1
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Study of the putative fusion regions of the preS domain of hepatitis B virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:895-906. [PMID: 25554595 DOI: 10.1016/j.bbamem.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/01/2014] [Accepted: 12/22/2014] [Indexed: 02/09/2023]
Abstract
In a previous study, it was shown that purified preS domains of hepatitis B virus (HBV) could interact with acidic phospholipid vesicles and induce aggregation, lipid mixing and leakage of internal contents which could be indicative of their involvement in the fusion of the viral and cellular membranes (Núñez, E. et al. 2009. Interaction of preS domains of hepatitis B virus with phospholipid vesicles. Biochim. Biophys. Acta 17884:417-424). In order to locate the region responsible for the fusogenic properties of preS, five mutant proteins have been obtained from the preS1 domain of HBV, in which 40 amino acids have been deleted from the sequence, with the starting point of each deletion moving 20 residues along the sequence. These proteins have been characterized by fluorescence and circular dichroism spectroscopy, establishing that, in all cases, they retain their mostly non-ordered conformation with a high percentage of β structure typical of the full-length protein. All the mutants can insert into the lipid matrix of dimyristoylphosphatidylglycerol vesicles. Moreover, we have studied the interaction of the proteins with acidic phospholipid vesicles and each one produces, to a greater or lesser extent, the effects of destabilizing vesicles observed with the full-length preS domain. The ability of all mutants, which cover the complete sequence of preS1, to destabilize the phospholipid bilayers points to a three-dimensional structure and/or distribution of amino acids rather than to a particular amino acid sequence as being responsible for the membrane fusion process.
Collapse
Affiliation(s)
- Carmen L Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Elena Núñez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Belén Yélamos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Darrell L Peterson
- Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, 23298 VA, USA
| | - Francisco Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Walde P, Cosentino K, Engel H, Stano P. Giant Vesicles: Preparations and Applications. Chembiochem 2010; 11:848-65. [DOI: 10.1002/cbic.201000010] [Citation(s) in RCA: 556] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Stauffer F, Melo MN, Carneiro FA, Sousa FJR, Juliano MA, Juliano L, Mohana-Borges R, Da Poian AT, Castanho MARB. Interaction between dengue virus fusion peptide and lipid bilayers depends on peptide clustering. Mol Membr Biol 2008; 25:128-38. [PMID: 18307100 DOI: 10.1080/09687680701633091] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dengue fever is one of the most widespread tropical diseases in the world. The disease is caused by a virus member of the Flaviviridae family, a group of enveloped positive sense single-stranded RNA viruses. Dengue virus infection is mediated by virus glycoprotein E, which binds to the cell surface. After uptake by endocytosis, this protein induces the fusion between viral envelope and endosomal membrane at the acidic environment of the endosomal compartment. In this work, we evaluated by steady-state and time-resolved fluorescence spectroscopy the interaction between the peptide believed to be the dengue virus fusion peptide and large unilamellar vesicles, studying the extent of partition, fusion capacity and depth of insertion in membranes. The roles of the bilayer composition (neutral and anionic phospholipids), ionic strength and pH of the medium were also studied. Our results indicate that dengue virus fusion peptide has a high affinity to vesicles composed of anionic lipids and that the interaction is mainly electrostatic. Both partition coefficient and fusion index are enhanced by negatively charged phospholipids. The location determined by differential fluorescence quenching using lipophilic probes demonstrated that the peptide is in an intermediate depth in the hemilayers, in-between the bilayer core and its surface. Ultimately, these data provide novel insights on the interaction between dengue virus fusion peptide and its target membranes, namely, the role of oligomerization and specific types of membranes.
Collapse
Affiliation(s)
- Fausto Stauffer
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Carrica MDC, Craig PO, Alonso SDV, Goldbaum FA, Cravero SL. Brucella abortus MFP: a trimeric coiled-coil protein with membrane fusogenic activity. Biochemistry 2008; 47:8165-75. [PMID: 18616282 DOI: 10.1021/bi800462y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The bacterial genus Brucella consists of a group of facultative intracellular pathogens which produces abortion and infertility in animals and a chronic debilitating febrile illness in humans. BMFP is a basic protein of Brucella abortus that belongs to a highly conserved group of homologue proteins of unknown structure and function in proteobacteria (COG2960). In this study, we report the structural and biochemical characterization of this protein. We found that BMFP has two structural domains: a carboxyl-terminal coiled-coil domain through which the protein self-associates as a trimer and a natively disordered amino-terminal domain which has propensity to adopt an amphipathic alpha-helical structure. This natively unfolded domain undergoes a structural rearrangement from unfolded to alpha-helix in the presence of high ionic strength, acidic pH, detergents, and phospholipid vesicles. Moreover, we demonstrated that the interaction of BMFP with phospholipid vesicles promotes in vitro membrane fusion. These results contribute to the elucidation of the structural and functional properties of this protein and its homologues present in most proteobacteria.
Collapse
Affiliation(s)
- Mariela del Carmen Carrica
- Instituto de Biotecnología, CICVyA, INTA, Los reseros y las cabanas s/n, Castelar, Buenos Aires, Agentina.
| | | | | | | | | |
Collapse
|
5
|
Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Infectious Disease: Connecting Innate Immunity to Biocidal Polymers. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2007; 57:28-64. [PMID: 18160969 PMCID: PMC2153456 DOI: 10.1016/j.mser.2007.03.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.
Collapse
Affiliation(s)
- Gregory J Gabriel
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003
| | | | | | | | | |
Collapse
|
6
|
Sahu SK, Gummadi SN, Manoj N, Aradhyam GK. Phospholipid scramblases: An overview. Arch Biochem Biophys 2007; 462:103-14. [PMID: 17481571 DOI: 10.1016/j.abb.2007.04.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 03/30/2007] [Accepted: 04/01/2007] [Indexed: 12/23/2022]
Abstract
Phospholipid scramblases are a group of homologous proteins that are conserved in all eukaryotic organisms. They are believed to be involved in destroying plasma membrane phospholipid asymmetry at critical cellular events like cell activation, injury and apoptosis. However, a detailed mechanism of phospholipid scrambling still awaits a proper understanding. The most studied member of this family, phospholipid scramblase 1 (PLSCR1) (a 37kDa protein), is involved in rapid Ca2+ dependent transbilayer redistribution of plasma membrane phospholipids. Recently the function of PLSCR1 as a phospholipids translocator has been challenged and evidences suggest that PLSCR1 acts as signaling molecule. It has been shown to be involved in protein phosphorylation and as a potential activator of genes in response to interferon and other cytokines. Interferon induced rapid biosynthesis of PLSCR1 targets some of the protein into the nucleus, where it binds to the promoter region of inositol 1,4,5-triphosphate (IP3) receptor type 1 (IP3R1) gene and induces its expression. Palmitoylation of PLSCR1 acts as a switch, controlling its localization either to the PM or inside the nucleus. In the present review, we discuss the current understanding of PLSCR1 in relation to its trafficking, localization and signaling functions.
Collapse
Affiliation(s)
- Santosh Kumar Sahu
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | | | | | |
Collapse
|
7
|
Pécheur EI, Lavillette D, Alcaras F, Molle J, Boriskin YS, Roberts M, Cosset FL, Polyak SJ. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol. Biochemistry 2007; 46:6050-9. [PMID: 17455911 PMCID: PMC2532706 DOI: 10.1021/bi700181j] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hepatitis C affects approximately 3% of the world population, yet its current treatment options are limited to interferon-ribavirin drug regimens which achieve a 50-70% cure rate depending on the hepatitis C virus (HCV) genotype. Besides extensive screening for HCV-specific compounds, some well-established medicinal drugs have recently demonstrated an anti-HCV effect in HCV replicon cells. One of these drugs is arbidol (ARB), a Russian-made broad-spectrum antiviral agent, which we have previously shown to inhibit acute and chronic HCV infection. Here we show that ARB inhibits the cell entry of HCV pseudoparticles of genotypes 1a, 1b, and 2a in a dose-dependent fashion. ARB also displayed a dose-dependent inhibition of HCV membrane fusion, as assayed by using HCV pseudoparticles (HCVpp) and fluorescent liposomes. ARB inhibition of HCVpp fusion was found to be more effective on genotype 1a than on genotypes 1b and 2a. In vitro biochemical studies revealed association of ARB with membranelike environments such as detergents and with lipid membranes. This association was particularly prominent at acidic pH which is optimal for HCV-mediated fusion. Our results suggest that the affinity of ARB for lipid membranes could account for its anti-HCV actions, together with a differential level of interaction with key motifs in HCV glycoproteins of different genotypes.
Collapse
Affiliation(s)
- Eve-Isabelle Pécheur
- IFR128 Biosciences Lyon Gerland, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- Corresponding author, IBCP, UMR 5086 CNRS-UCBL, 7 passage du Vercors, 69367 Lyon Cedex 07, France. Phone: 33-4-72-72-26-44; Fax: 33-4-72-72-26-04; E-mail:
| | - Dimitri Lavillette
- IFR128 Biosciences Lyon Gerland, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- Université de Lyon, (UCBL 1), IFR128 Biosciences Lyon Gerland; INSERM, U758, Lyon; Ecole Normale Supérieure de Lyon, F-69007, France
| | - Fanny Alcaras
- IFR128 Biosciences Lyon Gerland, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jennifer Molle
- IFR128 Biosciences Lyon Gerland, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Yury S. Boriskin
- Institute of Virology, Medical Academy of Sciences, Moscow, Russia
| | - Michael Roberts
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - François-Loïc Cosset
- IFR128 Biosciences Lyon Gerland, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université Claude Bernard Lyon I, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- Université de Lyon, (UCBL 1), IFR128 Biosciences Lyon Gerland; INSERM, U758, Lyon; Ecole Normale Supérieure de Lyon, F-69007, France
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine, School of Medicine, University of Washington, 325 9 avenue, Seattle, Washington 98104-2499, USA
| |
Collapse
|
8
|
Van Rossenberg SMW, Sliedregt-Bol KM, Meeuwenoord NJ, Van Berkel TJC, Van Boom JH, Van Der Marel GA, Biessen EAL. Targeted lysosome disruptive elements for improvement of parenchymal liver cell-specific gene delivery. J Biol Chem 2002; 277:45803-10. [PMID: 12237290 DOI: 10.1074/jbc.m203510200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transfection ability of nonviral gene therapy vehicles is generally hampered by untimely lysosomal degradation of internalized DNA. In this study we describe the development of a targeted lysosome disruptive element to facilitate the escape of DNA from the lysosomal compartment, thus enhancing the transfection efficacy, in a cell-specific fashion. Two peptides (INF7 and JTS-1) were tested for their capacity to disrupt liposomes. In contrast to JTS-1, INF7 induced rapid cholesterol-independent leakage (EC(50), 1.3 microm). INF7 was therefore selected for coupling to a high affinity ligand for the asialoglycoprotein receptor (ASGPr), K(GalNAc)(2), to im- prove its uptake by parenchymal liver cells. Although the parent peptide disrupted both cholesterol-rich and -poor liposomes, the conjugate, INF7-K(GalNAc)(2), only induced leakage of cholesterol-poor liposomes. Given that endosomal membranes of eukaryotic cells contain <5% cholesterol, this implies that the conjugate will display a higher selectivity toward endosomal membranes. Although both INF7 and INF7-K(GalNAc)(2) were found to increase the transfection efficiency on polyplex-mediated gene transfer to parenchymal liver cells by 30-fold, only INF7-K(GalNAc)(2) appeared to do so in an ASGPr-specific manner. In mice, INF7-K(GalNAc)(2) was specifically targeted to the liver, whereas INF7 was distributed evenly over various organs. In summary, we have prepared a nontoxic cell-specific lysosome disruptive element that improves gene delivery to parenchymal liver cells via the ASGPr. Its high cell specificity and preference to lyse intracellular membranes make this conjugate a promising lead in hepatocyte-specific drug/gene delivery protocols.
Collapse
Affiliation(s)
- Sabine M W Van Rossenberg
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research and the Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
de Souza DL, Frisch B, Duportail G, Schuber F. Membrane-active properties of alpha-MSH analogs: aggregation and fusion of liposomes triggered by surface-conjugated peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:222-37. [PMID: 11779571 DOI: 10.1016/s0005-2736(01)00436-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reaction of the melanotropin hormone analogs [Nle(4),D-Phe(7)]-alpha-MSH and [Nle(4),D-Phe(7)]-alpha-MSH(4-10), which were extended at their N-terminus by a thiol-functionalized spacer arm, with preformed liposomes containing thiol-reactive (phospho)lipid derivatives resulted in the aggregation of the vesicles and in a partial leakage of their inner contents. This aggregation/leakage effect, which was only observed when the peptides were covalently conjugated to the surface of the liposomes, was correlated with the fusion of the vesicles as demonstrated by the observed decrease in resonance energy transfer between probes in a membrane lipid mixing assay. A limited fusion was confirmed by monitoring the mixing of the liposome inner contents (formation of 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) complex). The membrane-active properties of the peptides could be correlated with changes in the fluorescence emission spectra of their tryptophan residue, which suggested that after their covalent binding to the outer surface of the liposomes they can partition within the core of the bilayers. A blue shift of 10 nm was observed for [Nle(4),D-Phe(7)]-alpha-MSH which was correlated with an increase in fluorescence anisotropy and with changes in the accessibility of the coupled peptide as assessed by the quenching of fluorescence of its tryptophan residue by iodide (Stern-Volmer plots). These results should be related to the previously described capacity of alpha-MSH, and analogs, to interact with membranes and with the favored conformation of these peptides which, via a beta-turn, segregate their central hydrophobic residues into a domain that could insert into membranes and, as shown here, trigger their destabilization.
Collapse
Affiliation(s)
- Debora Lima de Souza
- Laboratoire de Chimie Bioorganique, UMR 7514 CNRS/ULP, Université Louis Pasteur, Faculté de Pharmacie, Illkirch, France
| | | | | | | |
Collapse
|
10
|
Abstract
Although membrane fusion occurs ubiquitously and continuously in all eukaroytic cells, little is known about the mechanism that governs lipid bilayer fusion associated with any intracellular fusion reactions. Recent studies of the fusion of enveloped viruses with host cell membranes have helped to define the fusion process. The identification and characterization of key proteins involved in fusion reactions have mainly driven recent advances in our understanding of membrane fusion. The most important denominator among the fusion proteins is the fusion peptide. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion will be highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. Much of what is known regarding the molecular mechanism of viral membrane fusion has been gained using liposomes as model systems in which the molecular components of the membrane and the environment are strictly controlled. Many amphilphilic peptides have a high affinity for lipid bilayers, but only a few sequences are able to induce membrane fusion. The presence of alpha-helical structure in at least part of the fusion peptide is strongly correlated with activity whereas, beta-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LPCMI) CP206/2, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
11
|
Affiliation(s)
- D C Drummond
- Research Institute, California Pacific Medical Center, 94115, San Francisco, CA, USA
| | | | | |
Collapse
|
12
|
Boesze-Battaglia K, Stefano FP, Fenner M, Napoli AA. A peptide analogue to a fusion domain within photoreceptor peripherin/rds promotes membrane adhesion and depolarization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:343-54. [PMID: 10675512 PMCID: PMC4732729 DOI: 10.1016/s0005-2736(99)00226-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Photoreceptor peripherin/rds promotes membrane fusion, through a putative fusion domain located within the C-terminus (Boesze-Battaglia et al., Biochemistry 37 (1998) 9477-9487). A peptide analogue to this region, PP-5, competitively inhibits peripherin/rds mediated fusion in a cell free assay system. To characterize how this region is involved in the fusion process we investigated two of the individual steps in membrane fusion, membrane adhesion and membrane destabilization inferred from depolarization studies. Membrane depolarization was measured as the collapse of a valinomycin induced K(+) diffusion potential in model membranes, using a potential sensitive fluorescent probe, diS-C(2)-5. PP-5 induced membrane depolarization in a concentration dependent manner. PP-5 has been shown by Fourier transform infrared spectroscopy to be an amphiphilic alpha-helix. Therefore, the requirement for an amphiphilic alpha-helix to promote depolarization was tested using two mutant peptides designed to disrupt either the amphiphilic nature of PP-5 (PP-5AB) or the alpha-helical structure (PP-5HB). PP-5AB inhibited PP-5 induced depolarization when added in an equimolar ratio to PP-5. Neither mutant peptide alone or in combination with PP-5 had any effect on calcium dependent vesicle aggregation. Using non-denaturing gel electrophoresis and size exclusion chromatography techniques PP-5 was shown to form a tetrameric complex. Equimolar mixtures of PP-5 and PP-5AB formed a heterotetramer which was unable to promote membrane depolarization. The hypothesis that PP-5 tetramers promote membrane depolarization is consistent with the calculated Hill coefficient of 3.725, determined from a Hill analysis of the depolarization data.
Collapse
Affiliation(s)
- K Boesze-Battaglia
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey-SOM, 2 Medical Center Drive, Stratford, NJ 08084, USA.
| | | | | | | |
Collapse
|
13
|
Pécheur EI, Martin I, Bienvenüe A, Ruysschaert JM, Hoekstra D. Protein-induced fusion can be modulated by target membrane lipids through a structural switch at the level of the fusion peptide. J Biol Chem 2000; 275:3936-42. [PMID: 10660547 DOI: 10.1074/jbc.275.6.3936] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulatory features of protein-induced membrane fusion are largely unclear, particularly at the level of the fusion peptide. Fusion peptides being part of larger protein complexes, such investigations are met with technical limitations. Here, we show that the fusion activity of influenza virus or Golgi membranes is strongly inhibited by minor amounts of (lyso)lipids when present in the target membrane but not when inserted into the viral or Golgi membrane itself. To investigate the underlying mechanism, we employ a membrane-anchored peptide system and show that fusion is similarly regulated by these lipids when inserted into the target but not when present in the peptide-containing membrane. Peptide-induced fusion is regulated by a reversible switch of secondary structure from a fusion-permissive alpha-helix to a nonfusogenic beta-sheet. The "on/off" activation of this switch is governed by minor amounts of (lyso)-phospholipids in targets, causing a drop in alpha-helix and a dramatic increase in beta-sheet contents. Concomitantly, fusion is inhibited, due to impaired peptide insertion into the target membrane. Our observations in biological fusion systems together with the model studies suggest that distinct lipids in target membranes provide a means for regulating membrane fusion by causing a reversible secondary structure switch of the fusion peptides.
Collapse
Affiliation(s)
- E I Pécheur
- Department of Physiological Chemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Kuboi R, Mawatari T, Yoshimoto M. Oxidative refolding of lysozyme assisted by negatively charged liposomes: Relationship with lysozyme-mediated fusion of liposomes. J Biosci Bioeng 2000; 90:14-9. [PMID: 16232811 DOI: 10.1016/s1389-1723(00)80027-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1999] [Accepted: 01/07/2000] [Indexed: 10/26/2022]
Abstract
Oxidative refolding of denatured/reduced lysozyme was examined in the presence of charged liposomes composed of neutral 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). Surface charge density of liposomes had a marked effect on the interaction between liposomes and reduced lysozyme which is observed in the early stage of the refolding. It was found that there was a critical level of surface charge density of liposomes (-0.15 C/nm2) at which the interaction between liposomes and lysozyme drastically changed. At the surface charge density of liposomes ranging from -0.15 to -1.4 C/nm2, the interaction between liposomes and lysozyme resulted in aggregate formation. In contrast, at the surface charge density ranging from 0 to -0.15 C/nm2, no aggregate formation was observed if the lysozyme/liposome molar ratio was less than 600. On the basis of the experimental results, a model for the interaction between charged liposomes and lysozyme was proposed, focusing on the mechanism of protein-induced fusion of charged liposomes as well as protein refolding on liposomes. Then, the optimal condition for oxidative refolding of lysozyme was examined in the presence of charged liposomes by controlling the lysozyme-liposome interaction. The reactivation yield of lysozyme was improved up to 85% in the presence of liposomes with a surface charge density of -0.14 C/nm2.
Collapse
Affiliation(s)
- R Kuboi
- Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | | | | |
Collapse
|
15
|
Mastrobattista E, Koning GA, Storm G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev 1999; 40:103-127. [PMID: 10837783 DOI: 10.1016/s0169-409x(99)00043-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review presents an overview of the field of immunoliposome-mediated targeting of anticancer agents. First, problems that are encountered when immunoliposomes are used for systemic anticancer drug delivery and potential solutions are discussed. Second, an update is given of the in vivo results obtained with immunoliposomes in tumor models. Finally, new developments on the utilization of immunoliposomes for the treatment of cancer are highlighted.
Collapse
Affiliation(s)
- E Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Pharmacy, Utrecht University, Sorbonnelaan 16, 3508 TB, Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Martin I, Pécheur EI, Ruysschaert JM, Hoekstra D. Membrane fusion induced by a short fusogenic peptide is assessed by its insertion and orientation into target bilayers. Biochemistry 1999; 38:9337-47. [PMID: 10413508 DOI: 10.1021/bi9829534] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To clarify the molecular mechanism by which an amphipathic negatively charged peptide consisting of 11 residues (WAE) induces fusion, and the relevance of these features for fusion, its mode of insertion and orientation into target bilayers were investigated. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) in combination with techniques based on tryptophan fluorescence, the peptide was found to form an alpha-helix, shallowly inserted into the membrane to which it is anchored. Interestingly, in the presence of target membranes, WAE inserts into the target bilayer as an alpha-helix oriented almost parallel to the lipid acyl chains. The accessibility of the peptide to either acrylamide (as an aqueous quencher of Trp fluorescence) or deuterium oxide (on the course of an FTIR deuteration kinetics) was lower in the presence than in the absence of target membranes, confirming that under those conditions, the peptide was shielded from the aqueous environment. Since fusion experiments have shown a temperature dependence, the effect of this later parameter on the structure and mode of insertion of the peptide was also analyzed. In the presence of target membrane, but not in their absence, the amount of alpha-helical structure increased with temperature, reflecting a similar temperature-dependent increase in the rate and extent of WAE-induced fusion. Also, the extent of penetration of the helix into the target membrane was greater at 37 degrees C than at lower temperatures. This temperature-dependent distinction was revealed by a decreased accessibility of the peptide to deuterium oxide and acrylamide at 37 degrees C as compared to that at lower temperatures. These data underscore the role of peptide structure, peptide penetration, and orientation in the mechanism of protein-induced membrane fusion.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LCPMI), Université Libre de Bruxelles, Belgium.
| | | | | | | |
Collapse
|
17
|
Niidome T, Anzai S, Sonoda J, Tokunaga Y, Nakahara M, Hatakeyama T, Aoyagi H. Effect of amino acid substitution in amphiphilic alpha-helical peptides on peptide-phospholipid membrane interaction. J Pept Sci 1999; 5:298-305. [PMID: 10442765 DOI: 10.1002/(sici)1099-1387(199907)5:7<298::aid-psc197>3.0.co;2-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It was previously found that a cationic amphiphilic peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3)), caused the destabilization of a phospholipid membrane and showed strong antibacterial activity [Lee et al. Biochim. Biophys. Acta 1986; 862: 211-219]. In order to investigate the effect of changing alpha-helix propensity, hydrophobicity and basicity in 4(3) on the peptide conformation and activity, the 4(3) analogs, [Gly (or Val)6]4(3), [Gly (or Val)2,6]4(3), [Gly (or Val)2,6,10]4(3), [Gln3]4(3), [Gln3,7]4(3) and [Gln3,7,11]4(3) were synthesized. Except for [Val2,6]4(3) and [Val2,6,10]4(3), which mainly formed a beta-structure, other peptides formed an alpha-helix and showed moderate membrane-perturbing activity toward neutral and acidic lipid vesicles. All the peptides other than [Val2,6,10]4(3) and [Gln3,7,10]4(3) had the antibacterial activity comparable with that of 4(3). The relationship between the membrane-perturbing activity and the antibacterial activity was not always parallel. Conclusively, the Ala-->Val substitution in 4(3) causes the change of peptide conformation and the presence of a cationic amino acid residue is necessary for the antibacterial activity.
Collapse
Affiliation(s)
- T Niidome
- Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Otter-Nilsson M, Hendriks R, Pecheur-Huet EI, Hoekstra D, Nilsson T. Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J 1999; 18:2074-83. [PMID: 10205162 PMCID: PMC1171292 DOI: 10.1093/emboj/18.8.2074] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Much recent work has focussed on the role of membrane-bound components in fusion. We show here that p97 and NSF are sufficient to mediate rapid membrane fusion. Fractionation of cytosol revealed that p97 and its co-factor, p47, constitutes the major fusion activity. This was confirmed by depleting p97 from the cytosol, which resulted in an 80% decrease in fusion. Using purified protein, p97 or NSF was found to be sufficient to mediate rapid fusion in an ATP-dependent manner. A regulatory role was observed for their corresponding co-factors, p47 and alpha-SNAP. When present at a molar ratio half of that of the ATPase, both co-factors increased fusion activity significantly. Intriguingly, at this ratio the ATPase activity of the complex measured in solution was at its lowest, suggesting that the co-factor stabilizes the ATP state. The fusion event involved mixing of both leaflets of the opposing membranes and contents of liposomes. We conclude from these data that p97, NSF and perhaps other related ATPases catalyse rapid and complete fusion between lipid bilayers on opposing membranes. This highlights a new role for p97 and NSF and prompts a re-evaluation of current fusion models.
Collapse
Affiliation(s)
- M Otter-Nilsson
- EMBL, Cell Biology and Biophysics Programme, Meyerhofstrasse, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Protein and peptide interactions with lipids: Structure, membrane function and new methods. Curr Opin Colloid Interface Sci 1998. [DOI: 10.1016/s1359-0294(98)80024-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Ulrich AS, Otter M, Glabe CG, Hoekstra D. Membrane fusion is induced by a distinct peptide sequence of the sea urchin fertilization protein bindin. J Biol Chem 1998; 273:16748-55. [PMID: 9642230 DOI: 10.1074/jbc.273.27.16748] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in the sea urchin is mediated by the membrane-associated acrosomal protein bindin, which plays a key role in the adhesion and fusion between sperm and egg. We have investigated the structure/function relationship of an 18-amino acid peptide fragment "B18," which represents the minimal membrane binding motif of the protein and resembles a putative fusion peptide. The peptide was found to mimic the behavior of its parent protein bindin with respect to (a) its high affinity for lipid bilayers, (b) the ability to aggregate and fuse vesicles, (c) the binding of Zn2+ by a histidine-rich motif, (d) the tendency to self-assemble, and (e), as indicated earlier, the adhesion to cell surface polysaccharides. Fluorescence and light scattering assays were used here to monitor peptide-induced lipid mixing, leakage, and aggregation of large unilamellar sphingomyelin/cholesterol vesicles. For these activities, B18 requires the presence of Zn2+ ions, with which it forms oligomeric complexes and assumes a partially alpha-helical conformation, as observed by circular dichroism. We conclude that aggregation and fusion involves a "trans-complex" between peptides on apposing vesicles that are connected by Zn2+ bridges.
Collapse
Affiliation(s)
- A S Ulrich
- Institute of Molecular Biology, University of Jena, Winzerlaer Strasse 10, 07745 Jena, Germany
| | | | | | | |
Collapse
|