1
|
Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. Mamm Genome 2018. [PMID: 29523950 DOI: 10.1007/s00335-018-9742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Streptozotocin (STZ) has been widely used to induce diabetes in rodents. Strain-dependent variation in susceptibility to STZ has been reported; however, the gene(s) responsible for STZ susceptibility has not been identified. Here, we utilized the A/J-11SM consomic strain and a set of chromosome 11 (Chr. 11) congenic strains developed from A/J-11SM to identify a candidate STZ-induced diabetes susceptibility gene. The A/J strain exhibited significantly higher susceptibility to STZ-induced diabetes than the A/J-11SM strain, confirming the existence of a susceptibility locus on Chr. 11. We named this locus Stzds1 (STZ-induced diabetes susceptibility 1). Congenic mapping using the Chr. 11 congenic strains indicated that the Stzds1 locus was located between D11Mit163 (27.72 Mb) and D11Mit51 (36.39 Mb). The Mpg gene, which encodes N-methylpurine DNA glycosylase (MPG), a ubiquitous DNA repair enzyme responsible for the removal of alkylated base lesions in DNA, is located within the Stzds1 region. There is a close relationship between DNA alkylation at an early stage of STZ action and the function of MPG. A Sanger sequence analysis of the Mpg gene revealed five polymorphic sites in the A/J genome. One variant, p.Ala132Ser, was located in a highly conserved region among rodent species and in the minimal region for retained enzyme activity of MPG. It is likely that structural alteration of MPG caused by the p.Ala132Ser mutation elicits increased recognition and excision of alkylated base lesions in DNA by STZ.
Collapse
|
2
|
Hinz JM, Mao P, McNeill DR, Wilson DM. Reduced Nuclease Activity of Apurinic/Apyrimidinic Endonuclease (APE1) Variants on Nucleosomes: IDENTIFICATION OF ACCESS RESIDUES. J Biol Chem 2015; 290:21067-21075. [PMID: 26134573 PMCID: PMC4543664 DOI: 10.1074/jbc.m115.665547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
Non-coding apurinic/apyrimidinic (AP) sites are generated at high frequency in genomic DNA via spontaneous hydrolytic, damage-induced or enzyme-mediated base release. AP endonuclease 1 (APE1) is the predominant mammalian enzyme responsible for initiating removal of mutagenic and cytotoxic abasic lesions as part of the base excision repair (BER) pathway. We have examined here the ability of wild-type (WT) and a collection of variant/mutant APE1 proteins to cleave at an AP site within a nucleosome core particle. Our studies indicate that, in comparison to the WT protein and other variant/mutant enzymes, the incision activity of the tumor-associated variant R237C and the rare population variant G241R are uniquely hypersensitive to nucleosome complexes in the vicinity of the AP site. This defect appears to stem from an abnormal interaction of R237C and G241R with abasic DNA substrates, but is not simply due to a DNA binding defect, as the site-specific APE1 mutant Y128A, which displays markedly reduced AP-DNA complex stability, did not exhibit a similar hypersensitivity to nucleosome structures. Notably, this incision defect of R237C and G241R was observed on a pre-assembled DNA glycosylase·AP-DNA complex as well. Our results suggest that the BER enzyme, APE1, has acquired distinct surface residues that permit efficient processing of AP sites within the context of protein-DNA complexes independent of classic chromatin remodeling mechanisms.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520 and.
| | - Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520 and
| | - Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, National Institutes of Health, Baltimore, Maryland 21224
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
3
|
Adhikari S, Chetram MA, Woodrick J, Mitra PS, Manthena PV, Khatkar P, Dakshanamurthy S, Dixon M, Karmahapatra SK, Nuthalapati NK, Gupta S, Narasimhan G, Mazumder R, Loffredo CA, Üren A, Roy R. Germ line variants of human N-methylpurine DNA glycosylase show impaired DNA repair activity and facilitate 1,N6-ethenoadenine-induced mutations. J Biol Chem 2014; 290:4966-4980. [PMID: 25538240 DOI: 10.1074/jbc.m114.627000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N(6)-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N(6)-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence.
Collapse
Affiliation(s)
- Sanjay Adhikari
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057,; Cancer Research Program, Houston Methodist Hospital Research Institute, Houston, Texas 77030, and
| | - Mahandranauth A Chetram
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Jordan Woodrick
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Partha S Mitra
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Praveen V Manthena
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Pooja Khatkar
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Sivanesan Dakshanamurthy
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Monica Dixon
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Soumendra K Karmahapatra
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Nikhil K Nuthalapati
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Suhani Gupta
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Ganga Narasimhan
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D. C. 20037
| | - Christopher A Loffredo
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Aykut Üren
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Rabindra Roy
- From the Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057,.
| |
Collapse
|
4
|
Woodrick J, Gupta S, Khatkar P, Sarangi S, Narasimhan G, Trehan A, Adhikari S, Roy R. Slow repair of lipid peroxidation-induced DNA damage at p53 mutation hotspots in human cells caused by low turnover of a DNA glycosylase. Nucleic Acids Res 2014; 42:9033-46. [PMID: 25081213 PMCID: PMC4132702 DOI: 10.1093/nar/gku520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/21/2014] [Accepted: 05/24/2014] [Indexed: 12/16/2022] Open
Abstract
Repair of oxidative stress- and inflammation-induced DNA lesions by the base excision repair (BER) pathway prevents mutation, a form of genomic instability which is often observed in cancer as 'mutation hotspots'. This suggests that some sequences have inherent mutability, possibly due to sequence-related differences in repair. This study has explored intrinsic mutability as a consequence of sequence-specific repair of lipid peroxidation-induced DNA adduct, 1, N(6)-ethenoadenine (εA). For the first time, we observed significant delay in repair of ϵA at mutation hotspots in the tumor suppressor gene p53 compared to non-hotspots in live human hepatocytes and endothelial cells using an in-cell real time PCR-based method. In-cell and in vitro mechanism studies revealed that this delay in repair was due to inefficient turnover of N-methylpurine-DNA glycosylase (MPG), which initiates BER of εA. We determined that the product dissociation rate of MPG at the hotspot codons was ≈5-12-fold lower than the non-hotspots, suggesting a previously unknown mechanism for slower repair at mutation hotspots and implicating sequence-related variability of DNA repair efficiency to be responsible for mutation hotspot signatures.
Collapse
Affiliation(s)
- Jordan Woodrick
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Suhani Gupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Pooja Khatkar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Sanchita Sarangi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Ganga Narasimhan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Akriti Trehan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| |
Collapse
|
5
|
Li Y, Shao M, Zheng X, Kong W, Zhang J, Gong M. Self-assembling peptides improve the stability of glucagon-like peptide-1 by forming a stable and sustained complex. Mol Pharm 2013; 10:3356-65. [PMID: 23859692 DOI: 10.1021/mp4001734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The multiple physiological characterizations of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the treatment of T2DM. However, the short half-life of GLP-1 limits its clinical utility. Self-assembling peptides are presumed to wrap GLP-1 peptide, and this helps to prolong the stability of GLP-1 consequently. The aim of this study was to investigate whether self-assembling peptides could be applied to prolong the half-life of GLP-1 as sustained release preparations. In this study, five different self-assembling peptides were employed. The formation of the complexes was monitored using gel filtration and mass spectrometry and was simulated by Molecular Dynamics. Stabilization, insulin secretion stimulation, and glucose tolerance tests were performed to investigate the physiological characteristics retained by GLP-1 following complex formation with self-assembling peptides. Our findings revealed that, among the five different self-assembling peptides tested, complex of Pep-1 and GLP-1 exhibited a remarkable extension in the half-life of GLP-1. In addition, the experimental animals treated with a GLP-1/Pep-1 complex exhibited better blood glucose clearance activity over a greater duration of time than the animals treated with GLP-1 alone. Based on our results, an adjustment of the Pep-1 and GLP-1 ratios is presumed to be able to control the half-life of GLP-1 (e.g., medium-acting and long-acting). Collectively, the findings in this study suggest that the self-assembling peptide Pep-1 could serve as a powerful drug preparation tool to extend the short half-life of therapeutic peptides.
Collapse
Affiliation(s)
- Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, China
| | | | | | | | | | | |
Collapse
|
6
|
Baldwin MR, O'Brien PJ. Defining the functional footprint for recognition and repair of deaminated DNA. Nucleic Acids Res 2012; 40:11638-47. [PMID: 23074184 PMCID: PMC3526306 DOI: 10.1093/nar/gks952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spontaneous deamination of DNA is mutagenic, if it is not repaired by the base excision repair (BER) pathway. Crystallographic data suggest that each BER enzyme has a compact DNA binding site. However, these structures lack information about poorly ordered termini, and the energetic contributions of specific protein–DNA contacts cannot be inferred. Furthermore, these structures do not reveal how DNA repair intermediates are passed between enzyme active sites. We used a functional footprinting approach to define the binding sites of the first two enzymes of the human BER pathway for the repair of deaminated purines, alkyladenine DNA glycosylase (AAG) and AP endonuclease (APE1). Although the functional footprint for full-length AAG is explained by crystal structures of truncated AAG, the footprint for full-length APE1 indicates a much larger binding site than is observed in crystal structures. AAG turnover is stimulated in the presence of APE1, indicating rapid exchange of AAG and APE1 at the abasic site produced by the AAG reaction. The coordinated reaction does not require an extended footprint, suggesting that each enzyme engages the site independently. Functional footprinting provides unique information relative to traditional footprinting approaches and is generally applicable to any DNA modifying enzyme or system of enzymes.
Collapse
Affiliation(s)
- Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
7
|
Houssen WE, Wright SH, Kalverda AP, Thompson GS, Kelly SM, Jaspars M. Solution structure of the leader sequence of the patellamide precursor peptide, PatE1-34. Chembiochem 2011; 11:1867-73. [PMID: 20715266 DOI: 10.1002/cbic.201000305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The solution structure of the leader sequence of the patellamide precursor peptide was analysed by using CD and determined with NOE-restrained molecular dynamics calculations. This leader sequence is highly conserved in the precursor peptides of some other cyanobactins harbouring heterocycles, and is assumed to play a role in targeting the precursor peptide to the post-translational machinery. The sequence was observed to form an alpha-helix spanning residues 13-28 with a hydrophobic surface on one side of the helix. This hydrophobic surface is proposed to be the site of the initial binding with modifying enzymes.
Collapse
Affiliation(s)
- Wael E Houssen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | | | | | | | | | | |
Collapse
|
8
|
Baldwin MR, O'Brien PJ. Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase. Biochemistry 2009; 48:6022-33. [PMID: 19449863 DOI: 10.1021/bi900517y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of damaged purine bases from DNA, including hypoxanthine that is formed by the oxidative deamination of adenine. We used steady state, pre-steady state, and single-turnover kinetic assays to show that the multiple-turnover excision of hypoxanthine in vitro is limited by release of the abasic DNA product. This suggests the possibility that the product release step is regulated in vivo by interactions with other base excision repair (BER) proteins. Such coordination of BER activities would protect the abasic DNA repair intermediate and ensure its correct processing. AP endonuclease 1 (APE1) is the predominant enzyme for processing abasic DNA sites in human cells. Therefore, we have investigated the functional effects of added APE1 on the base excision activity of AAG. We find that APE1 stimulates the multiple-turnover excision of hypoxanthine by AAG but has no effect on single-turnover excision. Since the amino terminus of AAG has been implicated in other protein-protein interactions, we also characterize the deletion mutant lacking the first 79 amino acids. We find that APE1 fully stimulates the multiple-turnover glycosylase activity of this mutant, demonstrating that the amino terminus of AAG is not strictly required for this functional interaction. These results are consistent with a model in which APE1 displaces AAG from the abasic site, thereby coordinating the first two steps of the base excision repair pathway.
Collapse
Affiliation(s)
- Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
9
|
Lee CYI, Delaney JC, Kartalou M, Lingaraju GM, Maor-Shoshani A, Essigmann JM, Samson LD. Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Biochemistry 2009; 48:1850-61. [PMID: 19219989 DOI: 10.1021/bi8018898] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N(6)-ethenoadenine (epsilonA). The crystal structures of AAG bound to epsilonA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Delta80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known epsilonA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with epsilonA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N(2)-ethenoguanine (1,N(2)-epsilonG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both epsilonA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.
Collapse
Affiliation(s)
- Chun-Yue I Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Excised damaged base determines the turnover of human N-methylpurine-DNA glycosylase. DNA Repair (Amst) 2009; 8:1201-6. [PMID: 19616486 DOI: 10.1016/j.dnarep.2009.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. In this study, we tested the role of excised base on MPG enzymatic activity. After the reaction, MPG produced two products: free damaged base and AP-site containing DNA. Our results showed that MPG excises 1,N(6)-ethenoadenine (varepsilonA) from varepsilonA-containing oligonucleotide (varepsilonA-DNA) at a similar or slightly increased efficiency than it does hypoxanthine (Hx) from Hx-containing oligonucleotide (Hx-DNA) under similar conditions. Real-time binding experiments by surface plasmon resonance (SPR) spectroscopy suggested that both the substrate DNAs have a similar equilibrium binding constant (K(D)) towards MPG, but under single-turnover (STO) condition there is apparently no effect on catalytic chemistry; however, the turnover of the enzyme under multiple-turnover (MTO) condition is higher for varepsilonA-DNA than it is for Hx-DNA. Real-time binding experiments by SPR spectroscopy further showed that the dissociation of MPG from its product, AP-site containing DNA, is faster than the overall turnover of either Hx- or varepsilonA-DNA reaction. We thereby conclude that the excised base plays a critical role in product inhibition and, hence, is essential for MPG glycosylase activity. Thus, the results provide the first evidence that the excised base rather than AP-site could be rate-limiting for DNA-glycosylase reactions.
Collapse
|
11
|
Hedglin M, O'Brien PJ. Human alkyladenine DNA glycosylase employs a processive search for DNA damage. Biochemistry 2008; 47:11434-45. [PMID: 18839966 DOI: 10.1021/bi801046y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA repair proteins conduct a genome-wide search to detect and repair sites of DNA damage wherever they occur. Human alkyladenine DNA glycosylase (AAG) is responsible for recognizing a variety of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair pathway. We have investigated the mechanism by which AAG locates sites of damage using an oligonucleotide substrate containing two sites of DNA damage. This substrate was designed so that AAG randomly binds to either of the two lesions. AAG-catalyzed base excision creates a repair intermediate, and the subsequent partitioning between dissociation and diffusion to the second site can be quantified from the rates of formation of the different products. Our results demonstrate that AAG has the ability to slide for short distances along DNA at physiological salt concentrations. The processivity of AAG decreases with increasing ionic strength to become fully distributive at high ionic strengths, suggesting that electrostatic interactions between the negatively charged DNA and the positively charged DNA binding surface are important for nonspecific DNA binding. Although the amino terminus of the protein is dispensable for glycosylase activity at a single site, we find that deletion of the 80 amino-terminal amino acids significantly decreases the processivity of AAG. These observations support the idea that diffusion on undamaged DNA contributes to the search for sites of DNA damage.
Collapse
Affiliation(s)
- Mark Hedglin
- Chemical Biology Program, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
12
|
Ringvoll J, Moen MN, Nordstrand LM, Meira LB, Pang B, Bekkelund A, Dedon PC, Bjelland S, Samson LD, Falnes PØ, Klungland A. AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res 2008; 68:4142-9. [PMID: 18519673 DOI: 10.1158/0008-5472.can-08-0796] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endogenous formation of the mutagenic DNA adduct 1,N(6)-ethenoadenine (epsilon A) originates from lipid peroxidation. Elevated levels of epsilon A in cancer-prone tissues suggest a role for this adduct in the development of some cancers. The base excision repair pathway has been considered the principal repair system for epsilon A lesions until recently, when it was shown that the Escherichia coli AlkB dioxygenase could directly reverse the damage. We report here kinetic analysis of the recombinant human AlkB homologue 2 (hABH2), which is able to repair epsilon A lesions in DNA. Furthermore, cation exchange chromatography of nuclear extracts from wild-type and mABH2(-/-) mice indicates that mABH2 is the principal dioxygenase for epsilon A repair in vivo. This is further substantiated by experiments showing that hABH2, but not hABH3, is able to complement the E. coli alkB mutant with respect to its defective repair of etheno adducts. We conclude that ABH2 is active in the direct reversal of epsilon A lesions, and that ABH2, together with the alkyl-N-adenine-DNA glycosylase, which is the most effective enzyme for the repair of epsilon A, comprise the cellular defense against epsilon A lesions.
Collapse
Affiliation(s)
- Jeanette Ringvoll
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Rikshospitalet HF and University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rolseth V, Rundén-Pran E, Neurauter CG, Yndestad A, Luna L, Aukrust P, Ottersen OP, Bjørås M. Base excision repair activities in organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation. DNA Repair (Amst) 2008; 7:869-78. [PMID: 18406215 DOI: 10.1016/j.dnarep.2008.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 01/22/2023]
Abstract
The capacity for DNA repair is likely to be one of the factors that determine the vulnerability of neurons to ischemic stress and may influence the pathological outcome of stroke. In this report, initiation of base excision repair (BER) was assessed by analysis of enzyme activity and gene expression level of DNA glycosylases and AP-endonucleases in rat organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) - an in vitro model of stroke. Under basal conditions, AP-endonuclease activity and base removal of ethenoadenine and 8-oxoguanine (8-oxoG) were higher (by approximately 20-35 %) in CA3/fascia dentata (FD) than in CA1. Base removal of uracil did not differ between the two hippocampal regions, while removal of 5-hydroxyuracil (5-OHU) was slightly less efficient in CA3/FD than in CA1. Analyses performed immediately after 30 min of OGD revealed a decreased AP-endonuclease activity (by approximately 20%) in CA1 as well as CA3/FD, and an increased ethenoadenine activity (by approximately 25%) in CA1. Activities for 8-oxoG, 5-OHU and uracil showed no significant changes at this time point. At 8h after OGD, none of the enzyme activities differed from control values. Real-time RT-PCR showed that transcription of DNA glycosylases, including Ogg1, Nth1, Ung, Aag, Neil1 and Neil2 were not changed in response to OGD treatment (t=0 h). The hippocampal expression of Neil2 was low compared with the other DNA glycosylases. These data indicate that CA1 has a lower capacity than CA3/FD for removal of base lesions under basal conditions. The relatively low capacity for BER in basal conditions and the apparent failure to upregulate repair of oxidative damage after OGD might contribute to the high vulnerability of CA1 to ischemic injury.
Collapse
Affiliation(s)
- Veslemøy Rolseth
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Evidence of complete cellular repair of 1,N6-ethenoadenine, a mutagenic and potential damage for human cancer, revealed by a novel method. Mol Cell Biochem 2008; 313:19-28. [PMID: 18373235 DOI: 10.1007/s11010-008-9737-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/11/2008] [Indexed: 02/08/2023]
Abstract
1,N6-Ethenoadenine (epsilonA) is generated endogenously by lipid peroxidation and exogenously by tumorigenic industrial agents, vinyl chloride, and vinyl carbamate. epsilonA detected in human tissues causes mutation and is implicated in liver, colon and lung cancers. N-methyl purine DNA-glycosylase (MPG) is the only enzyme known so far to repair epsilonA. However, the mechanism of in vivo repair of epsilonA and the role of MPG remain enigmatic. Moreover, previous in vivo repair studies for DNA lesions, including epsilonA, focused only on the step of the removal of the base lesion without further insight into the completion of the repair process. This may be in part due to the unavailability of an appropriate in vivo quantitative method to evaluate complete BER process at the basal level. Our newly developed in vivo method is highly sensitive and involves phagemid M13mp18, containing epsilonA at a defined position. The complete repair events have been estimated by plaque assay in E. coli with the phagemids recovered from the human cells after cellular processing. We found that the detectable complete (removal and replacement of epsilonA with adenine) repair was observed only 18% in 16 h, but with the repair nearing completion within 24 h in colon cancer, HCT-116, cells. Moreover, MPG is the predominant enzyme for the BER process to remove epsilonA in mammalian cells. Although, the epsilonA is fairly a bulky adduct compared to other small BER substrate lesions, NER pathway is not involved in repair of this adduct. Furthermore, the epsilonA repair in vivo and in vitro is predominant in the G0/G1 phase of the cell cycle.
Collapse
|
15
|
Adhikari S, Manthena PV, Uren A, Roy R. Expression, purification and characterization of codon-optimized human N-methylpurine-DNA glycosylase from Escherichia coli. Protein Expr Purif 2007; 58:257-62. [PMID: 18191412 DOI: 10.1016/j.pep.2007.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/29/2007] [Accepted: 12/01/2007] [Indexed: 11/30/2022]
Abstract
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (K(D)) of 0.25 nM. Steady-state enzyme kinetics showed an apparent K(m) of 5.3 nM and k(cat) of 0.2 min(-1) of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 degrees C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure-function analysis.
Collapse
Affiliation(s)
- Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, LL level, S-122, 3800 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
16
|
Adhikari S, Üren A, Roy R. Dipole-dipole interaction stabilizes the transition state of apurinic/apyrimidinic endonuclease--abasic site interaction. J Biol Chem 2007; 283:1334-1339. [PMID: 18025089 DOI: 10.1074/jbc.m704594200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease (hAPE) initiates the repair of an abasic site (AP site). To gain insight into the mechanisms of damage recognition of hAPE, we conducted surface plasmon resonance spectroscopy to study the thermodynamics and kinetics of its interaction with substrate DNA containing an abasic site (AP DNA). The affinity of hAPE binding toward DNA increased as much as 6-fold after replacing a single adenine (equilibrium dissociation constant, K(D), 5.3 nm) with an AP site (K(D), 0.87 nm). The enzyme-substrate complex formation appears to be thermodynamically stabilized and favored by a large change in Gibbs free energy, DeltaG degrees (-50 kJ/mol). The latter is supported by a high negative change in enthalpy, DeltaH degrees (-43 kJ/mol) and also positive change in entropy, DeltaS degrees (24 J/(K mol)), and thus the binding process is spontaneous at all temperatures. Analysis of kinetic parameters reveals small enthalpy of activation for association, DeltaH degrees++(ass) (-17 kJ/mol), and activation energy for association (E(a), -14 kJ/mol) when compared with the enthalpy of activation for dissociation, DeltaH degrees++(diss) (26 kJ/mol), and activation energy in the reverse direction (E(d), 28 kJ/mol). Furthermore, varying concentration of KCl showed an increase in binding affinity at low concentration but complete abrogation of the binding at higher concentration, implying the importance of hydrophobic, but predominantly ionic, forces in the Michaelis-Menten complex formation. Thus, low activation energy and the enthalpy of activation, which are perhaps a result of dipole-dipole interactions, play critical roles in AP site binding of APE.
Collapse
Affiliation(s)
- Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057.
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057.
| |
Collapse
|
17
|
Adhikari S, Kennel SJ, Roy G, Mitra PS, Mitra S, Roy R. Discrimination of lesion removal of N-methylpurine-DNA glycosylase revealed by a potent neutralizing monoclonal antibody. DNA Repair (Amst) 2007; 7:31-9. [PMID: 17768096 PMCID: PMC2702511 DOI: 10.1016/j.dnarep.2007.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/15/2007] [Accepted: 07/16/2007] [Indexed: 10/22/2022]
Abstract
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, induced by alkylating chemotherapeutics, and deaminated and lipid peroxidation-induced purine adducts. We have generated monoclonal antibodies (moAbs) against human MPG. Twelve independent hybridoma clones were characterized, which, except 520-16A, are identical based on epitope exclusion assay. Four moAbs, including 520-2A, 520-3A, 520-16A, and 520-26A, have high affinity (K(D) approximately 0.3-1.6nM), and their subtypes were IgG(2a), IgG(1), IgG(2a), and IgG(2b), respectively. moAb 520-3A recognizes the sequence (52)AQAPCPRERCLGPP(66)T, an epitope exclusively present in the N-terminal extension of human MPG. We found that moAb 520-3A significantly inhibited MPG's enzymatic activity towards different substrates, such as hypoxanthine, 1,N(6)ethenoadenine and methylated bases, which represent different classes of DNA damage, however, with different efficiencies. Real-time binding experiments using surface plasmon resonance (SPR) spectroscopy showed that the pronounced inhibition of activity was not in the substrate-binding step. Single turnover kinetics (STO) revealed that the inhibition was at the catalytic step. Since we found that this antibody has an epitope in the N-terminal tail, the latter appears to have an important role in substrate discrimination, however, with a differential effect on different substrates.
Collapse
Affiliation(s)
- Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | | | - Gargi Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Partha S Mitra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Sankar Mitra
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
- Corresponding author at: Lombardi Comprehensive Cancer Center, LL level, S-122, 3800 Reservoir Road, NW, Georgetown University Medical Center, Washington, DC 20057, Ph: 202-687-7390, Fax: 202-687-1068 E-mail:
| |
Collapse
|
18
|
Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. Low-molecular-weight post-translationally modified microcins. Mol Microbiol 2007; 65:1380-94. [PMID: 17711420 DOI: 10.1111/j.1365-2958.2007.05874.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcins are a class of ribosomally synthesized antibacterial peptides produced by Enterobacteriaceae and active against closely related bacterial species. While some microcins are active as unmodified peptides, others are heavily modified by dedicated maturation enzymes. Low-molecular-weight microcins from the post-translationally modified group target essential molecular machines inside the cells. In this review, available structural and functional data about three such microcins--microcin J25, microcin B17 and microcin C7-C51--are discussed. While all three low-molecular-weight post-translationally modified microcins are produced by Escherichia coli, inferences based on sequence and structural similarities with peptides encoded or produced by phylogenetically diverse bacteria are made whenever possible to put these compounds into a larger perspective.
Collapse
Affiliation(s)
- Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
19
|
Adhikari S, Uren A, Roy R. N-terminal extension of N-methylpurine DNA glycosylase is required for turnover in hypoxanthine excision reaction. J Biol Chem 2007; 282:30078-84. [PMID: 17716976 DOI: 10.1074/jbc.m704051200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Methylpurine DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. In this study we tested the role of N-terminal extension on MPG hypoxanthine (Hx) cleavage activity. Our results showed that MPG lacking N-terminal extension excises hypoxanthine with significantly reduced efficiency, one-third of that exhibited by full-length MPG under similar conditions. Steady-state kinetics showed full-length MPG has higher V(max) and lower K(m) than NDelta100 MPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that truncation can substantially increase the equilibrium binding constant of MPG toward Hx, but under single-turnover conditions there is apparently no effect on catalytic chemistry; however, the truncation of the N-terminal tail affected the turnover of the enzyme significantly under multiple turnover conditions. Real time binding experiments by surface plasmon resonance spectroscopy further showed that NDelta100 MPG binds approximately six times more tightly toward its product apurinic/apyrimidinic site than the substrate, whereas full-length MPG similarly binds to both the substrate and the product. We thereby conclude that the N-terminal tail in MPG plays a critical role in overcoming the product inhibition, which is achieved by reducing the differences of MPG binding affinity toward Hx and apurinic/apyrimidinic sites and thus is essential for the Hx cleavage reaction of MPG. The results from this study also affirm the need for reinvestigation of full-length MPG for its enzymatic and structural properties, which are currently available mostly for the truncated protein.
Collapse
Affiliation(s)
- Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057, USA
| | | | | |
Collapse
|
20
|
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 2007; 24:708-34. [PMID: 17653356 DOI: 10.1039/b516237h] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microcins are gene-encoded antibacterial peptides, with molecular masses below 10 kDa, produced by enterobacteria. They are secreted under conditions of nutrient depletion and exert potent antibacterial activity against closely related species. Typical gene clusters encoding the microcin precursor, the self-immunity factor, the secretion proteins and frequently the post-translational modification enzymes are located either on plasmids or on the chromosome. In contrast to most of the antibiotics of microbial origin, which are non-ribosomally synthesized by multimodular enzymes termed peptide synthetases, microcins are ribosomally synthesized as precursors, which are further modified enzymatically. They form a restricted class of potent antibacterial peptides. Fourteen microcins have been reported so far, among which only seven have been isolated and characterized. Despite the low number of known representatives, microcins exhibit a diversity of structures and antibacterial mechanisms. This review provides an updated overview of microcin structures, antibacterial activities, genetic systems and biosyntheses, as well as of their mechanisms of action.
Collapse
Affiliation(s)
- Sophie Duquesne
- Laboratory of Chemistry and Biochemistry of Natural Substances, UMR 5154 CNRS, Department of Regulations, Development and Molecular Diversity, National Museum of Natural History, CP 54, 57 rue Cuvier, 75005, Paris, France
| | | | | | | |
Collapse
|
21
|
Adhikari S, Toretsky JA, Yuan L, Roy R. Magnesium, Essential for Base Excision Repair Enzymes, Inhibits Substrate Binding of N-Methylpurine-DNA Glycosylase. J Biol Chem 2006; 281:29525-32. [PMID: 16901897 DOI: 10.1074/jbc.m602673200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. MPG activity and other DNA glycosylases do not have an absolute requirement for a cofactor. In contrast, all downstream activities of major base excision repair proteins, such as apurinic/apyrimidinic endonuclease, DNA polymerase beta, and ligases, require Mg(2+). Here we have demonstrated that Mg(2+) can be significantly inhibitory toward MPG activity depending on its concentration but independent of substrate type. The pre-steady-state kinetics suggests that Mg(2+) at high but physiologic concentrations decreases the amount of active enzyme concentrations. Steady-state inhibition kinetics showed that Mg(2+) affected K(m), but not V(max), and the inhibition could be reversed by EDTA but not by DNA. At low concentration, Mg(2+) stimulated the enzyme activity only with hypoxanthine but not ethenoadenine. Real-time binding experiments using surface plasmon resonance spectroscopy showed that the pronounced inhibition of activity was due to inhibition in substrate binding. Nonetheless, the glycosidic bond cleavage step was not affected. These results altogether suggest that Mg(2+) inhibits MPG activity by abrogating substrate binding. Because Mg(2+) is an absolute requirement for the downstream activities of the major base excision repair enzymes, it may act as a regulator for the base excision repair pathway for efficient and balanced repair of damaged bases, which are often less toxic and/or mutagenic than their subsequent repair product intermediates.
Collapse
Affiliation(s)
- Sanjay Adhikari
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
22
|
Peddi SR, Chattopadhyay R, Naidu CV, Izumi T. The human apurinic/apyrimidinic endonuclease-1 suppresses activation of poly(adp-ribose) polymerase-1 induced by DNA single strand breaks. Toxicology 2006; 224:44-55. [PMID: 16730871 DOI: 10.1016/j.tox.2006.04.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 03/31/2006] [Accepted: 04/07/2006] [Indexed: 11/16/2022]
Abstract
DNA single-strand breaks (SSB) activate poly (ADP-ribose) polymerase 1 (PARP1), which then polymerizes ADP-ribosyl groups on various nuclear proteins, consuming cellular energy. Although PARP1 has a role in repairing SSB, activation of PARP1 also causes necrosis and inflammation due to depletion of cellular energy. Here we show that the major mammalian apurinic/apyrimidinic (AP) endonuclease-1 (APE1), an essential DNA repair protein, binds to SSB and suppresses the activation of PARP1. APE1's high affinity for SSB requires Arg177, which is unique in mammalian APEs. PARP1's binding to the cleaved DNA was inhibited, and PARP1 activation was suppressed by the wild-type APE1, but not by the R177A mutant APE1 protein. Cells transiently transfected with the wild-type APE1 decreased the PARP1 activation after H2O2 treatment, while such suppression did not occur with the expression of the R177A APE1 mutant. These results suggest that APE1 suppresses the activation of PARP1 during the repair process of the DNA damage generated by oxidative stress, which may have an important implication for cells to avoid necrosis due to energy depletion.
Collapse
Affiliation(s)
- Srinivasa R Peddi
- Stanley S. Scott Cancer Center and Department of Otolaryngology, 533 Bolivar St. 5th Floor, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
23
|
Milne BF, Long PF, Starcevic A, Hranueli D, Jaspars M. Spontaneity in the patellamide biosynthetic pathway. Org Biomol Chem 2006; 4:631-8. [PMID: 16467937 DOI: 10.1039/b515938e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-translationally modified ribosomal peptides are unusual natural products and many have potent biological activity. The biosynthetic processes involved in their formation have been delineated for some, but the patellamides represent a unique group of these metabolites with a combination of a macrocycle, small heterocycles and d-stereocentres. The genes encoding for the patellamides show very low homology to known biosynthetic genes and there appear to be no explicit genes for the macrocyclisation and epimerisation steps. Using a combination of literature data and large-scale molecular dynamics calculations with explicit solvent, we propose that the macrocyclisation and epimerisation steps are spontaneous and interdependent and a feature of the structure of the linear peptide. Our study suggests the steps in the biosynthetic route are heterocyclisation, macrocyclisation, followed by epimerisation and finally dehydrogenation. This study is presented as testable hypothesis based on literature and theoretical data to be verified by future detailed experimental investigations.
Collapse
Affiliation(s)
- Bruce F Milne
- Centro de Estudos de Química Orgânica, Fitoquímica e Farmacologia, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4050-047, Porto, Portugal
| | | | | | | | | |
Collapse
|
24
|
Vallur AC, Maher RL, Bloom LB. The efficiency of hypoxanthine excision by alkyladenine DNA glycosylase is altered by changes in nearest neighbor bases. DNA Repair (Amst) 2005; 4:1088-98. [PMID: 15990363 DOI: 10.1016/j.dnarep.2005.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/23/2005] [Accepted: 05/23/2005] [Indexed: 11/26/2022]
Abstract
Alkyladenine DNA glycosylase (AAG) excises a structurally diverse group of damaged purines including hypoxanthine, 1,N(6)-ethenoadenine, 3-methyladenine, and 7-methylguanine from DNA to initiate base excision repair at these sites. Excision occurs in an enzyme.DNA complex in which the damaged base is flipped out of the DNA helix into the enzyme active site. To determine whether local DNA sequence could affect the overall efficiency of excision of hypoxanthine from DNA, single-turnover kinetics of excision, AAG.DNA binding, and melting temperatures were measured for DNA substrates that differed in the base pairs immediately 5' and 3' to hypoxanthine. When Hx was flanked by a 5'G and a 3'C, the efficiency of excision was reduced dramatically in comparison to a duplex containing a 5'T and 3'A. The reduction in excision efficiency was largely due to a decrease in binding affinity of AAG for DNA. The overall effect of GC versus TA nearest neighbors was to magnify the difference in the efficiencies of excision of Hx from pairs with thymine and difluorotoluene from a factor of 5 to a factor of about 100. In general, DNA substrates that were more stable as indicated by higher melting temperatures gave reduced efficiencies of excision of Hx. These results are discussed in terms of a model in which the relative stabilities of base-flipped versus unflipped complexes contribute the overall efficiency of excision and substrate specificity of AAG.
Collapse
Affiliation(s)
- Aarthy C Vallur
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1600 SW Archer Road, JHMHC Room R3-234, Gainesville, FL 32610-0245, USA
| | | | | |
Collapse
|
25
|
Hitchcock TM, Dong L, Connor EE, Meira LB, Samson LD, Wyatt MD, Cao W. Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase. J Biol Chem 2004; 279:38177-83. [PMID: 15247209 DOI: 10.1074/jbc.m405882200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxanine (Oxa) is a deaminated base lesion derived from guanine in which the N(1)-nitrogen is substituted by oxygen. This work reports the mutagenicity of oxanine as well as oxanine DNA glycosylase (ODG) activities in mammalian systems. Using human DNA polymerase beta, deoxyoxanosine triphosphate is only incorporated opposite cytosine (Cyt). When an oxanine base is in a DNA template, Cyt is efficiently incorporated opposite the template oxanine; however, adenine and thymine are also incorporated opposite Oxa with an efficiency approximately 80% of a Cyt/Oxa (C/O) base pair. Guanine is incorporated opposite Oxa with the least efficiency, 16% compared with cytosine. ODG activity was detected in several mammalian cell extracts. Among the known human DNA glycosylases tested, human alkyladenine glycosylase (AAG) shows ODG activity, whereas hOGG1, hNEIL1, or hNEIL2 did not. ODG activity was detected in spleen cell extracts of wild type age-matched mice, but little activity was observed in that of Aag knock-out mice, confirming that the ODG activity is intrinsic to AAG. Human AAG can excise Oxa from all four Oxa-containing double-stranded base pairs, Cyt/Oxa, Thy/Oxa, Ade/Oxa, and Gua/Oxa, with no preference to base pairing. Surprisingly, AAG can remove Oxa from single-stranded Oxa-containing DNA as well. Indeed, AAG can also remove 1,N(6)-ethenoadenine from single-stranded DNA. This study extends the deaminated base glycosylase activities of AAG to oxanine; thus, AAG is a mammalian enzyme that can act on all three purine deamination bases, hypoxanthine, xanthine, and oxanine.
Collapse
Affiliation(s)
- Thomas M Hitchcock
- Department of Genetics, Biochemistry & Life Science Studies, South Carolina Experiment Station, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kisby GE, Lesselroth H, Olivas A, Samson L, Gold B, Tanaka K, Turker MS. Role of nucleotide- and base-excision repair in genotoxin-induced neuronal cell death. DNA Repair (Amst) 2004; 3:617-27. [PMID: 15135729 DOI: 10.1016/j.dnarep.2004.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 02/10/2004] [Indexed: 12/29/2022]
Abstract
Base-excision (BER) and nucleotide-excision (NER) repair play pivotal roles in protecting the genomes of dividing cells from damage by endogenous and exogenous agents (i.e. environmental genotoxins). However, their role in protecting the genome of post-mitotic neuronal cells from genotoxin-induced damage is less clear. The present study examines the role of the BER enzyme 3-alkyladenine DNA glycosylase (AAG) and the NER protein xeroderma pigmentosum group A (XPA) in protecting cerebellar neurons and astrocytes from chloroacetaldehyde (CAA) or the alkylating agent 3-methyllexitropsin (Me-Lex), which produce ethenobases or 3-methyladenine (3-MeA), respectively. Neuronal and astrocyte cell cultures prepared from the cerebellum of wild type (C57BL/6) mice or Aag(-/-) or Xpa(-/-) mice were treated with 0.1-50 microM CAA for 24h to 7 days and examined for cell viability, DNA fragmentation (TUNEL labeling), nuclear changes, and glutathione levels. Aag(-/-) neurons were more sensitive to the acute (>20 microM) and long-term (>5 microM) effects of CAA than comparably treated wild type neurons and this sensitivity correlated with the extent of DNA fragmentation and nuclear changes. Aag(-/-) neurons were also sensitive to Me-Lex at comparable concentrations of CAA. In contrast, Xpa(-/-) neurons were more sensitive than either wild type or Aag(-/-) neurons to CAA (>10 microM), but less sensitive than Aag(-/-) neurons to Me-Lex. Astrocytes from the cerebellum of wild type, Aag(-/-) or Xpa(-/-) mice were essentially insensitive to CAA at the concentrations tested. These studies demonstrate that BER and NER are required to protect neurons from genotoxin-induced cell death.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health Sciences University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu X, Choudhury S, Roy R. In vitro and in vivo dimerization of human endonuclease III stimulates its activity. J Biol Chem 2003; 278:50061-9. [PMID: 14522981 DOI: 10.1074/jbc.m309997200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human endonuclease III (hNTH1), a DNA glycosylase with associated abasic lyase activity, repairs various mutagenic and toxic-oxidized DNA lesions, including thymine glycol. We demonstrate for the first time that the full-length hNTH1 positively cooperates in product formation as a function of enzyme concentration. The protein concentrations that caused cooperativity in turnover also exhibited dimerization, independent of DNA binding. Earlier we had found that the hNTH1 consists of two domains: a well conserved catalytic domain, and an inhibitory N-terminal tail. The N-terminal truncated proteins neither undergo dimerization, nor do they show cooperativity in turnover, indicating that the homodimerization of hNTH1 is specific and requires the N-terminal tail. Further kinetic analysis at transition states reveals that this homodimerization stimulates an 11-fold increase in the rate of release of the final product, an AP-site with a 3'-nick, and that it does not affect other intermediate reaction rates, including those of DNA N-glycosylase or AP lyase activities that are modulated by previously reported interacting proteins, YB-1, APE1, and XPG. Thus, the site of modulating action of the dimer on the hNTH1 reaction steps is unique. Moreover, the high intranuclear (2.3 microM) and cytosolic (0.65 microM) concentrations of hNTH1 determined here support the possibility of in vivo dimerization; indeed, in vivo protein cross-linking showed the presence of the dimer in the nucleus of HeLa cells. Therefore, it is likely that the dimerization of hNTH1 involving the N-terminal tail masks the inhibitory effect of this tail and plays a critical role in its catalytic turnover in the cell.
Collapse
Affiliation(s)
- Xiang Liu
- DNA Repair Laboratory, Mechanism of Carcinogenesis Program, American Health Foundation Cancer Center, Institute for Cancer Prevention, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
28
|
Nakano T, Terato H, Asagoshi K, Masaoka A, Mukuta M, Ohyama Y, Suzuki T, Makino K, Ide H. DNA-protein cross-link formation mediated by oxanine. A novel genotoxic mechanism of nitric oxide-induced DNA damage. J Biol Chem 2003; 278:25264-72. [PMID: 12719419 DOI: 10.1074/jbc.m212847200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic inflammation is a risk factor for many human cancers, and nitric oxide (NO) produced in inflamed tissues has been proposed to cause DNA damage via nitrosation or oxidation of base moieties. Thus, NO-induced DNA damage could be relevant to carcinogenesis associated with chronic inflammation. In this report, we report a novel genotoxic mechanism of NO that involves DNA-protein cross-links (DPCs) induced by oxanine (Oxa), a major NO-induced guanine lesion. When a duplex DNA containing Oxa at the site-specific position was incubated with DNA-binding proteins such as histone, high mobility group (HMG) protein, and DNA glycosylases, DPCs were formed between Oxa and protein. The rate of DPC formation with DNA glycosylases was approximately two orders of magnitude higher than that with histone and HMG protein. Analysis of the reactivity of individual amino acids to Oxa suggested that DPC formation occurred between Oxa and side chains of lysine or arginine in the protein. A HeLa cell extract also gave rise to two major DPCs when incubated with DNA-containing Oxa. These results reveal a dual aspect of Oxa as causal damage of DPC formation and as a suicide substrate of DNA repair enzymes, both of which could pose a threat to the genetic and structural integrity of DNA, hence potentially leading to carcinogenesis.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
A number of intrinsic and extrinsic mutagens induce structural damage in cellular DNA. These DNA damages are cytotoxic, miscoding or both and are believed to be at the origin of cell lethality, tissue degeneration, ageing and cancer. In order to counteract immediately the deleterious effects of such lesions, leading to genomic instability, cells have evolved a number of DNA repair mechanisms including the direct reversal of the lesion, sanitation of the dNTPs pools, mismatch repair and several DNA excision pathways including the base excision repair (BER) nucleotide excision repair (NER) and the nucleotide incision repair (NIR). These repair pathways are universally present in living cells and extremely well conserved. This review is focused on the repair of lesions induced by free radicals and ionising radiation. The BER pathway removes most of these DNA lesions, although recently it was shown that other pathways would also be efficient in the removal of oxidised bases. In the BER pathway the process is initiated by a DNA glycosylase excising the modified and mismatched base by hydrolysis of the glycosidic bond between the base and the deoxyribose of the DNA, generating a free base and an abasic site (AP-site) which in turn is repaired since it is cytotoxic and mutagenic.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe Réparation de l'ADN, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
30
|
Connor EE, Wyatt MD. Active-site clashes prevent the human 3-methyladenine DNA glycosylase from improperly removing bases. CHEMISTRY & BIOLOGY 2002; 9:1033-41. [PMID: 12323378 DOI: 10.1016/s1074-5521(02)00215-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human 3-methyladenine DNA glycosylase (AAG, MPG) removes a diverse array of damaged purines via a nucleotide-flipping mechanism. In the crystal structure of AAG bound to DNA containing 1,N(6) ethenoadenine, an asparagine (N169) occupies the active-site floor, in close proximity to the C-2 position of the flipped-out 1,N(6) ethenoadenine. We engineered site-specific AAG mutants to determine whether N169 prevents normal bases from mistakenly entering the active site. Substituting alanine or serine resulted in mutants that excised substrates at a faster rate than wild-type. Furthermore, these mutants acquired the ability to excise normal guanine within mispairs but not opposite cytosine. The results suggest that AAG can recognize helical deformations, such as mispairs. However, the active site then prevents the mistaken excision of bases, which prevents AAG from acquiring a mutator activity.
Collapse
Affiliation(s)
- Ellen E Connor
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
31
|
Vallur AC, Feller JA, Abner CW, Tran RK, Bloom LB. Effects of hydrogen bonding within a damaged base pair on the activity of wild type and DNA-intercalating mutants of human alkyladenine DNA glycosylase. J Biol Chem 2002; 277:31673-8. [PMID: 12077143 DOI: 10.1074/jbc.m204475200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human alkyladenine DNA glycosylase "flips" damaged DNA bases into its active site where excision occurs. Tyrosine 162 is inserted into the DNA helix in place of the damaged base and may assist in nucleotide flipping by "pushing" it. Mutating this DNA-intercalating Tyr to Ser reduces the DNA binding and base excision activities of alkyladenine DNA glycosylase to undetectable levels demonstrating that Tyr-162 is critical for both activities. Mutation of Tyr-162 to Phe reduces the single turnover excision rate of hypoxanthine by a factor of 4 when paired with thymine. Interestingly, when the base pairing partner for hypoxanthine is changed to difluorotoluene, which cannot hydrogen bond to hypoxanthine, single turnover excision rates increase by a factor of 2 for the wild type enzyme and about 3 to 4 for the Phe mutant. In assays with DNA substrates containing 1,N(6)-ethenoadenine, which does not form hydrogen bonds with either thymine or difluorotoluene, base excision rates for both the wild type and Phe mutant were unaffected. These results are consistent with a role for Tyr-162 in pushing the damaged base to assist in nucleotide flipping and indicate that a nucleotide flipping step may be rate-limiting for excision of hypoxanthine.
Collapse
Affiliation(s)
- Aarthy C Vallur
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The human base excision repair enzyme hNTH1, a homologue of Escherichia coli endonuclease III (Nth), is a 36kDa DNA glycosylase with associated abasic (AP) lyase activity. It has significant sequence homology with Nth in its DNA-binding motifs and catalytic residues but possesses a unique amino (N)-terminal tail (residues 1-95). We investigated the structure and function of this tail. Controlled proteolysis cleaved hNTH1 into discrete fragments to generate a 25kDA core domain lacking the N-terminal 98 residues. Surprisingly, recombinant hNTH1 lacking 55, 72 or 80 residues from the N terminus had four- to fivefold higher activities than the full-length enzyme. Kinetic analysis at transition states revealed that release of the final product, an AP site with a 3'-nick, is the rate-limiting step in the multi-step reaction mediated by hNTH1. The N-terminal tail regulates its overall catalytic turnover by reducing this product release rate by five- to sevenfold without affecting either the glycosylase or AP lyase activities, or the steady-state equilibrium concentration of Schiff base intermediate, the covalent complex of hNTH1 and AP-site DNA formed after the base is excised. The inhibitory role of the N-terminal tail in catalytic turnover explains the low activity of hNTH1 compared to that of its E.coli homologue.
Collapse
Affiliation(s)
- Xiang Liu
- Division of Carcinogenesis and Molecular Epidemiology, American Health Foundation Cancer Center, 1 Dana Road, Valhalla, NY 10595, USA
| | | |
Collapse
|
33
|
Saparbaev M, Langouët S, Privezentzev CV, Guengerich FP, Cai H, Elder RH, Laval J. 1,N(2)-ethenoguanine, a mutagenic DNA adduct, is a primary substrate of Escherichia coli mismatch-specific uracil-DNA glycosylase and human alkylpurine-DNA-N-glycosylase. J Biol Chem 2002; 277:26987-93. [PMID: 12016206 DOI: 10.1074/jbc.m111100200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The promutagenic and genotoxic exocyclic DNA adduct 1,N(2)-ethenoguanine (1,N(2)-epsilonG) is a major product formed in DNA exposed to lipid peroxidation-derived aldehydes in vitro. Here, we report that two structurally unrelated proteins, the Escherichia coli mismatch-specific uracil-DNA glycosylase (MUG) and the human alkylpurine-DNA-N-glycosylase (ANPG), can release 1,N(2)-epsilonG from defined oligonucleotides containing a single modified base. A comparison of the kinetic constants of the reaction indicates that the MUG protein removes the 1,N(2)-epsilonG lesion more efficiently (k(cat)/K(m) = 0.95 x 10(-3) min(-1) nm(-1)) than the ANPG protein (k(cat)/K(m) = 0.1 x 10(-3) min(-1) nm(-1)). Additionally, while the nonconserved, N-terminal 73 amino acids of the ANPG protein are not required for activity on 1,N(6)-ethenoadenine, hypoxanthine, or N-methylpurines, we show that they are essential for 1,N(2)-epsilonG-DNA glycosylase activity. Both the MUG and ANPG proteins preferentially excise 1,N(2)-epsilonG when it is opposite dC; however, unlike MUG, ANPG is unable to excise 1,N(2)-epsilonG when it is opposite dG. Using cell-free extracts from genetically modified E. coli and murine embryonic fibroblasts lacking MUG and mANPG activity, respectively, we show that the incision of the 1,N(2)-epsilonG-containing duplex oligonucleotide has an absolute requirement for MUG or ANPG. Taken together these observations suggest a possible role for these proteins in counteracting the genotoxic effects of 1,N(2)-epsilonG residues in vivo.
Collapse
Affiliation(s)
- Murat Saparbaev
- Groupe Réparation de l'ADN, Unité Mixte de Recherche 8532 CNRS, Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée-Ecole Normale Supérieure Cachan, Institut Gustave Roussy, 94805 Villejuif Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Biswas T, Clos LJ, SantaLucia J, Mitra S, Roy R. Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition. J Mol Biol 2002; 320:503-13. [PMID: 12096906 DOI: 10.1016/s0022-2836(02)00519-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most DNA glycosylases including N-methylpurine-DNA glycosylase (MPG), which initiate DNA base excision repair, have a wide substrate range of damaged or altered bases in duplex DNA. In contrast, uracil-DNA glycosylase (UDG) is specific for uracil and excises it from both single-stranded and duplex DNAs. Here we show by DNA footprinting analysis that MPG, but not UDG, bound to base-pair mismatches especially to less stable pyrimidine-pyrimidine pairs, without catalyzing detectable base cleavage. Thermal denaturation studies of these normal and damaged (e.g. 1,N(6)-ethenoadenine, varepsilonA) base mispairs indicate that duplex instability rather than exact fit of the flipped out damaged base in the catalytic pocket is a major determinant in the initial recognition of damage by MPG. Finally, based on our determination of binding affinity and catalytic efficiency we conclude that the initial recognition of substrate base lesions by MPG is dependent on the ease of flipping of the base from unstable pairs to a flexible catalytic pocket.
Collapse
Affiliation(s)
- Tapan Biswas
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-1079, USA
| | | | | | | | | |
Collapse
|
35
|
Hollis T, Lau A, Ellenberger T. Crystallizing thoughts about DNA base excision repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:305-14. [PMID: 11554308 DOI: 10.1016/s0079-6603(01)68109-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Chemically damaged bases are removed from DNA by glycosylases that locate the damage and cleave the bond between the modified base and the deoxyribose sugar of the DNA backbone. The detection of damaged bases in DNA poses two problems: (1) The aberrant bases are mostly buried within the double helix, and (2) a wide variety of chemically different modifications must be efficiently recognized and removed. The human alkyladenine glycosylase (AAG) and Escherichia coli Alka DNA glycosylases excise many different types of alkylated bases from DNA. Crystal structures of these enzymes show how substrate bases are exposed to the enzyme active site and they suggest mechanisms of catalytic specificity. Both enzymes bend DNA and flip substrate bases out of the double helix and into the enzyme active site for cleavage. Although AAG and AlkA have very different overall folds, some common features of their substrate-binding sites suggest related strategies for the selective recognition of a chemically diverse group of alkylated substrates.
Collapse
Affiliation(s)
- T Hollis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
36
|
Weihrauch M, Bader M, Lehnert G, Koch B, Wittekind C, Wrbitzky R, Tannapfel A. Mutation analysis of K-ras-2 in liver angiosarcoma and adjacent nonneoplastic liver tissue from patients occupationally exposed to vinyl chloride. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 40:36-40. [PMID: 12211074 DOI: 10.1002/em.10084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vinyl chloride (VC) is a potent liver carcinogen that induces angiosarcomas in humans and animals. Recent evidence shows that liver tumors from patients with VC exposure may have a specific K-ras mutation pattern. This study was performed to determine the status of K-ras-2 in liver angiosarcomas (LAS) from workers occupationally exposed to VC. We examined the presence of K-ras-2 mutations in 15 LAS from patients with known exposure to VC (median exposure: 8,260 ppm [range 3,900- 21,000 ppm]]. In all cases, other risk factors for the development of LAS were excluded. Direct DNA sequencing after microdissection of the tumor cells was used for the analysis. Heterozygous mutations of K-ras-2 were detected in 8/15 LAS (53%). Five patients (33%) had a mutation of codon 12 and three of codon 13 (20%). The most common changes were G-->A transitions in five LAS which lead to the substitution of aspartic acid for glycine in the resulting p21 protein. In two patients (13%), mutations of the K-ras-2 gene were identified in the adjacent nonneoplastic liver tissue. These data indicate that VC induces a high frequency of G-->A transitions in human LAS. This mutation pattern is likely a consequence of VC-DNA-adduct formation.
Collapse
Affiliation(s)
- Markus Weihrauch
- Institute of Occupational Medicine, University of Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Weihrauch M, Benicke M, Lehnert G, Wittekind C, Wrbitzky R, Tannapfel A. Frequent k- ras -2 mutations and p16(INK4A)methylation in hepatocellular carcinomas in workers exposed to vinyl chloride. Br J Cancer 2001; 84:982-9. [PMID: 11286481 PMCID: PMC2363841 DOI: 10.1054/bjoc.2000.1675] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vinyl chloride (VC) is a know animal and human carcinogen associated with liver angiosarcomas (LAS) and hepatocellular carcinomas (HCC). In VC-associated LAS mutations of the K- ras -2 gene have been reported; however, no data about the prevalence of such mutations in VC associated HCCs are available. Recent data indicate K- ras -2 mutations induce P16 methylation accompanied by inactivation of the p16 gene. The presence of K- ras -2 mutations was analysed in tissue from 18 patients with VC associated HCCs. As a control group, 20 patients with hepatocellular carcinoma due to hepatitis B (n = 7), hepatitis C (n = 5) and alcoholic liver cirrhosis (n = 8) was used. The specific mutations were determined by direct sequencing of codon 12 and 13 of the K- ras -2 gene in carcinomatous and adjacent non-neoplastic liver tissue after microdissection. The status of p16 was evaluated by methylation-specific PCR (MSP), microsatellite analysis, DNA sequencing and immunohistochemical staining. All patients had a documented chronic quantitated exposure to VC (average 8883 ppmy, average duration: 245 months). K- ras -2 mutations were found in 6 of 18 (33%) examined VC-associated HCCs and in 3 cases of adjacent non-neoplastic liver tissue. There were 3 G --> A point mutations in the tumour tissue. All 3 mutations found in non-neoplastic liver from VC-exposed patients were also G --> A point mutations (codon 12- and codon 13-aspartate mutations). Hypermethylation of the 5' CpG island of the p16 gene was found in 13 of 18 examined carcinomas (72%). Of 6 cancers with K- ras -2 mutations, 5 specimens also showed methylated p16. Within the control group, K- ras -2 mutation were found in 3 of 20 (15%) examined HCC. p16 methylation occurred in 11 out of 20 (55%) patients. K- ras -2 mutations and p16 methylation are frequent events in VC associated HCCs. We observed a K- ras -2 mutation pattern characteristic of chloroethylene oxide, a carcinogenic metabolite of VC. Our results strongly suggest that K- ras -2 mutations play an important role in the pathogenesis of VC-associated HCC.
Collapse
Affiliation(s)
- M Weihrauch
- Institute of Occupational and Environmental Medicine, University of Hannover, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Hollis T, Lau A, Ellenberger T. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Mutat Res 2000; 460:201-10. [PMID: 10946229 DOI: 10.1016/s0921-8777(00)00027-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human alkyladenine glycosylase (AAG) and Escherichia coli 3-methyladenine glycosylase (AlkA) are base excision repair glycosylases that recognize and excise a variety of alkylated bases from DNA. The crystal structures of these enzymes have provided insight into their substrate specificity and mechanisms of catalysis. Both enzymes utilize DNA bending and base-flipping mechanisms to expose and bind substrate bases. Crystal structures of AAG complexed to DNA suggest that the enzyme selects substrate bases through a combination of hydrogen bonding and the steric constraints of the active site, and that the enzyme activates a water molecule for an in-line backside attack of the N-glycosylic bond. In contrast to AAG, the structure of the AlkA-DNA complex suggests that AlkA substrate recognition and catalytic specificity are intimately integrated in a S(N)1 type mechanism in which the catalytic Asp238 directly promotes the release of modified bases.
Collapse
Affiliation(s)
- T Hollis
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Izumi T, Hazra TK, Boldogh I, Tomkinson AE, Park MS, Ikeda S, Mitra S. Requirement for human AP endonuclease 1 for repair of 3'-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis 2000. [PMID: 10874010 DOI: 10.1093/carcin/21.7.1329] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) plays a central role in the DNA base excision repair pathway (BER) in two distinct ways. As an AP endonuclease, it initiates repair of AP sites in DNA produced either spontaneously or after removal of uracil and alkylated bases in DNA by monofunctional DNA glycosylases. Alternatively, by acting as a 3'-phosphoesterase, it initiates repair of DNA strand breaks with 3'-blocking damage, which are produced either directly by reactive oxygen species (ROS) or indirectly through the AP lyase reaction of damage-specific DNA glycosylases. The endonuclease activity of APE1, however, is much more efficient than its DNA 3'-phosphoesterase activity. Using whole extracts from human HeLa and lymphoblastoid TK6 cells, we have investigated whether these two activities differentially affect BER efficiency. The repair of ROS-induced DNA strand breaks was significantly stimulated by supplementing the reaction with purified APE1. This enhancement was linearly dependent on the amount of APE1 added, while addition of other BER enzymes, such as DNA ligase I and FEN1, had no effect. Moreover, depletion of endogenous APE1 from the extract significantly reduced the repair activity, suggesting that APE1 is essential for repairing such DNA damage and is limiting in extracts of human cells. In contrast, when uracil-containing DNA was used as the substrate, the efficiency of repair was not affected by exogenous APE1, presumably because the AP endonuclease activity was not limiting. These results indicate that the cellular level of APE1 may differentially affect repair efficiency for DNA strand breaks but not for uracil and AP sites in DNA.
Collapse
Affiliation(s)
- T Izumi
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kartalou M, Samson LD, Essigmann JM. Cisplatin adducts inhibit 1,N(6)-ethenoadenine repair by interacting with the human 3-methyladenine DNA glycosylase. Biochemistry 2000; 39:8032-8. [PMID: 10891085 DOI: 10.1021/bi000417h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human 3-methyladenine DNA glycosylase (AAG) is a repair enzyme that removes a number of damaged bases from DNA, including adducts formed by some chemotherapeutic agents. Cisplatin is one of the most widely used anticancer drugs. Its success in killing tumor cells results from its ability to form DNA adducts and the cellular processes triggered by the presence of those adducts in DNA. Variations in tumor response to cisplatin may result from altered expression of cellular proteins that recognize cisplatin adducts. The present study focuses on the interaction between the cisplatin intrastrand cross-links and human AAG. Using site-specifically modified oligonucleotides containing each of the cisplatin intrastrand cross-links, we found that AAG readily recognized cisplatin adducts. The apparent dissociation constants for the 1, 2-d(GpG), the 1,2-d(ApG), and the 1,3-d(GpTpG) oligonucleotides were 115 nM, 71 nM, and 144 nM, respectively. For comparison, the apparent dissociation constant for an oligonucleotide containing a single 1,N(6)-ethenoadenine (epsilonA), which is repaired efficiently by AAG, was 26 nM. Despite the affinity of AAG for cisplatin adducts, AAG was not able to release any of these adducts from DNA. Furthermore, it was demonstrated that the presence of cisplatin adducts in the reactions inhibited the excision of epsilonA by AAG. These data suggest a previously unexplored dimension to the toxicological response of cells to cisplatin. We suggest that cisplatin adducts could titrate AAG away from its natural substrates, resulting in higher mutagenesis and/or cell death because of the persistence of AAG substrates in DNA.
Collapse
Affiliation(s)
- M Kartalou
- Division of Bioengineering and Environmental Health and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
41
|
Roy R, Biswas T, Lee JC, Mitra S. Mutation of a unique aspartate residue abolishes the catalytic activity but not substrate binding of the mouse N-methylpurine-DNA glycosylase (MPG). J Biol Chem 2000; 275:4278-82. [PMID: 10660595 DOI: 10.1074/jbc.275.6.4278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket.
Collapse
Affiliation(s)
- R Roy
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas, Medical Branch, Galveston, Texas 77555-1079, USA.
| | | | | | | |
Collapse
|
42
|
Roy G, Horton JK, Roy R, Denning T, Mitra S, Boldogh I. Acquired alkylating drug resistance of a human ovarian carcinoma cell line is unaffected by altered levels of pro- and anti-apoptotic proteins. Oncogene 2000; 19:141-50. [PMID: 10644989 DOI: 10.1038/sj.onc.1203318] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In a systematic study to elucidate the involvement of pro- and anti-apoptotic proteins in alkylating drug resistance of tumor cells, we utilized the A2780(100) line, that was selected by repeated exposure of A2780 cell line (human ovarian carcinoma line) to chlorambucil (CBL). A2780(100) was 5 - 10-fold more resistant to nitrogen mustards (IC50 of 50 - 60 microM) and other DNA crosslinking agents, e.g., cisplatin, and also to DNA topoisomerase inhibitor etoposide (ETO) than A2780. CBL (125 microM) induced extensive apoptosis in A2780 associated with mitochondrial damage but not in A2780(100). No significant differences were observed between A2780 and A2780(100) cells in the basal levels, or the enhanced levels in some cases after CBL treatment, of DNA repair proteins involved in repair of alkyl base adducts or in repair of DNA crosslinks or double strand break repair. However, the basal levels of anti-apoptotic proteins Bcl-xL and Mcl-1 were 4 - 8-fold higher in A2780(100) than in A2780 neither of which expressed Bcl-2. In contrast, the levels of pro-apoptotic Bax and Bak were 3 - 5-fold higher in the CBL-treated A2780 but not in A2780(100). ETO (5 microM) induced apoptosis in A2780 without altering the levels of Bax and Bak in these cells. At the same time, neither overexpression of Bcl-xL in A2780, nor its antisense expression in A2780(100), and nor overexpression of Bax in A2780(100), significantly affected drug sensitivity of either line. Our results suggest that a change in an early step in DNA damage processing which affects intracellular signaling, such as enhanced DNA double-strand break repair, could be the primary cause for development of resistance in A2780(100) cells to drugs which induce DNA crosslinks or double strand-breaks.
Collapse
Affiliation(s)
- G Roy
- Sealy Center for Molecular Sciences, University of Texas Medical Branch, Galveston, Texas, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lau AY, Schärer OD, Samson L, Verdine GL, Ellenberger T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 1998; 95:249-58. [PMID: 9790531 DOI: 10.1016/s0092-8674(00)81755-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
DNA N-glycosylases are base excision-repair proteins that locate and cleave damaged bases from DNA as the first step in restoring the genetic blueprint. The human enzyme 3-methyladenine DNA glycosylase removes a diverse group of damaged bases from DNA, including cytotoxic and mutagenic alkylation adducts of purines. We report the crystal structure of human 3-methyladenine DNA glycosylase complexed to a mechanism-based pyrrolidine inhibitor. The enzyme has intercalated into the minor groove of DNA, causing the abasic pyrrolidine nucleotide to flip into the enzyme active site, where a bound water is poised for nucleophilic attack. The structure shows an elegant means of exposing a nucleotide for base excision as well as a network of residues that could catalyze the in-line displacement of a damaged base from the phosphodeoxyribose backbone.
Collapse
Affiliation(s)
- A Y Lau
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
44
|
Miao F, Bouziane M, O'Connor TR. Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites. Nucleic Acids Res 1998; 26:4034-41. [PMID: 9705516 PMCID: PMC147787 DOI: 10.1093/nar/26.17.4034] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets.
Collapse
Affiliation(s)
- F Miao
- Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
45
|
Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S. Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J Biol Chem 1998; 273:21585-93. [PMID: 9705289 DOI: 10.1074/jbc.273.34.21585] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human endonuclease III (hNTH1), a homolog of the Escherichia coli enzyme (Nth), is a DNA glycosylase with abasic (apurinic/apyrimidinic (AP)) lyase activity and specifically cleaves oxidatively damaged pyrimidines in DNA. Its cDNA was cloned, and the full-length enzyme (304 amino acid residues) was expressed as a glutathione S-transferase fusion polypeptide in E. coli. Purified wild-type protein with two additional amino acid residues and a truncated protein with deletion of 22 residues at the NH2 terminus were equally active and had absorbance maxima at 280 and 410 nm, the latter due to the presence of a [4Fe-4S]cluster, as in E. coli Nth. The enzyme cleaved thymine glycol-containing form I plasmid DNA and a dihydrouracil (DHU)-containing oligonucleotide duplex. The protein had a molar extinction coefficient of 5.0 x 10(4) and a pI of 10. With the DHU-containing oligonucleotide duplex as substrate, the Km was 47 nM, and kcat was approximately 0.6/min, independent of whether DHU paired with G or A. The enzyme carries out beta-elimination and forms a Schiff base between the active site residue and the deoxyribose generated after base removal. The prediction of Lys-212 being the active site was confirmed by sequence analysis of the peptide-oligonucleotide adduct. Furthermore, replacing Lys-212 with Gln inactivated the enzyme. However, replacement with Arg-212 yielded an active enzyme with about 85-fold lower catalytic specificity than the wild-type protein. DNase I footprinting with hNTH1 showed protection of 10 nucleotides centered around the base lesion in the damaged strand and a stretch of 15 nucleotides (with the G opposite the lesion at the 5'-boundary) in the complementary strand. Immunological studies showed that HeLa cells contain a single hNTH species of the predicted size, localized in both the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- S Ikeda
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|