1
|
Zhang Y, Zhang G, Wang T, Chen Y, Wang J, Li P, Wang R, Su J. Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies. Chembiochem 2024:e202400297. [PMID: 39287061 DOI: 10.1002/cbic.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Indexed: 09/19/2024]
Abstract
Cytochrome P450 (CYP450) enzymes, which are widely distributed and pivotal in various biochemical reactions, catalyze diverse processes such as hydroxylation, epoxidation, dehydrogenation, dealkylation, nitrification, and bond formation. These enzymes have been applied in drug metabolism, antibiotic production, bioremediation, and fine chemical synthesis. Recent research revealed that CYP450 catalytic kinetics deviated from the classic Michaelis-Menten model. A notable substrate inhibition phenomenon that affects the catalytic efficiency of CYP450 at high substrate concentrations was identified. However, the substrate inhibition of various reactions catalyzed by CYP450 enzymes have not been comprehensively reviewed. This review describes CYP450 substrate inhibition examples and atypical Michaelis-Menten kinetic models, and provides insight into mechanisms of these enzymes. We also reviewed 3D structure and dynamics of CYP450 with substrate binding. Outline methods for alleviating substrate inhibition in CYP450 and other enzymes, including traditional fermentation approaches and protein engineering modifications. The comprehensive analysis presented in this study lays the foundation for enhancing the catalytic efficiency of CYP450 by deregulating substrate inhibition.
Collapse
Affiliation(s)
- Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Guobin Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Taichang Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
2
|
Dehghan Shasaltaneh M, Naghdi E, Moosavi-Nejad Z. Mechanistic studies on substrate inhibition and substrate activation of ribonuclease A: experimental and in silico investigation. J Biomol Struct Dyn 2024; 42:6628-6644. [PMID: 37539792 DOI: 10.1080/07391102.2023.2235618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Ribonuclease A (RNase A) is an endonuclease that plays a significant role in antimicrobial activity by the cleavage and hydrolysis of ssRNA. In this study, the interactions between RNase A and cCMP have been investigated, through molecular docking and a 200 ns molecular dynamics simulation. The enzyme kinetic properties were analyzed using saturation curve, Eadie-Hofstee, and Hill plots. The docking results indicate that the cCMP-RNase A complexes are stabilized through hydrophobic interaction, hydrogen bonding, and π-π stacking interaction. The most binding site is observed in the catalytic cleft, especially at residue His12 and His119. Enzyme-ligand docking study indicates that cCMP binds to residues located in the internal cavity of the catalytic site and shows three phases of binding modes. The analysis of MD simulations shows that RMSD, Rg, and RMSF reach equilibrium. The ΔGbinding of the cCMP-RNase A was negative (-619.673 kJ/mol), The comparison between the results pre and post MD simulation showed that ΔGbinding after MD simulation causes to more stable the structure than before simulation. Experimental methods such as saturation, Eadie-Hofstee, and Hill plots confirm theoretical data and show three phases of binding modes as well. Two significant events are demonstrated in the interaction between RNase A and cCMP: substrate activation and substrate inhibition are observed in concentrations below and above 0.8 mM, respectively, for cCMP. Choosing the appropriate concentration of cCMP is very important in investigation of ribonuclease A's catalytic behavour, especially for exploration of the effects of some drugs on biological behaviours related to ribonuclease A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Elmira Naghdi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
3
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
4
|
Feng Y, Gong C, Zhu J, Liu G, Tang Y, Li W. Unraveling the Ligand-Binding Sites of CYP3A4 by Molecular Dynamics Simulations with Solvent Probes. J Chem Inf Model 2024; 64:3451-3464. [PMID: 38593186 DOI: 10.1021/acs.jcim.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is one of the most important drug-metabolizing enzymes in the human body and is well known for its complicated, atypical kinetic characteristics. The existence of multiple ligand-binding sites in CYP3A4 has been widely recognized as being capable of interfering with the active pocket through allosteric effects. The identification of ligand-binding sites other than the canonical active site above the heme is especially important for understanding the atypical kinetic characteristics of CYP3A4 and the intriguing association between the ligand and the receptor. In this study, we first employed mixed-solvent molecular dynamics (MixMD) simulations coupled with the online computational predictive tools to explore potential ligand-binding sites in CYP3A4. The MixMD approach demonstrates better performance in dealing with the receptor flexibility compared with other computational tools. From the sites identified by MixMD, we then picked out multiple sites for further exploration using ensemble docking and conventional molecular dynamics (cMD) simulations. Our results indicate that three extra sites are suitable for ligand binding in CYP3A4, including one experimentally confirmed site and two novel sites.
Collapse
Affiliation(s)
- Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Changda Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jieyu Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Liu S, Jing T, Jia R, Zhang JL, Bai FQ. MD investigation on the differences in the dynamic interactions between the specific ligand azamulin and two CYP3A isoforms, 3A4 and 3A5. J Biomol Struct Dyn 2024:1-10. [PMID: 38533567 DOI: 10.1080/07391102.2024.2331100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
The unmarked potential drug molecule azamulin has been found to be a specific inhibitor of CYP3A4 and CYP3A5 in recent years, but this molecule also shows different binding ability and affinity to the two CYP3A isoforms. In order to explore the microscopic mechanism, conventional molecular dynamics (MD) simulation methods were performed to study the dynamic interactions between two isoforms and azamulin. The simulation results show that the binding of the ligand leads to different structural properties of two CYP3A proteins. First of all, compared with apo-CYP3A4, the binding of the ligand azamulin can lead to changes in the structural flexibility of CYP3A4, i.e., holo-CYP3A4 is more flexible than apo-CYP3A4. The structural changes of CYP3A5 are just the opposite. The ligand binding increases the rigidity of CYP3A5. Furthermore, the representative structures of the production phase in the MD simulation were in details analyzed to obtain the microscopic interactions between the ligand azamulin and two CYP3A isoforms at the atomic level. It is speculated that the difference of composition and interaction of the active sites is the fundamental cause of the change of structural properties of the two proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuhui Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
- School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Tao Jing
- Depatment of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ran Jia
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Ji-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
6
|
Mo H, Chen X, Tang M, Qu Y, Li Z, Liu W, Yang C, Chen Y, Sun J, Yang H, Du G. Expression of a thermostable glucose-stimulated β-glucosidase from a hot-spring metagenome and its promising application to produce gardenia blue. Bioorg Chem 2024; 143:107036. [PMID: 38141330 DOI: 10.1016/j.bioorg.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
This study reports a thermostable glucose-stimulated β-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential β-glucosidase in biotechnology applications.
Collapse
Affiliation(s)
- Haiying Mo
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Xin Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Manwen Tang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Ying Qu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Zhihao Li
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Wang Liu
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Chunlin Yang
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Yijian Chen
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Jingxian Sun
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China
| | - Haiying Yang
- Yunnan Minzu University, School of Chemistry and Environment, Kunming, Yunnan, China.
| | - Gang Du
- Yunnan Minzu University, Key Laboratory of Chemistry in Ethnic Medicinal Resources Ministry of Education, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Hayward A, Hunt BJ, Haas J, Bushnell‐Crowther E, Troczka BJ, Pym A, Beadle K, Field J, Nelson DR, Nauen R, Bass C. A cytochrome P450 insecticide detoxification mechanism is not conserved across the Megachilidae family of bees. Evol Appl 2024; 17:e13625. [PMID: 38283601 PMCID: PMC10810168 DOI: 10.1111/eva.13625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 01/30/2024] Open
Abstract
Recent work has demonstrated that many bee species have specific cytochrome P450 enzymes (P450s) that can efficiently detoxify certain insecticides. The presence of these P450s, belonging or closely related to the CYP9Q subfamily (CYP9Q-related), is generally well conserved across the diversity of bees. However, the alfalfa leafcutter bee, Megachile rotundata, lacks CYP9Q-related P450s and is 170-2500 times more sensitive to certain insecticides than bee pollinators with these P450s. The extent to which these findings apply to other Megachilidae bee species remains uncertain. To address this knowledge gap, we sequenced the transcriptomes of four Megachile species and leveraged the data obtained, in combination with publicly available genomic data, to investigate the evolution and function of P450s in the Megachilidae. Our analyses reveal that several Megachilidae species, belonging to the Lithurgini, Megachilini and Anthidini tribes, including all species of the Megachile genus investigated, lack CYP9Q-related genes. In place of these genes Megachile species have evolved phylogenetically distinct CYP9 genes, the CYP9DM lineage. Functional expression of these P450s from M. rotundata reveal they lack the capacity to metabolize the neonicotinoid insecticides thiacloprid and imidacloprid. In contrast, species from the Osmiini and Dioxyini tribes of Megachilidae have CYP9Q-related P450s belonging to the CYP9BU subfamily that are able to detoxify thiacloprid. These findings provide new insight into the evolution of P450s that act as key determinants of insecticide sensitivity in bees and have important applied implications for pesticide risk assessment.
Collapse
Affiliation(s)
- Angela Hayward
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Benjamin J. Hunt
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Julian Haas
- Bayer AG, Crop Science DivisionMonheimGermany
| | | | | | - Adam Pym
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Katherine Beadle
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - Jeremy Field
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| | - David R. Nelson
- Department of Molecular SciencesUniversity of TennesseeMemphisTennesseeUSA
| | - Ralf Nauen
- Bayer AG, Crop Science DivisionMonheimGermany
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of ExeterPenryn, CornwallUK
| |
Collapse
|
8
|
Nair PC, Burns K, Chau N, McKinnon RA, Miners JO. The molecular basis of dapsone activation of CYP2C9-catalyzed nonsteroidal anti-inflammatory drug oxidation. J Biol Chem 2023; 299:105368. [PMID: 37866634 PMCID: PMC10696402 DOI: 10.1016/j.jbc.2023.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.
Collapse
Affiliation(s)
- Pramod C Nair
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Kushari Burns
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nuy Chau
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia; FHMRI Cancer Program, Flinders Health and Medical Research Institute, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Connick JP, Reed JR, Cawley GF, Saha A, Backes WL. Functional characterization of CYP1 enzymes: Complex formation, membrane localization and function. J Inorg Biochem 2023; 247:112325. [PMID: 37479567 PMCID: PMC10529082 DOI: 10.1016/j.jinorgbio.2023.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
CYP1A1, CYP1A2, and CYP1B1 have a high degree of sequence similarity, similar substrate selectivities and induction characteristics. However, experiments suggest that there are significant differences in their quaternary structures and function. The goal of this study was to characterize the CYP1 proteins regarding their ability to form protein-protein complexes, lipid microdomain localization, and ultimately function. This was accomplished by examining (1) substrate metabolism of the CYP1s as a function of NADPH-cytochrome P450 reductase (POR) concentration, and (2) quaternary structure, using bioluminescence resonance energy transfer (BRET). Both CYP1As were able to form BRET-detectable homomeric complexes, which was not observed with CYP1B1. When activities were measured as a function of [POR], CYP1A1 and CYP1B1 showed a hyperbolic response, consistent with mass-action binding; however, CYP1A2 produced a sigmoidal response, suggesting that the homomeric complex affected its function. Differences were observed in their ability to form heteromeric complexes. Whereas CYP1B1 and CYP1A1 formed a complex, neither the CYP1A1/CYP1A2 nor the CYP1B1/CYP1A2 pair formed BRET-detectable complexes. These proteins also differed in their lipid microdomain localization, with CYP1A2 and CYP1B1 residing in ordered membranes, and CYP1A1 in the disordered lipid regions. Taken together, despite their sequence similarities, there are substantial differences in quaternary structures and microdomain localization that can influence enzymatic activities. As these proteins exist in the endoplasmic reticulum with other ER-resident proteins, the P450s need to be considered as part of multi-enzyme systems rather than simply monomeric proteins interacting with their redox partners.
Collapse
Affiliation(s)
- J Patrick Connick
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - James R Reed
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - George F Cawley
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - Aratrika Saha
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA
| | - Wayne L Backes
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center -, New Orleans, LA 70112, USA.
| |
Collapse
|
10
|
He RJ, Tian ZH, Huang J, Sun MR, Wei F, Li CY, Zeng HR, Zhang F, Guan XQ, Feng Y, Meng XM, Yang H, Ge GB. Rationally Engineered CYP3A4 Fluorogenic Substrates for Functional Imaging Analysis and Drug-Drug Interaction Studies. J Med Chem 2023; 66:6743-6755. [PMID: 37145039 DOI: 10.1021/acs.jmedchem.3c00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cytochrome P450 3A4 (CYP3A4) is a key xenobiotic-metabolizing enzyme-mediated drug metabolism and drug-drug interaction (DDI). Herein, an effective strategy was used to rationally construct a practical two-photon fluorogenic substrate for hCYP3A4. Following two-round structure-based substrate discovery and optimization, we have successfully constructed a hCYP3A4 fluorogenic substrate (F8) with desirable features, including high binding affinity, rapid response, excellent isoform specificity, and low cytotoxicity. Under physiological conditions, F8 is readily metabolized by hCYP3A4 to form a brightly fluorescent product (4-OH F8) that can be easily detected by various fluorescence devices. The practicality of F8 for real-time sensing and functional imaging of hCYP3A4 has been examined in tissue preparations, living cells, and organ slices. F8 also demonstrates good performance for high-throughput screening of hCYP3A4 inhibitors and assessing DDI potentials in vivo. Collectively, this study develops an advanced molecular tool for sensing CYP3A4 activities in biological systems, which strongly facilitates CYP3A4-associated fundamental and applied research studies.
Collapse
Affiliation(s)
- Rong-Jing He
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhen-Hao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai 201203, China
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng Wei
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Chun-Yu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai-Rong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Qing Guan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
| | - Xiang-Ming Meng
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Lin H. Substrate-selective small-molecule modulators of enzymes: Mechanisms and opportunities. Curr Opin Chem Biol 2023; 72:102231. [PMID: 36455490 PMCID: PMC9870951 DOI: 10.1016/j.cbpa.2022.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022]
Abstract
Small-molecule inhibitors of enzymes are widely used tools in reverse chemical genetics to probe biology and explore therapeutic opportunities. They are often compared with genetic knockdown or knockout and are expected to produce phenotypes similar to the genetic perturbations. This review aims to highlight that small molecule inhibitors of enzymes and genetic perturbations may not necessarily produce the same phenotype due to the possibility of substrate-selective or substrate-dependent effects of the inhibitors. Examples of substrate-selective inhibitors and the mechanisms for the substrate-selective effects are discussed. Substrate-selective modulators of enzymes have distinct advantages and cannot be easily replaced with biologics. Thus, they present an exciting opportunity for chemical biologists and medicinal chemists.
Collapse
Affiliation(s)
- Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Shan L, Shi X, Hu T, Hu J, Guo Z, Song Y, Su D, Zhang X. In vitro differences in toddalolactone metabolism in various species and its effect on cytochrome P450 expression. PHARMACEUTICAL BIOLOGY 2022; 60:1591-1605. [PMID: 35944298 PMCID: PMC9367672 DOI: 10.1080/13880209.2022.2108062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Toddalolactone, the main component of Toddalia asiatica (L.) Lam. (Rutaceae), has anticancer, antihypertension, anti-inflammatory, and antifungal activities. OBJECTIVE This study investigated the metabolic characteristics of toddalolactone. MATERIALS AND METHODS Toddalolactone metabolic stabilities were investigated by incubating toddalolactone (20 μM) with liver microsomes from humans, rabbits, mice, rats, dogs, minipigs, and monkeys for 0, 30, 60, and 90 min. The CYP isoforms involved in toddalolactone metabolism were characterized based on chemical inhibition studies and screening assays. The effects of toddalolactone (0, 10, and 50 µM) on CYP1A1 and CYP3A5 protein expression were investigated by immunoblotting. After injecting toddalolactone (10 mg/kg), in vivo pharmacokinetic profiles using six Sprague-Dawley rats were investigated by taking 9-time points, including 0, 0.25, 0.5, 0.75, 1, 2, 4, 6 and 8 h. RESULTS Monkeys showed the greatest metabolic capacity in CYP-mediated and UGT-mediated reaction systems with short half-lives (T1/2) of 245 and 66 min, respectively, while T1/2 of humans in two reaction systems were 673 and 83 min, respectively. CYP1A1 and CYP3A5 were the major CYP isoforms involved in toddalolactone biotransformation. Induction of CYP1A1 protein expression by 50 μM toddalolactone was approximately 50% greater than that of the control (0 μM). Peak plasma concentration (Cmax) for toddalolactone was 0.42 μg/mL, and Tmax occurred at 0.25 h post-dosing. The elimination t1/2 was 1.05 h, and the AUC0-t was 0.46 μg/mL/h. CONCLUSIONS These findings demonstrated the significant species differences of toddalolactone metabolic profiles, which will promote appropriate species selection in further toddalolactone studies.
Collapse
Affiliation(s)
- Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tingting Hu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiayin Hu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dan Su
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaoyong Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
13
|
Biotransformation of phenytoin in the electrochemically-driven CYP2C19 system. Biophys Chem 2022; 291:106894. [PMID: 36174335 DOI: 10.1016/j.bpc.2022.106894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The possibility of the detection of atypical kinetic profiles of drug biotransformation using electrochemical systems based on immobilized cytochromes P450 with phenytoin hydroxylation by cytochrome P450 2C19 (CYP2C19) as an example was evaluated for the first time. For this purpose, we developed an electrochemical system, where one of the electrodes was modified by didodecyldimethylammonium bromide (DDAB) and was used as an electron donor for reduction of heme iron ion of the immobilized CYP2C19 and initiation of the catalytic reaction, while the second electrode was not modified and served for an electrochemical quantitation of 4-hydroxyphenytoin, which is a metabolite of antiepileptic drug phenytoin, by its oxidation peak. It was revealed that the dependence of the rate of 4-hydroxyphenytoin formation on phenytoin concentration is described by the equation for two enzymes or two binding sites indicating the existing of high- and low-affinity forms of the enzyme. The atypical kinetics and the kinetic parameters of CYP2C19-mediated phenytoin hydroxylation in the electrochemical system correlate to the same characteristics obtained by other authors in an alternative enzymatic system. Our results demonstrate the possibility of electrochemical systems based on cytochromes P450 to be applied for the detection of atypical kinetic profiles of drug metabolism.
Collapse
|
14
|
Latham BD, Oskin DS, Crouch RD, Vergne MJ, Jackson KD. Cytochromes P450 2C8 and 3A Catalyze the Metabolic Activation of the Tyrosine Kinase Inhibitor Masitinib. Chem Res Toxicol 2022; 35:1467-1481. [PMID: 36048877 DOI: 10.1021/acs.chemrestox.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 μM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 μM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.
Collapse
Affiliation(s)
- Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - D Spencer Oskin
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204, United States
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Wang Z, Chan ECY. Inhibition of cytochrome P450 2J2-mediated metabolism of rivaroxaban and arachidonic acid by ibrutinib and osimertinib. Drug Metab Dispos 2022; 50:1332-1341. [PMID: 35817438 DOI: 10.1124/dmd.122.000928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Covalent tyrosine kinase inhibitors (TKIs) ibrutinib and osimertinib are associated with cardiac arrhythmia. The interactions between these TKIs with cytochrome P450 2J2 (CYP2J2) that is highly expressed in human heart are unknown. In vitro metabolism experiments were performed to characterize CYP2J2-mediated metabolism of ibrutinib and osimertinib. Unbound distribution coefficient (Kpuu) for both TKIs was determined in AC16 cardiomyocytes. In vitroreversible and time-dependent CYP2J2 inhibition experiments were conducted with exogenous and endogenous substrates, namely rivaroxaban and arachidonic acid (AA), respectively, where kinetic parameters were estimated via one-site and multisite kinetic modeling. Ibrutinib was efficiently metabolized by CYP2J2 to a hydroxylated metabolite, M35, following substrate inhibition kinetics. Osimertinib is not a substrate of CYP2J2. Both TKIs depicted Kpuu values above 1 and equipotently inhibited CYP2J2-mediated hydroxylation of rivaroxaban in a concentration-dependent manner without time-dependency. The mode of reversible inhibition of CYP2J2-mediated metabolism of rivaroxaban and AA by osimertinib was described by Michaelis-Menten kinetics, while a two-site kinetic model recapitulated the atypical inhibitory kinetics of ibrutinib assuming multiple substrate-binding domains within the CYP2J2 active site. The inhibition of ibrutinib and osimertinib on cardiac AA metabolism could be clinically significant considering the preferable distribution of both TKIs to cardiomyocytes with R cut-off values of 1.160 and 1.026, respectively. The dysregulation of CYP2J2-mediated metabolism of AA to cardioprotective epoxyeicosatrienoic acids by ibrutinib and osimertinib serves as a novel mechanism for TKI-induced cardiac arrhythmia. Mechanistic characterization of CYP2J2-mediated typical and atypical enzyme kinetics further illuminates the unique catalytic properties of CYP2J2. Significance Statement We reported for the first time that ibrutinib is efficiently metabolized by cytochrome P450 2J2 (CYP2J2). By using rivaroxaban and arachidonic acid (AA) as substrates, we characterized the typical and atypical inhibition kinetics of CYP2J2 by ibrutinib and osimertinib. The inhibition of both drugs on cardiac AA metabolism could be clinically significant considering their preferable distribution to cardiomyocytes. Our findings serve as a novel mechanism for drug-induced cardiac arrhythmia and shed insights into the multisite interactions between CYP2J2 and ligands.
Collapse
|
16
|
Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees. Proc Natl Acad Sci U S A 2022; 119:e2205850119. [PMID: 35733268 PMCID: PMC9245717 DOI: 10.1073/pnas.2205850119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bee pollinator pesticide risk assessment is a regulatory requirement for pesticide registration and is largely based on experimental data collected for surrogate species such as the western honeybee. Recently, CYP9Q3, a honeybee cytochrome P450 enzyme, has been shown to efficiently detoxify certain insecticides such as the butenolide flupyradifurone and the neonicotinoid thiacloprid. Here we analyzed genomic data for 75 bee species and demonstrated by the recombinant expression of 26 CYP9Q3 putative functional orthologs that this detoxification principle is an evolutionary conserved mechanism across bee families. Our toxicogenomics approach has the potential to inform pesticide risk assessment for nonmanaged bee species that are not accessible for acute toxicity testing. The regulatory process for assessing the risks of pesticides to bees relies heavily on the use of the honeybee, Apis mellifera, as a model for other bee species. However, the validity of using A. mellifera as a surrogate for other Apis and non-Apis bees in pesticide risk assessment has been questioned. Related to this line of research, recent work on A. mellifera has shown that specific P450 enzymes belonging to the CYP9Q subfamily act as critically important determinants of insecticide sensitivity in this species by efficiently detoxifying certain insecticide chemotypes. However, the extent to which the presence of functional orthologs of these enzymes is conserved across the diversity of bees is unclear. Here we used a phylogenomic approach to identify > 100 putative CYP9Q functional orthologs across 75 bee species encompassing all major bee families. Functional analysis of 26 P450s from 20 representative bee species revealed that P450-mediated detoxification of certain systemic insecticides, including the neonicotinoid thiacloprid and the butenolide flupyradifurone, is conserved across all major bee pollinator families. However, our analyses also reveal that CYP9Q-related genes are not universal to all bee species, with some Megachilidae species lacking such genes. Thus, our results reveal an evolutionary conserved capacity to metabolize certain insecticides across all major bee families while identifying a small number of bee species where this function may have been lost. Furthermore, they illustrate the potential of a toxicogenomic approach to inform pesticide risk assessment for nonmanaged bee species by predicting the capability of bee pollinator species to break down synthetic insecticides.
Collapse
|
17
|
Kinetic Study and Modeling of Wild-Type and Recombinant Broccoli Myrosinase Produced in E. coli and S. cerevisiae as a Function of Substrate Concentration, Temperature, and pH. Catalysts 2022. [DOI: 10.3390/catal12070683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The myrosinase enzyme hydrolyzes glucosinolates, among which is glucoraphanin, the precursor of the anticancer isothiocyanate sulforaphane (SFN). The main source of glucoraphanin is Brassicaceae; however, its natural concentration is relatively low, limiting the availability of SFN. An option to obtain SFN is its exogenous production, through enzymatic processes and under controlled conditions, allowing complete conversion of glucoraphanin to SFN. We characterized the kinetics of wild-type (BMYR) and recombinant broccoli myrosinases produced in E. coli (EMYR) and S. cerevisiae (SMYR) in terms of the reaction conditions. Kinetics was adjusted using empirical and mechanistic models that describe reaction rate as a function of substrate concentration, temperature, and pH, resulting in R2 values higher than 90%. EMYR kinetics differed significantly from those of BMYR and SMYR probably due to the absence of glycosylations in the enzyme produced in E. coli. BMYR and SMYR were subjected to substrate inhibition but followed different kinetic mechanisms attributed to different glycosylation patterns. EMYR (inactivation Ea = 76.1 kJ/mol) was more thermolabile than BMYR and SMYR. BMYR showed the highest thermostability (inactivation Ea = 52.8 kJ/mol). BMYR and EMYR showed similar behavior regarding pH, with similar pK1 (3.4 and 3.1, respectively) and pK2 (5.4 and 5.0, respectively), but differed considerably from SMYR.
Collapse
|
18
|
Denisov IG, Grinkova YV, McLean MA, Camp T, Sligar SG. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022; 12:853. [PMID: 35740978 PMCID: PMC9221276 DOI: 10.3390/biom12060853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytochrome P450 CYP3A4 is involved in the processing of more than 35% of current pharmaceuticals and therefore is responsible for multiple drug-drug interactions (DDI). In order to develop a method for the detection and prediction of the possible involvement of new drug candidates in CYP3A4-mediated DDI, we evaluated the application of midazolam (MDZ) as a probe substrate. MDZ is hydroxylated by CYP3A4 in two positions: 1-hydroxy MDZ formed at lower substrate concentrations, and up to 35% of 4-hydroxy MDZ at high concentrations. The ratio of the formation rates of these two products (the site of metabolism ratio, SOM) was used as a measure of allosteric heterotropic interactions caused by effector molecules using CYP3A4 incorporated in lipid nanodiscs. The extent of the changes in the SOM in the presence of effectors is determined by chemical structure and is concentration-dependent. MD simulations of CYP3A4 in the lipid bilayer suggest that experimental results can be explained by the movement of the F-F' loop and concomitant changes in the shape and volume of the substrate-binding pocket. As a result of PGS binding at the allosteric site, several residues directly contacting MDZ move away from the substrate molecule, enabling the repositioning of the latter for minor product formation.
Collapse
Affiliation(s)
- Ilia G. Denisov
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Yelena V. Grinkova
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Mark A. McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Tyler Camp
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
| | - Stephen G. Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (I.G.D.); (Y.V.G.); (M.A.M.); (T.C.)
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Hsu MH, Johnson EF. Structural characterization of the homotropic cooperative binding of azamulin to human cytochrome P450 3A5. J Biol Chem 2022; 298:101909. [PMID: 35398097 PMCID: PMC9079302 DOI: 10.1016/j.jbc.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023] Open
Abstract
Cytochrome P450 3A4 and 3A5 catalyze the metabolic clearance of a large portion of therapeutic drugs. Azamulin is used as a selective inhibitor for 3A4 and 3A5 to define their roles in metabolism of new chemical entities during drug development. In contrast to 3A4, 3A5 exhibits homotropic cooperativity for the sequential binding of two azamulin molecules at concentrations used for inhibition. To define the underlying sites and mechanisms for cooperativity, an X-ray crystal structure of 3A5 was determined with two azamulin molecules in the active site that are stacked in an antiparallel orientation. One azamulin resides proximal to the heme in a pose similar to the 3A4-azamulin complex. Comparison to the 3A5 apo structure indicates that the distal azamulin in 3A5 ternary complex causes a significant induced fit that excludes water from the hydrophobic surfaces of binding cavity and the distal azamulin, which is augmented by the stacking interaction with the proximal azamulin. Homotropic cooperativity was not observed for the binding of related pleuromutilin antibiotics, tiamulin, retapamulin, and lefamulin, to 3A5, which are larger and unlikely to bind in the distal site in a stacked orientation. Formation of the 3A5 complex with two azamulin molecules may prevent time-dependent inhibition that is seen for 3A4 by restricting alternate product formation and/or access of reactive intermediates to vulnerable protein sites. These results also contribute to a better understanding of sites for cooperative binding and the differential structural plasticity of 3A5 and 3A4 that contribute to differential substrate and inhibitor binding.
Collapse
Affiliation(s)
- Mei-Hui Hsu
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Eric F Johnson
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA.
| |
Collapse
|
20
|
Paragas EM, Wang Z, Korzekwa K, Nagar S. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 2. Modeling of Experimental Data. Drug Metab Dispos 2021; 49:1100-1108. [PMID: 34503953 PMCID: PMC11022889 DOI: 10.1124/dmd.121.000554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Three CYP3A4 substrates, midazolam, ticlopidine, and diazepam, display non-Michaelis-Menten kinetics, form multiple primary metabolites, and are sequentially metabolized to secondary metabolites. We generated saturation curves for these compounds and analyzed the resulting datasets using a number of single-substrate and multisubstrate binding models. These models were parameterized using rate equations and numerical solutions of the ordinary differential equations. Multisubstrate binding models provided results superior to single-substrate models, and simultaneous modeling of multiple metabolites provided better results than fitting the individual datasets independently. Although midazolam datasets could be represented using standard two-substrate models, more complex models that include explicit enzyme-product complexes were needed to model the datasets for ticlopidine and diazepam. In vivo clearance predictions improved markedly with the use of in vitro parameters from the complex models versus the Michaelis-Menten equation. The results highlight the need to use sufficiently complex kinetic schemes instead of the Michaelis-Menten equation to generate accurate kinetic parameters. SIGNIFICANCE STATEMENT: The metabolism of midazolam, ticlopidine, and diazepam by CYP3A4 results in multiple metabolites and sequential metabolism. This study evaluates the use of rate equations and numerical methods to characterize the in vitro enzyme kinetics. Use of complex cytochrome P450 kinetic models is necessary to obtain accurate parameter estimates for predicting in vivo disposition.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Zeyuan Wang
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Wang Z, Paragas EM, Nagar S, Korzekwa K. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 1. Theoretical Considerations. Drug Metab Dispos 2021; 49:1090-1099. [PMID: 34503952 PMCID: PMC11022900 DOI: 10.1124/dmd.121.000553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Complexities in P450-mediated metabolism kinetics include multisubstrate binding, multiple-product formation, and sequential metabolism. Saturation curves and intrinsic clearances were simulated for single-substrate and multisubstrate models using derived velocity equations and numerical solutions of ordinary differential equations (ODEs). Multisubstrate models focused on sigmoidal kinetics because of their dramatic impact on clearance predictions. These models were combined with multiple-product formation and sequential metabolism, and simulations were performed with random error. Use of single-substrate models to characterize multisubstrate data can result in inaccurate kinetic parameters and poor clearance predictions. Comparing results for use of standard velocity equations with ODEs clearly shows that ODEs are more versatile and provide better parameter estimates. It would be difficult to derive concentration-velocity relationships for complex models, but these relationships can be easily modeled using numerical methods and ODEs. SIGNIFICANCE STATEMENT: The impact of multisubstrate binding, multiple-product formation, and sequential metabolism on the P450 kinetics was investigated. Numerical methods are capable of characterizing complicated P450 kinetics.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Gonzalez E, Jain S, Shah P, Torimoto-Katori N, Zakharov A, Nguyễn ÐT, Sakamuru S, Huang R, Xia M, Obach RS, Hop CECA, Simeonov A, Xu X. Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metab Dispos 2021; 49:822-832. [PMID: 34183376 PMCID: PMC11022912 DOI: 10.1124/dmd.120.000320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 enzymes are responsible for the metabolism of >75% of marketed drugs, making it essential to identify the contributions of individual cytochromes P450 to the total clearance of a new candidate drug. Overreliance on one cytochrome P450 for clearance levies a high risk of drug-drug interactions; and considering that several human cytochrome P450 enzymes are polymorphic, it can also lead to highly variable pharmacokinetics in the clinic. Thus, it would be advantageous to understand the likelihood of new chemical entities to interact with the major cytochrome P450 enzymes at an early stage in the drug discovery process. Typical screening assays using human liver microsomes do not provide sufficient information to distinguish the specific cytochromes P450 responsible for clearance. In this regard, we experimentally assessed the metabolic stability of ∼5000 compounds for the three most prominent xenobiotic metabolizing human cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4, and used the data sets to develop quantitative structure-activity relationship models for the prediction of high-clearance substrates for these enzymes. Screening library included the NCATS Pharmaceutical Collection, comprising clinically approved low-molecular-weight compounds, and an annotated library consisting of drug-like compounds. To identify inhibitors, the library was screened against a luminescence-based cytochrome P450 inhibition assay; and through crossreferencing hits from the two assays, we were able to distinguish substrates and inhibitors of these enzymes. The best substrate and inhibitor models (balanced accuracies ∼0.7), as well as the data used to develop these models, have been made publicly available (https://opendata.ncats.nih.gov/adme) to advance drug discovery across all research groups. SIGNIFICANCE STATEMENT: In drug discovery and development, drug candidates with indiscriminate cytochrome P450 metabolic profiles are considered advantageous, since they provide less risk of potential issues with cytochrome P450 polymorphisms and drug-drug interactions. This study developed robust substrate and inhibitor quantitative structure-activity relationship models for the three major xenobiotic metabolizing cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4. The use of these models early in drug discovery will enable project teams to strategize or pivot when necessary, thereby accelerating drug discovery research.
Collapse
Affiliation(s)
- Eric Gonzalez
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Sankalp Jain
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Pranav Shah
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Nao Torimoto-Katori
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Alexey Zakharov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Ðắc-Trung Nguyễn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - R Scott Obach
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Cornelis E C A Hop
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Rockville, Maryland (E.G., S.J., P.S., N.T.-K., A.Z., D.-T.N., S.S., R.H., M.X. A.S., X.X.); Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama-shi, Japan (N.T.-K.); Pfizer Inc. Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer, Groton, Connecticut (R.S.O.); and Genentech Inc. Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., San Francisco, California (C.E.C.A.H.)
| |
Collapse
|
23
|
Korzekwa K. Enzyme Kinetics of Oxidative Metabolism-Cytochromes P450. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2342:237-256. [PMID: 34272697 DOI: 10.1007/978-1-0716-1554-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cytochrome P450 enzymes (CYPs) are the most important enzymes in the oxidative metabolism of hydrophobic drugs and other foreign compounds (xenobiotics). The versatility of these enzymes results in some unusual kinetic properties, stemming from the simultaneous interaction of multiple substrates with the CYP active site. Often, the CYPs display kinetics that deviate from standard hyperbolic saturation or inhibition kinetics. Non-Michaelis-Menten or "atypical" saturation kinetics include sigmoidal, biphasic, and substrate inhibition kinetics (see Chapter 2 ). Interactions between substrates include competitive inhibition, noncompetitive inhibition, mixed inhibition, partial inhibition, activation, and activation followed by inhibition (see Chapters 4 and 6 ). Models and equations that can result in these kinetic profiles will be presented and discussed.
Collapse
Affiliation(s)
- Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Seibert E, Tracy TS. Fundamentals of Enzyme Kinetics: Michaelis-Menten and Non-Michaelis-Type (Atypical) Enzyme Kinetics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2342:3-27. [PMID: 34272689 DOI: 10.1007/978-1-0716-1554-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter will provide a general introduction to the kinetics of enzyme-catalyzed reactions, including a general discussion of catalysts, reaction rates, and binding constants. This section will be followed by a discussion of various types of enzyme kinetics observed in drug metabolism reactions. A large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the Vmax value. However, in other cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 (CYPs) have large active sites that enable binding of multiple molecules (Yano et al., J Biol Chem 279:38091-38094, 2004; Wester et al., J Biol Chem 279:35630-35637, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies.
Collapse
Affiliation(s)
- Eleanore Seibert
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | | |
Collapse
|
25
|
Case Study 3: Criticality of High-Quality Curve Fitting-"Getting a K m,app" Isn't as Simple as It May Seem. Methods Mol Biol 2021. [PMID: 34272710 DOI: 10.1007/978-1-0716-1554-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we illustrate the criticality of proper fitting of enzyme kinetic data. Simple techniques are provided to arrive at meaningful kinetic parameters, illustrated using an example, nonmonotonic data set. In the initial analysis of this data set, derived Km and Vmax parameters incorporated into PBPK models resulted in outcomes that did not adequately describe clinical data. This prompted a re-review of the in vitro data set and curve-fitting procedures. During this review, it was found that the 3-parameter model was fitted on data that was improperly unweighted. Reanalysis of the data using a weighted model returned a better fit and resulted in kinetic parameters better aligning with clinical data. Tools and techniques used to identify and compare kinetic models of this data set are provided, including various replots, visual inspection, examination of residuals, and the Akaike information criterion.
Collapse
|
26
|
Numerical Methods for Modeling Enzyme Kinetics. Methods Mol Biol 2021; 2342:147-168. [PMID: 34272694 DOI: 10.1007/978-1-0716-1554-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Differential equations are used to describe time-dependent changes in enzyme kinetics and pharmacokinetics. Analytical and numerical methods can be used to solve differential equations. This chapter describes the use of numerical methods in solving differential equations and its applications in characterizing the complexities observed in enzyme kinetics. A discussion is included on the use of numerical methods to overcome limitations of explicit equations in the analysis of metabolism kinetics, reversible inhibition kinetics, and inactivation kinetics. The chapter describes the advantages of using numerical methods when Michaelis-Menten assumptions do not hold.
Collapse
|
27
|
Tang LWT, Verma RK, Yong RP, Li X, Wang L, Lin Q, Fan H, Chan ECY. Differential Reversible and Irreversible Interactions between Benzbromarone and Human Cytochrome P450s 3A4 and 3A5. Mol Pharmacol 2021; 100:224-236. [PMID: 34210765 DOI: 10.1124/molpharm.121.000256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Mounting evidence has revealed that despite the high degree of sequence homology between cytochrome P450 3A isoforms (i.e., CYP3A4 and CYP3A5), they have the propensities to exhibit vastly different irreversible and reversible interactions with a single substrate. We have previously established that benzbromarone (BBR), a potent uricosuric agent used in the management of gout, irreversibly inhibits CYP3A4 via mechanism-based inactivation (MBI). However, it remains unelucidated if CYP3A5-its highly homologous counterpart-is susceptible to inactivation by BBR. Using three structurally distinct probe substrates, we consistently demonstrated that MBI was not elicited in CYP3A5 by BBR. Our in silico covalent docking models and molecular dynamics simulations suggested that disparities in the susceptibilities toward MBI could be attributed to the specific effects of BBR covalent adducts on the F-F' loop. Serendipitously, we also discovered that BBR reversibly activated CYP3A5-mediated rivaroxaban hydroxylation wherein apparent V max increased and K m decreased with increasing BBR concentration. Fitting data to the two-site model yielded interaction factors α and β of 0.44 and 5.88, respectively, thereby confirming heterotropic activation of CYP3A5 by BBR. Furthermore, heteroactivation was suppressed by the CYP3A inhibitor ketoconazole in a concentration-dependent manner and decreased with increasing preincubation time, implying that activation was incited via binding of parent BBR molecule within the enzymatic active site. Finally, noncovalent docking revealed that CYP3A5 can more favorably accommodate both BBR and rivaroxaban in concert as compared with CYP3A4, which further substantiated our experimental observations. SIGNIFICANCE STATEMENT: Although it has been previously demonstrated that benzbromarone (BBR) inactivates CYP3A4, it remains uninterrogated whether it also elicits mechanism-based inactivation in CYP3A5, which shares ∼85% sequence similarity with CYP3A4. This study reported that BBR exhibited differential irreversible and reversible interactions with both CYP3A isoforms and further unraveled the molecular determinants underpinning their diverging interactions. These data offer important insight into differential kinetic behavior of CYP3A4 and CYP3A5, which potentially contributes to interindividual variabilities in drug disposition.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Ravi Kumar Verma
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Ren Ping Yong
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Xin Li
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Lili Wang
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Qingsong Lin
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Hao Fan
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science (L.W.T.T., R.P.Y., E.C.Y.C.), and Protein and Proteomics Centre (PPC), SingMass (X.L., L.W., Q.L.), National University of Singapore, Singapore; and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| |
Collapse
|
28
|
Leow JWH, Verma RK, Lim ABH, Fan H, Chan ECY. Atypical kinetics of cytochrome P450 2J2: Epoxidation of arachidonic acid and reversible inhibition by xenobiotic inhibitors. Eur J Pharm Sci 2021; 164:105889. [PMID: 34044117 DOI: 10.1016/j.ejps.2021.105889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extrahepatic CYP2J2 metabolism of arachidonic acid (AA) to bioactive regioisomeric epoxyeicosatrienoic acids (EETs) is implicated in both physiological and pathological conditions. Here, we aimed to characterize atypical substrate inhibition kinetics of this endogenous metabolic pathway and its reversible inhibition by xenobiotic inhibitors when AA is used as the physiologically-relevant substrate vis-à-vis conventional probe substrate astemizole (AST). As compared to typical Michaelis-Menten kinetics observed for AST, complete substrate inhibition was observed for CYP2J2 metabolism of AA to 14,15-EET whereby velocity of the reaction declined significantly at concentrations of AA above 20-30 µM with an estimated substrate inhibition constant (Ks) of 31 µM. In silico sequential docking of two AA substrates to orthosteric (OBS) and adjacent secondary binding sites (SBS) within a 3-dimensional homology model of CYP2J2 revealed favorable and comparable binding poses of glide-scores -3.1 and -3.8 respectively. Molecular dynamics (MD) simulations ascertained CYP2J2 conformational stability with dual AA substrate binding as time-dependent root mean squared deviation (RMSD) of protein Cα atoms and ligand heavy atoms stabilized to a plateau in all but one trajectory (n=6). The distance between heme-iron and ω6 (C14, C15) double bond of AA in OBS also increased from 7.5 ± 1.4 Å to 8.5 ± 1.8 Å when CYP2J2 was simulated with only AA in OBS versus the presence of AA in both OBS and SBS (p<0.001), supporting the observed in vitro substrate inhibition phenomenon. Poor correlation was observed between inhibitory constants (Ki) determined for a panel of nine competitive and mixed mode xenobiotic inhibitors against CYP2J2 metabolism of AA as compared to AST, whereby 4 out of 9 drugs had a greater than 5-fold difference between Ki values. Nonlinear Eadie-Hofstee plots illustrated that complete substrate inhibition of CYP2J2 by AA was not attenuated even at high concentrations of xenobiotic inhibitors which further corroborates that CYP2J2 may accommodate three or more ligands simultaneously. In light of the atypical kinetics, our results highlight the importance of using physiologically-relevant substrates in in vitro enzymatic inhibition assays for the characterization of xenobiotic-endobiotic interactions which is applicable to other complex endogenous metabolic pathways beyond CYP2J2 metabolism of AA to EETs. The accurate determination of Ki would further facilitate the association of xenobiotic-endobiotic interactions to observed therapeutic or toxic outcomes.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Amos Boon Hao Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| |
Collapse
|
29
|
Ducharme J, Polic V, Thibodeaux CJ, Auclair K. Combining Small-Molecule Bioconjugation and Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to Expose Allostery: the Case of Human Cytochrome P450 3A4. ACS Chem Biol 2021; 16:882-890. [PMID: 33913317 DOI: 10.1021/acschembio.1c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a novel approach to study allostery which combines the use of carefully selected bioconjugates and hydrogen-deuterium exchange mass spectrometry (HDX-MS). This strategy avoids issues related to weak substrate binding and ligand relocalization. The utility of our method is demonstrated using human cytochrome P450 3A4 (CYP3A4), the most important drug-metabolizing enzyme. Allosteric activation and inhibition of CYP3A4 by pharmaceuticals is an important mechanism of drug interactions. We performed HDX-MS analysis on several CYP3A4-effector bioconjugates, some of which mimic the allosteric effect of positive effectors, while others show activity enhancement even though the label does not occupy the allosteric pocket (agonistic) or do not show activation while still blocking the allosteric site (antagonistic). This allowed us to better define the position of the allosteric site, the protein structural dynamics associated with allosteric activation, and the presence of coexisting conformers.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| |
Collapse
|
30
|
Denisov IG, Grinkova YV, Camp T, McLean MA, Sligar SG. Midazolam as a Probe for Drug-Drug Interactions Mediated by CYP3A4: Homotropic Allosteric Mechanism of Site-Specific Hydroxylation. Biochemistry 2021; 60:1670-1681. [PMID: 34015213 DOI: 10.1021/acs.biochem.1c00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed an efficient and sensitive probe for drug-drug interactions mediated by human CYP3A4 by using midazolam (MDZ) as a probe substrate. Using global analysis of four parameters over several experimental data sets, we demonstrate that the first MDZ molecule (MDZ1) binds with high affinity at the productive site near the heme iron and gives only hydroxylation at the 1 position (1OH). The second midazolam molecule (MDZ2) binds at an allosteric site at the membrane surface and perturbs the position and mobility of MDZ1 such that the minor hydroxylation product at the 4 position (4OH) is formed in a 1:2 ratio (35%). No increase in catalytic rate is observed after the second MDZ binding. Hence, the site of the 1OH:4OH metabolism ratio is a sensitive probe for drugs, such as progesterone, that bind with high affinity to the allosteric site and serve as effectors. We observe similar changes in the MDZ 1OH:4OH ratio in the presence of progesterone (PGS), suggesting a direct communication between the active and allosteric sites. Mutations introduced into the F-F' loop indicate that residues F213 and D214 are directly involved in allosteric interactions leading to MDZ homotropic cooperativity, and these same residues, together with L211, are involved in heterotropic allosteric interactions in which PGS is the effector and MDZ the substrate. Molecular dynamics simulations provide a mechanistic picture of the origin of this cooperativity. These results show that the midazolam can be used as a sensitive probe for drug-drug interactions in human P450 CYP3A4.
Collapse
|
31
|
Kumar S, Bouic PJ, Rosenkranz B. Investigation of CYP2B6, 3A4 and β-esterase interactions of Withania somnifera (L.) dunal in human liver microsomes and HepG2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113766. [PMID: 33395575 DOI: 10.1016/j.jep.2020.113766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (Solanaceae) is a traditional herb, used in African indigenous systems of medicine for the treatment of various diseases (including HIV/AIDS and tuberculosis). The relevance of clinically significant interactions of Withania with ARVs and anti-TB drugs needs to be investigated. AIM OF THE STUDY This study evaluated the effects of its roots on cytochromes P450 (CYPs) 2B6, 3A4, and rifampicin metabolism pathway, using methanol, ethanol, aqueous, and ethyl acetate solvent extractions. MATERIALS AND METHODS The extracts were tested on human liver microsomes (HLM) for CYP inhibition, mRNA expression in HepG2 cells for CYP induction. Biochemical qualitative tests and LC-MS/MS methodology were used to determine active phytoconstituents. RESULTS The methanolic and ethyl acetate extracts inhibited CYP2B6 with IC50s 79.16 and 57.96 μg/ml respectively, while none of the extracts had any effect on rifampicin metabolism or showed time-dependant inhibition (TDI). All extracts were moderate inducers of CYP3A4; the aqueous extract exhibited 38%-fold shift induction of CYP3A4 compared to the control. The methanolic extract had the lowest CTC50 (50% of cytotoxicity inhibition) (67.13 ± 0.83 μg/ml). LC-MS/MS-PDA full scans were consistent with the presence of flavone salvigenin (m/z 327), alkaloid isopelletierine (m/z 133), steroidal lactone 2,3-dihydrowithaferin-A (m/z 472), and other withanolides including withaperuvin I (m/z 533), withaferin derivative (m/z 567), some of these compounds likely being responsible for the observed CYP2B6 inhibition and CYP3A4 induction. The putative gastrointestinal tract (GIT) concentration for the active extracts was 1800 μg/ml and the hepatic circulation concentrations were estimated at about 220 μg/ml and 13.5 μg/ml for the methanolic and ethyl acetate extracts, respectively. The extrapolated in vivo percentage of inhibition was at 85% for the methanolic extract against CYP2B6. CONCLUSIONS The findings reported in this study suggest that W. somnifera extracts have the potential of causing clinically significant herb-drug interactions (HDI) as moderate inducer of CYP3A4 and inhibitor of CYP2B6 metabolism pathway (methanol and ethyl acetate extracts).
Collapse
Affiliation(s)
- Saneesh Kumar
- Division of Clinical Pharmacology, University of Stellenbosch, Cape Town, South Africa.
| | - Patrick J Bouic
- Division of Medical Microbiology, University of Stellenbosch, Cape Town, South Africa; Synexa Life Sciences, Montague Gardens, Cape Town, South Africa.
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, University of Stellenbosch, Cape Town, South Africa.
| |
Collapse
|
32
|
Koroleva PI, Kuzikov AV, Masamrekh RA, Filimonov DA, Dmitriev AV, Zaviyalova MG, Rikova SM, Shich EV, Makhova AA, Bulko TV, Gilep AA, Shumyantseva VV. Modeling of Drug-Drug Interactions between Omeprazole and Erythromycin in the Cytochrome P450-Dependent System In vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2021. [DOI: 10.1134/s1990750821010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Anti-inflammatory dopamine- and serotonin-based endocannabinoid epoxides reciprocally regulate cannabinoid receptors and the TRPV1 channel. Nat Commun 2021; 12:926. [PMID: 33568652 PMCID: PMC7876028 DOI: 10.1038/s41467-021-20946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoid system is a promising target to mitigate pain as the endocannabinoids are endogenous ligands of the pain-mediating receptors—cannabinoid receptors 1 and 2 (CB1 and CB2) and TRPV1. Herein, we report on a class of lipids formed by the epoxidation of N-arachidonoyl-dopamine (NADA) and N-arachidonoyl-serotonin (NA5HT) by epoxygenases. EpoNADA and epoNA5HT are dual-functional rheostat modulators of the endocannabinoid-TRPV1 axis. EpoNADA and epoNA5HT are stronger modulators of TRPV1 than either NADA or NA5HT, and epoNA5HT displays a significantly stronger inhibition on TRPV1-mediated responses in primary afferent neurons. Moreover, epoNA5HT is a full CB1 agonist. These epoxides reduce the pro-inflammatory biomarkers IL-6, IL-1β, TNF-α and nitrous oxide and raise anti-inflammatory IL-10 cytokine in activated microglial cells. The epoxides are spontaneously generated by activated microglia cells and their formation is potentiated in the presence of anandamide. Detailed kinetics and molecular dynamics simulation studies provide evidence for this potentiation using the epoxygenase human CYP2J2. Taken together, inflammation leads to an increase in the metabolism of NADA, NA5HT and other eCBs by epoxygenases to form the corresponding epoxides. The epoxide metabolites are bioactive lipids that are potent, multi-faceted molecules, capable of influencing the activity of CB1, CB2 and TRPV1 receptors. Endocannabinoids are ligands of cannabinoid receptors and a promising target for pain management. Here, the authors report a class of lipids formed by the epoxidation of N-arachidonoyl dopamine and N-arachidonoyl serotonin by cytochrome P450 epoxygenases, which reciprocally regulate canabinoid receptors and display anti-inflammatory activity.
Collapse
|
34
|
Haas J, Nauen R. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. ENVIRONMENT INTERNATIONAL 2021; 147:106372. [PMID: 33418197 DOI: 10.1016/j.envint.2020.106372] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Honey bee (Apis mellifera) first-tier pesticide risk assessment is largely based on standardized laboratory toxicity bioassays after both acute and chronic exposure. Recent research on honey bee cytochrome P450 monooxygenases (P450s) uncovered CYP9Q3 as the molecular determinant mediating neonicotinoid insecticide selectivity and explaining why certain neonicotinoids such as thiacloprid show > 1000-fold lower acute toxicity than others (e.g. imidacloprid). Here this knowledge is leveraged for mechanistic risk assessment at the molecular level using a fluorescence-based high-throughput in vitro assay, predicting the interaction of diverse pesticidal chemotypes, including azole fungicides, with recombinantly expressed honey bee CYP9Q enzymes, known to metabolize thiacloprid, acetamiprid and tau-fluvalinate. Some azole fungicides were shown to be synergistic in combination with certain insecticides, including neonicotinoids and pyrethroids, whereas others such as prothioconazole were not. We demonstrate that biochemical CYP9Q2/CYP9Q3 inhibition data of azoles revealed a striking correlation with their synergistic potential at the organismal level, and even allow to explain combined toxicity effects observed for tank mixtures under field conditions. Our novel toxicogenomics-based approach is designed to complement existing methods for pesticide risk assessment with unprecedented screening capacity, by utilizing honey bee P450 enzymes known to confer pesticide selectivity, in order to biochemically address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Julian Haas
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, 40789 Monheim, Germany.
| |
Collapse
|
35
|
Human Family 1-4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Arch Toxicol 2021; 95:395-472. [PMID: 33459808 DOI: 10.1007/s00204-020-02971-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic activation of drugs, natural products, physiological compounds, and general chemicals by the catalytic activity of cytochrome P450 enzymes belonging to Families 1-4. The data were collected from > 5152 references. The total number of data entries of reactions catalyzed by P450s Families 1-4 was 7696 of which 1121 (~ 15%) were defined as bioactivation reactions of different degrees. The data were divided into groups of General Chemicals, Drugs, Natural Products, and Physiological Compounds, presented in tabular form. The metabolism and bioactivation of selected examples of each group are discussed. In most of the cases, the metabolites are directly toxic chemicals reacting with cell macromolecules, but in some cases the metabolites formed are not direct toxicants but participate as substrates in succeeding metabolic reactions (e.g., conjugation reactions), the products of which are final toxicants. We identified a high level of activation for three groups of compounds (General Chemicals, Drugs, and Natural Products) yielding activated metabolites and the generally low participation of Physiological Compounds in bioactivation reactions. In the group of General Chemicals, P450 enzymes 1A1, 1A2, and 1B1 dominate in the formation of activated metabolites. Drugs are mostly activated by the enzyme P450 3A4, and Natural Products by P450s 1A2, 2E1, and 3A4. Physiological Compounds showed no clearly dominant enzyme, but the highest numbers of activations are attributed to P450 1A, 1B1, and 3A enzymes. The results thus show, perhaps not surprisingly, that Physiological Compounds are infrequent substrates in bioactivation reactions catalyzed by P450 enzyme Families 1-4, with the exception of estrogens and arachidonic acid. The results thus provide information on the enzymes that activate specific groups of chemicals to toxic metabolites.
Collapse
|
36
|
Sodhi JK, Halladay JS. Case Study 9: Probe-Dependent Binding Explains Lack of CYP2C9 Inactivation by 1-Aminobenzotriazole (ABT). Methods Mol Biol 2021; 2342:765-779. [PMID: 34272716 DOI: 10.1007/978-1-0716-1554-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential for new chemical entities to inhibit the major cytochrome P450 (CYP) isoforms is routinely evaluated to minimize the risk of developing drugs with drug-drug interaction liabilities. CYP inhibition assays are routinely performed in a high-throughput format to efficiently screen large numbers of compounds. In evaluating a time-saving assay using diclofenac as the CYP2C9 probe substrate, a discrepancy was observed in which minimal inhibition was detected using diclofenac whereas using (S)-warfarin resulted in potent inhibition, supporting the presence of dual-binding sites in the relatively large CYP2C9 active site cavity.These observations provided further insights into explaining the reported ineffective inactivation of CYP2C9 for the pan-CYP inactivator 1-aminobenzotriazole (ABT). Mechanistic reversible and time-dependent inhibition experiments revealed that the ineffective CYP2C9 inactivation by ABT was also probe-dependent, with utilization of (S)-warfarin as the probe substrate resulting in more potent CYP2C9 inhibition by ABT compared to diclofenac. Addition of (S)-warfarin to the reversible and time-dependent inhibition experiments between ABT and diclofenac resulted in an attenuation of the inhibitory effects of ABT on CYP2C9-mediated diclofenac metabolism. Molecular docking studies further confirmed that (S)-warfarin and diclofenac preferentially bind in different regions of the CYP2C9 active site, with (S)-warfarin occupying a distal "warfarin-binding pocket" and diclofenac occupying a binding site close to the active heme moiety. ABT preferentially binds in the distal warfarin-binding pocket, supporting that diclofenac is minimally deterred from access to the CYP2C9 active site in the presence of ABT, thus resulting in minimal inactivation. Simultaneously docking of (S)-warfarin and ABT revealed that (S)-warfarin outcompetes ABT for the distal binding site and results in the binding of ABT to the CYP2C9 active site, supporting the observations of potent inactivation of CYP2C9 when (S)-warfarin is the probe substrate.These results highlight that probe selection is crucial when evaluating CYP inhibition potential, and it is recommended that multiple probes be utilized for CYP2C9, similar to the approach routinely employed for CYP3A4. Further, utilization of ABT as a pan-inhibitor of CYP activity for investigational compounds, both in vitro and in vivo, should be accompanied with the understanding that residual CYP-mediated oxidative metabolism could potentially be observed for CYP2C9 substrates and should not necessarily be attributed to non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA.
| | | |
Collapse
|
37
|
Estrada DF, Kumar A, Campomizzi CS, Jay N. Crystal Structures of Drug-Metabolizing CYPs. Methods Mol Biol 2021; 2342:171-192. [PMID: 34272695 PMCID: PMC10813703 DOI: 10.1007/978-1-0716-1554-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9 ) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | | | - Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
38
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
39
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
41
|
Espiritu MJ, Chen J, Yadav J, Larkin M, Pelletier RD, Chan JM, Gc JB, Natesan S, Harrelson JP. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metab Dispos 2020; 48:1028-1043. [PMID: 32788161 PMCID: PMC7543486 DOI: 10.1124/dmd.120.000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.
Collapse
Affiliation(s)
- Michael J Espiritu
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Justin Chen
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jaydeep Yadav
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Michael Larkin
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Robert D Pelletier
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeannine M Chan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeevan B Gc
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Senthil Natesan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - John P Harrelson
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| |
Collapse
|
42
|
Chen H, Kuhn J, Lamborn KR, Abrey LE, DeAngelis LM, Lieberman F, Robins HI, Chang SM, Yung WKA, Drappatz J, Mehta MP, Levin VA, Aldape K, Dancey JE, Wright JJ, Prados MD, Cloughesy TF, Wen PY, Gilbert MR. Phase I/II study of sorafenib in combination with erlotinib for recurrent glioblastoma as part of a 3-arm sequential accrual clinical trial: NABTC 05-02. Neurooncol Adv 2020; 2:vdaa124. [PMID: 33235994 DOI: 10.1093/noajnl/vdaa124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Receptor tyrosine kinases such as epidermal growth factor receptors (EGFRs) and their downstream signaling pathways such as the Ras-Raf-mitogen-activated protein kinase (MAPK) pathway play important roles in glioblastoma (GBM). This study investigated the safety, pharmacokinetics, and efficacy of sorafenib (Ras/Raf/MAPK inhibitor) in combination with erlotinib (EGFR inhibitor) for treatment of recurrent GBMs. Methods Patients with recurrent GBM were eligible. A novel sequential accrual trial design was used, where patients were sequentially accrued into separate treatment arms in phase I and phase II investigations to optimize recruitment efficiency. In phase I, a standard 3 + 3 format was used to identify dose-limiting toxicities (DLTs), determine maximum tolerated dose (MTD), and investigate pharmacokinetics. Phase II followed a 2-stage design with the primary endpoint being 6-month progression-free survival (PFS6). Results Sixteen patients were recruited for phase I, and the MTD was determined to be sorafenib 200 mg twice daily and erlotinib 100 mg once daily. DLTs include Grade 3 hypertension, Grade 3 elevated liver transaminases, and Grade 4 elevated lipase. While erlotinib did not affect sorafenib levels, sorafenib reduced erlotinib levels. In phase II, 3 of 19 stage 1 participants were progression free at 6 months. This did not meet the predetermined efficacy endpoint, and the trial was terminated. Conclusion This study identified the MTD and DLTs for sorafenib and erlotinib combination therapy for recurrent GBMs; however, efficacy data did not meet the primary endpoint. This study also demonstrates the feasibility of a novel sequential accrual clinical trial design that optimizes patient recruitment for multiarm studies, which is particularly effective for multicenter clinical trials.
Collapse
Affiliation(s)
- Huanwen Chen
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Kuhn
- Division of Pharmacology, University of Texas, San Antonio, Texas, USA
| | - Kathleen R Lamborn
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Lauren E Abrey
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Frank Lieberman
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - H Ian Robins
- Departments of Medicine, Human Oncology, and Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Victor A Levin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - John J Wright
- Investigational Drug Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Knych HK, Finno CJ, Baden R, Arthur RM, McKemie DS. Identification and characterization of the enzymes responsible for the metabolism of the non-steroidal anti-inflammatory drugs, flunixin meglumine and phenylbutazone, in horses. J Vet Pharmacol Ther 2020; 44:36-46. [PMID: 32757313 DOI: 10.1111/jvp.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022]
Abstract
The in vivo metabolism and pharmacokinetics of flunixin meglumine and phenylbutazone have been extensively characterized; however, there are no published reports describing the in vitro metabolism, specifically the enzymes responsible for the biotransformation of these compounds in horses. Due to their widespread use and, therefore, increased potential for drug-drug interactions and widespread differences in drug disposition, this study aims to build on the limited current knowledge regarding P450-mediated metabolism in horses. Drugs were incubated with equine liver microsomes and a panel of recombinant equine P450s. Incubation of phenylbutazone in microsomes generated oxyphenbutazone and gamma-hydroxy phenylbutazone. Microsomal incubations with flunixin meglumine generated 5-OH flunixin, with a kinetic profile suggestive of substrate inhibition. In recombinant P450 assays, equine CYP3A97 was the only enzyme capable of generating oxyphenbutazone while several members of the equine CYP3A family and CYP1A1 were capable of catalyzing the biotransformation of flunixin to 5-OH flunixin. Flunixin meglumine metabolism by CYP1A1 and CYP3A93 showed a profile characteristic of biphasic kinetics, suggesting two substrate binding sites. The current study identifies specific enzymes responsible for the metabolism of two NSAIDs in horses and provides the basis for future study of drug-drug interactions and identification of reasons for varying pharmacokinetics between horses.
Collapse
Affiliation(s)
- Heather K Knych
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.,Department of Veterinary Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Russell Baden
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Rick M Arthur
- School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Daniel S McKemie
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
44
|
Koroleva PI, Kuzikov AV, Masamrekh RA, Filimonov DA, Dmitriev AV, Zaviyalova MG, Rikova SM, Shich EV, Makhova AA, Bulko TV, Gilep AA, Shumyantseva VV. [Modeling of drug-drug interactions between omeprazole and erythromycin with cytochrome P450 3A4 in vitro assay]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:241-249. [PMID: 32588830 DOI: 10.18097/pbmc20206603241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study the electrochemical system based on recombinant cytochrome P450 3A4 (CYP3A4) was used for the investigation of potential drug-drug interaction between medicinal preparations employed for Helicobacter pylori eradication therapy. Drug interactions were demonstrated in association of omeprazole as a proton pump inhibitor (PPI) and macrolide antibiotic erythromycin during cytochrome P450 3A4-mediated metabolism. It was shown that in the presence of omeprazole the rate of N-demethylase activity of CYP3A4 to erythromycin measured by means of product (formaldehyde) formation decreased. Mass-spectrometry analysis of omeprazole sulfone as a CYP3A4-mediated metabolite demonstrated the absence of erythromycin influence on CYP3A4-dependent omeprazole metabolism. This phenomenon may be explained by lower spectral dissociation constant of CYP3A4-omeprazole complex (Kd = 18±2 μM) than that of CYP3A4-erythromycin complex (Kd = 52 μM). Using the electrochemical model of electrochemically-driven drug metabolism it is possible to register CYP3A4-mediated catalytic conversion of certain drugs. In vitro experiments of potential CYP3A4-mediated drug-drug interactions are in accordance with in silico modeling with program PASS and PoSMNA descriptors in the case of omeprazole/erythromycin combinations.
Collapse
Affiliation(s)
- P I Koroleva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | | | - A V Dmitriev
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S M Rikova
- Sechenov First Moscow Medical State University (Sechenov University), Moscow, Russia
| | - E V Shich
- Sechenov First Moscow Medical State University (Sechenov University), Moscow, Russia
| | - A A Makhova
- Sechenov First Moscow Medical State University (Sechenov University), Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
45
|
Srinivasan B, Kantae V, Robinson J. Resurrecting the phoenix: When an assay fails. Med Res Rev 2020; 40:1776-1793. [DOI: 10.1002/med.21670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - Vasudev Kantae
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | - James Robinson
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| |
Collapse
|
46
|
Bai J, Li L, Zhao S, Fan X, Zhang J, Hu M, Chen Y, Sun Y, Wang B, Jin J, Wang X, Zhang D, Hu J, Li Y. Heterotropic activation of flavonoids on cytochrome P450 3A4: A case example of alleviating dronedarone-induced cytotoxicity. Toxicol Lett 2020; 319:187-196. [DOI: 10.1016/j.toxlet.2019.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
|
47
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
48
|
Jeon J, Hollender J. In vitro biotransformation of pharmaceuticals and pesticides by trout liver S9 in the presence and absence of carbamazepine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109513. [PMID: 31421535 DOI: 10.1016/j.ecoenv.2019.109513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to develop (i) a technique for identifying metabolites of organic contaminants by using an in vitro system of trout S9 and liquid chromatography-high-resolution mass spectrometry-based identification method and (ii) to apply this technique to identify the interactive potential of carbamazepine on the formation rate of other metabolites. The pharmaceuticals carbamazepine and propranolol and the pesticides azoxystrobin, diazinon, and fipronil were selected as test contaminants. As a result, a total of ten metabolites were identified for the five parent substances, six of which were confirmed using reference standards. Metabolic reactions included hydroxylation, epoxidation, S-oxidation, and dealkylation. The metabolic transformation rate ranged from 0.2 to 3.5 pmol/mg protein/min/μmol substrate. In the binary exposure experiment with increasing carbamazepine concentration, the formation rates of diazinon and fipronil metabolites (MDI2 and MFP2, respectively) increased, while formation of metabolites of propranolol and azoxystrobin (MPR1, MPR2, MPR3, and MAZ1) slowed down. Meanwhile, S9 pre-exposed to carbamazepine produced diazoxon, a toxic metabolite of diazinon, and pyrimidinol, a less toxic metabolite, more rapidly. These results suggest that carbamazepine, a perennial environmental pollutant, might modulate the toxicity of other substances such as diazinon but further in vivo studies are needed.
Collapse
Affiliation(s)
- Junho Jeon
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, South Korea; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092, Zürich, Switzerland
| |
Collapse
|
49
|
Atypical Michaelis-Menten kinetics in cytochrome P450 enzymes: A focus on substrate inhibition. Biochem Pharmacol 2019; 169:113615. [DOI: 10.1016/j.bcp.2019.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
|
50
|
Li H, Lampe JN. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch Biochem Biophys 2019; 673:108078. [PMID: 31445893 DOI: 10.1016/j.abb.2019.108078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The human cytochrome P450 CYP3A7, once thought to be an enzyme exclusive to fetal livers, has more recently been identified in neonates and developing infants as old as 24 months post-gestational age. CYP3A7 has been demonstrated to metabolize two endogenous compounds that are known to be important in the growth and development of the fetus and neonate, namely dehydroepiandrosterone sulfate (DHEA-S) and all-trans retinoic acid (atRA). In addition, it is also known to metabolize a variety of drugs and xenobiotics, albeit generally to a lesser extent relative to CYP3A4/5. CYP3A7 is an important component in the development and protection of the fetal liver and additionally plays a role in certain disease states, such as cancer and adrenal hyperplasia. Ultimately, a full understanding of the expression, regulation, and metabolic properties of CYP3A7 is needed to provide neonates with appropriate individualized pharmacotherapy. This article summarizes the current state of knowledge of CYP3A7, including its discovery, distribution, alleles, RNA splicing, expression and regulation, metabolic properties, substrates, and inhibitors.
Collapse
Affiliation(s)
- Haixing Li
- Sino-German Joint Research Institute Nanchang University, 235 East Nanjing Road, Nanchang, 330047, Jiangxi, PR China
| | - Jed N Lampe
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Mail Stop C238, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| |
Collapse
|