transfer, mutants at this position show a marked decrease in enzymatic activity. Given that Tyr-261 forms a hydrogen bond with the dUMP 3'-O, we hypothesized that this interaction would be important for substrate binding, orientation, and specificity. Our results, surprisingly, show that Tyr-261 contributes little to these features of the mechanism of TS. However, the residue is part of the structural core of closed ternary complexes of TS, and conservation of the size and shape of the Tyr side chain is essential for maintaining wild-type values of kcat/Km. Moderate increases in Km values for both the substrate and cofactor upon mutation of Tyr-261 arise mainly from destabilization of the active conformation of a loop containing a dUMP-binding arginine. Besides binding dUMP, this loop has a key role in stabilizing the closed conformation of the enzyme and in shielding the active site from the bulk solvent during catalysis. Changes to atomic vibrations in crystals of a ternary complex of Escherichia coli Tyr261Trp are associated with a greater than 2000-fold drop in kcat/Km. These results underline the important contribution of dynamics to catalysis in TS.
Collapse
Affiliation(s)
- Zachary Newby
- University of California at San Francisco, San Francisco, California 94143-0448, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sotelo-Mundo RR, Changchien L, Maley F, Montfort WR. Crystal structures of thymidylate synthase mutant R166Q: structural basis for the nearly complete loss of catalytic activity. J Biochem Mol Toxicol 2006; 20:88-92. [PMID: 16615077 DOI: 10.1002/jbt.20122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thymidylate synthase (TS) catalyzes the folate-dependent methylation of deoxyuridine monophosphate (dUMP) to form thymidine monophosphate (dTMP). We have investigated the role of invariant arginine 166, one of four arginines that contact the dUMP phosphate, using site-directed mutagenesis, X-ray crystallography, and TS from Escherichia coli. The R166Q mutant was crystallized in the presence of dUMP and a structure determined to 2.9 A resolution, but neither the ligand nor the sulfate from the crystallization buffer was found in the active site. A second structure determined with crystals prepared in the presence of dUMP and the antifolate 10-propargyl-5,8-dideazafolate revealed that the inhibitor was bound in an extended, nonproductive conformation, partially occupying the nucleotide-binding site. A sulfate ion, rather than dUMP, was found in the nucleotide phosphate-binding site. Previous studies have shown that the substitution at three of the four arginines of the dUMP phosphate-binding site is permissive; however; for Arg166, all the mutations lead to a near-inactive mutant. The present structures of TS R166Q reveal that the phosphate-binding site is largely intact, but with a substantially reduced affinity for phosphate, despite the presence of the three remaining arginines. The position of Cys146, which initiates catalysis, is shifted in the mutant and resides in a position that interferes with the binding of the dUMP pyrimidine moiety.
Collapse
Affiliation(s)
- Rogerio R Sotelo-Mundo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
40
|
Jarmuła A, Cieplak P, Montfort WR. 5,10-Methylene-5,6,7,8-tetrahydrofolate conformational transitions upon binding to thymidylate synthase: molecular mechanics and continuum solvent studies. J Comput Aided Mol Des 2005; 19:123-36. [PMID: 16075306 DOI: 10.1007/s10822-005-2998-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
We applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach to evaluate relative stability of the extended (flat) and C-shaped (bent) solution conformational forms of the 5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) molecule in aqueous solution. Calculations indicated that both forms have similar free energies in aqueous solution but detailed energy components are different. The bent solution form has lower intramolecular electrostatic and van der Waals interaction energies. The flat form has more favorable solvation free energy and lower contribution from the bond, angle and torsion angle molecular mechanical internal energies. We exploit these results and combine them with known crystallographic data to provide a model for the progressive binding of the mTHF molecule, a natural cofactor of thymidylate synthase (TS), to the complex forming in the TS-catalyzed reaction. We propose that at the time of initial weak binding in the open enzyme the cofactor molecule remains in a close balance between the flat and bent solution conformations, with neither form clearly favored. Later, thymidylate synthase undergoes conformational change leading to the closure of the active site and the mTHF molecule is withdrawn from the solvent. That effect shifts the thermodynamic equilibrium of the mTHF molecule toward the bent solution form. At the same time, burying the cofactor molecule in the closed active site produces numerous contacts between mTHF and protein that render change in the shape of the mTHF molecule. As a result, the bent solution conformer is converted to more strained L-shaped bent enzyme conformer of the mTHF molecule. The strain in the bent enzyme conformation allows for the tight binding of the cofactor molecule to the productive ternary complex that forms in the closed active site, and facilitates the protonation of the imidazolidine N10 atom, which promotes further reaction.
Collapse
Affiliation(s)
- Adam Jarmuła
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., Warszawa, 02-093, Poland.
| | | | | |
Collapse
|
41
|
Agrawal N, Mihai C, Kohen A. Microscale synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate as a cofactor for thymidylate synthase. Anal Biochem 2004; 328:44-50. [PMID: 15081906 DOI: 10.1016/j.ab.2004.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/17/2022]
Abstract
A one-pot synthesis of isotopically labeled R-[6-xH]N5,N10-methylene-5,6,7,8-tetrahydrofolate (CH2H4F) is presented, where x=1, 2, or 3 represents hydrogen, deuterium, or tritium, respectively. The current procedure offers high-yield, high-purity, and microscale-quantity synthesis. In this procedure, two enzymes were used simultaneously in the reaction mixture. The first was Thermoanaerobium brockii alcohol dehydrogenase, which stereospecifically catalyzed a hydride transfer from C-2-labeled isopropanol to the re face of oxidized nicotinamide adenine dinucleotide phosphate to form R-[4-xH]-labeled reduced nicotinamide adenine dinucleotide phosphate. The second enzyme, Escherichia coli dihydrofolate reductase, used the xH to reduce 7,8-dihydrofolate (H2F) to form S-[6-xH]5,6,7,8-tetrahydrofolate (S-[6-xH]H4F). The enzymatic reactions were followed by chemical trapping of S-[6-xH]H4F with formaldehyde to form the final product. Product purification was carried out in a single step by reverse phase high-pressure liquid chromatography separation followed by lyophilization. Two analytical methods were developed to follow the reaction progress. Finally, the utility of the labeled cofactor in mechanistic studies of thymidylate synthase is demonstrated by measuring the tritium kinetic isotope effect on the enzyme's second order rate constant.
Collapse
Affiliation(s)
- Nitish Agrawal
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
42
|
Abstract
The genomics revolution has provided a deluge of new targets for drug discovery. To facilitate the drug discovery process, many researchers are turning to fragment-based approaches to find lead molecules more efficiently. One such method, Tethering1, allows for the identification of small-molecule fragments that bind to specific regions of a protein target. These fragments can then be elaborated, combined with other molecules, or combined with one another to provide high-affinity drug leads. In this review we describe the background and theory behind Tethering and discuss its use in identifying novel inhibitors for protein targets including interleukin-2 (IL-2), thymidylate synthase (TS), protein tyrosine phosphatase 1B (PTP-1B), and caspases.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
43
|
Lin X, Liu J, Maley F, Chu E. Role of cysteine amino acid residues on the RNA binding activity of human thymidylate synthase. Nucleic Acids Res 2003; 31:4882-7. [PMID: 12907731 PMCID: PMC169953 DOI: 10.1093/nar/gkg678] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 06/23/2003] [Accepted: 06/23/2003] [Indexed: 11/13/2022] Open
Abstract
The role of cysteine sulfhydryl residues on the RNA binding activity of human thymidylate synthase (TS) was investigated by mutating each cysteine residue on human TS to a corresponding alanine residue. Enzymatic activities of TS:C43A and TS:C210A mutant proteins were nearly identical to wild-type TS, while TS:C180A and TS:C199A mutants expressed >80% of wild-type enzyme activity. In contrast, TS:C195A was completely inactive. Mutant proteins, TS:C195A, TS:C199A and TS:C210A, retained RNA binding activity to nearly the same degree as wild-type human TS. RNA binding activity of TS:C43A was reduced by 30% when compared to wild-type TS, while TS:C180A was completely devoid of RNA binding activity. In vitro translation studies confirmed that mutant proteins TS:C43A, TS:C195A, TS:C199A and TS:C210A, significantly repressed human TS mRNA translation, while TS:C180A was unable to do so. To confirm the in vivo significance of the cysteine sulfhydryl residue, mutant proteins TS:C180A and TS:C195A were each expressed in human colon cancer HCT-C18:TS(-) cells that expressed a functionally inactive TS. A recombinant luciferase reporter gene under the control of a TS-response element was co-transfected into these same cells, and luciferase activity increased in the presence of the TS:C195A mutant TS protein to a level similar to that observed upon expression of wild-type TS protein. In contrast, luciferase activity remained unchanged in cells expressing the TS:C180A mutant protein. Taken together, these findings identify Cys-180 as a critical residue for the in vitro and in vivo translational regulatory effects of human TS.
Collapse
Affiliation(s)
- Xiukun Lin
- Department of Medicine and Pharmacology, Yale Cancer Center, Yale University School of Medicine and VA Connecticut Healthcare System, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
44
|
Mathews II, Deacon AM, Canaves JM, McMullan D, Lesley SA, Agarwalla S, Kuhn P. Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein. Structure 2003; 11:677-90. [PMID: 12791256 DOI: 10.1016/s0969-2126(03)00097-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Like thymidylate synthase (TS) in eukaryotes, the thymidylate synthase-complementing proteins (TSCPs) are mandatory for cell survival of many prokaryotes in the absence of external sources of thymidylate. Details of the mechanism of this novel family of enzymes are unknown. Here, we report the structural and functional analysis of a TSCP from Thermotoga maritima and its complexes with substrate, analogs, and cofactor. The structures presented here provide a basis for rationalizing the TSCP catalysis and reveal the possibility of the design of an inhibitor. We have identified a new helix-loop-strand FAD binding motif characteristic of the enzymes in the TSCP family. The presence of a hydrophobic core with residues conserved among the TSCP family suggests a common overall fold.
Collapse
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Laboratory, Stanford University, 2575 Sand Hill Road, SSRL MS 69, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The structure of thymidylate synthase complementing protein with substrates dUMP and FAD, presented in this issue of Structure, sheds light on a fascinating new catalytic mechanism, suggests a strategy for the design of new antimicrobial compounds, and highlights the promise of proteomics in medicine.
Collapse
|
46
|
Birdsall DL, Finer-Moore J, Stroud RM. The only active mutant of thymidylate synthase D169, a residue far from the site of methyl transfer, demonstrates the exquisite nature of enzyme specificity. Protein Eng Des Sel 2003; 16:229-40. [PMID: 12702803 DOI: 10.1093/proeng/gzg020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cysteine is the only variant of D169, a cofactor-binding residue in thymidylate synthase, that shows in vivo activity. The 2.4 A crystal structure of Escherichia coli thymidylate synthase D169C in a complex with dUMP and the antifolate CB3717 shows it to be an asymmetric dimer, with only one active site covalently bonded to dUMP. At the active site with covalently bound substrate, C169 S gamma adopts the roles of both carboxyl oxygens of D169, making a 3.6 A S...H[bond]N hydrogen bond to 3-NH of CB3717 and a 3.4 A water-mediated hydrogen bond to H212. Analogous hydrogen bonds formed during the enzyme reaction are important for cofactor binding and are postulated to contribute to catalysis. The C169 side chain is likely to be ionized, making it a better hydrogen bond acceptor than a neutral sulfhydryl group. At the second active site, C169 S gamma makes a shorter (3 A) hydrogen bond to the 3-NH of CB3717, CB3717 is approximately 1.5 A out of its binding site and there is no covalent bond between dUMP and the catalytic cysteine. Changes to partitioning among productive and non-productive conformations of reaction intermediates may contribute as much, if not more, to the diminished activity of this mutant than reduced stabilization of transition states.
Collapse
Affiliation(s)
- David L Birdsall
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
47
|
Sayre PH, Finer-Moore JS, Fritz TA, Biermann D, Gates SB, MacKellar WC, Patel VF, Stroud RM. Multi-targeted antifolates aimed at avoiding drug resistance form covalent closed inhibitory complexes with human and Escherichia coli thymidylate synthases. J Mol Biol 2001; 313:813-29. [PMID: 11697906 DOI: 10.1006/jmbi.2001.5074] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystal structures of four pyrrolo(2,3-d)pyrimidine-based antifolate compounds, developed as inhibitors of thymidylate synthase (TS) in a strategy to circumvent drug-resistance, have been determined in complexes with their in vivo target, human thymidylate synthase, and with the structurally best-characterized Escherichia coli enzyme, to resolutions of 2.2-3.0 A. The 2.9 A crystal structure of a complex of human TS with one of the inhibitors, the multi-targeted antifolate LY231514, demonstrates that this compound induces a "closed" enzyme conformation and leads to formation of a covalent bond between enzyme and substrate. This structure is one of the first liganded human TS structures, and its solution was aided by mutation to facilitate crystallization. Structures of three other pyrrolo(2,3-d)pyrimidine-based antifolates in complex with Escherichia coli TS confirm the orientation of this class of inhibitors in the active site. Specific interactions between the polyglutamyl moiety and a positively charged groove on the enzyme surface explain the marked increase in affinity of the pyrrolo(2,3-d)pyrimidine inhibitors once they are polyglutamylated, as mediated in vivo by the cellular enzyme folyl polyglutamate synthetase.
Collapse
Affiliation(s)
- P H Sayre
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fritz TA, Tondi D, Finer-Moore JS, Costi MP, Stroud RM. Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase. CHEMISTRY & BIOLOGY 2001; 8:981-95. [PMID: 11590022 DOI: 10.1016/s1074-5521(01)00067-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Protein plasticity in response to ligand binding abrogates the notion of a rigid receptor site. Thus, computational docking alone misses important prospective drug design leads. Bacterial-specific inhibitors of an essential enzyme, thymidylate synthase (TS), were developed using a combination of computer-based screening followed by in-parallel synthetic elaboration and enzyme assay [Tondi et al. (1999) Chem. Biol. 6, 319-331]. Specificity was achieved through protein plasticity and despite the very high sequence conservation of the enzyme between species. RESULTS The most potent of the inhibitors synthesized, N,O-didansyl-L-tyrosine (DDT), binds to Lactobacillus casei TS (LcTS) with 35-fold higher affinity and to Escherichia coli TS (EcTS) with 24-fold higher affinity than to human TS (hTS). To reveal the molecular basis for this specificity, we have determined the crystal structure of EcTS complexed with DDT and 2'-deoxyuridine-5'-monophosphate (dUMP). The 2.0 A structure shows that DDT binds to EcTS in a conformation not predicted by molecular docking studies and substantially differently than other TS inhibitors. Binding of DDT is accompanied by large rearrangements of the protein both near and distal to the enzyme's active site with movement of C alpha carbons up to 6 A relative to other ternary complexes. This protein plasticity results in novel interactions with DDT including the formation of hydrogen bonds and van der Waals interactions to residues conserved in bacterial TS but not hTS and which are hypothesized to account for DDT's specificity. The conformation DDT adopts when bound to EcTS explains the activity of several other LcTS inhibitors synthesized in-parallel with DDT suggesting that DDT binds to the two enzymes in similar orientations. CONCLUSIONS Dramatic protein rearrangements involving both main and side chain atoms play an important role in the recognition of DDT by EcTS and highlight the importance of incorporating protein plasticity in drug design. The crystal structure of the EcTS/dUMP/DDT complex is a model system to develop more selective TS inhibitors aimed at pathogenic bacterial species. The crystal structure also suggests a general formula for identifying regions of TS and other enzymes that may be treated as flexible to aid in computational methods of drug discovery.
Collapse
Affiliation(s)
- T A Fritz
- Macromolecular Structure Group, Department of Biochemistry, University of California San Francisco, 94143-0448, USA
| | | | | | | | | |
Collapse
|
49
|
Coenzymes of Oxidation—Reduction Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Changchien LM, Garibian A, Frasca V, Lobo A, Maley GF, Maley F. High-level expression of Escherichia coli and Bacillus subtilis thymidylate synthases. Protein Expr Purif 2000; 19:265-70. [PMID: 10873540 DOI: 10.1006/prep.2000.1245] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Procedures are described for the preparation of highly purified thymidylate synthases from Escherichia coli and Bacillus subtilis. The yields in each case are quite high with about 350 mg of pure protein obtained from 1 liter of cells. Basically all that is required to obtain pure enzyme is an induction step from a high-expression vector, followed by a DE-52 column elution. Both enzymes appeared to be fairly stable in that incubation at 43 degrees C for 10 min resulted in the loss of 50% of the E. coli thymidylate synthase activity, while 50 degrees C for 10 min was required to obtain the same effect with the B. subtilis enzyme. In the presence of the substrate, dUMP, each protein was stabilized further by 6 to 7 degrees C, which was increased to 9 to 10 degrees C on addition of dihydrofolate. It was shown also that the E. coli thymidylate synthase could be maintained at 4 degrees C for at least 4 months with little or no loss in activity provided that mercaptoethanol was not present. The presence of the latter led to a progressive loss in activity until little activity could be detected after 18 weeks, which was due, in part, to the formation of a disulfide bond with the active site cysteine. Addition of dithiothreitol restored the enzyme activity to its original state.
Collapse
Affiliation(s)
- L M Changchien
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York, 12201-0509, USA
| | | | | | | | | | | |
Collapse
|