1
|
Wagner M, Blum D, Raschka SL, Nentwig LM, Gertzen CGW, Chen M, Gatsogiannis C, Harris A, Smits SHJ, Wagner R, Schmitt L. A New Twist in ABC Transporter Mediated Multidrug Resistance - Pdr5 is a Drug/proton Co-transporter. J Mol Biol 2022; 434:167669. [PMID: 35671830 DOI: 10.1016/j.jmb.2022.167669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
The two major efflux pump systems that are involved in multidrug resistance (MDR) are (i) ATP binding cassette (ABC) transporters and (ii) secondary transporters. While the former use binding and hydrolysis of ATP to facilitate export of cytotoxic compounds, the latter utilize electrochemical gradients to expel their substrates. Pdr5 from Saccharomyces cerevisiae is a prominent member of eukaryotic ATP binding cassette (ABC) transporters that are involved in multidrug resistance (MDR) and used as a frequently studied model system. Although investigated for decades, the underlying molecular mechanisms of drug transport and substrate specificity remain elusive. Here, we provide electrophysiological data on the reconstituted Pdr5 demonstrating that this MDR efflux pump does not only actively translocate its substrates across the lipid bilayer, but at the same time generates a proton motif force in the presence of Mg2+-ATP and substrates by acting as a proton/drug co-transporter. Importantly, a strictly substrate dependent co-transport of protons was also observed in in vitro transport studies using Pdr5-enriched plasma membranes. We conclude from these results that the mechanism of MDR conferred by Pdr5 and likely other transporters is more complex than the sole extrusion of cytotoxic compounds and involves secondary coupled processes suitable to increase the effectiveness.
Collapse
Affiliation(s)
- Manuel Wagner
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Daniel Blum
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Stefanie L Raschka
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lea-Marie Nentwig
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christoph G W Gertzen
- Center for Structural Studies Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Minghao Chen
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany; Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany; Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrzej Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, United Kingdom
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; Center for Structural Studies Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany.
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Töllner K, Brandt C, Römermann K, Löscher W. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide. Eur J Pharmacol 2014; 746:167-73. [PMID: 25449033 DOI: 10.1016/j.ejphar.2014.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/22/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022]
Abstract
Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
3
|
Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:606-17. [DOI: 10.1016/j.bbadis.2013.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 12/27/2022]
|
4
|
Roomans GM. Pharmacological Approaches to Correcting the Ion Transport Defect in Cystic Fibrosis. ACTA ACUST UNITED AC 2012; 2:413-31. [PMID: 14719993 DOI: 10.1007/bf03256668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cystic fibrosis (CF) is a lethal genetic disease caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), which mainly (but not exclusively) functions as a chloride channel. The main clinical symptoms are chronic obstructive lung disease, which is responsible for most of the morbidity and mortality associated with CF, and pancreatic insufficiency. About 1000 mutations of the gene coding for CFTR are currently known; the most common of these, present in the great majority of the patients (Delta508) results in the deletion of a phenylalanine at position 508. In this mutation, the aberrant CFTR is not transported to the membrane but degraded in the ubiquitin-proteasome pathway. The aim of this review is to give an overview of the pharmacologic strategies currently used in attempts to overcome the ion transport defect in CF. One strategy to develop pharmacologic treatment for CF is to inhibit the breakdown of DeltaF508-CFTR by interfering with the chaperones involved in the folding of CFTR. At least in in vitro systems, this can be accomplished by sodium phenylbutyrate, or S-nitrosoglutathione (GSNO), and also by genistein or benzo[c]quinolizinium compounds. It is also possible to stimulate CFTR or its mutated forms, when present in the plasma membrane, using xanthines, genistein, and various other compounds, such as benzamidizoles and benzoxazoles, benzo[c]quinolizinium compounds or phenantrolines. Experimental results are not always unambiguous, and adverse effects have been incompletely tested. Some clinical tests have been done on sodium phenyl butyrate, GSNO and genistein, mostly in respect to other diseases, and the results demonstrate that these drugs are reasonably well tolerated. Their efficiency in the treatment of CF has not yet been demonstrated, however. An alternative strategy is to compensate for the defective chloride transport by CFTR by stimulation of other chloride channels. This can be done via purinergic receptors. A phase I study using a stable uridine triphosphate analog has recently been completed. A second alternative strategy is to attempt to maintain hydration of the airway mucus by inhibiting Na(+) uptake by the epithelial Na(+) channel using amiloride or stable analogs of amiloride. Clinical tests so far have been inconclusive. A number of other suggestions are currently being explored. The minority of patients with CF who have a stop mutation may benefit from treatment with gentamicin. The difficulties in finding a pharmacologic treatment for CF may be due to the fact that CFTR has additional functions besides chloride transport, and interfering with CFTR biosynthesis or activation implies interference with central cellular processes, which may have undesirable adverse effects.
Collapse
Affiliation(s)
- Godfried M Roomans
- Department of Medical Cell Biology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
5
|
Bottova I, Sauder U, Olivieri V, Hehl AB, Sonda S. The P-glycoprotein inhibitor GF120918 modulates Ca2+-dependent processes and lipid metabolism in Toxoplasma gondii. PLoS One 2010; 5:e10062. [PMID: 20386707 PMCID: PMC2851653 DOI: 10.1371/journal.pone.0010062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/15/2010] [Indexed: 11/18/2022] Open
Abstract
Up-regulation of the membrane-bound efflux pump P-glycoprotein (P-gp) is associated with the phenomenon of multidrug-resistance in pathogenic organisms, including protozoan parasites. In addition, P-gp plays a role in normal physiological processes, however our understanding of these P-gp functions remains limited. In this study we investigated the effects of the P-gp inhibitor GF120918 in Toxoplasma gondii, a model apicomplexan parasite and an important human pathogen. We found that GF120918 treatment severely inhibited parasite invasion and replication. Further analyses of the molecular mechanisms involved revealed that the P-gp inhibitor modulated parasite motility, microneme secretion and egress from the host cell, all cellular processes known to depend on Ca2+ signaling in the parasite. In support of a potential role of P-gp in Ca2+-mediated processes, immunoelectron and fluorescence microscopy showed that T. gondii P-gp was localized in acidocalcisomes, the major Ca2+ storage in the parasite, at the plasma membrane, and in the intravacuolar tubular network. In addition, metabolic labeling of extracellular parasites revealed that inhibition or down-regulation of T. gondii P-gp resulted in aberrant lipid synthesis. These results suggest a crucial role of T. gondii P-gp in essential processes of the parasite biology and further validate the potential of P-gp activity as a target for drug development.
Collapse
Affiliation(s)
- Iveta Bottova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Roepe PD. Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol 2009; 4:441-55. [PMID: 19416013 PMCID: PMC2724744 DOI: 10.2217/fmb.09.15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
30 years before the discovery of the pfcrt gene, altered cellular drug accumulation in drug-resistant malarial parasites had been well documented. Heme released from catabolized hemoglobin was thought to be a key target for quinoline drugs, and additional modifications to quinoline drug structure in order to improve activity against chloroquine-resistant malaria were performed in a few laboratories. However, parasite cell culture methods were still in their infancy, assays for drug susceptibility were not well standardized, and the power of malarial genetics was decades away. The last 10 years have witnessed explosive progress in elucidation of the biochemistry of chloroquine resistance. This review briefly summarizes that progress, and discusses where additional work is needed.
Collapse
Affiliation(s)
- Paul D Roepe
- Department of Chemistry and Department of Biochemistry, Cellular & Molecular Biology, and Center for Infectious Disease, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
7
|
Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol 2008; 17:22-31. [PMID: 19062291 DOI: 10.1016/j.tim.2008.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/03/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
The emergence of widespread multidrug resistance (MDR) is a serious challenge for therapeutics, food-preservation and crop protection. Frequently, MDR is a result of the action of drug-efflux pumps, which are able to catalyze the extrusion of unrelated chemical compounds. This review summarizes the current knowledge on the Saccharomyces cerevisiae drug:H+ antiporters of the major facilitator superfamily (MFS), a group of MDR transporters that is still characterized poorly in eukaryotes. Particular focus is given here to the physiological role and expression regulation of these transporters, while we provide a unified view of new data emerging from functional genomics approaches. Although traditionally described as drug pumps, evidence reviewed here corroborates the hypothesis that several MFS-MDR transporters might have a natural substrate and that drug transport might occur only fortuitously or opportunistically. Their role in MDR might even result from the transport of endogenous metabolites that affect the partition of cytotoxic compounds indirectly. Finally, the extrapolation of the gathered knowledge on the MDR phenomenon in yeast to pathogenic fungi and higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
8
|
Wu G, Lewis DR, Spalding EP. Mutations in Arabidopsis multidrug resistance-like ABC transporters separate the roles of acropetal and basipetal auxin transport in lateral root development. THE PLANT CELL 2007; 19:1826-37. [PMID: 17557807 PMCID: PMC1955722 DOI: 10.1105/tpc.106.048777] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Auxin affects the shape of root systems by influencing elongation and branching. Because multidrug resistance (MDR)-like ABC transporters participate in auxin transport, they may be expected to contribute to root system development. This reverse genetic study of Arabidopsis thaliana roots shows that MDR4-mediated basipetal auxin transport did not affect root elongation or branching. However, impaired acropetal auxin transport due to mutation of the MDR1 gene caused 21% of nascent lateral roots to arrest their growth and the remainder to elongate 50% more slowly than the wild type. Reporter gene analyses indicated a severe auxin deficit in the apex of mdr1 but not mdr4 lateral roots. The mdr1 deficit was explained by 40% less acropetal auxin transport within the mdr1 lateral roots. The slow elongation of mdr1 lateral roots was rescued by auxin and phenocopied in the wild type by an inhibitor of polar auxin transport. Confocal microscopy analysis of a functional green fluorescent protein-MDR1 translational fusion showed the protein to be auxin inducible and present in the tissues responsible for acropetal transport in the primary root. The protein also accumulated in lateral root primordia and later in the tissues responsible for acropetal transport within the lateral root, fully supporting the conclusion that auxin levels established by MDR1-dependent acropetal transport control lateral root growth rate to influence root system architecture.
Collapse
Affiliation(s)
- Guosheng Wu
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
9
|
Piwnica-Worms D, Kesarwala AH, Pichler A, Prior JL, Sharma V. Single photon emission computed tomography and positron emission tomography imaging of multi-drug resistant P-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrier function and Alzheimer's disease. Neuroimaging Clin N Am 2007; 16:575-89, viii. [PMID: 17148020 DOI: 10.1016/j.nic.2006.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.
Collapse
Affiliation(s)
- David Piwnica-Worms
- Washington University Medical School, 510 South Kingshighway Boulevard, Box 8225, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
10
|
Jamroziak K, Robak T. Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. ACTA ACUST UNITED AC 2004; 9:91-105. [PMID: 15203864 DOI: 10.1080/10245330310001638974] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pharmacogenomics is a rapidly developing field of biomedical research, which investigates phenotypic and pharmacodynamic consequences of the genetic variations among individuals. The multi-drug resistance-1, MDR1 (ABCB1) gene belongs to ATP-binding cassette (ABC) family and encodes for membrane transporter P-glycoprotein (P-gp). A wide array of P-gp substrates comprises toxic xenobiotics and numerous commonly used medications including anti-cancer drugs. Under physiological conditions P-gp protects cells against toxins, whereas in malignant cells P-gp confers multi-drug resistance phenotype. Moreover, characteristic tissue localisation enables P-gp to influence the uptake, tissue distribution and elimination of P-gp transported drugs. A number of recent studies identified variety of single nucleotide polymorphisms (SNPs) in the MDR1 gene and demonstrated significant ethnic differences in their allelic frequency distribution. Furthermore, it was shown that some of these SNPs, especially silent C3435T polymorphism in exon 26, may alter P-gp expression and transport activity. Consequently, it is likely that specific functional MDR1 haplotypes may result with altered exposure to toxins and drugs, thus influencing predisposition to certain diseases as well as efficacy or toxicity of pharmacotherapy. In this paper, we focus on the available data concerning the impact of MDR1 polymorphism on the risk and clinical outcome of haematological malignancies. The structure and function of P-gp as well as results of studies addressing the relevance of MDR1 polymorphism in non-haematological disorders are also briefly discussed.
Collapse
|
11
|
Dragomir A, Roomans GM. Increased chloride efflux in colchicine-resistant airway epithelial cell lines. Biochem Pharmacol 2004; 68:253-61. [PMID: 15193997 DOI: 10.1016/j.bcp.2004.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/15/2004] [Indexed: 11/30/2022]
Abstract
Colchicine has been proposed as a treatment to alleviate chronic lung inflammation in cystic fibrosis patients and clinical trials are ongoing. Our aim was to investigate whether chronic exposure of cystic fibrosis cells to colchicine can affect their ability to transport chloride in response to cAMP. Colchicine-resistant cells were selected by growing in medium containing nanomolar concentrations of the drug. While microtubuli were affected by acute exposure to colchicine, they appeared normal in colchicine-resistant cells. Colchicine-resistant clones had higher expression of multidrug resistance proteins compared to untreated cells. Cystic fibrosis transmembrane conductance regulator (CFTR) labelling by immunocytochemistry showed no significant changes. The intracellular chloride concentration and basal chloride efflux of the cystic fibrosis treated cells increased significantly compared with untreated cells, while for the cAMP-stimulated Cl-efflux there was no significant change. The results suggest that colchicine promotes chloride efflux via alternative chloride channels. Since this is an accepted strategy for pharmacological treatment of cystic fibrosis, the results strengthen the notion that colchicine would be beneficial to these patients.
Collapse
Affiliation(s)
- Anca Dragomir
- Department of Medical Cell Biology, University of Uppsala, Box 571, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
12
|
Pichler A, Prior JL, Piwnica-Worms D. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci U S A 2004; 101:1702-7. [PMID: 14755051 PMCID: PMC341825 DOI: 10.1073/pnas.0304326101] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coelenterazine is widely distributed among marine organisms, producing bioluminescence by calcium-insensitive oxidation mediated by Renilla luciferase (Rluc) and calcium-dependent oxidation mediated by the photoprotein aequorin. Despite its abundance in nature and wide use of both proteins as reporters of gene expression and signal transduction, little is known about mechanisms of coelenterazine transport and cell permeation. Interestingly, coelenterazine analogues share structural and physiochemical properties of compounds transported by the multidrug resistance MDR1 P-glycoprotein (Pgp). Herein, we report that living cells stably transfected with a codon-humanized Rluc show coelenterazine-mediated bioluminescence in a highly MDR1 Pgp-modulated manner. In Pgp-expressing Rluc cells, low baseline bioluminescence could be fully enhanced (reversed) to non-Pgp matched control levels with potent and selective Pgp inhibitors. Therefore, using coelenterazine and noninvasive bioluminescence imaging in vivo, we could directly monitor tumor-specific Pgp transport inhibition in living mice. While enabling molecular imaging and high-throughput screening of drug resistance pathways, these data also raise concern for the indiscriminate use of Rluc and aequorin as reporters in intact cells or transgenic animals, wherein Pgp-mediated alterations in coelenterazine permeability may impact results.
Collapse
Affiliation(s)
- Andrea Pichler
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
13
|
Porcelli AM, Scotlandi K, Strammiello R, Gislimberti G, Baldini N, Rugolo M. Intracellular pH regulation in U-2 OS human osteosarcoma cells transfected with P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:125-38. [PMID: 11853886 DOI: 10.1016/s0167-4889(01)00173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.
Collapse
Affiliation(s)
- Anna Maria Porcelli
- Dipartimento di Biologia Evoluzionistica Sperimentale, Università di Bologna, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Luker GD, Flagg TP, Sha Q, Luker KE, Pica CM, Nichols CG, Piwnica-Worms D. MDR1 P-glycoprotein reduces influx of substrates without affecting membrane potential. J Biol Chem 2001; 276:49053-60. [PMID: 11598111 DOI: 10.1074/jbc.m105192200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MDR1 (multidrug resistance) P-glycoprotein (Pgp; ABCB1) decreases intracellular concentrations of structurally diverse drugs. Although Pgp is generally thought to be an efflux transporter, the mechanism of action remains elusive. To determine whether Pgp confers drug resistance through changes in transmembrane potential (E(m)) or ion conductance, we studied electrical currents and drug transport in Pgp-negative MCF-7 cells and MCF-7/MDR1 stable transfectants that were established and maintained without chemotherapeutic drugs. Although E(m) and total membrane conductance did not differ between MCF-7 and MCF-7/MDR1 cells, Pgp reduced unidirectional influx and steady-state cellular content of Tc-Sestamibi, a substrate for MDR1 Pgp, without affecting unidirectional efflux of substrate from cells. Depolarization of membrane potentials with various concentrations of extracellular K(+) in the presence of valinomycin did not inhibit the ability of Pgp to reduce intracellular concentration of Tc-Sestamibi, strongly suggesting that the drug transport activity of MDR1 Pgp is independent of changes in E(m) or total ion conductance. Tetraphenyl borate, a lipophilic anion, enhanced unidirectional influx of Tc-Sestamibi to a greater extent in MCF-7/MDR1 cells than in control cells, suggesting that Pgp may, directly or indirectly, increase the positive dipole potential within the plasma membrane bilayer. Overall, these data demonstrate that changes in E(m) or macroscopic conductance are not coupled with function of Pgp in multidrug resistance. The dominant effect of MDR1 Pgp in this system is reduction of drug influx, possibly through an increase in intramembranous dipole potential.
Collapse
Affiliation(s)
- G D Luker
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gollapud S, Gupta S. Anti-P-glycoprotein antibody-induced apoptosis of activated peripheral blood lymphocytes: a possible role of P-glycoprotein in lymphocyte survival. J Clin Immunol 2001; 21:420-30. [PMID: 11811787 DOI: 10.1023/a:1013177710941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
P-glycoprotein (P-gp) is a 170-kDa glycoprotein encoded by the MDR-1 gene. In tumor cells overexpression of P-gp is associated with resistance to chemotherapy-induced apoptosis. P-gp is also expressed on cells of the immune system; however, its role in lymphocyte physiology remains unclear. Therefore, in this investigation, we examined a possible role of P-gp in the survival of in vitro activated peripheral blood mononuclear cells (MNCs). MNCs were activated with anti-CD3 monoclonal antibody (mAb) for 96 hr in the presence or absence of anti-P-gp mAb or isotype control and examined for apoptosis by TUNEL assay. Activation of caspase was determined by colorimetric assay. Activated lymphocytes (96 hr) are resistant to apoptosis. However, anti-P-gp mAb-induced apoptosis in anti-CD3 activated MNC. Induction of apoptosis was associated with increased expression of CD95L; activation of caspase 3, however, did not affect the expression of Bcl-2 and Bcl-xL. Furthermore, both recombinant Fas-Fc fusion protein, a blocker of CD95-CD95L interactions, and Z-DEVD-FMK, a cell-permeable caspase 3 inhibitor, reversed anti-P-gp-induced apoptosis. These data demonstrate that anti-P-gp mAb promotes apoptosis in activated T lymphocytes by up-regulating CD95L expression and via CD95-CD95L interactions and suggest a possible role of P-gp in lymphocyte survival.
Collapse
Affiliation(s)
- S Gollapud
- Department of Medicine, University of California, Irvine 92697, USA
| | | |
Collapse
|
16
|
Slapak CA, Dahlheimer J, Piwnica‐Worms D. Reversal of Multidrug Resistance with LY335979: Functional Analysis of P‐glycoprotein‐Mediated Transport Activity and Its Modulation In Vivo. J Clin Pharmacol 2001. [DOI: 10.1177/0091270001417006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Julie Dahlheimer
- Laboratory of Molecular Radiopharmacology, Molecular Imaging Center, Mallinckrodt Institute of Radiology and Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri
| | - David Piwnica‐Worms
- Laboratory of Molecular Radiopharmacology, Molecular Imaging Center, Mallinckrodt Institute of Radiology and Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri
| |
Collapse
|
17
|
Parasrampuria DA, Lantz MV, Benet LZ. A human lymphocyte based ex vivo assay to study the effect of drugs on P-glycoprotein (P-gp) function. Pharm Res 2001; 18:39-44. [PMID: 11336351 DOI: 10.1023/a:1011070509191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The effect of drugs on P-glycoprotein (P-gp) is normally studied in transfected or overexpressing cell lines derived from tumor cells or animal tissue. We wanted to develop an assay using normal healthy human tissue to study and characterize the drug-transporter interaction. METHODS Lymphocytes were isolated from healthy human blood. The effect of inhibitors of P-gp (cyclosporine, tacrolimus, verapamil, quinidine, vinblastine) and of other transporters (indomethacin, probenecid, sulfinpyrazone) on intracellular accumulation of rhodamine 123 was evaluated by flow cytometry. RESULTS The efflux of rhodamine 123 was inhibited by P-gp inhibitors in a saturable, concentration-dependent manner. The potency of inhibition of P-gp was cyclosporine > tacrolimus > quinidine > verapamil > vinblastine. Vinblastine inhibited P-gp at lower concentrations, whereas at high concentrations, there was an activation of rhodamine 123 efflux from lymphocytes. The multidrug resistance associated protein (MRP) inhibitors, sulfinpyrazone and probenecid, did not have any significant effect on intracellular accumulation of rhodamine 123, but indomethacin caused a concentration-dependent increase in retention of rhodamine 123, indicating the involvement of other uncharacterized transporters. CONCLUSIONS Lymphocytes can serve as a model tissue for studying modulation of P-gp activity by drugs. Both inhibitors and inducers of P-gp activity can be evaluated.
Collapse
Affiliation(s)
- D A Parasrampuria
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
18
|
Dzekunov SM, Ursos LM, Roepe PD. Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol Biochem Parasitol 2000; 110:107-24. [PMID: 10989149 DOI: 10.1016/s0166-6851(00)00261-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first single cell-level analysis of digestive vacuolar pH for representative chloroquine resistant (strain Dd2) versus sensitive (strain HB3) malarial parasites. Human red blood cells harboring intact intraerythrocytic parasites were attached to glass substrate, continuously perfused with appropriate buffer, and pH was analyzed via single cell imaging and photometry techniques. We find that digestive vacuolar pH (pH(vac)) is near 5.6 for HB3 parasites. Surprisingly, we also find that pH(vac) of Dd2 is more acidic relative to HB3. Notably, in vitro pH titration of hematin confirms a very steep transition between soluble heme (capable of binding chloroquine) and insoluble heme (not capable of binding chloroquine, but still capable of polymerization to hemozoin) with a distinct midpoint at pH 5.6. We suggest the similarity between the hematin pH titration midpoint and the measured value of HB3 pH(vac) is not coincidental, and that decreased pH(vac) for Dd2 titrates limited initial drug target (i.e. soluble heme) to lower concentration. That is, changes in pH(vac) for drug resistant Dd2 relative to drug sensitive HB3 are consistent with lowering drug target levels, but not directly lowering vacuolar concentrations of drug via the predictions of weak base partitioning theory. Regardless, lowering either would of course decrease the efficiency of drug/target interaction and hence the net cellular accumulation of drug over time, as is typically observed for resistant parasites. These observations contrast sharply with the common expectation that decreased chloroquine accumulation in drug resistant malarial parasites is likely linked to elevated pH(vac,) but nonetheless illustrate important differences in vacuolar ion transport for drug resistant malarial parasites. In the accompanying paper (Ursos, L. et al., following paper this issue) we describe how pH(vac) is affected by exposure to chloroquine and verapamil for HB3 versus Dd2.
Collapse
Affiliation(s)
- S M Dzekunov
- Department of Chemistry and Program in Tumor Biology, Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
19
|
Chen WS, Luker KE, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D. Effects of MDR1 and MDR3 P-glycoproteins, MRP1, and BCRP/MXR/ABCP on the transport of (99m)Tc-tetrofosmin. Biochem Pharmacol 2000; 60:413-26. [PMID: 10856437 DOI: 10.1016/s0006-2952(00)00341-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Multidrug resistance (MDR1) P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and breast cancer resistance protein (BCRP/MXR/ABCP) are members of the ATP-binding-cassette (ABC) superfamily of membrane transporters and are thought to function as energy-dependent efflux pumps of a variety of structurally diverse chemotherapeutic agents. We herein report the characterization of (99m)Tc-Tetrofosmin, a candidate radiopharmaceutical substrate of ABC transporters. (99m)Tc-Tetrofosmin showed high membrane potential-dependent accumulation in drug-sensitive KB 3-1 cells and low antagonist-reversible accumulation in MDR KB 8-5 and KB 8-5-11 cells in proportion to levels of MDR1 Pgp expression. In KB 8-5 cells, EC(50) values of the potent MDR antagonists N-(4-[2-(1,2,3, 4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9, 10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), (2R)-anti-5-¿3-[4-(10, 11-difluoromethanodibenzo-suber-5-yl)piperazin-1-yl]-2 -hydroxypropoxy ¿quinoline trihydrochloride (LY335979), and (3'-keto-Bmt')-[Val(2)]-cyclosporin A (PSC 833) were 40, 66, and 986 nM, respectively. Furthermore, only baculoviruses carrying human MDR1, but not MDR3, conferred both a decrease in accumulation of (99m)Tc-Tetrofosmin in host Spodoptera frugiperda (Sf9) cells and a GF120918-induced enhancement. Transport studies with a variety of stably transfected and drug-selected tumor cell lines were performed with (99m)Tc-Tetrofosmin and compared with (99m)Tc-Sestamibi, a previously validated MDR imaging agent. MDR1 Pgp readily transported each agent. To a lesser extent, MRP1 also transported each agent, likely as co-transport substrates with GSH; neither agent was a substrate for the BCRP/MXR/ABCP half-transporter. In mdr1a(-/-) and mdr1a/1b(-/-) mice, (99m)Tc-Tetrofosmin showed approximately 3. 5-fold greater brain uptake and retention compared with wild-type, with no net change in blood pharmacokinetics, consistent with transport in vivo by Pgp expressed at the capillary blood-brain barrier. Molecular imaging of the functional transport activity of ABC transporters in vivo with (99m)Tc-Tetrofosmin and related radiopharmaceuticals may enable non-invasive monitoring of chemotherapeutic and MDR gene therapy protocols.
Collapse
Affiliation(s)
- W S Chen
- Laboratory of Molecular Radiopharmacology, Department of Radiology and Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
P-glycoprotein (P-gp) is an energy dependent drug pump responsible for multidrug resistance (MDR) in human cancers. While it is irrefutable that P-gp can efflux xenobiotics out of cells, the biological function of P-gp in multicellular organisms has yet to be firmly established. The question of what, if anything, P-gp does when not effluxing drugs has been raised by recent reports indicating that P-gp may regulate apoptosis, chloride channel activity, cholesterol metabolism and immune cell function. There is now a lively debate regarding the possible role of P-gp in regulating cell differentiation, proliferation and survival.
Collapse
Affiliation(s)
- R W Johnstone
- Cellular Cytotoxicity Laboratory, The Austin Research Institute, Australia, Victoria.
| | | | | | | |
Collapse
|
21
|
Martiney JA, Ferrer AS, Cerami A, Dzekunov S, Roepe P. Chloroquine uptake, altered partitioning and the basis of drug resistance: evidence for chloride-dependent ionic regulation. NOVARTIS FOUNDATION SYMPOSIUM 2000; 226:265-77; discussion 277-80. [PMID: 10645551 DOI: 10.1002/9780470515730.ch18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The biochemical mechanism of chloroquine resistance in Plasmodium falciparum remains unknown. We postulated that chloroquine-resistant strains could alter ion fluxes that then indirectly control drug accumulation within the parasite by affecting pH and/or membrane potential ('altered partitioning mechanism'). Two principal intracellular pH-regulating systems in many cell types are the amiloride-sensitive Na+/H+ exchanger (NHE), and the sodium-independent, stilbene-sensitive Cl-/HCO3- antiporter (AE). We report that under physiological conditions (balanced CO2 and HCO3-) chloroquine uptake and susceptibility are not altered by amiloride analogues. We also do not detect a significant difference in NHE activity between chloroquine-sensitive and chloroquine-resistant strains via single cell photometry methods. AE activity is dependent on the intracellular and extracellular concentrations of Cl- and HCO3- ions. Chloroquine-resistant strains differentially respond to experimental modifications in chloride-dependent homeostasis, including growth, cytoplasmic pH and pH regulation. Chloroquine susceptibility is altered by stilbene DIDS only on chloroquine-resistant strains. Our results suggest that a Cl(-)-dependent system (perhaps AE) has a significant effect on the uptake of chloroquine by the infected erythrocyte, and that alterations of this biophysical parameter may be part of the mechanism of chloroquine resistance in P. falciparum.
Collapse
Affiliation(s)
- J A Martiney
- Kenneth S. Warren Laboratories, Tarrytown, NY 10591, USA
| | | | | | | | | |
Collapse
|
22
|
Weisburg JH, Roepe PD, Dzekunov S, Scheinberg DA. Intracellular pH and multidrug resistance regulate complement-mediated cytotoxicity of nucleated human cells. J Biol Chem 1999; 274:10877-88. [PMID: 10196165 DOI: 10.1074/jbc.274.16.10877] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In previous work (Weisburg, J. H., Curcio, M., Caron, P. C., Raghi, G., Mechetner, E. B., Roepe, P. D., and Scheinberg, D. A. (1996) J. Exp. Med. 183, 2699-2704), we showed that multidrug resistance (MDR) cells created by continuous selection with the vinca alkaloid vincristine (HL60 RV+) or by retroviral infection (K562/human MDR 1 cells) exhibited significant resistance to complement-mediated cytotoxicity (CMC). This resistance was due to the presence of overexpressed P-glycoprotein (P-GP). In this paper, we probe the molecular mechanism of this phenomenon. We test whether the significant elevated intracellular pH (pHi) that accompanies P-GP overexpression is sufficient to confer resistance to CMC and whether this resistance is related to effects on complement function in the cell membrane. Control HL60 cells not expressing P-GP, but comparably elevated in cytosolic pHi by two independent methods (CO2 "conditioning" or isotonic Cl- substitution), are tested for CMC using two different antibody-antigen systems (human IgG and murine IgM; protein and carbohydrate) and two complement sources (rabbit and human). Elevation of pHi by either of these methods or by expression of P-GP confers resistance to CMC. Resistance is not observed when the alkalinization mediated by reverse Cl-/HCO3- exchange upon Cl- substitution is blocked by treatment with dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonate. Continuous photometric monitoring of 2',7'-bis(carboxyethyl)-5, 6-carboxyfluorescein (BCECF), to assess changes in pHi or efflux of the probe through MAC pores, in single cells or cell populations, respectively, verifies changes in pHi upon CO2 conditioning and Cl- substitution and release of BCECF upon formation of MAC pores. Antibody binding and internalization kinetics are similar in both the parental and resistant cell lines as measured by radioimmunoassay, but flow cytometric data showed that net complement deposition in the cell membrane is both delayed and reduced in magnitude in the MDR cells and in the cells with increased pHi. This interpretation is supported by comparison of BCECF release data for the different cells. Dual isotopic labeling of key complement components shows no significant change in molecular stoichiometry of the MACs formed at different pHi. The results are relevant to understanding clinical implications of MDR, the physiology of P-GP, and the biochemistry of the complement cascade and further suggest that the "drug pump" model of P-GP action cannot account for all of its effects.
Collapse
Affiliation(s)
- J H Weisburg
- Program in Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | |
Collapse
|
23
|
Belhoussine R, Morjani H, Sharonov S, Ploton D, Manfait M. Characterization of intracellular pH gradients in human multidrug-resistant tumor cells by means of scanning microspectrofluorometry and dual-emission-ratio probes. Int J Cancer 1999; 81:81-9. [PMID: 10077157 DOI: 10.1002/(sici)1097-0215(19990331)81:1<81::aid-ijc15>3.0.co;2-p] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multidrug-resistant cells are believed to contain a plasma-membrane-efflux pump which is hypothesized to expel anticancer drugs from the cytosol to the cell exterior. Many of these drugs are classified as weak bases whose binding to intracellular targets is pH-dependent. Slight alterations in intracellular pH gradients have been shown to affect accumulation, endocytosis and secretion of drugs. In this study, we developed a new method based on confocal spectral imaging analysis to determine intracellular pH gradients in sensitive and MDR tumor cells. Fluorescein isothiocyanate (FITC) and tetramethylrhodamine conjugated to dextran (FRD) and SNAFL-calcein-AM were used to determine pH in acidic compartments. Carboxy-SNARF1-AM was used to examine cytosolic pH. We observed that sensitive (HL60, K562, CEM and MCF7) cells exhibit lower acidity of the subcellular organelles than that corresponding to drug-resistant derivatives. Moreover, results obtained with carboxy-SNARF1-AM show that resistant cells display a more alkaline cytosolic pH. This results in a considerably larger pH gradient between the vesicular compartments and the cytosol of resistant cells than of sensitive cells. The lower pH gradient observed in sensitive cells may be related to a disruption in the organization of the trans-Golgi network (TGN). In drug-resistant cells, the organization of TGN appears compact. In addition, confocal microscopic analysis of cells labelled with FRD and SNAFL-calcein showed that sensitive cells contain a lower number of acidified vesicles. This suggest a diminished capacity of these cells to remove protonated drugs from the cytoplasm to secretory compartments followed by their secretion through the activity of the secretory and recycling pathways.
Collapse
Affiliation(s)
- R Belhoussine
- Université de Reims Champagne-Ardenne, UFR de Pharmacie, IFR53, Laboratoire de Spectroscopie Biomoléculaire, France
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
A major problem with treating patients with cancer by traditional chemotherapeutic regimes is that their tumors often develop a multidrug resistant (MDR) phenotype and subsequently become insensitive to a range of different chemotoxic drugs. One cause of MDR is overexpression of the drug-effluxing protein, P-glycoprotein.It is now apparent that P-glycoprotein may also possess a more generic antiapoptotic function that protects P-glycoprotein–expressing cancer cells and normal cells from cell death. Herein we show that cells induced to express P-glycoprotein either by drug selection or by retroviral gene transduction with MDR1 cDNA are resistant to cell death induced by a wide range of death stimuli, such as FasL, tumor necrosis factor (TNF), and ultraviolet (UV) irradiation, that activate the caspase apoptotic cascade.However, P-glycoprotein–expressing cells were not resistant to caspase-independent cell death mediated by pore-forming proteins and granzyme B.MDR P-glycoprotein–expressing cells were made sensitive to caspase-dependent apoptosis by the addition of anti–P-glycoprotein antibodies or verapamil, a pharmacological inhibitor of P-glycoprotein function. Clonogenic assays showed that P-glycoprotein confers long-term resistance to caspase-dependent apoptotic stimuli but not to caspase-independent cell death stimuli. This study has confirmed a potential novel physiological function for P-glycoprotein and it now remains to dissect the molecular mechanisms involved in the inhibition of capsase-dependent cell death by P-glycoprotein.
Collapse
|
26
|
Roepe PD, Martiney JA. Are ion-exchange processes central to understanding drug-resistance phenomena? Trends Pharmacol Sci 1999; 20:62-5. [PMID: 10101966 DOI: 10.1016/s0165-6147(98)01282-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug resistance in malarial parasites is arguably the greatest challenge currently facing infectious disease research. In addressing this problem, researchers have been intrigued by similarities between drug-resistant malarial parasites and tumour cells. For example, it was originally thought that the role of pfMDR (Plasmodium falciparum multidrug resistance) proteins was central in conferring antimalarial multidrug resistance. However, recent work has questioned the precise role of MDR proteins in multidrug resistance. In addition, recent ground-breaking work in identifying mutations associated with antimalarial drug resistance might have led to identification of yet another parallel between drug-resistant tumour cells and malarial parasites, namely, intriguing alterations in transmembrane ion transport, discussed here by Paul Roepe and James Martiney. This further underscores an emerging paradigm in drug-resistance research.
Collapse
Affiliation(s)
- P D Roepe
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | | |
Collapse
|
27
|
P-Glycoprotein Protects Leukemia Cells Against Caspase-Dependent, but not Caspase-Independent, Cell Death. Blood 1999. [DOI: 10.1182/blood.v93.3.1075] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA major problem with treating patients with cancer by traditional chemotherapeutic regimes is that their tumors often develop a multidrug resistant (MDR) phenotype and subsequently become insensitive to a range of different chemotoxic drugs. One cause of MDR is overexpression of the drug-effluxing protein, P-glycoprotein.It is now apparent that P-glycoprotein may also possess a more generic antiapoptotic function that protects P-glycoprotein–expressing cancer cells and normal cells from cell death. Herein we show that cells induced to express P-glycoprotein either by drug selection or by retroviral gene transduction with MDR1 cDNA are resistant to cell death induced by a wide range of death stimuli, such as FasL, tumor necrosis factor (TNF), and ultraviolet (UV) irradiation, that activate the caspase apoptotic cascade.However, P-glycoprotein–expressing cells were not resistant to caspase-independent cell death mediated by pore-forming proteins and granzyme B.MDR P-glycoprotein–expressing cells were made sensitive to caspase-dependent apoptosis by the addition of anti–P-glycoprotein antibodies or verapamil, a pharmacological inhibitor of P-glycoprotein function. Clonogenic assays showed that P-glycoprotein confers long-term resistance to caspase-dependent apoptotic stimuli but not to caspase-independent cell death stimuli. This study has confirmed a potential novel physiological function for P-glycoprotein and it now remains to dissect the molecular mechanisms involved in the inhibition of capsase-dependent cell death by P-glycoprotein.
Collapse
|
28
|
Affiliation(s)
- P D Roepe
- Department of Chemistry & Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|