1
|
Yadav LR, Sharma V, Shanmugam M, Mande SC. Structural insights into the initiation of free radical formation in the Class Ib ribonucleotide reductases in Mycobacteria. Curr Res Struct Biol 2024; 8:100157. [PMID: 39399574 PMCID: PMC11470190 DOI: 10.1016/j.crstbi.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Class I ribonucleotide reductases consisting of α and β subunits convert ribonucleoside diphosphates to deoxyribonucleoside diphosphates involving an intricate free radical mechanism. The generation of free radicals in the Class Ib ribonucleotide reductases is mediated by di-manganese ions in the β subunits and is externally assisted by flavodoxin-like NrdI subunit. This is unlike Class Ia ribonucleotide reductases, where the free radical generation is initiated at its di-iron centre in the β subunits with no external support from another subunit. Class 1b ribonucleotide reductase complex is an essential enzyme complex in the human pathogen Mycobacterium tuberculosis and its structural details are largely unknown. In this study we have determined the crystal structures of Mycobacterial NrdI in oxidised and reduced forms, and similarly those of NrdF2:NrdI complexes. These structures provide detailed atomic view of the mechanism of free radical generation in the β subunit in this pathogen. We observe a well-formed channel in NrdI from the surface leading to the buried FMN moiety and propose that oxygen molecule accesses FMN through it. The oxygen molecule is further converted to a superoxide ion upon electron transfer at the FMN moiety. Similarly, a path for superoxide radical transfer between NrdI and NrdF2 is also observed. The oxidation of Mn(II) in NrdF2I to high valent oxidation state (either Mn(III) or Mn(IV) assisted by the reduced FMN site was evidently confirmed by EPR studies. SEC-MALS and low resolution cryo-EM map indicate unusual stoichiometry of 2:1 in the M. tuberculosis NrdF2I complex. A density close to Tyr 110 at a distance <2.3 Å is observed, which we interpret as OH group. Overall, the study therefore provides important clues on the initiation of free radical generation in the β subunit of the ribonucleotide reductase complex in M. tuberculosis.
Collapse
Affiliation(s)
- Lumbini R. Yadav
- National Centre for Cell Science, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Vasudha Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
| | - Shekhar C. Mande
- National Centre for Cell Science, SPPU Campus, Ganeshkhind, Pune, 411007, India
- Bioinformatics Centre, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
2
|
Doyle LM, Bienenmann RLM, Gericke R, Xu S, Farquhar ER, Que L, McDonald AR. Preparation and characterization of Mn IIMn III complexes with relevance to class Ib ribonucleotide reductases. J Inorg Biochem 2024; 257:112583. [PMID: 38733704 DOI: 10.1016/j.jinorgbio.2024.112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
The Mn2 complex [MnII2(TPDP)(O2CPh)2](BPh4) (1, TPDP = 1,3-bis(bis(pyridin-2-ylmethyl)amino)propan-2-ol, Ph =phenyl) was prepared and subsequently characterized via single-crystal X-ray diffraction, X-ray absorption, electronic absorption, and infrared spectroscopies, and mass spectrometry. 1 was prepared in order to explore its properties as a structural and functional mimic of class Ib ribonucleotide reductases (RNRs). 1 reacted with superoxide anion (O2•-) to generate a peroxido-MnIIMnIII complex, 2. The electronic absorption and electron paramagnetic resonance (EPR) spectra of 2 were similar to previously published peroxido-MnIIMnIII species. Furthermore, X-ray near edge absorption structure (XANES) studies indicated the conversion of a MnII2 core in 1 to a MnIIMnIII state in 2. Treatment of 2 with para-toluenesulfonic acid (p-TsOH) resulted in the conversion to a new MnIIMnIII species, 3, rather than causing O-O bond scission, as previously encountered. 3 was characterized using electronic absorption, EPR, and X-ray absorption spectroscopies. Unlike other reported peroxido-MnIIMnIII species, 3 was capable of oxidative O-H activation, mirroring the generation of tyrosyl radical in class Ib RNRs, however without accessing the MnIIIMnIV state.
Collapse
Affiliation(s)
- Lorna M Doyle
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Roel L M Bienenmann
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Shuangning Xu
- Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, Minneapolis, 55455 MN, United States
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory Upton, NY, 11973 New York, United States
| | - Lawrence Que
- Department of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, Minneapolis, 55455 MN, United States
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
3
|
Doyle L, Magherusan A, Xu S, Murphy K, Farquhar ER, Molton F, Duboc C, Que L, McDonald AR. Class Ib Ribonucleotide Reductases: Activation of a Peroxido-Mn IIMn III to Generate a Reactive Oxo-Mn IIIMn IV Oxidant. Inorg Chem 2024; 63:2194-2203. [PMID: 38231137 PMCID: PMC10828993 DOI: 10.1021/acs.inorgchem.3c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
In the postulated catalytic cycle of class Ib Mn2 ribonucleotide reductases (RNRs), a MnII2 core is suggested to react with superoxide (O2·-) to generate peroxido-MnIIMnIII and oxo-MnIIIMnIV entities prior to proton-coupled electron transfer (PCET) oxidation of tyrosine. There is limited experimental support for this mechanism. We demonstrate that [MnII2(BPMP)(OAc)2](ClO4) (1, HBPMP = 2,6-bis[(bis(2 pyridylmethyl)amino)methyl]-4-methylphenol) was converted to peroxido-MnIIMnIII (2) in the presence of superoxide anion that converted to (μ-O)(μ-OH)MnIIIMnIV (3) via the addition of an H+-donor (p-TsOH) or (μ-O)2MnIIIMnIV (4) upon warming to room temperature. The physical properties of 3 and 4 were probed using UV-vis, EPR, X-ray absorption, and IR spectroscopies and mass spectrometry. Compounds 3 and 4 were capable of phenol oxidation to yield a phenoxyl radical via a concerted PCET oxidation, supporting the proposed mechanism of tyrosyl radical cofactor generation in RNRs. The synthetic models demonstrate that the postulated O2/Mn2/tyrosine activation mechanism in class Ib Mn2 RNRs is plausible and provides spectral insights into intermediates currently elusive in the native enzyme.
Collapse
Affiliation(s)
- Lorna Doyle
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Adriana Magherusan
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Shuangning Xu
- Department
of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayleigh Murphy
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R. Farquhar
- Case
Western Reserve University Center for Synchrotron Biosciences, National
Synchrotron Light Source II, Brookhaven
National Laboratory Upton, New
York 11973, United States
| | - Florian Molton
- CNRS
UMR 5250, DCM, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Carole Duboc
- CNRS
UMR 5250, DCM, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Lawrence Que
- Department
of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Aidan R. McDonald
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
4
|
Lebrette H, Srinivas V, John J, Aurelius O, Kumar R, Lundin D, Brewster AS, Bhowmick A, Sirohiwal A, Kim IS, Gul S, Pham C, Sutherlin KD, Simon P, Butryn A, Aller P, Orville AM, Fuller FD, Alonso-Mori R, Batyuk A, Sauter NK, Yachandra VK, Yano J, Kaila VRI, Sjöberg BM, Kern J, Roos K, Högbom M. Structure of a ribonucleotide reductase R2 protein radical. Science 2023; 382:109-113. [PMID: 37797025 PMCID: PMC7615503 DOI: 10.1126/science.adh8160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Aerobic ribonucleotide reductases (RNRs) initiate synthesis of DNA building blocks by generating a free radical within the R2 subunit; the radical is subsequently shuttled to the catalytic R1 subunit through proton-coupled electron transfer (PCET). We present a high-resolution room temperature structure of the class Ie R2 protein radical captured by x-ray free electron laser serial femtosecond crystallography. The structure reveals conformational reorganization to shield the radical and connect it to the translocation path, with structural changes propagating to the surface where the protein interacts with the catalytic R1 subunit. Restructuring of the hydrogen bond network, including a notably short O-O interaction of 2.41 angstroms, likely tunes and gates the radical during PCET. These structural results help explain radical handling and mobilization in RNR and have general implications for radical transfer in proteins.
Collapse
Affiliation(s)
- Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, CNRS, Université Toulouse III, Toulouse, France
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Oskar Aurelius
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Rohit Kumar
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asmit Bhowmick
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - In-Sik Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Pham
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kyle D. Sutherlin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Philipp Simon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Agata Butryn
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Pierre Aller
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Allen M. Orville
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | | | | | | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katarina Roos
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Stockholm, Sweden
| |
Collapse
|
5
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
6
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
7
|
Ruskoski TB, Boal AK. The periodic table of ribonucleotide reductases. J Biol Chem 2021; 297:101137. [PMID: 34461093 PMCID: PMC8463856 DOI: 10.1016/j.jbc.2021.101137] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
In most organisms, transition metal ions are necessary cofactors of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of the 2'-deoxynucleotide building blocks of DNA. The metal ion generates an oxidant for an active site cysteine (Cys), yielding a thiyl radical that is necessary for initiation of catalysis in all RNRs. Class I enzymes, widespread in eukaryotes and aerobic microbes, share a common requirement for dioxygen in assembly of the active Cys oxidant and a unique quaternary structure, in which the metallo- or radical-cofactor is found in a separate subunit, β, from the catalytic α subunit. The first class I RNRs, the class Ia enzymes, discovered and characterized more than 30 years ago, were found to use a diiron(III)-tyrosyl-radical Cys oxidant. Although class Ia RNRs have historically served as the model for understanding enzyme mechanism and function, more recently, remarkably diverse bioinorganic and radical cofactors have been discovered in class I RNRs from pathogenic microbes. These enzymes use alternative transition metal ions, such as manganese, or posttranslationally installed tyrosyl radicals for initiation of ribonucleotide reduction. Here we summarize the recent progress in discovery and characterization of novel class I RNR radical-initiating cofactors, their mechanisms of assembly, and how they might function in the context of the active class I holoenzyme complex.
Collapse
Affiliation(s)
- Terry B Ruskoski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
8
|
An Unusual Route for p-Aminobenzoate Biosynthesis in Chlamydia trachomatis Involves a Probable Self-Sacrificing Diiron Oxygenase. J Bacteriol 2020; 202:JB.00319-20. [PMID: 32967910 DOI: 10.1128/jb.00319-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis lacks the canonical genes required for the biosynthesis of p-aminobenzoate (pABA), a component of essential folate cofactors. Previous studies revealed a single gene from C. trachomatis, the CT610 gene, that rescues Escherichia coli ΔpabA, ΔpabB, and ΔpabC mutants, which are otherwise auxotrophic for pABA. CT610 shares low sequence similarity to nonheme diiron oxygenases, and the previously solved crystal structure revealed a diiron active site. Genetic studies ruled out several potential substrates for CT610-dependent pABA biosynthesis, including chorismate and other shikimate pathway intermediates, leaving the actual precursor(s) unknown. Here, we supplied isotopically labeled potential precursors to E. coli ΔpabA cells expressing CT610 and found that the aromatic portion of tyrosine was highly incorporated into pABA, indicating that tyrosine is a precursor for CT610-dependent pABA biosynthesis. Additionally, in vitro enzymatic experiments revealed that purified CT610 exhibits low pABA synthesis activity under aerobic conditions in the absence of tyrosine or other potential substrates, where only the addition of a reducing agent such as dithiothreitol appears to stimulate pABA production. Furthermore, site-directed mutagenesis studies revealed that two conserved active site tyrosine residues are essential for the pABA synthesis reaction in vitro Thus, the current data are most consistent with CT610 being a unique self-sacrificing enzyme that utilizes its own active site tyrosine residue(s) for pABA biosynthesis in a reaction that requires O2 and a reduced diiron cofactor.IMPORTANCE Chlamydia trachomatis is the most reported sexually transmitted infection in the United States and the leading cause of infectious blindness worldwide. Unlike many other intracellular pathogens that have undergone reductive evolution, C. trachomatis is capable of de novo biosynthesis of the essential cofactor tetrahydrofolate using a noncanonical pathway. Here, we identify the biosynthetic precursor to the p-aminobenzoate (pABA) portion of folate in a process that requires the CT610 enzyme from C. trachomatis We further provide evidence that CT610 is a self-sacrificing or "suicide" enzyme that uses its own amino acid residue(s) as the substrate for pABA synthesis. This work provides the foundation for future investigation of this chlamydial pABA synthase, which could lead to new therapeutic strategies for C. trachomatis infections.
Collapse
|
9
|
Grāve K, Lambert W, Berggren G, Griese JJ, Bennett MD, Logan DT, Högbom M. Redox-induced structural changes in the di-iron and di-manganese forms of Bacillus anthracis ribonucleotide reductase subunit NrdF suggest a mechanism for gating of radical access. J Biol Inorg Chem 2019; 24:849-861. [PMID: 31410573 PMCID: PMC6754363 DOI: 10.1007/s00775-019-01703-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Wietske Lambert
- PRA Health Sciences, Amerikaweg 18, 9407 TK, Assen, The Netherlands
| | - Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.,Department of Cell and Molecular Biology, Uppsala University. BMC, Box 596, 75124, Uppsala, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden.
| |
Collapse
|
10
|
Hammerstad M, Røhr ÅK, Hersleth H. A Research-inspired biochemistry laboratory module-combining expression, purification, crystallization, structure-solving, and characterization of a flavodoxin-like protein. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:318-332. [PMID: 30742352 PMCID: PMC6594058 DOI: 10.1002/bmb.21218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/20/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Many laboratory courses consist of short and seemingly unconnected individual laboratory exercises. To increase the course consistency, relevance, and student engagement, we have developed a research-inspired and project-based module, "From Gene to Structure and Function". This 2.5-week full-day biochemistry and structural biology module covers protein expression, purification, structure solving, and characterization. The module is centered around the flavodoxin-like protein NrdI, involved in the activation of the bacterial ribonucleotide reductase enzyme system. Through an in-depth focus on one specific protein, the students will learn the basic laboratory skills needed in order to generate a broader knowledge and breadth within the field. With respect to generic skills, the students report their findings as a scientific article, with the aim to learn to present concise research results and write scientific papers. The current research-inspired project has the potential of being further developed into a more discovery-driven project and extended to include other molecular biological techniques or biochemical/biophysical characterizations. In student evaluations, this research-inspired laboratory course has received very high ratings and been highly appreciated, where the students have gained research experience for more independent future work in the laboratory. © 2019 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 47(3):318-332, 2019.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, Section for Biochemistry and Molecular BiologyUniversity of OsloNO‐0316 OsloNorway
| | - Åsmund K. Røhr
- Department of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesNO‐1432 ÅsNorway
| | - Hans‐Petter Hersleth
- Department of Biosciences, Section for Biochemistry and Molecular BiologyUniversity of OsloNO‐0316 OsloNorway
- Department of Chemistry, Section for Chemical Life SciencesUniversity of OsloNO‐0315 OsloNorway
| |
Collapse
|
11
|
Rose HR, Ghosh MK, Maggiolo AO, Pollock CJ, Blaesi EJ, Hajj V, Wei Y, Rajakovich LJ, Chang WC, Han Y, Hajj M, Krebs C, Silakov A, Pandelia ME, Bollinger JM, Boal AK. Structural Basis for Superoxide Activation of Flavobacterium johnsoniae Class I Ribonucleotide Reductase and for Radical Initiation by Its Dimanganese Cofactor. Biochemistry 2018; 57:2679-2693. [PMID: 29609464 DOI: 10.1021/acs.biochem.8b00247] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ribonucleotide reductase (RNR) from Flavobacterium johnsoniae ( Fj) differs fundamentally from known (subclass a-c) class I RNRs, warranting its assignment to a new subclass, Id. Its β subunit shares with Ib counterparts the requirements for manganese(II) and superoxide (O2-) for activation, but it does not require the O2--supplying flavoprotein (NrdI) needed in Ib systems, instead scavenging the oxidant from solution. Although Fj β has tyrosine at the appropriate sequence position (Tyr 104), this residue is not oxidized to a radical upon activation, as occurs in the Ia/b proteins. Rather, Fj β directly deploys an oxidized dimanganese cofactor for radical initiation. In treatment with one-electron reductants, the cofactor can undergo cooperative three-electron reduction to the II/II state, in contrast to the quantitative univalent reduction to inactive "met" (III/III) forms seen with I(a-c) βs. This tendency makes Fj β unusually robust, as the II/II form can readily be reactivated. The structure of the protein rationalizes its distinctive traits. A distortion in a core helix of the ferritin-like architecture renders the active site unusually open, introduces a cavity near the cofactor, and positions a subclass-d-specific Lys residue to shepherd O2- to the Mn2II/II cluster. Relative to the positions of the radical tyrosines in the Ia/b proteins, the unreactive Tyr 104 of Fj β is held away from the cofactor by a hydrogen bond with a subclass-d-specific Thr residue. Structural comparisons, considered with its uniquely simple mode of activation, suggest that the Id protein might most closely resemble the primordial RNR-β.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yifeng Wei
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | | | | | | | | | - Maria-Eirini Pandelia
- Department of Biochemistry , Brandeis University , Waltham , Massachusetts 02454 , United States
| | | | | |
Collapse
|
12
|
Irvin J, Ropelewski AJ, Perozich J. In silico analysis of heme oxygenase structural homologues identifies group-specific conservations. FEBS Open Bio 2017; 7:1480-1498. [PMID: 28979838 PMCID: PMC5623701 DOI: 10.1002/2211-5463.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/25/2017] [Accepted: 07/16/2017] [Indexed: 12/04/2022] Open
Abstract
Heme oxygenases (HO) catalyze the breakdown of heme, aiding the recycling of its components. Several other enzymes have homologous tertiary structures to HOs, while sharing little sequence homology. These homologues include thiaminases, the hydroxylase component of methane monooxygenases, and the R2 component of Class I ribonucleotide reductases (RNR). This study compared these structural homologues of HO, using a large number of protein sequences for each homologue. Alignment of a total of 472 sequences showed little sequence conservation, with no residues having conservation in more than 80% of aligned sequences and only five residues conserved in at least 60% of the sequences. Fourteen additional positions, most of which were critical for hydrophobic packing, displayed amino acid similarity of 60% or higher. Ten conserved sequence motifs were identified in HOs and RNRs. Phylogenetic analysis verified the existence of the four distinct groups of HO homologues, which were then analyzed by group entropy analysis to identify residues critical to the unique function of each enzyme. Other methods for determining functional residues were also performed. Several common index positions identified represent critical evolutionary changes that resulted in the unique function of each enzyme, suggesting potential targets for site‐directed mutagenesis. These positions included residues that coordinate ligands, form the active sites, and maintain enzyme structure. Enzymes Heme oxygenase (EC 1.14.14.18), methane monooxygenase (EC 1.14.13.25), ribonucleotide reductase (EC 1.17.4.1), thiaminase II (EC 3.5.99.2).
Collapse
Affiliation(s)
- Joseph Irvin
- Department of Biology Franciscan University of Steubenville OH USA
| | | | - John Perozich
- Department of Biology Franciscan University of Steubenville OH USA
| |
Collapse
|
13
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Kim S, Lee JH, Seok JH, Park YH, Jung SW, Cho AE, Lee C, Chung MS, Kim KH. Structural Basis of Novel Iron-Uptake Route and Reaction Intermediates in Ferritins from Gram-Negative Bacteria. J Mol Biol 2016; 428:5007-5018. [PMID: 27777002 DOI: 10.1016/j.jmb.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Iron and oxygen chemistry is mediated by iron proteins for many biological functions. Carboxylate-bridged diiron enzymes including ferritin have the common mechanism of oxygen activation via peroxodiferric intermediates. However, the route for iron uptake and the structural identification of intermediates still remain incomplete. The 4-fold symmetry channel of Helicobacter pylori ferritin was previously proposed as the iron-uptake route in eubacteria, but the amino acid residues at the 4-fold channel are not highly conserved. Here, we show evidence for a short path for iron uptake from His93 on the surface to the ferroxidase center in H. pylori ferritin and Escherichia coli ferritin. The amino acid residues along this path are highly conserved in Gram-negative bacteria and some archaea, and the mutants containing S20A and H93L showed significantly decreased iron oxidation. Surprisingly, the E. coli ferritin S20A crystal structure showed oxygen binding and side-on, symmetric μ-η2:η2 peroxodiferric and oxodiferric intermediates. The results provide the structural basis for understanding the chemical nature of intermediates in iron oxidation in bacteria and some of archaea.
Collapse
Affiliation(s)
- Sella Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Yi-Ho Park
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Sang Won Jung
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Art E Cho
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea
| | - Cheolju Lee
- Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women's University, Seoul 132-714, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, Korea University, Sejong 339-700, Korea.
| |
Collapse
|
15
|
Jasniewski AJ, Knoot CJ, Lipscomb JD, Que L. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase. Biochemistry 2016; 55:5818-5831. [PMID: 27668828 PMCID: PMC5258830 DOI: 10.1021/acs.biochem.6b00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first step in the nonribosomal peptide synthetase (NRPS)-based biosynthesis of chloramphenicol is the β-hydroxylation of the precursor l-p-aminophenylalanine (l-PAPA) catalyzed by the monooxygenase CmlA. The active site of CmlA contains a dinuclear iron cluster that is reduced to the diferrous state (WTR) to initiate O2 activation. However, rapid O2 activation occurs only when WTR is bound to CmlP, the NRPS to which l-PAPA is covalently attached. Here the X-ray crystal structure of WTR is reported, which is very similar to that of the as-isolated diferric enzyme in which the irons are coordinately saturated. X-ray absorption spectroscopy is used to investigate the WTR cluster ligand structure as well as the structures of WTR in complex with a functional CmlP variant (CmlPAT) with and without l-PAPA attached. It is found that formation of the active WTR:CmlPAT-l-PAPA complex converts at least one iron of the cluster from six- to five-coordinate by changing a bidentately bound amino acid carboxylate to monodentate on Fe1. The only bidentate carboxylate in the structure of WTR is E377. The crystal structure of the CmlA variant E377D shows only monodentate carboxylate coordination. Reduced E377D reacts rapidly with O2 in the presence or absence of CmlPAT-l-PAPA, showing loss of regulation. However, this variant fails to catalyze hydroxylation, suggesting that E377 has the dual role of coupling regulation of O2 reactivity with juxtaposition of the substrate and the reactive oxygen species. The carboxylate shift in response to substrate binding represents a novel regulatory strategy for oxygen activation in diiron oxygenases.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Cory J. Knoot
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Griese JJ, Kositzki R, Schrapers P, Branca RMM, Nordström A, Lehtiö J, Haumann M, Högbom M. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. J Biol Chem 2015; 290:25254-72. [PMID: 26324712 PMCID: PMC4646176 DOI: 10.1074/jbc.m115.675223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Two recently discovered groups of prokaryotic di-metal carboxylate proteins harbor a heterodinuclear Mn/Fe cofactor. These are the class Ic ribonucleotide reductase R2 proteins and a group of oxidases that are found predominantly in pathogens and extremophiles, called R2-like ligand-binding oxidases (R2lox). We have recently shown that the Mn/Fe cofactor of R2lox self-assembles from Mn(II) and Fe(II) in vitro and catalyzes formation of a tyrosine-valine ether cross-link in the protein scaffold (Griese, J. J., Roos, K., Cox, N., Shafaat, H. S., Branca, R. M., Lehtiö, J., Gräslund, A., Lubitz, W., Siegbahn, P. E., and Högbom, M. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 17189-17194). Here, we present a detailed structural analysis of R2lox in the nonactivated, reduced, and oxidized resting Mn/Fe- and Fe/Fe-bound states, as well as the nonactivated Mn/Mn-bound state. X-ray crystallography and x-ray absorption spectroscopy demonstrate that the active site ligand configuration of R2lox is essentially the same regardless of cofactor composition. Both the Mn/Fe and the diiron cofactor activate oxygen and catalyze formation of the ether cross-link, whereas the dimanganese cluster does not. The structures delineate likely routes for gated oxygen and substrate access to the active site that are controlled by the redox state of the cofactor. These results suggest that oxygen activation proceeds via similar mechanisms at the Mn/Fe and Fe/Fe center and that R2lox proteins might utilize either cofactor in vivo based on metal availability.
Collapse
Affiliation(s)
- Julia J Griese
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Kositzki
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Peer Schrapers
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Rui M M Branca
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Anders Nordström
- the Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Janne Lehtiö
- the Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Box 1031, SE-171 21 Solna, Sweden, and
| | - Michael Haumann
- the Institut für Experimentalphysik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Martin Högbom
- From the Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden,
| |
Collapse
|
18
|
Shibata N, Toraya T. Molecular architectures and functions of radical enzymes and their (re)activating proteins. J Biochem 2015; 158:271-92. [PMID: 26261050 DOI: 10.1093/jb/mvv078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023] Open
Abstract
Certain proteins utilize the high reactivity of radicals for catalysing chemically challenging reactions. These proteins contain or form a radical and therefore named 'radical enzymes'. Radicals are introduced by enzymes themselves or by (re)activating proteins called (re)activases. The X-ray structures of radical enzymes and their (re)activases revealed some structural features of these molecular apparatuses which solved common enigmas of radical enzymes—i.e. how the enzymes form or introduce radicals at the active sites, how they use the high reactivity of radicals for catalysis, how they suppress undesired side reactions of highly reactive radicals and how they are (re)activated when inactivated by extinction of radicals. This review highlights molecular architectures of radical B12 enzymes, radical SAM enzymes, tyrosyl radical enzymes, glycyl radical enzymes and their (re)activating proteins that support their functions. For generalization, comparisons of the recently reported structures of radical enzymes with those of canonical radical enzymes are summarized here.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan and
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Jia C, Li M, Li J, Zhang J, Zhang H, Cao P, Pan X, Lu X, Chang W. Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases. Protein Cell 2015; 6:55-67. [PMID: 25482408 PMCID: PMC4286721 DOI: 10.1007/s13238-014-0108-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/08/2014] [Indexed: 11/15/2022] Open
Abstract
The fatty alk(a/e)ne biosynthesis pathway found in cyanobacteria gained tremendous attention in recent years as a promising alternative approach for biofuel production. Cyanobacterial aldehyde-deformylating oxygenase (cADO), which catalyzes the conversion of Cn fatty aldehyde to its corresponding Cn-1 alk(a/e)ne, is a key enzyme in that pathway. Due to its low activity, alk(a/e)ne production by cADO is an inefficient process. Previous biochemical and structural investigations of cADO have provided some information on its catalytic reaction. However, the details of its catalytic processes remain unclear. Here we report five crystal structures of cADO from the Synechococcus elongates strain PCC7942 in both its iron-free and iron-bound forms, representing different states during its catalytic process. Structural comparisons and functional enzyme assays indicate that Glu144, one of the iron-coordinating residues, plays a vital role in the catalytic reaction of cADO. Moreover, the helix where Glu144 resides exhibits two distinct conformations that correlates with the different binding states of the di-iron center in cADO structures. Therefore, our results provide a structural explanation for the highly labile feature of cADO di-iron center, which we proposed to be related to its low enzymatic activity. On the basis of our structural and biochemical data, a possible catalytic process of cADO was proposed, which could aid the design of cADO with improved activity.
Collapse
Affiliation(s)
- Chenjun Jia
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Jingjing Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongmei Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Peng Cao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
20
|
Shafaat HS, Griese JJ, Pantazis DA, Roos K, Andersson CS, Popović-Bijelić A, Gräslund A, Siegbahn PEM, Neese F, Lubitz W, Högbom M, Cox N. Electronic structural flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. J Am Chem Soc 2014; 136:13399-409. [PMID: 25153930 DOI: 10.1021/ja507435t] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The electronic structure of the Mn/Fe cofactor identified in a new class of oxidases (R2lox) described by Andersson and Högbom [Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 5633] is reported. The R2lox protein is homologous to the small subunit of class Ic ribonucleotide reductase (R2c) but has a completely different in vivo function. Using multifrequency EPR and related pulse techniques, it is shown that the cofactor of R2lox represents an antiferromagnetically coupled Mn(III)/Fe(III) dimer linked by a μ-hydroxo/bis-μ-carboxylato bridging network. The Mn(III) ion is coordinated by a single water ligand. The R2lox cofactor is photoactive, converting into a second form (R2loxPhoto) upon visible illumination at cryogenic temperatures (77 K) that completely decays upon warming. This second, unstable form of the cofactor more closely resembles the Mn(III)/Fe(III) cofactor seen in R2c. It is shown that the two forms of the R2lox cofactor differ primarily in terms of the local site geometry and electronic state of the Mn(III) ion, as best evidenced by a reorientation of its unique (55)Mn hyperfine axis. Analysis of the metal hyperfine tensors in combination with density functional theory (DFT) calculations suggests that this change is triggered by deprotonation of the μ-hydroxo bridge. These results have important consequences for the mixed-metal R2c cofactor and the divergent chemistry R2lox and R2c perform.
Collapse
Affiliation(s)
- Hannah S Shafaat
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hammerstad M, Hersleth HP, Tomter AB, Røhr ÅK, Andersson KK. Crystal structure of Bacillus cereus class Ib ribonucleotide reductase di-iron NrdF in complex with NrdI. ACS Chem Biol 2014; 9:526-37. [PMID: 24295378 DOI: 10.1021/cb400757h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ib ribonucleotide reductases (RNRs) use a dimetal-tyrosyl radical (Y•) cofactor in their NrdF (β2) subunit to initiate ribonucleotide reduction in the NrdE (α2) subunit. Contrary to the diferric tyrosyl radical (Fe(III)2-Y•) cofactor, which can self-assemble from Fe(II)2-NrdF and O2, generation of the Mn(III)2-Y• cofactor requires the reduced form of a flavoprotein, NrdIhq, and O2 for its assembly. Here we report the 1.8 Å resolution crystal structure of Bacillus cereus Fe2-NrdF in complex with NrdI. Compared to the previously solved Escherichia coli NrdI-Mn(II)2-NrdF structure, NrdI and NrdF binds similarly in Bacillus cereus through conserved core interactions. This protein-protein association seems to be unaffected by metal ion type bound in the NrdF subunit. The Bacillus cereus Mn(II)2-NrdF and Fe2-NrdF structures, also presented here, show conformational flexibility of residues surrounding the NrdF metal ion site. The movement of one of the metal-coordinating carboxylates is linked to the metal type present at the dimetal site and not associated with NrdI-NrdF binding. This carboxylate conformation seems to be vital for the water network connecting the NrdF dimetal site and the flavin in NrdI. From these observations, we suggest that metal-dependent variations in carboxylate coordination geometries are important for active Y• cofactor generation in class Ib RNRs. Additionally, we show that binding of NrdI to NrdF would structurally interfere with the suggested α2β2 (NrdE-NrdF) holoenzyme formation, suggesting the potential requirement for NrdI dissociation before NrdE-NrdF assembly after NrdI-activation. The mode of interactions between the proteins involved in the class Ib RNR system is, however, not fully resolved.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Ane B. Tomter
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Åsmund K. Røhr
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| | - K. Kristoffer Andersson
- Department of Biosciences, University of Oslo, P.O.
Box 1066, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
22
|
Dassama LMK, Krebs C, Bollinger JM, Rosenzweig AC, Boal AK. Structural basis for assembly of the Mn(IV)/Fe(III) cofactor in the class Ic ribonucleotide reductase from Chlamydia trachomatis. Biochemistry 2013; 52:6424-36. [PMID: 23924396 DOI: 10.1021/bi400819x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a Mn(IV)/Fe(III) cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of Mn(II)/Fe(II)-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn at site 1 (Mn(IV)/Fe(III)) or site 2 (Fe(III)/Mn(IV)), of which the more active Mn(IV)/Fe(III) product predominates. Here we have addressed the basis for metal site selectivity by determining X-ray crystal structures of apo, Mn(II), and Mn(II)/Fe(II) complexes of Ct β2. A structure obtained anaerobically with equimolar Mn(II), Fe(II), and apoprotein reveals exclusive incorporation of Mn(II) at site 1 and Fe(II) at site 2, in contrast to the more modest site selectivity achieved previously. Site specificity is controlled thermodynamically by the apoprotein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, Mn(II) binds in either site. Together, the structures are consistent with a model for in vitro cofactor assembly in which Fe(II) specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that Fe(II) is substoichiometric. This model suggests that use of a Mn(IV)/Fe(III) cofactor in vivo could be an adaptation to Fe(II) limitation. A 1.8 Å resolution model of the Mn(II)/Fe(II)-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η(2)) addition of O2 to Fe(II) and a short (3.2 Å) Mn(II)-Fe(II) interionic distance, promoting formation of the Mn(IV)/Fe(IV) activation intermediate.
Collapse
Affiliation(s)
- Laura M K Dassama
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
23
|
Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML. Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Appl Microbiol Biotechnol 2013; 97:8649-62. [PMID: 23812332 DOI: 10.1007/s00253-013-5047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
The ZIP family of metal transporters is involved in the transport of Zn(2+) and other metal cations from the extracellular environment and/or organelles into the cytoplasm of prokaryotes, eukaryotes and archaeotes. In the present study, we identified twin ZIP transporters, Zip11 (Npun_F3111) and Zip63 (Npun_F2202) encoded within the genome of the filamentous cyanobacterium, Nostoc punctiforme PCC73120. Sequence-based analyses and structural predictions confirmed that these cyanobacterial transporters belong to the SLC39 subfamily of metal transporters. Quantitative real-time (QRT)-PCR analyses suggested that the enzymes encoded by zip11 and zip63 have a broad allocrite range that includes zinc as well as cadmium, cobalt, copper, manganese and nickel. Inactivation of either zip11 or zip63 via insertional mutagenesis in N. punctiforme resulted in reduced expression of both genes, highlighting a possible co-regulation mechanism. Uptake experiments using (65)Zn demonstrated that both zip mutants had diminished zinc uptake capacity, with the deletion of zip11 resulting in the greatest overall reduction in (65)Zn uptake. Over-expression of Zip11 and Zip63 in an E. coli mutant strain (ZupT736::kan) restored divalent metal cation uptake, providing further evidence that these transporters are involved in Zn uptake in N. punctiforme. Our findings show the functional role of these twin metal uptake transporters in N. punctiforme, which are independently expressed in the presence of an array of metals. Both Zip11 and Zip63 are required for the maintenance of homeostatic levels of intracellular zinc N. punctiforme, although Zip11 appears to be the primary zinc transporter in this cyanobacterium, both ZIP's may be part of a larger metal uptake system with shared regulatory elements.
Collapse
Affiliation(s)
- L Hudek
- Centre for Cellular and Molecular Biology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | | | | | | | | |
Collapse
|
24
|
Griese JJ, Högbom M. X-ray reduction correlates with soaking accessibility as judged from four non-crystallographically related diiron sites. Metallomics 2013; 4:894-8. [PMID: 22859273 DOI: 10.1039/c2mt20080e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray crystallography is extensively used to determine the atomic structure of proteins and their cofactors. Though a commonly overlooked problem, it has been shown that structural damage to a redox active metal site may precede loss of diffractivity by more than an order of magnitude in X-ray dose. Therefore the risk of misassigning redox states is great. Adequate treatment and consideration of this issue is of paramount importance in metalloprotein science, from experimental design to interpretation of the data and results. Some metal sites appear to be much more amenable to reduction than others, but the underlying processes are poorly understood. Here, we have analyzed the four non-crystallographically related diiron sites in a crystal of the ribonucleotide reductase R2F protein from Corynebacterium ammoniagenes. We conclude that the amount of X-ray reduction a metal site suffers correlates with its soaking accessibility. This direct observation supports the hypothesis that a diffusion component is involved in the X-ray reduction process.
Collapse
Affiliation(s)
- Julia J Griese
- Department of Biochemistry and Biophysics, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
25
|
Tomter AB, Zoppellaro G, Andersen NH, Hersleth HP, Hammerstad M, Røhr ÅK, Sandvik GK, Strand KR, Nilsson GE, Bell CB, Barra AL, Blasco E, Le Pape L, Solomon EI, Andersson KK. Ribonucleotide reductase class I with different radical generating clusters. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Cotruvo JA, Stubbe J. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 2012; 4:1020-36. [PMID: 22991063 PMCID: PMC3488304 DOI: 10.1039/c2mt20142a] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, "discrimination" between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Boal AK, Cotruvo JA, Stubbe J, Rosenzweig AC. The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase. Biochemistry 2012; 51:3861-71. [PMID: 22443445 DOI: 10.1021/bi201925t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn(III)(2)-Y(•), in their homodimeric NrdF (β2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. The structure of the Mn(II)(2) form of NrdF is an important component in understanding O(2)-mediated formation of the active metallocofactor, a subject of much interest because a unique flavodoxin, NrdI, is required for cofactor assembly. Biochemical studies and sequence alignments suggest that NrdF and NrdI proteins diverge into three phylogenetically distinct groups. The only crystal structure to date of a NrdF with a fully ordered and occupied dimanganese site is that of Escherichia coli Mn(II)(2)-NrdF, prototypical of the enzymes from actinobacteria and proteobacteria. Here we report the 1.9 Å resolution crystal structure of Bacillus subtilis Mn(II)(2)-NrdF, representative of the enzymes from a second group, from Bacillus and Staphylococcus. The structures of the metal clusters in the β2 dimer are distinct from those observed in E. coli Mn(II)(2)-NrdF. These differences illustrate the key role that solvent molecules and protein residues in the second coordination sphere of the Mn(II)(2) cluster play in determining conformations of carboxylate residues at the metal sites and demonstrate that diverse coordination geometries are capable of serving as starting points for Mn(III)(2)-Y(•) cofactor assembly in class Ib RNRs.
Collapse
Affiliation(s)
- Amie K Boal
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
28
|
Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein. PLoS One 2012; 7:e33436. [PMID: 22432022 PMCID: PMC3303829 DOI: 10.1371/journal.pone.0033436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/08/2012] [Indexed: 11/24/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g1-value of 2.0090 for the tyrosyl radical was extracted. This g1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν7a = 1500 cm−1) was found to be insensitive to deuterium-oxide exchange. Additionally, the 18O-sensitive Fe-O-Fe symmetric stretching (483 cm−1) of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011) J Biol Chem 286: 33053–33060) indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8 times higher activity.
Collapse
|
29
|
Charnock GTP, Krzystyniak M, Kuprov I. Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:62-68. [PMID: 22300803 DOI: 10.1016/j.jmr.2012.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to vibrational excursions from the equilibrium geometry.
Collapse
Affiliation(s)
- G T P Charnock
- Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK
| | | | | |
Collapse
|
30
|
Cotruvo JA, Stubbe J. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem 2011; 80:733-67. [PMID: 21456967 DOI: 10.1146/annurev-biochem-061408-095817] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Incorporation of metallocofactors essential for the activity of many enyzmes is a major mechanism of posttranslational modification. The cellular machinery required for these processes in the case of mono- and dinuclear nonheme iron and manganese cofactors has remained largely elusive. In addition, many metallocofactors can be converted to inactive forms, and pathways for their repair have recently come to light. The class I ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides and require dinuclear metal clusters for activity: an Fe(III)Fe(III)-tyrosyl radical (Y•) cofactor (class Ia), a Mn(III)Mn(III)-Y• cofactor (class Ib), and a Mn(IV)Fe(III) cofactor (class Ic). The class Ia, Ib, and Ic RNRs are structurally homologous and contain almost identical metal coordination sites. Recent progress in our understanding of the mechanisms by which the cofactor of each of these RNRs is generated in vitro and in vivo and by which the damaged cofactors are repaired is providing insight into how nature prevents mismetallation and orchestrates active cluster formation in high yields.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
31
|
Pangare MG, Chandra SB. Comparative Analysis of the Three Classes of Archaeal and Bacterial Ribonucleotide Reductase from Evolutionary Perspective. Genomics Inform 2010. [DOI: 10.5808/gi.2010.8.4.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Johansson R, Torrents E, Lundin D, Sprenger J, Sahlin M, Sjöberg BM, Logan DT. High-resolution crystal structures of the flavoprotein NrdI in oxidized and reduced states--an unusual flavodoxin. Structural biology. FEBS J 2010; 277:4265-77. [PMID: 20831589 DOI: 10.1111/j.1742-4658.2010.07815.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The small flavoprotein NrdI is an essential component of the class Ib ribonucleotide reductase system in many bacteria. NrdI interacts with the class Ib radical generating protein NrdF. It is suggested to be involved in the rescue of inactivated diferric centres or generation of active dimanganese centres in NrdF. Although NrdI bears a superficial resemblance to flavodoxin, its redox properties have been demonstrated to be strikingly different. In particular, NrdI is capable of two-electron reduction, whereas flavodoxins are exclusively one-electron reductants. This has been suggested to depend on a lesser destabilization of the negatively-charged hydroquinone state than in flavodoxins. We have determined the crystal structures of NrdI from Bacillus anthracis, the causative agent of anthrax, in the oxidized and semiquinone forms, at resolutions of 0.96 and 1.4 Å, respectively. These structures, coupled with analysis of all curated NrdI sequences, suggest that NrdI defines a new structural family within the flavodoxin superfamily. The conformational behaviour of NrdI in response to FMN reduction is very similar to that of flavodoxins, involving a peptide flip in a loop near the N5 atom of the flavin ring. However, NrdI is much less negatively charged than flavodoxins, which is expected to affect its redox properties significantly. Indeed, sequence analysis shows a remarkable spread in the predicted isoelectric points of NrdIs, from approximately pH 4-10. The implications of these observations for class Ib ribonucleotide reductase function are discussed.
Collapse
Affiliation(s)
- Renzo Johansson
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Hersleth HP, Andersson KK. How different oxidation states of crystalline myoglobin are influenced by X-rays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:785-96. [PMID: 20691815 DOI: 10.1016/j.bbapap.2010.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/14/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
X-ray induced radiation damage of protein crystals is well known to occur even at cryogenic temperatures. Redox active sites like metal sites seem especially vulnerable for these radiation-induced reductions. It is essential to know correctly the oxidation state of metal sites in protein crystal structures to be able to interpret the structure-function relation. Through previous structural studies, we have tried to characterise and understand the reactions between myoglobin and peroxides. These reaction intermediates are relevant because myoglobin is proposed to take part as scavenger of reactive oxygen species during oxidative stress, and because these intermediates are similar among the haem peroxidases and oxygenases. We have in our previous studies shown that these different myoglobin states are influenced by the X-rays used. In this study, we have in detail investigated the impact that X-rays have on these different oxidation states of myoglobin. An underlying goal has been to find a way to be able to determine mostly unreduced states. We have by using single-crystal light absorption spectroscopy found that the different oxidation states of myoglobin are to a different extent influenced by the X-rays (e.g. ferric Fe(III) myoglobin is faster reduced than ferryl Fe(IV)═O myoglobin). We observe that the higher oxidation states are not reduced to normal ferrous Fe(II) or ferric Fe(III) states, but end up in some intermediate and possibly artificial states. For ferric myoglobin, it seems that annealing of the radiation-induced/reduced state can reversibly more or less give the starting point (ferric myoglobin). Both scavengers and different dose-rates might influence to which extent the different states are affected by the X-rays. Our study shows that it is essential to do a time/dose monitoring of the influence X-rays have on each specific redox-state with spectroscopic techniques like single-crystal light absorption spectroscopy. This will determine to which extent you can collect X-ray diffraction data on your crystal before it becomes too heavily influenced/reduced by X-rays. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Hans-Petter Hersleth
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, NO-0316 Oslo, Norway.
| | | |
Collapse
|
34
|
Boal AK, Cotruvo JA, Stubbe J, Rosenzweig AC. Structural basis for activation of class Ib ribonucleotide reductase. Science 2010; 329:1526-30. [PMID: 20688982 DOI: 10.1126/science.1190187] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn(III)2-tyrosyl radical (Y•) or a Fe(III)2-Y• cofactor in the NrdF subunit. Whereas Fe(III)2-Y• can self-assemble from Fe(II)2-NrdF and O2, activation of Mn(II)2-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O2. The crystal structures reported here of E. coli Mn(II)2-NrdF and Fe(II)2-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn(II)2-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn(II)2 active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn(III)2-Y• cofactor assembly.
Collapse
Affiliation(s)
- Amie K Boal
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
35
|
Cox N, Ogata H, Stolle P, Reijerse E, Auling G, Lubitz W. A Tyrosyl−Dimanganese Coupled Spin System is the Native Metalloradical Cofactor of the R2F Subunit of the Ribonucleotide Reductase of Corynebacterium ammoniagenes. J Am Chem Soc 2010; 132:11197-213. [DOI: 10.1021/ja1036995] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Hideaki Ogata
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Patrick Stolle
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Edward Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Georg Auling
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim (Ruhr), Germany, and Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| |
Collapse
|
36
|
Cotruvo JA, Stubbe J. An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Biochemistry 2010; 49:1297-309. [PMID: 20070127 DOI: 10.1021/bi902106n] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates and is expressed under iron-limited and oxidative stress conditions. This RNR is composed of two homodimeric subunits: alpha2 (NrdE), where nucleotide reduction occurs, and beta2 (NrdF), which contains an unidentified metallocofactor that initiates nucleotide reduction. nrdE and nrdF are found in an operon with nrdI, which encodes an unusual flavodoxin proposed to be involved in metallocofactor biosynthesis and/or maintenance. Ni affinity chromatography of a mixture of E. coli (His)(6)-NrdI and NrdF demonstrated tight association between these proteins. To explore the function of NrdI and identify the metallocofactor, apoNrdF was loaded with Mn(II) and incubated with fully reduced NrdI (NrdI(hq)) and O(2). Active RNR was rapidly produced with 0.25 +/- 0.03 tyrosyl radical (Y*) per beta2 and a specific activity of 600 units/mg. EPR and biochemical studies of the reconstituted cofactor suggest it is Mn(III)(2)-Y*, which we propose is generated by Mn(II)(2)-NrdF reacting with two equivalents of HO(2)(-), produced by reduction of O(2) by NrdF-bound NrdI(hq). In the absence of NrdI(hq), with a variety of oxidants, no active RNR was generated. By contrast, a similar experiment with apoNrdF loaded with Fe(II) and incubated with O(2) in the presence or absence of NrdI(hq) gave 0.2 and 0.7 Y*/beta2 with specific activities of 80 and 300 units/mg, respectively. Thus NrdI(hq) hinders Fe(III)(2)-Y* cofactor assembly in vitro. We propose that NrdI is an essential player in E. coli class Ib RNR cluster assembly and that the Mn(III)(2)-Y* cofactor, not the diferric-Y* one, is the active metallocofactor in vivo.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
37
|
|
38
|
Abstract
Cholesterol oxidases are bifunctional flavoenzymes that catalyze the oxidation of steroid substrates which have a hydroxyl group at the 3beta position of the steroid ring system. The enzyme is found, in a wide range of bacterial species, in two forms: one with the FAD cofactor bound noncovalently to the enzyme; and one with the cofactor linked covalently to the protein. Here we discuss, compare and contrast the salient biochemical properties of the two forms of the enzyme. Specifically, the structural features are discussed that affect the redox potentials of the flavin cofactor, the chemical mechanism of substrate dehydrogenation by active-center amino acid residues, the kinetic parameters of both types of enzymes and the reactivity of reduced enzymes with molecular dioxygen. The presence of a molecular tunnel that is proposed to serve in the access of dioxygen to the active site and mechanisms of its control by a 'gate' formed by amino acid residues are highlighted.
Collapse
Affiliation(s)
- Alice Vrielink
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Australia.
| | | |
Collapse
|
39
|
Jiang W, Yun D, Saleh L, Bollinger JM, Krebs C. Formation and function of the Manganese(IV)/Iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Biochemistry 2009; 47:13736-44. [PMID: 19061340 DOI: 10.1021/bi8017625] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The beta(2) subunit of a class Ia or Ib ribonucleotide reductase (RNR) is activated when its carboxylate-bridged Fe(2)(II/II) cluster reacts with O(2) to oxidize a nearby tyrosine (Y) residue to a stable radical (Y(*)). During turnover, the Y(*) in beta(2) is thought to reversibly oxidize a cysteine (C) in the alpha(2) subunit to a thiyl radical (C(*)) by a long-distance ( approximately 35 A) proton-coupled electron-transfer (PCET) step. The C(*) in alpha(2) then initiates reduction of the 2' position of the ribonucleoside 5'-diphosphate substrate by abstracting the hydrogen atom from C3'. The class I RNR from Chlamydia trachomatis (Ct) is the prototype of a newly recognized subclass (Ic), which is characterized by the presence of a phenylalanine (F) residue at the site of beta(2) where the essential radical-harboring Y is normally found. We recently demonstrated that Ct RNR employs a heterobinuclear Mn(IV)/Fe(III) cluster for radical initiation. In essence, the Mn(IV) ion of the cluster functionally replaces the Y(*) of the conventional class I RNR. The Ct beta(2) protein also autoactivates by reaction of its reduced (Mn(II)/Fe(II)) metal cluster with O(2). In this reaction, an unprecedented Mn(IV)/Fe(IV) intermediate accumulates almost stoichiometrically and decays by one-electron reduction of the Fe(IV) site. This reduction is mediated by the near-surface residue, Y222, a residue with no functional counterpart in the well-studied conventional class I RNRs. In this review, we recount the discovery of the novel Mn/Fe redox cofactor in Ct RNR and summarize our current understanding of how it assembles and initiates nucleotide reduction.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
40
|
Svistunenko DA, Jones GA. Tyrosyl radicals in proteins: a comparison of empirical and density functional calculated EPR parameters. Phys Chem Chem Phys 2009; 11:6600-13. [DOI: 10.1039/b905522c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Tomter AB, Bell CB, Røhr AK, Andersson KK, Solomon EI. Circular dichroism and magnetic circular dichroism studies of the biferrous site of the class Ib ribonucleotide reductase from Bacillus cereus: comparison to the class Ia enzymes. Biochemistry 2008; 47:11300-9. [PMID: 18831534 DOI: 10.1021/bi801212f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rate limiting step in DNA biosynthesis is the reduction of ribonucleotides to form the corresponding deoxyribonucleotides. This reaction is catalyzed by ribonucleotide reductases (RNRs) and is an attractive target against rapidly proliferating pathogens. Class I RNRs are binuclear non-heme iron enzymes and can be further divided into subclasses. Class Ia is found in many organisms, including humans, while class Ib has only been found in bacteria, notably some pathogens. Both Bacillus anthracis and Bacillus cereus encode class Ib RNRs with over 98% sequence identity. The geometric and electronic structure of the B. cereus diiron containing subunit (R2F) has been characterized by a combination of circular dichroism, magnetic circular dichroism (MCD) and variable temperature variable field MCD and is compared to class Ia RNRs. While crystallography has given several possible descriptions for the class Ib RNR biferrous site, the spectroscopically defined active site contains a 4-coordinate and a 5-coordinate Fe(II), weakly antiferromagnetically coupled via mu-1,3-carboxylate bridges. Class Ia biferrous sites are also antiferromagnetically coupled 4-coordinate and 5-coordinate Fe(II), however quantitatively differ from class Ib in bridging carboxylate conformation and tyrosine radical positioning relative to the diiron site. Additionally, the iron binding affinity in B. cereus RNR R2F is greater than class Ia RNR and provides the pathogen with a competitive advantage relative to host in physiological, iron-limited environments. These structural differences have potential for the development of selective drugs.
Collapse
Affiliation(s)
- Ane B Tomter
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
42
|
NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase. Proc Natl Acad Sci U S A 2008; 105:14383-8. [PMID: 18799738 DOI: 10.1073/pnas.0807348105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is essential in all organisms. Class I RNRs consist of two homodimeric subunits: alpha2 and beta2. The alpha subunit contains the site of nucleotide reduction, and the beta subunit contains the essential diferric-tyrosyl radical (Y*) cofactor. Escherichia coli contains genes encoding two class I RNRs (Ia and Ib) and a class III RNR, which is active only under anaerobic conditions. Its class Ia RNR, composed of NrdA (alpha) and NrdB (beta), is expressed under normal aerobic growth conditions. The class Ib RNR, composed of NrdE (alpha) and NrdF (beta), is expressed under oxidative stress and iron-limited growth conditions. Our laboratory is interested in pathways of cofactor biosynthesis and maintenance in class I RNRs and modulation of Y* levels as a means of regulating RNR activity. Our recent studies have implicated a [2Fe2S]-ferredoxin, YfaE, in the NrdB diferric-Y* maintenance pathway and possibly in the biosynthetic and regulatory pathways. Here, we report that NrdI is a flavodoxin counterpart to YfaE for the class Ib RNR. It possesses redox properties unprecedented for a flavodoxin (E(ox/sq) = -264 +/- 17 mV and E(sq/hq) = -255 +/- 17 mV) that allow it to mediate a two-electron reduction of the diferric cluster of NrdF via two successive one-electron transfers. Data presented support the presence of a distinct maintenance pathway for NrdEF, orthogonal to that for NrdAB involving YfaE.
Collapse
|
43
|
Zocher G, Winkler R, Hertweck C, Schulz GE. Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus. J Mol Biol 2007; 373:65-74. [PMID: 17765264 DOI: 10.1016/j.jmb.2007.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/16/2022]
Abstract
Nitro groups are found in a number of bioactive compounds. Most of them arise by a stepwise mono-oxygenation of amino groups. One of the involved enzymes is AurF participating in the biosynthesis of aureothin. Its structure was established at 2.1 A resolution showing a homodimer with a binuclear manganese cluster. The enzyme preparation, which yielded the analyzed crystals, showed activity using in vitro and in vivo assays. Chain fold and cluster are homologous with ribonucleotide reductase subunit R2 and related enzymes. The two manganese ions and an iron content of about 15% were established by anomalous X-ray diffraction. A comparison of the cluster with more common di-iron clusters suggested an additional histidine in the coordination sphere to cause the preference for manganese over iron. There is no oxo-bridge. The substrate p-amino-benzoate was modeled into the active center. The model is supported by mutant activity measurements. It shows the geometry of the reaction and explains the established substrate spectrum.
Collapse
Affiliation(s)
- Georg Zocher
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
44
|
Sazinsky MH, Dunten PW, McCormick MS, DiDonato A, Lippard SJ. X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Biochemistry 2006; 45:15392-404. [PMID: 17176061 PMCID: PMC1829208 DOI: 10.1021/bi0618969] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenol hydroxylase (PH) belongs to a family of bacterial multicomponent monooxygenases (BMMs) with carboxylate-bridged diiron active sites. Included are toluene/o-xylene (ToMO) and soluble methane (sMMO) monooxygenase. PH hydroxylates aromatic compounds, but unlike sMMO, it cannot oxidize alkanes despite having a similar dinuclear iron active site. Important for activity is formation of a complex between the hydroxylase and a regulatory protein component. To address how structural features of BMM hydroxylases and their component complexes may facilitate the catalytic mechanism and choice of substrate, we determined X-ray structures of native and SeMet forms of the PH hydroxylase (PHH) in complex with its regulatory protein (PHM) to 2.3 A resolution. PHM binds in a canyon on one side of the (alphabetagamma)2 PHH dimer, contacting alpha-subunit helices A, E, and F approximately 12 A above the diiron core. The structure of the dinuclear iron center in PHH resembles that of mixed-valent MMOH, suggesting an Fe(II)Fe(III) oxidation state. Helix E, which comprises part of the iron-coordinating four-helix bundle, has more pi-helical character than analogous E helices in MMOH and ToMOH lacking a bound regulatory protein. Consequently, conserved active site Thr and Asn residues translocate to the protein surface, and an approximately 6 A pore opens through the four-helix bundle. Of likely functional significance is a specific hydrogen bond formed between this Asn residue and a conserved Ser side chain on PHM. The PHM protein covers a putative docking site on PHH for the PH reductase, which transfers electrons to the PHH diiron center prior to O2 activation, suggesting that the regulatory component may function to block undesired reduction of oxygenated intermediates during the catalytic cycle. A series of hydrophobic cavities through the PHH alpha-subunit, analogous to those in MMOH, may facilitate movement of the substrate to and/or product from the active site pocket. Comparisons between the ToMOH and PHH structures provide insights into their substrate regiospecificities.
Collapse
Affiliation(s)
- Matthew H Sazinsky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
45
|
Hakulinen N, Kruus K, Koivula A, Rouvinen J. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochem Biophys Res Commun 2006; 350:929-34. [PMID: 17045575 DOI: 10.1016/j.bbrc.2006.09.144] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 09/23/2006] [Indexed: 11/20/2022]
Abstract
Laccases (p-diphenol dioxygen oxidoreductases) belong to the family of blue multicopper oxidases, which catalyse the four-electron reduction of dioxygen to water concomitantly through the oxidation of substrate molecules. Blue multicopper oxidases have four coppers, a copper (T1) forming a mononuclear site and a cluster of three coppers (T2, T3, and T3') forming a trinuclear site. Because X-rays are known to liberate electrons during data collection and may thus affect the oxidation state of metals, we have investigated the effect of X-ray radiation upon the crystal structure of a recombinant laccase from Melanocarpus albomyces through the use of crystallography and crystal absorption spectroscopy. Two data sets with different strategies, a low and a high-dose data set, were collected at synchrotron. We have observed earlier that the trinuclear site had an elongated electron density amidst coppers, suggesting dioxygen binding. The low-dose synchrotron structure showed similar elongated electron density, but the high-dose X-ray radiation removed the bulk of this density. Therefore, X-ray radiation could alter the active site of laccase from M. albomyces. Absorption spectra of the crystals (320, 420, and 590nm) during X-ray radiation were measured at a home laboratory. Spectra clearly showed how that the band at 590nm had vanished, resulting from the T1 copper being reduced, during the long X-ray measurements. The crystal colour changed from blue to colourless. Absorptions at 320 and 420nm seemed to be rather permanent. The absorption at 320nm is due to the T3 coppers and it is proposed that absorption at 420nm is due to the T2 copper when dioxygen or a reaction intermediate is close to this copper.
Collapse
Affiliation(s)
- Nina Hakulinen
- Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland.
| | | | | | | |
Collapse
|
46
|
Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Biochem J 2006; 400:13-22. [PMID: 16856877 PMCID: PMC1635447 DOI: 10.1042/bj20060664] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholesterol oxidase is a monomeric flavoenzyme that catalyses the oxidation of cholesterol to cholest-5-en-3-one followed by isomerization to cholest-4-en-3-one. The enzyme from Brevibacterium sterolicum contains the FAD cofactor covalently bound to His121. It was previously demonstrated that the H121A substitution results in a approximately 100 mV decrease in the midpoint redox potential and a approximately 40-fold decrease in turnover number compared to wild-type enzyme [Motteran, Pilone, Molla, Ghisla and Pollegioni (2001) Journal of Biological Chemistry 276, 18024-18030]. A detailed kinetic analysis of the H121A mutant enzyme shows that the decrease in turnover number is largely due to a corresponding decrease in the rate constant of flavin reduction, whilst the re-oxidation reaction is only marginally altered and the isomerization reaction is not affected by the substitution and precedes product dissociation. The X-ray structure of the mutant protein, determined to 1.7 A resolution (1 A identical with 0.1 nm), reveals only minor changes in the overall fold of the protein, namely: two loops have slight movements and a tryptophan residue changes conformation by a rotation of 180 degrees about chi1 compared to the native enzyme. Comparison of the isoalloxazine ring moiety of the FAD cofactor between the structures of the native and mutant proteins shows a change from a non-planar to a planar geometry (resulting in a more tetrahedral-like geometry for N5). This change is proposed to be a major factor contributing to the observed alteration in redox potential. Since a similar distortion of the flavin has not been observed in other covalent flavoproteins, it is proposed to represent a specific mode to facilitate flavin reduction in covalent cholesterol oxidase.
Collapse
Affiliation(s)
- Louis Lim
- *Department of Chemistry and Biochemistry, Sinsheimer Laboratory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, U.S.A
| | - Gianluca Molla
- †Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Nicole Guinn
- *Department of Chemistry and Biochemistry, Sinsheimer Laboratory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, U.S.A
| | - Sandro Ghisla
- ‡Fachbereich Biologie, University of Konstanz, Konstanz, Germany
| | - Loredano Pollegioni
- †Department of Biotechnology and Molecular Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Alice Vrielink
- *Department of Chemistry and Biochemistry, Sinsheimer Laboratory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Galander M, Uppsten M, Uhlin U, Lendzian F. Orientation of the Tyrosyl Radical in Salmonella typhimurium Class Ib Ribonucleotide Reductase Determined by High Field EPR of R2F Single Crystals. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Sazinsky MH, Lippard SJ. Correlating structure with function in bacterial multicomponent monooxygenases and related diiron proteins. Acc Chem Res 2006; 39:558-66. [PMID: 16906752 DOI: 10.1021/ar030204v] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial multicomponent monooxygenases (BMMs) catalyze the O2-dependent hydroxylation of hydrocarbons at a carboxylate-bridged diiron center similar to those that occur in a variety of dimetallic oxygen-utilizing enzymes. BMMs have found numerous biodegradation and biocatalytic applications. Recent investigations have begun to reveal how BMMs perform their C-H bond activation chemistry and why these enzymes may be mechanistically different from other related diiron proteins. The structures of the BMM component proteins and of complexes between them provide insights into the tuning of the dinuclear iron center and the enzyme mechanism. Selected findings are compared and contrasted with the properties of other carboxylate-bridged diiron proteins, revealing common structural and functional themes.
Collapse
Affiliation(s)
- Matthew H Sazinsky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
49
|
Galander M, Uppsten M, Uhlin U, Lendzian F. Orientation of the tyrosyl radical in Salmonella typhimurium class Ib ribonucleotide reductase determined by high field EPR of R2F single crystals. J Biol Chem 2006; 281:31743-52. [PMID: 16854982 DOI: 10.1074/jbc.m605089200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2 protein of class I ribonucleotide reductase (RNR) generates and stores a tyrosyl radical, located next to a diferric iron center, which is essential for ribonucleotide reduction and thus DNA synthesis. X-ray structures of class Ia and Ib proteins from various organisms served as bases for detailed mechanistic suggestions. The active site tyrosine in R2F of class Ib RNR of Salmonella typhimurium is located at larger distance to the diiron site, and shows a different side chain orientation, as compared with the tyrosine in R2 of class Ia RNR from Escherichia coli. No structural information has been available for the active tyrosyl radical in R2F. Here we report on high field EPR experiments of single crystals of R2F from S. typhimurium, containing the radical Tyr-105*. Full rotational pattern of the spectra were recorded, and the orientation of the g-tensor axes were determined, which directly reflect the orientation of the radical Tyr-105* in the crystal frame. Comparison with the orientation of the reduced tyrosine Tyr-105-OH from the x-ray structure reveals a rotation of the tyrosyl side chain, which reduces the distance between the tyrosyl radical and the nearest iron ligands toward similar values as observed earlier for Tyr-122* in E. coli R2. Presence of the substrate binding subunit R1E did not change the EPR spectra of Tyr-105*, indicating that binding of R2E alone induces no structural change of the diiron site. The present study demonstrates that structural and functional information about active radical states can be obtained by combining x-ray and high-field-EPR crystallography.
Collapse
Affiliation(s)
- Marcus Galander
- Max-Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
Ribonucleotide reductases (RNRs) transform RNA building blocks to DNA building blocks by catalyzing the substitution of the 2'OH-group of a ribonucleotide with a hydrogen by a mechanism involving protein radicals. Three classes of RNRs employ different mechanisms for the generation of the protein radical. Recent structural studies of members from each class have led to a deeper understanding of their catalytic mechanism and allosteric regulation by nucleoside triphosphates. The main emphasis of this review is on regulation of RNR at the molecular and cellular level. Conformational transitions induced by nucleotide binding determine the regulation of substrate specificity. An intricate interplay between gene activation, enzyme inhibition, and protein degradation regulates, together with the allosteric effects, enzyme activity and provides the appropriate amount of deoxynucleotides for DNA replication and repair. In spite of large differences in the amino acid sequences, basic structural features are remarkably similar and suggest a common evolutionary origin for the three classes.
Collapse
Affiliation(s)
- Pär Nordlund
- Division of Biophysics and 2Division of Biochemistry, Medical Nobel Institute, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | |
Collapse
|