1
|
Naughton KJ, Treviño RE, Moore PJ, Wertz AE, Dickson JA, Shafaat HS. In Vivo Assembly of a Genetically Encoded Artificial Metalloenzyme for Hydrogen Production. ACS Synth Biol 2021; 10:2116-2120. [PMID: 34370434 DOI: 10.1021/acssynbio.1c00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The genetic encoding of artificial enzymes represents a substantial advantage relative to traditional molecular catalyst optimization, as laboratory-based directed evolution coupled with high-throughput screening methods can provide rapid development and functional characterization of enzyme libraries. However, these techniques have been of limited utility in the field of artificial metalloenzymes due to the need for in vitro cofactor metalation. Here, we report the development of methodology for in vivo production of nickel-substituted rubredoxin, an artificial metalloenzyme that is a structural, functional, and mechanistic mimic of the [NiFe] hydrogenases. Direct voltammetry on cell lysate establishes precedent for the development of an electrochemical screen. This technique will be broadly applicable to the in vivo generation of artificial metalloenzymes that require a non-native metal cofactor, offering a route for rapid enzyme optimization and setting the stage for integration of artificial metalloenzymes into biochemical pathways within diverse hosts.
Collapse
Affiliation(s)
- Kassandra J. Naughton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Regina E. Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peter J. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ashlee E. Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - J. Alex Dickson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Njeri CW, Ellis HR. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation. Arch Biochem Biophys 2014; 558:61-9. [PMID: 24929188 DOI: 10.1016/j.abb.2014.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 11/16/2022]
Abstract
Cysteine dioxygenase (CDO) is a mononuclear iron-dependent enzyme that catalyzes the oxidation of L-cysteine to L-cysteine sulfinic acid. The mammalian CDO enzymes contain a thioether crosslink between Cys93 and Tyr157, and purified recombinant CDO exists as a mixture of the crosslinked and non crosslinked isoforms. The current study presents a method of expressing homogenously non crosslinked CDO using a cell permeative metal chelator in order to provide a comprehensive investigation of the non crosslinked and crosslinked isoforms. Electron paramagnetic resonance analysis of purified non crosslinked CDO revealed that the iron was in the EPR silent Fe(II) form. Activity of non crosslinked CDO monitoring dioxygen utilization showed a distinct lag phase, which correlated with crosslink formation. Generation of homogenously crosslinked CDO resulted in an ∼5-fold higher kcat/Km value compared to the enzyme with a heterogenous mixture of crosslinked and non crosslinked CDO isoforms. EPR analysis of homogenously crosslinked CDO revealed that this isoform exists in the Fe(III) form. These studies present a new perspective on the redox properties of the active site iron and demonstrate that a redox switch commits CDO towards either formation of the Cys93-Tyr157 crosslink or oxidation of the cysteine substrate.
Collapse
Affiliation(s)
- Catherine W Njeri
- The Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, AL 36849, United States
| | - Holly R Ellis
- The Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
3
|
Cotruvo JA, Stich TA, Britt RD, Stubbe J. Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. J Am Chem Soc 2013; 135:4027-39. [PMID: 23402532 DOI: 10.1021/ja312457t] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y(•)) generated by oxidation of a reduced dinuclear metal cluster. The Fe(III)2-Y(•) cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe(II)2-NrdB, O2, and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn(III)2-Y(•) cofactor in their NrdF subunit. Mn(II)2-NrdF does not react with O2, but it binds the reduced form of a conserved flavodoxin-like protein, NrdIhq, which, in the presence of O2, reacts to form the Mn(III)2-Y(•) cofactor. Here we investigate the mechanism of assembly of the Mn(III)2-Y(•) cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn(II)2-NrdF, NrdI(hq), and O2 has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI(hq) reduces O2 to O2(•-) (40-48 s(-1), 0.6 mM O2), the O2(•-) channels to and reacts with Mn(II)2-NrdF to form a Mn(III)Mn(IV) intermediate (2.2 ± 0.4 s(-1)), and the Mn(III)Mn(IV) species oxidizes tyrosine to Y(•) (0.08-0.15 s(-1)). Controlled production of O2(•-) by NrdIhq during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn(II)2 cluster with O2 and satisfies the requirement for an "extra" reducing equivalent in Y(•) generation.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
4
|
Dassama LMK, Jiang W, Varano PT, Pandelia ME, Conner DA, Xie J, Bollinger JM, Krebs C. Radical-translocation intermediates and hurdling of pathway defects in "super-oxidized" (Mn(IV)/Fe(IV)) Chlamydia trachomatis ribonucleotide reductase. J Am Chem Soc 2012; 134:20498-506. [PMID: 23157728 PMCID: PMC3931446 DOI: 10.1021/ja309468s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A class I ribonucleotide reductase (RNR) uses either a tyrosyl radical (Y(•)) or a Mn(IV)/Fe(III) cluster in its β subunit to oxidize a cysteine residue ∼35 Å away in its α subunit, generating a thiyl radical that abstracts hydrogen (H(•)) from the substrate. With either oxidant, the inter-subunit "hole-transfer" or "radical-translocation" (RT) process is thought to occur by a "hopping" mechanism involving multiple tyrosyl (and perhaps one tryptophanyl) radical intermediates along a specific pathway. The hopping intermediates have never been directly detected in a Mn/Fe-dependent (class Ic) RNR nor in any wild-type (wt) RNR. The Mn(IV)/Fe(III) cofactor of Chlamydia trachomatis RNR assembles via a Mn(IV)/Fe(IV) intermediate. Here we show that this cofactor-assembly intermediate can propagate a hole into the RT pathway when α is present, accumulating radicals with EPR spectra characteristic of Y(•)'s. The dependence of Y(•) accumulation on the presence of substrate suggests that RT within this "super-oxidized" enzyme form is gated by the protein, and the failure of a β variant having the subunit-interfacial pathway Y substituted by phenylalanine to support radical accumulation implies that the Y(•)(s) in the wt enzyme reside(s) within the RT pathway. Remarkably, two variant β proteins having pathway substitutions rendering them inactive in their Mn(IV)/Fe(III) states can generate the pathway Y(•)'s in their Mn(IV)/Fe(IV) states and also effect nucleotide reduction. Thus, the use of the more oxidized cofactor permits the accumulation of hopping intermediates and the "hurdling" of engineered defects in the RT pathway.
Collapse
Affiliation(s)
- Laura M. K. Dassama
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Wei Jiang
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Paul T. Varano
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Maria-Eirini Pandelia
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Denise A. Conner
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Jiajia Xie
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - J. Martin Bollinger
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Carsten Krebs
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
5
|
Holder PG, Pizano AA, Anderson BL, Stubbe J, Nocera DG. Deciphering radical transport in the large subunit of class I ribonucleotide reductase. J Am Chem Soc 2012; 134:1172-80. [PMID: 22121977 DOI: 10.1021/ja209016j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incorporation of 2,3,6-trifluorotyrosine (F(3)Y) and a rhenium bipyridine ([Re]) photooxidant into a peptide corresponding to the C-terminus of the β protein (βC19) of Escherichia coli ribonucleotide reductase (RNR) allows for the temporal monitoring of radical transport into the α2 subunit of RNR. Injection of the photogenerated F(3)Y radical from the [Re]-F(3)Y-βC19 peptide into the surface accessible Y731 of the α2 subunit is only possible when the second Y730 is present. With the Y-Y established, radical transport occurs with a rate constant of 3 × 10(5) s(-1). Point mutations that disrupt the Y-Y dyad shut down radical transport. The ability to obviate radical transport by disrupting the hydrogen bonding network of the amino acids composing the colinear proton-coupled electron transfer pathway in α2 suggests a finely tuned evolutionary adaptation of RNR to control the transport of radicals in this enzyme.
Collapse
Affiliation(s)
- Patrick G Holder
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
6
|
Grove TL, Radle MI, Krebs C, Booker SJ. Cfr and RlmN contain a single [4Fe-4S] cluster, which directs two distinct reactivities for S-adenosylmethionine: methyl transfer by SN2 displacement and radical generation. J Am Chem Soc 2011; 133:19586-9. [PMID: 21916495 PMCID: PMC3596424 DOI: 10.1021/ja207327v] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The radical SAM (RS) proteins RlmN and Cfr catalyze methylation of carbons 2 and 8, respectively, of adenosine 2503 in 23S rRNA. Both reactions are similar in scope, entailing the synthesis of a methyl group partially derived from S-adenosylmethionine (SAM) onto electrophilic sp(2)-hybridized carbon atoms via the intermediacy of a protein S-methylcysteinyl (mCys) residue. Both proteins contain five conserved Cys residues, each required for turnover. Three cysteines lie in a canonical RS CxxxCxxC motif and coordinate a [4Fe-4S]-cluster cofactor; the remaining two are at opposite ends of the polypeptide. Here we show that each protein contains only the one "radical SAM" [4Fe-4S] cluster and the two remaining conserved cysteines do not coordinate additional iron-containing species. In addition, we show that, while wild-type RlmN bears the C355 mCys residue in its as-isolated state, RlmN that is either engineered to lack the [4Fe-4S] cluster by substitution of the coordinating cysteines or isolated from Escherichia coli cultured under iron-limiting conditions does not bear a C355 mCys residue. Reconstitution of the [4Fe-4S] cluster on wild-type apo RlmN followed by addition of SAM results in rapid production of S-adenosylhomocysteine (SAH) and the mCys residue, while treatment of apo RlmN with SAM affords no observable reaction. These results indicate that in Cfr and RlmN, SAM bound to the unique iron of the [4Fe-4S] cluster displays two reactivities. It serves to methylate C355 of RlmN (C338 of Cfr), or to generate the 5'-deoxyadenosyl 5'-radical, required for substrate-dependent methyl synthase activity.
Collapse
Affiliation(s)
- Tyler L. Grove
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Matthew I. Radle
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Squire J. Booker
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| |
Collapse
|
7
|
Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Proc Natl Acad Sci U S A 2011; 109:39-43. [PMID: 22171005 DOI: 10.1073/pnas.1115778108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photochemical radical initiation is a powerful tool for studying radical initiation and transport in biology. Ribonucleotide reductases (RNRs), which catalyze the conversion of nucleotides to deoxynucleotides in all organisms, are an exemplar of radical mediated transformations in biology. Class Ia RNRs are composed of two subunits: α2 and β2. As a method to initiate radical formation photochemically within β2, a single surface-exposed cysteine of the β2 subunit of Escherichia coli Class Ia RNR has been labeled (98%) with a photooxidant ([Re ] = tricarbonyl(1,10-phenanthroline)(methylpyridyl)rhenium(I)). The labeling was achieved by incubation of S355C-β2 with the 4-(bromomethyl)pyridyl derivative of [Re] to yield the labeled species, [Re]-S355C-β2. Steady-state and time-resolved emission experiments reveal that the metal-to-ligand charge transfer (MLCT) excited-state (3)[Re ](∗) is not significantly perturbed after bioconjugation and is available as a phototrigger of tyrosine radical at position 356 in the β2 subunit; transient absorption spectroscopy reveals that the radical lives for microseconds. The work described herein provides a platform for photochemical radical initiation and study of proton-coupled electron transfer (PCET) in the β2 subunit of RNR, from which radical initiation and transport for this enzyme originates.
Collapse
|
8
|
Zhang Y, Stubbe J. Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme. Biochemistry 2011; 50:5615-23. [PMID: 21561096 DOI: 10.1021/bi200348q] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus subtilis class Ib ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, providing the building blocks for DNA replication and repair. It is composed of two proteins: α (NrdE) and β (NrdF). β contains the metallo-cofactor, essential for the initiation of the reduction process. The RNR genes are organized within the nrdI-nrdE-nrdF-ymaB operon. Each protein has been cloned, expressed, and purified from Escherichia coli. As isolated, recombinant NrdF (rNrdF) contained a diferric-tyrosyl radical [Fe(III)(2)-Y(•)] cofactor. Alternatively, this cluster could be self-assembled from apo-rNrdF, Fe(II), and O(2). Apo-rNrdF loaded using 4 Mn(II)/β(2), O(2), and reduced NrdI (a flavodoxin) can form a dimanganese(III)-Y(•) [Mn(III)(2)-Y(•)] cofactor. In the presence of rNrdE, ATP, and CDP, Mn(III)(2)-Y(•) and Fe(III)(2)-Y(•) rNrdF generate dCDP at rates of 132 and 10 nmol min(-1) mg(-1), respectively (both normalized for 1 Y(•)/β(2)). To determine the endogenous cofactor of NrdF in B. subtilis, the entire operon was placed behind a Pspank(hy) promoter and integrated into the B. subtilis genome at the amyE site. All four genes were induced in cells grown in Luria-Bertani medium, with levels of NrdE and NrdF elevated 35-fold relative to that of the wild-type strain. NrdE and NrdF were copurified in a 1:1 ratio from this engineered B. subtilis. The visible, EPR, and atomic absorption spectra of the purified NrdENrdF complex (eNrdF) exhibited characteristics of a Mn(III)(2)-Y(•) center with 2 Mn/β(2) and 0.5 Y(•)/β(2) and an activity of 318-363 nmol min(-1) mg(-1) (normalized for 1 Y(•)/β(2)). These data strongly suggest that the B. subtilis class Ib RNR is a Mn(III)(2)-Y(•) enzyme.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
9
|
Högbom M. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear—an intricate bioinorganic workaround to use different metals for the same reaction. Metallomics 2011; 3:110-20. [DOI: 10.1039/c0mt00095g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Cotruvo JA, Stubbe J. An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry 2010; 49:1297-309. [PMID: 20070127 DOI: 10.1021/bi902106n] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates and is expressed under iron-limited and oxidative stress conditions. This RNR is composed of two homodimeric subunits: alpha2 (NrdE), where nucleotide reduction occurs, and beta2 (NrdF), which contains an unidentified metallocofactor that initiates nucleotide reduction. nrdE and nrdF are found in an operon with nrdI, which encodes an unusual flavodoxin proposed to be involved in metallocofactor biosynthesis and/or maintenance. Ni affinity chromatography of a mixture of E. coli (His)(6)-NrdI and NrdF demonstrated tight association between these proteins. To explore the function of NrdI and identify the metallocofactor, apoNrdF was loaded with Mn(II) and incubated with fully reduced NrdI (NrdI(hq)) and O(2). Active RNR was rapidly produced with 0.25 +/- 0.03 tyrosyl radical (Y*) per beta2 and a specific activity of 600 units/mg. EPR and biochemical studies of the reconstituted cofactor suggest it is Mn(III)(2)-Y*, which we propose is generated by Mn(II)(2)-NrdF reacting with two equivalents of HO(2)(-), produced by reduction of O(2) by NrdF-bound NrdI(hq). In the absence of NrdI(hq), with a variety of oxidants, no active RNR was generated. By contrast, a similar experiment with apoNrdF loaded with Fe(II) and incubated with O(2) in the presence or absence of NrdI(hq) gave 0.2 and 0.7 Y*/beta2 with specific activities of 80 and 300 units/mg, respectively. Thus NrdI(hq) hinders Fe(III)(2)-Y* cofactor assembly in vitro. We propose that NrdI is an essential player in E. coli class Ib RNR cluster assembly and that the Mn(III)(2)-Y* cofactor, not the diferric-Y* one, is the active metallocofactor in vivo.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
11
|
Wang J, Lohman GJS, Stubbe J. Mechanism of inactivation of human ribonucleotide reductase with p53R2 by gemcitabine 5'-diphosphate. Biochemistry 2009; 48:11612-21. [PMID: 19899807 PMCID: PMC2917093 DOI: 10.1021/bi901588z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleoside 5'-diphosphates to the corresponding deoxynucleotides supplying the dNTPs required for DNA replication and DNA repair. Class I RNRs require two subunits, alpha and beta, for activity. Humans possess two beta subunits: one involved in S phase DNA replication (beta) and a second in mitochondrial DNA replication (beta' or p53R2) and potentially DNA repair. Gemcitabine (F(2)C) is used clinically as an anticancer agent, and its phosphorylated metabolites target many enzymes involved in nucleotide metabolism, including RNR. The present investigation with alpha (specific activity of 400 nmol min(-1) mg(-1)) and beta' (0.6 Y./beta'2 and a specific activity of 420 nmol min(-1) mg(-1)) establishes that F(2)CDP is a substoichiometric inactivator of RNR. Incubation of this alpha/beta' with [1'-(3)H]-F(2)CDP or [5-(3)H]-F(2)CDP and reisolation of the protein by Sephadex G-50 chromatography resulted in recovery 0.5 equiv of covalently bound sugar and 0.03 equiv of tightly associated cytosine to alpha2. SDS-PAGE analysis (loaded without boiling) of the inactivated RNR showed that 60% of alpha migrates as a 90 kDa protein and 40% as a 120 kDa protein. Incubation of [1'-(3)H]-F(2)CDP with active site mutants C444S/A, C218S/A, and E431Q/D-alpha and the C-terminal tail C787S/A and C790S/A mutants reveals that no sugar label is bound to the active site mutants of alpha and that, in the case of C218S-alpha, alpha migrates as a 90 kDa protein. Analysis of the inactivated wt-alpha/beta' RNR by size exclusion chromatography indicates a quaternary structure of alpha6beta'6. A mechanism of inactivation common with halpha/beta is presented.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gregory J. S. Lohman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
12
|
The manganese/iron-carboxylate proteins: what is what, where are they, and what can the sequences tell us? J Biol Inorg Chem 2009; 15:339-49. [DOI: 10.1007/s00775-009-0606-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Saunders AH, Griffiths AE, Lee KH, Cicchillo RM, Tu L, Stromberg JA, Krebs C, Booker SJ. Characterization of quinolinate synthases from Escherichia coli, Mycobacterium tuberculosis, and Pyrococcus horikoshii indicates that [4Fe-4S] clusters are common cofactors throughout this class of enzymes. Biochemistry 2008; 47:10999-1012. [PMID: 18803397 DOI: 10.1021/bi801268f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.
Collapse
Affiliation(s)
- Allison H Saunders
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother 2008; 52:971-9. [PMID: 18180344 DOI: 10.1128/aac.01056-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA viruses exhibit extraordinarily high mutation rates during genome replication. Nonnatural ribonucleosides that can increase the mutation rate of RNA viruses by acting as ambiguous substrates during replication have been explored as antiviral agents acting through lethal mutagenesis. We have synthesized novel N-6-substituted purine analogues with ambiguous incorporation characteristics due to tautomerization of the nucleobase. The most potent of these analogues reduced the titer of poliovirus (PV) and coxsackievirus (CVB3) over 1,000-fold during a single passage in HeLa cell culture, with an increase in transition mutation frequency up to 65-fold. Kinetic analysis of incorporation by the PV polymerase indicated that these analogues were templated ambiguously with increased efficiency compared to the known mutagenic nucleoside ribavirin. Notably, these nucleosides were not efficient substrates for cellular ribonucleotide reductase in vitro, suggesting that conversion to the deoxyriboucleoside may be hindered, potentially limiting genetic damage to the host cell. Furthermore, a high-fidelity PV variant (G64S) displayed resistance to the antiviral effect and mutagenic potential of these analogues. These purine nucleoside analogues represent promising lead compounds in the development of clinically useful antiviral therapies based on the strategy of lethal mutagenesis.
Collapse
|
15
|
Murray LJ, García-Serres R, McCormick MS, Davydov R, Naik S, Kim SH, Hoffman BM, Huynh BH, Lippard SJ. Dioxygen activation at non-heme diiron centers: oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Biochemistry 2007; 46:14795-809. [PMID: 18044971 PMCID: PMC2494530 DOI: 10.1021/bi7017128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
At its carboxylate-bridged diiron active site, the hydroxylase component of toluene/o-xylene monooxygenase activates dioxygen for subsequent arene hydroxylation. In an I100W variant of this enzyme, we characterized the formation and decay of two species formed by addition of dioxygen to the reduced, diiron(II) state by rapid-freeze quench (RFQ) EPR, Mössbauer, and ENDOR spectroscopy. The dependence of the formation and decay rates of this mixed-valent transient on pH and the presence of phenol, propylene, or acetylene was investigated by double-mixing stopped-flow optical spectroscopy. Modification of the alpha-subunit of the hydroxylase after reaction of the reduced protein with dioxygen-saturated buffer was investigated by tryptic digestion coupled mass spectrometry. From these investigations, we conclude that (i) a diiron(III,IV)-W* transient, kinetically linked to a preceding diiron(III) intermediate, arises from the one-electron oxidation of W100, (ii) the tryptophan radical is deprotonated, (iii) rapid exchange of either a terminal water or hydroxide ion with water occurs at the ferric ion in the diiron(III,IV) cluster, and (iv) the diiron(III,IV) core and W* decay to the diiron(III) product by a common mechanism. No transient radical was observed by stopped-flow optical spectroscopy for reactions of the reduced hydroxylase variants I100Y, L208F, and F205W with dioxygen. The absence of such species, and the deprotonated state of the tryptophanyl radical in the diiron(III,IV)-W* transient, allow for a conservative estimate of the reduction potential of the diiron(III) intermediate as lying between 1.1 and 1.3 V. We also describe the X-ray crystal structure of the I100W variant of ToMOH.
Collapse
Affiliation(s)
- Leslie J. Murray
- Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139
| | | | - Michael S. McCormick
- Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139
| | - Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Sunil Naik
- Department of Physics, Emory University, Atlanta, GA 30322
| | - Sun-Hee Kim
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Boi Hanh Huynh
- Department of Physics, Emory University, Atlanta, GA 30322
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139
| |
Collapse
|
16
|
Mití N, Clay MD, Saleh L, Bollinger JM, Solomon EI. Spectroscopic and electronic structure studies of intermediate X in ribonucleotide reductase R2 and two variants: a description of the FeIV-oxo bond in the FeIII-O-FeIV dimer. J Am Chem Soc 2007; 129:9049-65. [PMID: 17602477 PMCID: PMC2565590 DOI: 10.1021/ja070909i] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spectroscopic and electronic structure studies of the class I Escherichia coli ribonucleotide reductase (RNR) intermediate X and three computationally derived model complexes are presented, compared, and evaluated to determine the electronic and geometric structure of the FeIII-FeIV active site of intermediate X. Rapid freeze-quench (RFQ) EPR, absorption, and MCD were used to trap intermediate X in R2 wild-type (WT) and two variants, W48A and Y122F/Y356F. RFQ-EPR spin quantitation was used to determine the relative contributions of intermediate X and radicals present, while RFQ-MCD was used to specifically probe the FeIII/FeIV active site, which displayed three FeIV d-d transitions between 16,700 and 22,600 cm(-1), two FeIV d-d spin-flip transitions between 23,500 and 24,300 cm(-1), and five oxo to FeIV and FeIII charge transfer (CT) transitions between 25,000 and 32,000 cm(-1). The FeIV d-d transitions were perturbed in the two variants, confirming that all three d-d transitions derive from the d-pi manifold. Furthermore, the FeIV d-pi splittings in the WT are too large to correlate with a bis-mu-oxo structure. The assignment of the FeIV d-d transitions in WT intermediate X best correlates with a bridged mu-oxo/mu-hydroxo [FeIII(mu-O)(mu-OH)FeIV] structure. The mu-oxo/mu-hydroxo core structure provides an important sigma/pi superexchange pathway, which is not present in the bis-mu-oxo structure, to promote facile electron transfer from Y122 to the remote FeIV through the bent oxo bridge, thereby generating the tyrosyl radical for catalysis.
Collapse
Affiliation(s)
- Nataša Mití
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Michael D. Clay
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Lana Saleh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
17
|
Farquhar ER, Koehntop KD, Emerson JP, Que L. Post-translational self-hydroxylation: A probe for oxygen activation mechanisms in non-heme iron enzymes. Biochem Biophys Res Commun 2005; 338:230-9. [PMID: 16165090 DOI: 10.1016/j.bbrc.2005.08.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Recent years have seen considerable evolution in our understanding of the mechanisms of oxygen activation by non-heme iron enzymes, with high-valent iron-oxo intermediates coming to the forefront as formidably potent oxidants. In the absence of substrate, the generation of vividly colored chromophores deriving from the self-hydroxylation of a nearby aromatic amino acid for a number of these enzymes has afforded an opportunity to discern the conditions under which O2 activation occurs to generate a high-valent iron intermediate, and has provided a basis for a rigorous mechanistic examination of the oxygenation process. Here, we summarize the current evidence for self-hydroxylation processes in both mononuclear non-heme iron enzymes and in mutant forms of ribonucleotide reductase, and place it within the context of our developing understanding of the oxidative transformations accomplished by non-heme iron centers.
Collapse
Affiliation(s)
- Erik R Farquhar
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
18
|
Koehntop KD, Marimanikkuppam S, Ryle MJ, Hausinger RP, Que L. Self-hydroxylation of taurine/alpha-ketoglutarate dioxygenase: evidence for more than one oxygen activation mechanism. J Biol Inorg Chem 2005; 11:63-72. [PMID: 16320009 DOI: 10.1007/s00775-005-0059-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
2-Aminoethanesulfonic acid (taurine)/alpha-ketoglutarate (alphaKG) dioxygenase (TauD) is a mononuclear non-heme iron enzyme that catalyzes the hydroxylation of taurine to generate sulfite and aminoacetaldehyde in the presence of O2, alphaKG, and Fe(II). Fe(II)TauD complexed with alphaKG or succinate, the decarboxylated product of alphaKG, reacts with O2 in the absence of prime substrate to generate 550- and 720-nm chromophores, respectively, that are interconvertible by the addition or removal of bound bicarbonate and have resonance Raman features characteristic of an Fe(III)-catecholate complex. Mutagenesis studies suggest that both reactions result in the self-hydroxylation of the active-site residue Tyr73, and liquid chromatography nano-spray mass spectrometry/mass spectrometry evidence corroborates this result for the succinate reaction. Furthermore, isotope-labeling resonance Raman studies demonstrate that the oxygen atom incorporated into the tyrosyl residue derives from H2 18O and 18O2 for the alphaKG and succinate reactions, respectively, suggesting distinct mechanistic pathways. Whereas the alphaKG-dependent hydroxylation likely proceeds via an Fe(IV) = O intermediate that is known to be generated during substrate hydroxylation, we propose Fe(III)-OOH (or Fe(V) = O) as the oxygenating species in the succinate-dependent reaction. These results demonstrate the two oxygenating mechanisms available to enzymes with a 2-His-1-carboxylate triad, depending on whether the electron source donates one or two electrons.
Collapse
Affiliation(s)
- Kevin D Koehntop
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
19
|
Lu S, Libby E, Saleh L, Xing G, Bollinger JM, Moënne-Loccoz P. Characterization of NO adducts of the diiron center in protein R2 of Escherichia coli ribonucleotide reductase and site-directed variants; implications for the O2 activation mechanism. J Biol Inorg Chem 2004; 9:818-27. [PMID: 15311337 DOI: 10.1007/s00775-004-0582-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 07/06/2004] [Indexed: 11/30/2022]
Abstract
The R2 subunit of Escherichia coli ribonucleotide reductase contains a diiron site that reacts with O(2) to produce a tyrosine radical (Y122.). In wild-type R2 (R2-wt), the first observable reaction intermediate is a high-valent [Fe(III)-Fe(IV)] state called compound X, but in related diiron proteins such as methane monooxygenase, Delta(9)-desaturase, and ferritin, peroxodiiron(III) complexes have been characterized. Substitution of iron ligand D84 by E within the active site of R2 allows an intermediate (mu-1,2-peroxo)diiron species to accumulate. To investigate the possible involvement of a bridging peroxo species within the O(2) activation sequence of R2-wt, we have characterized the iron-nitrosyl species that form at the diiron sites in R2-wt, R2-D84E, and R2-W48F/D84E by using vibrational spectroscopy. Previous work has shown that the diiron center in R2-wt binds one NO per iron to form an antiferromagnetically coupled [(FeNO)(7)](2) center. In the wt and variant proteins, we also observe that both irons bind one NO to form a (FeNO)(7) dimer where both Fe-N-O units share a common vibrational signature. In the wt protein, nu(Fe-NO), delta(Fe-N-O), and nu(N-O) bands are observed at 445, 434 and 1742 cm(-1), respectively, while in the variant proteins the nu(Fe-NO) and delta(Fe-N-O) bands are observed approximately 10 cm(-1) higher and the nu(N-O) approximately 10 cm(-1) lower at 1735 cm(-1). These results demonstrate that all three proteins accommodate fully symmetric [(FeNO)(7)](2) species with two identical Fe-N-O units. The formation of equivalent NO adducts in the wt and variant proteins strongly favors the formation of a symmetric bridging peroxo intermediate during the O(2) activation process in R2-wt.
Collapse
Affiliation(s)
- Shen Lu
- Department of Environmental & Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | | | | | | | |
Collapse
|
20
|
Sneeden JL, Loeb LA. Mutations in the R2 subunit of ribonucleotide reductase that confer resistance to hydroxyurea. J Biol Chem 2004; 279:40723-8. [PMID: 15262976 DOI: 10.1074/jbc.m402699200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase is an essential enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides for use in DNA synthesis. Ribonucleotide reductase from Escherichia coli consists of two subunits, R1 and R2. The R2 subunit contains an unusually stable radical at tyrosine 122 that participates in catalysis. Buried deep within a hydrophobic pocket, the radical is inaccessible to solvent although subject to inactivation by radical scavengers. One such scavenger, hydroxyurea, is a highly specific inhibitor of ribonucleotide reductase and therefore of DNA synthesis; thus it is an important anticancer and antiviral agent. The mechanism of radical access remains to be established; however, small molecules may be able to access Tyr-122 directly via channels from the surface of the protein. We used random oligonucleotide mutagenesis to create a library of 200,000 R2 mutants containing random substitutions at five contiguous residues (Ile-74, Ser-75, Asn-76, Leu-77, Lys-78) that partially comprise one side of a channel where Tyr-122 is visible from the protein surface. We subjected this library to increasing concentrations of hydroxyurea and identified mutants that enhance survival more than 1000-fold over wild-type R2 at high drug concentrations. Repetitive selections yielded S75T as the predominant R2 mutant in our library. Purified S75TR2 exhibits a radical half-life that is 50% greater than wild-type R2 in the presence of hydroxyurea. These data represent the first demonstration of R2 protein mutants in E. coli that are highly resistant to hydroxyurea; elucidation of their mechanism of resistance may provide valuable insight into the development of more effective inhibitors.
Collapse
Affiliation(s)
- Jessica L Sneeden
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
21
|
Skulan AJ, Brunold TC, Baldwin J, Saleh L, Bollinger JM, Solomon EI. Nature of the Peroxo Intermediate of the W48F/D84E Ribonucleotide Reductase Variant: Implications for O2 Activation by Binuclear Non-Heme Iron Enzymes. J Am Chem Soc 2004; 126:8842-55. [PMID: 15250738 DOI: 10.1021/ja049106a] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of the spectroscopic signatures of the R2-W48F/D84E biferric peroxo intermediate identifies a cis mu-1,2 peroxo coordination geometry. DFT geometry optimizations on both R2-W48F/D84E and R2-wild-type peroxo intermediate models including constraints imposed by the protein also identify the cis mu-1,2 peroxo geometry as the most stable peroxo intermediate structure. This study provides significant insight into the electronic structure and reactivity of the R2-W48F/D84E peroxo intermediate, structurally related cis mu-1,2 peroxo model complexes, and other enzymatic biferric peroxo intermediates.
Collapse
Affiliation(s)
- Andrew J Skulan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ge J, Perlstein DL, Nguyen HH, Bar G, Griffin RG, Stubbe J. Why multiple small subunits (Y2 and Y4) for yeast ribonucleotide reductase? Toward understanding the role of Y4. Proc Natl Acad Sci U S A 2001; 98:10067-72. [PMID: 11526232 PMCID: PMC56916 DOI: 10.1073/pnas.181336498] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two homodimeric subunits: R1 and R2. R1 is directly involved in the reduction, and R2 contains the diferric-tyrosyl radical (Y*) cofactor essential for the initiation of reduction. Saccharomyces cerevisiae has two RNRs; Y1 and Y3 correspond to R1, whereas Y2 and Y4 correspond to R2. Y4 is essential for diferric-Y* formation in Y2 from apoY2, Fe(2+), and O(2). The actual function of Y4 is controversial. Y2 and Y4 have been further characterized in an effort to understand their respective roles in nucleotide reduction. (His)(6)-Y2, Y4, and (His)(6)-Y4 are homodimers, isolated largely in apo form. Their CD spectra reveal that they are predominantly helical. The concentrations of Y2 and Y4 in vivo are 0.5-2.3 microM, as determined by Western analysis. Incubation of Y2 and Y4 under physiological conditions generates apo Y2Y4 heterodimer, which can form a diferric-Y small middle dot when incubated with Fe(2+) and O(2). Holo Y2Y4 heterodimer contains 0.6-0.8 Y* and has a specific activity of 0.8-1.3 micromol.min.mg. Titration of Y2 with Y4 in the presence of Fe(2+) and O(2) gives maximal activity with one equivalent of Y4 per Y2. Models for the function of Y4 based on these data and the accompanying structure will be discussed.
Collapse
Affiliation(s)
- J Ge
- Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
23
|
Baldwin J, Voegtli WC, Khidekel N, Moënne-Loccoz P, Krebs C, Pereira AS, Ley BA, Huynh BH, Loehr TM, Riggs-Gelasco PJ, Rosenzweig AC, Bollinger JM. Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase. J Am Chem Soc 2001; 123:7017-30. [PMID: 11459480 DOI: 10.1021/ja002114g] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outcome of O2 activation at the diiron(II) cluster in the R2 subunit of Escherichia coli (class I) ribonucleotide reductase has been rationally altered from the normal tyrosyl radical (Y122*) production to self-hydroxylation of a phenylalanine side-chain by two amino acid substitutions that leave intact the (histidine)2-(carboxylate)4 ligand set characteristic of the diiron-carboxylate family. Iron ligand Asp (D) 84 was replaced with Glu (E), the amino acid found in the cognate position of the structurally similar diiron-carboxylate protein, methane monooxygenase hydroxylase (MMOH). We previously showed that this substitution allows accumulation of a mu-1,2-peroxodiiron(III) intermediate, which does not accumulate in the wild-type (wt) protein and is probably a structural homologue of intermediate P (H(peroxo)) in O2 activation by MMOH. In addition, the near-surface residue Trp (W) 48 was replaced with Phe (F), blocking transfer of the "extra" electron that occurs in wt R2 during formation of the formally Fe(III)Fe(IV) cluster X. Decay of the mu-1,2-peroxodiiron(III) complex in R2-W48F/D84E gives an initial brown product, which contains very little Y122* and which converts very slowly (t1/2 approximately 7 h) upon incubation at 0 degrees C to an intensely purple final product. X-ray crystallographic analysis of the purple product indicates that F208 has undergone epsilon-hydroxylation and the resulting phenol has shifted significantly to become a ligand to Fe2 of the diiron cluster. Resonance Raman (RR) spectra of the purple product generated with 16O2 or 18O2 show appropriate isotopic sensitivity in bands assigned to O-phenyl and Fe-O-phenyl vibrational modes, confirming that the oxygen of the Fe(III)-phenolate species is derived from O2. Chemical analysis, experiments involving interception of the hydroxylating intermediate with exogenous reductant, and Mössbauer and EXAFS characterization of the brown and purple species establish that F208 hydroxylation occurs during decay of the peroxo complex and formation of the initial brown product. The slow transition to the purple Fe(III)-phenolate species is ascribed to a ligand rearrangement in which mu-O2- is lost and the F208-derived phenolate coordinates. The reprogramming to F208 monooxygenase requires both amino acid substitutions, as very little epsilon-hydroxyphenylalanine is formed and pathways leading to Y122* formation predominate in both R2-D84E and R2-W48F.
Collapse
Affiliation(s)
- J Baldwin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sahlin M, Sjöberg BM. Ribonucleotide reductase. A virtual playground for electron transfer reactions. Subcell Biochem 2001; 35:405-43. [PMID: 11192729 DOI: 10.1007/0-306-46828-x_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M Sahlin
- Department of Molecular Biology, Stockholm University, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
25
|
Metzler DE, Metzler CM, Sauke DJ. Transition Metals in Catalysis and Electron Transport. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Krebs C, Chen S, Baldwin J, Ley BA, Patel U, Edmondson DE, Huynh BH, Bollinger JM. Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit of Escherichia coli Ribonucleotide Reductase. 2. Evidence for and Consequences of Blocked Electron Transfer in the W48F Variant. J Am Chem Soc 2000. [DOI: 10.1021/ja001279m] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carsten Krebs
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - Shuxian Chen
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - Jeffrey Baldwin
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - Brenda A. Ley
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - Utpal Patel
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - Dale E. Edmondson
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - Boi Hanh Huynh
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| | - J. Martin Bollinger
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Physics, Biochemistry and Chemistry, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
27
|
Baldwin J, Krebs C, Ley BA, Edmondson DE, Huynh BH, Bollinger JM. Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit of Escherichia coli Ribonucleotide Reductase. 1. Evidence for a Transient Tryptophan Radical. J Am Chem Soc 2000. [DOI: 10.1021/ja001278u] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeffrey Baldwin
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Biochemistry, Chemistry, and Physics, Emory University, Atlanta, Georgia 30322
| | - Carsten Krebs
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Biochemistry, Chemistry, and Physics, Emory University, Atlanta, Georgia 30322
| | - Brenda A. Ley
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Biochemistry, Chemistry, and Physics, Emory University, Atlanta, Georgia 30322
| | - Dale E. Edmondson
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Biochemistry, Chemistry, and Physics, Emory University, Atlanta, Georgia 30322
| | - Boi Hanh Huynh
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Biochemistry, Chemistry, and Physics, Emory University, Atlanta, Georgia 30322
| | - J. Martin Bollinger
- Contribution from the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and the Departments of Biochemistry, Chemistry, and Physics, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
28
|
Krebs C, Davydov R, Baldwin J, Hoffman BM, Bollinger, JM, Huynh BH. Mössbauer and EPR Characterization of the S = 9/2 Mixed-Valence Fe(II)Fe(III) Cluster in the Cryoreduced R2 Subunit of Escherichia coli Ribonucleotide Reductase. J Am Chem Soc 2000. [DOI: 10.1021/ja000317z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carsten Krebs
- Contributions from the Department of Physics, Rollins Research Center, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Roman Davydov
- Contributions from the Department of Physics, Rollins Research Center, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jeff Baldwin
- Contributions from the Department of Physics, Rollins Research Center, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Brian M. Hoffman
- Contributions from the Department of Physics, Rollins Research Center, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - J. Martin Bollinger,
- Contributions from the Department of Physics, Rollins Research Center, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Boi Hanh Huynh
- Contributions from the Department of Physics, Rollins Research Center, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
29
|
Du Bois J, Mizoguchi TJ, Lippard SJ. Understanding the dioxygen reaction chemistry of diiron proteins through synthetic modeling studies. Coord Chem Rev 2000. [DOI: 10.1016/s0010-8545(00)00336-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Voegtli WC, Khidekel N, Baldwin J, Ley BA, Bollinger, JM, Rosenzweig AC. Crystal Structure of the Ribonucleotide Reductase R2 Mutant that Accumulates a μ-1,2-Peroxodiiron(III) Intermediate during Oxygen Activation. J Am Chem Soc 2000. [DOI: 10.1021/ja991839l] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Walter C. Voegtli
- Contribution from the Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Nelly Khidekel
- Contribution from the Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jeffrey Baldwin
- Contribution from the Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Brenda A. Ley
- Contribution from the Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - J. Martin Bollinger,
- Contribution from the Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Amy C. Rosenzweig
- Contribution from the Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
31
|
Dobbing AM, Borman CD, Twitchett MB, Leese DN, Salmon GA, Sykes AG. Mechanistic Implications of a Linear Free-Energy Correlation of Rate Constants for the Reduction of Active- and Met-R2 Forms of E. coli Ribonucleotide Reductase with Eight Organic Radicals. J Am Chem Soc 2000. [DOI: 10.1021/ja993412k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Mark Dobbing
- Contribution from the Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK, and The University of Leeds, Cookridge Radiation Research Centre, Leeds, LS16 6PB, UK
| | - Christopher D. Borman
- Contribution from the Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK, and The University of Leeds, Cookridge Radiation Research Centre, Leeds, LS16 6PB, UK
| | - Mark B. Twitchett
- Contribution from the Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK, and The University of Leeds, Cookridge Radiation Research Centre, Leeds, LS16 6PB, UK
| | - David N. Leese
- Contribution from the Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK, and The University of Leeds, Cookridge Radiation Research Centre, Leeds, LS16 6PB, UK
| | - G. Arthur Salmon
- Contribution from the Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK, and The University of Leeds, Cookridge Radiation Research Centre, Leeds, LS16 6PB, UK
| | - A. Geoffrey Sykes
- Contribution from the Department of Chemistry, The University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK, and The University of Leeds, Cookridge Radiation Research Centre, Leeds, LS16 6PB, UK
| |
Collapse
|
32
|
Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 2000; 100:235-350. [PMID: 11749238 DOI: 10.1021/cr9900275] [Citation(s) in RCA: 1370] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305-5080
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
The plant mitochondrial protein alternative oxidase catalyses dioxygen dependent ubiquinol oxidation to yield ubiquinone and water. A structure of this protein has previously been proposed based on an assumed structural homology to the di-iron carboxylate family of proteins. However, these authors suggested the protein has a very different topology than the known structures of di-iron carboxylate proteins. We have re-examined this model and based on comparison of recent sequences and structural data on di-iron carboxylate proteins we present a new model of the alternative oxidase which allows prediction of active site residues and a possible membrane binding motif.
Collapse
Affiliation(s)
- M E Andersson
- Department of Biochemistry, Stockholm University, Sweden
| | | |
Collapse
|
35
|
Andersson ME, Högbom M, Rinaldo-Matthis A, Andersson KK, Sjöberg BM, Nordlund P. The Crystal Structure of an Azide Complex of the Diferrous R2 Subunit of Ribonucleotide Reductase Displays a Novel Carboxylate Shift with Important Mechanistic Implications for Diiron-Catalyzed Oxygen Activation. J Am Chem Soc 1999. [DOI: 10.1021/ja982280c] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin E. Andersson
- Contribution from the Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden, Department of Biochemistry, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway, and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Martin Högbom
- Contribution from the Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden, Department of Biochemistry, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway, and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Contribution from the Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden, Department of Biochemistry, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway, and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden
| | - K. Kristoffer Andersson
- Contribution from the Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden, Department of Biochemistry, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway, and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Contribution from the Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden, Department of Biochemistry, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway, and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Pär Nordlund
- Contribution from the Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden, Department of Biochemistry, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway, and Department of Molecular Biology, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
36
|
Miller MA, Gobena FT, Kauffmann K, Münck E, Que, L, Stankovich MT. Differing Roles for the Diiron Clusters of Ribonucleotide Reductase from Aerobically Grown Escherichia coli in the Generation of the Y122 Radical. J Am Chem Soc 1999. [DOI: 10.1021/ja9826845] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcia A. Miller
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota Minneapolis, Minnesota 55455 Department of Chemistry, Carnegie Mellon University Pittsburgh, Pennsylvania 15213
| | - Feben T. Gobena
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota Minneapolis, Minnesota 55455 Department of Chemistry, Carnegie Mellon University Pittsburgh, Pennsylvania 15213
| | - Karl Kauffmann
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota Minneapolis, Minnesota 55455 Department of Chemistry, Carnegie Mellon University Pittsburgh, Pennsylvania 15213
| | - Eckard Münck
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota Minneapolis, Minnesota 55455 Department of Chemistry, Carnegie Mellon University Pittsburgh, Pennsylvania 15213
| | - Lawrence Que,
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota Minneapolis, Minnesota 55455 Department of Chemistry, Carnegie Mellon University Pittsburgh, Pennsylvania 15213
| | - Marian T. Stankovich
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota Minneapolis, Minnesota 55455 Department of Chemistry, Carnegie Mellon University Pittsburgh, Pennsylvania 15213
| |
Collapse
|
37
|
Liu A, Sahlin M, Pötsch S, Sjöberg BM, Gräslund A. New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant protein R2 F208Y of Escherichia coli ribonucleotide reductase. Biochem Biophys Res Commun 1998; 246:740-5. [PMID: 9618282 DOI: 10.1006/bbrc.1998.8701] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The highly conserved residue F208 in protein R2 of E. coli ribonucleotide reductase is close to the binuclear iron center, and found to be involved in stabilizing the tyrosyl radical Y122. in wild type R2. Upon the reconstitution reaction of the mutant R2 F208Y with ferrous iron and molecular oxygen, we observed a new EPR singlet signal (g = 2.003) formed concomitantly with decay of the transient tyrosyl radical Y122. (g = 2.005). This new paramagnetic species (denoted Z) was stable for weeks at 4 degrees C and visible by EPR only below 50 K. The EPR singlet could not be saturated by available microwave power, suggesting that Z may be a mainly metal centered species. The maximum amount of the compound Z in the protein purified from cells grown in rich medium was about 0.18 unpaired spin/R2. An identical EPR signal of Z was found also in the double mutant R2 F208Y/Y122F. In the presence of high concentration of sodium ascorbate, the amounts of both the transient Y122. and the new species Z increased considerably in the reconstitution reaction. The results suggest that Z is most likely an oxo-ferryl species possibly in equilibrium with a Y208 ligand radical.
Collapse
Affiliation(s)
- A Liu
- Department of Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
39
|
Abstract
The past year has witnessed significant advances in the study of oxygen-activating nonheme iron enzymes. Thirteen crystal structures of substrate and substrate analog complexes of protocatechuate 3, 4-dioxygenase have revealed intimate details about changes at the enzyme active site during catalysis. Crystallographic data have established a 2-His-1-carboxylate facial triad as a structural motif common to a number of mononuclear nonheme iron enzymes, including isopenicillin N synthase, tyrosine hydroxylase and naphthalene dioxygenase. The first metrical data has been obtained for the high valent intermediates Q and X of methane monooxygenase and ribonucleotide reductase, respectively. The number of enzymes thought to have nonheme diiron sites has been expanded to include alkene monooxygenase from Xanthobacter strain Py2 and the membrane bound alkane hydroxylase from Pseudomonas oleovorans (AlkB). Finally, synthetic complexes have successfully mimicked chemistry performed by both mono- and dinuclear nonheme iron enzymes, such as the extradiol-cleaving catechol dioxygenases, lipoxygenase, alkane and alkene monoxygenases and fatty acid desaturases.
Collapse
Affiliation(s)
- S J Lange
- Department of Chemistry Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|