1
|
Wang J, Fourriere L, Gleeson PA. Advances in the cell biology of the trafficking and processing of amyloid precursor protein: impact of familial Alzheimer's disease mutations. Biochem J 2024; 481:1297-1325. [PMID: 39302110 DOI: 10.1042/bcj20240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The production of neurotoxic amyloid-β peptides (Aβ) is central to the initiation and progression of Alzheimer's disease (AD) and involves sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are transmembrane proteins and their co-localisation in the same membrane-bound sub-compartment is necessary for APP cleavage. The intracellular trafficking of APP and the β-secretase, BACE1, is critical in regulating APP processing and Aβ production and has been studied in several cellular systems. Here, we summarise the intracellular distribution and transport of APP and its secretases, and the intracellular location for APP cleavage in non-polarised cells and neuronal models. In addition, we review recent advances on the potential impact of familial AD mutations on APP trafficking and processing. This is critical information in understanding the molecular mechanisms of AD progression and in supporting the development of novel strategies for clinical treatment.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Zhang J, Jiang Y, Dong X, Meng Z, Ji L, Kang Y, Liu M, Zhou W, Song W. Alpha-lipoic acid alleviates cognitive deficits in transgenic APP23/PS45 mice through a mitophagy-mediated increase in ADAM10 α-secretase cleavage of APP. Alzheimers Res Ther 2024; 16:160. [PMID: 39030577 PMCID: PMC11264788 DOI: 10.1186/s13195-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear. In particular, the role of ALA in amyloid-β precursor protein (APP) metabolism has not been fully elucidated. OBJECTIVE To investigate whether ALA can reduce the amyloidogenic effect of APP in a transgenic mouse model of AD, and to study the mechanism underlying this effect. METHODS ALA was infused into 2-month-old APP23/PS45 transgenic mice for 4 consecutive months and their cognitive function and AD-like pathology were then evaluated. An ALA drug concentration gradient was applied to 20E2 cells in vitro to evaluate its effect on the expression of APP proteolytic enzymes and metabolites. The mechanism by which ALA affects APP processing was studied using GI254023X, an inhibitor of A Disintegrin and Metalloproteinase 10 (ADAM10), as well as the mitochondrial toxic drug carbonyl cyanide m-chlorophenylhydrazone (CCCP). RESULTS Administration of ALA ameliorated amyloid plaque neuropathology in the brain tissue of APP23/PS45 mice and reduced learning and memory impairment. ALA also increased the expression of ADAM10 in 20E2 cells and the non-amyloidogenic processing of APP to produce the 83 amino acid C-terminal fragment (C83). In addition to activating autophagy, ALA also significantly promoted mitophagy. BNIP3L-knockdown reduced the mat/pro ratio of ADAM10. By using CCCP, ALA was found to regulate BNIP3L-mediated mitophagy, thereby promoting the α-cleavage of APP. CONCLUSIONS The enhanced α-secretase cleavage of APP by ADAM10 is the primary mechanism through which ALA ameliorates the cognitive deficits in APP23/PS45 transgenic mice. BNIP3L-mediated mitophagy contributes to the anti-amyloid properties of ALA by facilitating the maturation of ADAM10. This study provides novel experimental evidence for the treatment of AD with ALA.
Collapse
Affiliation(s)
- Jie Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangye Ji
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Kang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
3
|
Pantelopulos GA, Abraham CB, Straub JE. Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease. Annu Rev Biophys 2024; 53:455-486. [PMID: 38382114 DOI: 10.1146/annurev-biophys-062823-023436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid-liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.
Collapse
Affiliation(s)
| | - Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
4
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
5
|
Haut F, Argyrousi EK, Arancio O. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. Int J Mol Sci 2023; 25:259. [PMID: 38203429 PMCID: PMC10779219 DOI: 10.3390/ijms25010259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
After several years of research in the field of Alzheimer's disease (AD), it is still unclear how amyloid-beta (Aβ) and Tau, two key hallmarks of the disease, mediate the neuropathogenic events that lead to AD. Current data challenge the "Amyloid Cascade Hypothesis" that has prevailed in the field of AD, stating that Aβ precedes and triggers Tau pathology that will eventually become the toxic entity in the progression of the disease. This perspective also led the field of therapeutic approaches towards the development of strategies that target Aβ or Tau. In the present review, we discuss recent literature regarding the neurotoxic role of both Aβ and Tau in AD, as well as their physiological function in the healthy brain. Consequently, we present studies suggesting that Aβ and Tau act independently of each other in mediating neurotoxicity in AD, thereafter, re-evaluating the "Amyloid Cascade Hypothesis" that places Tau pathology downstream of Aβ. More recent studies have confirmed that both Aβ and Tau could propagate the disease and induce synaptic and memory impairments via the amyloid precursor protein (APP). This finding is not only interesting from a mechanistic point of view since it provides better insights into the AD pathogenesis but also from a therapeutic point of view since it renders APP a common downstream effector for both Aβ and Tau. Subsequently, therapeutic strategies that act on APP might provide a more viable and physiologically relevant approach for targeting AD.
Collapse
Affiliation(s)
- Florence Haut
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Galzitskaya OV, Grishin SY, Glyakina AV, Dovidchenko NV, Konstantinova AV, Kravchenko SV, Surin AK. The Strategies of Development of New Non-Toxic Inhibitors of Amyloid Formation. Int J Mol Sci 2023; 24:3781. [PMID: 36835194 PMCID: PMC9964835 DOI: 10.3390/ijms24043781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In recent years, due to the aging of the population and the development of diagnostic medicine, the number of identified diseases associated with the accumulation of amyloid proteins has increased. Some of these proteins are known to cause a number of degenerative diseases in humans, such as amyloid-beta (Aβ) in Alzheimer's disease (AD), α-synuclein in Parkinson's disease (PD), and insulin and its analogues in insulin-derived amyloidosis. In this regard, it is important to develop strategies for the search and development of effective inhibitors of amyloid formation. Many studies have been carried out aimed at elucidating the mechanisms of amyloid aggregation of proteins and peptides. This review focuses on three amyloidogenic peptides and proteins-Aβ, α-synuclein, and insulin-for which we will consider amyloid fibril formation mechanisms and analyze existing and prospective strategies for the development of effective and non-toxic inhibitors of amyloid formation. The development of non-toxic inhibitors of amyloid will allow them to be used more effectively for the treatment of diseases associated with amyloid.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS, The Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikita V. Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anastasiia V. Konstantinova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Faculty of Biotechnology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| |
Collapse
|
7
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
8
|
Boutté AM, Thangavelu B, Anagli J. Opinion: The Potential Role of Amyloid Beta Peptides as Biomarkers of Subconcussion and Concussion. Front Neurol 2022; 13:941151. [PMID: 35903122 PMCID: PMC9315433 DOI: 10.3389/fneur.2022.941151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Angela M. Boutté
- Aries Biotechnologies, Oakland, CA, United States
- *Correspondence: Angela M. Boutté
| | | | - John Anagli
- NeuroTheranostics, Inc., Detroit, MI, United States
| |
Collapse
|
9
|
Aow J, Huang TR, Thinakaran G, Koo EH. Enhanced cleavage of APP by co-expressed Bace1 alters the distribution of APP and its fragments in neuronal and non-neuronal cells. Mol Neurobiol 2022; 59:3073-3090. [PMID: 35266114 DOI: 10.1007/s12035-022-02733-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alzheimer's disease amyloid-beta peptides (Aβ) are generated via sequential cleavage of the amyloid precursor protein (APP) by β-secretase (Bace1) and γ-secretase. Though the precise subcellular location(s) of Bace1-mediated APP cleavage remains unresolved, current models suggest APP internalization into Bace1-containing endosomes is a critical step. However, direct evidence for this model is lacking, and previous reports that probed the APP/Bace1 interaction (using co-expressed APP and Bace1 differentially labeled with fluorescent protein tags) did not determine if APP fluorescence originated from full-length APP (fl-APP) molecules that had internalized from the cell surface pool. METHODS We adapted the bungarotoxin-ligand (BTX) system to label surface APP and track internalized fluorescent APP/BTX puncta in rodent primary neurons co-expressing fluorescently-tagged Bace1. Subsequently, we employed imaging and biochemical-based approaches to measure N- and C-terminal APP epitope levels in primary neurons, N2a neuroblastoma, and HeLa cell lines. RESULTS We hypothesized that surface-labeled APP/BTX puncta would, upon internalization, colocalize with fluorescently-tagged Bace1. Unexpectedly, we observed a dramatic loss of internalized APP in co-transfected neurons and ~ 80-90% loss of surface-resident fl-APP, which we also observed in HeLa and N2a cells. Loss of surface fl-APP could be reversed by a Bace1 inhibitor, suggesting that enhanced Bace1-mediated APP cleavage was responsible for the altered processing and mis-sorting. Importantly, in a C-terminally-tagged APP construct, the majority of C-terminal fluorescence was preserved in HeLa cells despite the loss of N-terminal APP signal. This phenomenon was not only recapitulated in cultured neurons, but also showed a progressive disappearance of the APP N-terminal tag, reflecting continual cleavage of fl-APP by Bace1 away from the cell body. CONCLUSIONS Our results strongly suggested that in APP/Bace1 co-expression approaches, there was significant early and aberrant Bace1-mediated APP cleavage that perturbed fl-APP trafficking from the secretory pathway onwards, resulting in a substantial loss of surface fl-APP, which in turn led to a marked reduction in APP internalization. In C-terminally-tagged APP constructs, a large fraction of the APP fluorescence signal therefore likely arose from fluorescently-tagged β-C-terminal-fragment (β-CTF) or downstream proteolytic derivatives instead of fl-APP. Thus, care is needed in interpreting results where APP is detected only with a C-terminal tag in the presence of Bace1 co-expression, and previous findings may need to be reinterpreted if it is unclear whether fl-APP is present in normal physiological levels.
Collapse
Affiliation(s)
- Jonathan Aow
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore, Singapore, Singapore.
- Department of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tzu-Rung Huang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Gopal Thinakaran
- USF Health Byrd Alzheimer's Center and Research Institute and Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Edward H Koo
- Department of Medicine, National University of Singapore, Singapore, Singapore.
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
10
|
The transmembrane domain of the amyloid precursor protein is required for anti-amyloidogenic processing by α-secretase ADAM10. J Biol Chem 2022; 298:101911. [PMID: 35398353 PMCID: PMC9127328 DOI: 10.1016/j.jbc.2022.101911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Neurotoxic amyloid β-peptides (Aβ) are thought to be a causative agent of Alzheimer's disease in humans. The production of Aβ from amyloid precursor protein (APP) could be diminished by enhancing α-processing; however, the physical interactions between APP and α-secretases are not well understood. In this study, we employed super-resolution light microscopy to examine in cell-free plasma membranes the abundance and association of APP and α-secretases ADAM10 and ADAM17. We found that both secretase molecules localize similarly closely to APP (within ≤ 50 nm). However, when cross-linking APP with antibodies directed against the GFP-tag of APP, in confocal microscopy we observed that only ADAM10 co-aggregated with APP. Furthermore, we mapped the involved protein domain by using APP variants with an exchanged transmembrane segment or lacking cytoplasmic/extracellular domains. We identified that APP's transmembrane domain is required for association with α-secretases and, as analysed by Western Blot, for α-processing. We propose that the APP transmembrane domain interacts either directly or indirectly with ADAM10, but not with ADAM17, explaining the dominant role of ADAM10 in α-processing of APP. Further understanding of this interaction may facilitate the development of a therapeutic strategy based on promoting APP cleavage by α-secretases.
Collapse
|
11
|
Suresh S, Begum RF, Singh S A, V C. Anthocyanin as a therapeutic in Alzheimer's disease: A systematic review of preclinical evidences. Ageing Res Rev 2022; 76:101595. [PMID: 35217244 DOI: 10.1016/j.arr.2022.101595] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this systematic review is to ponder the possible mechanism of action of anthocyanin in Alzheimer's disease (AD), to prompt the development of anthocyanin-based dietary supplementation or therapeutic intervention for AD and to explore the natural sources of anthocyanins. METHODS Electronic bibliographic databases such as PubMed, ScienceDirect, Proquest, DOAJ, Scopus, and Google Scholar were searched for preclinical studies probing the efficacy of anthocyanin on AD. The search strategy included no time limit, but was restricted to English. The review protocol is registered on PROSPERO, registration no. CRD42021272972. The systematic review followed the PICO approach for inclusion of reports. All the reports were appraised for risk of bias using the SYRCLE's RoB tool. RESULTS Bibliographic details of the article, animal strain/weight/age, induction model, anthocyanin source, type of anthocyanin, dose, route of administration, duration, and the outcome measures were extracted from 12 retrieved reports explicitly. The implication of food-based anthocyanin in acute and long-term cognition and Aβ mediated neurodegeneration appears alluring. Majority of the studies comprehended in this review had moderate methodological quality. DISCUSSION Efficacy of anthocyanin in alleviating oxidative stress, reactive astrogliosis, cholinergic dysfunction, apoptosis, synaptotoxicity, neuroinflammation, tau hyperphosphorylation, dysregulated membrane potential, neuronal extracellular calcium, dysfunctional amyloidogenic pathway, and cognitive deficits in various rodent models of AD is manifested compositely in 12 studies.
Collapse
|
12
|
Kwon OH, Cho YY, Lee JH, Chung S. O-GlcNAcylation Inhibits Endocytosis of Amyloid Precursor Protein by Decreasing Its Localization in Lipid Raft Microdomains. MEMBRANES 2021; 11:membranes11120909. [PMID: 34940409 PMCID: PMC8704492 DOI: 10.3390/membranes11120909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
Like protein phosphorylation, O-GlcNAcylation is a common post-translational protein modification. We already reported that O-GlcNAcylation of amyloid precursor protein (APP) in response to insulin signaling reduces neurotoxic amyloid-β (Aβ) production via inhibition of APP endocytosis. Internalized APP is delivered to endosomes and lysosomes where Aβ is produced. However, the molecular mechanism involved in the effect of APP O-GlcNAcylation on APP trafficking remains unknown. To investigate the relationship between APP O-GlcNAcylation and APP endocytosis, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing APP and BACE1, and cultured rat hippocampal neurons. The present study showed that APP O-GlcNAcylation translocated APP from lipid raft to non-raft microdomains in the plasma membrane by using immunocytochemistry and discontinuous sucrose gradients method. By using the biotinylation method, we also found that APP preferentially underwent endocytosis from lipid rafts and that the amount of internalized APP from lipid rafts was specifically reduced by O-GlcNAcylation. These results indicate that O-GlcNAcylation can regulate lipid raft-dependent APP endocytosis via translocation of APP into non-raft microdomains. Our findings showed a new functional role of O-GlcNAcylation for the regulation of APP trafficking, offering new mechanistic insight for Aβ production.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
- Correspondence:
| |
Collapse
|
13
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
14
|
Godoy PA, Mennickent D, Cuchillo-Ibáñez I, Ramírez-Molina O, Silva-Grecchi T, Panes-Fernández J, Castro P, Sáez-Valero J, Fuentealba J. Increased P2×2 receptors induced by amyloid-β peptide participates in the neurotoxicity in alzheimer's disease. Biomed Pharmacother 2021; 142:111968. [PMID: 34343896 DOI: 10.1016/j.biopha.2021.111968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/20/2023] Open
Abstract
Amyloid beta peptide (Aβ) is tightly associated with the physiopathology of Alzheimer's Disease (AD) as one of the most important factors in the evolution of the pathology. In this context, we previously reported that Aβ increases the expression of ionotropic purinergic receptor 2 (P2×2R). However, its role on the cellular and molecular Aβ toxicity is unknown, especially in human brain of AD patients. Using cellular and molecular approaches in hippocampal neurons, PC12 cells, and human brain samples of patients with AD, we evaluated the participation of P2×2R in the physiopathology of AD. Here, we reported that Aβ oligomers (Aβo) increased P2×2 levels in mice hippocampal neurons, and that this receptor increases at late Braak stages of AD patients. Aβo also increases the colocalization of APP with Rab5, an early endosomes marker, and decreased the nuclear/cytoplasmic ratio of Fe65 and PGC-1α immunoreactivity. The overexpression in PC12 cells of P2×2a, but not P2×2b, replicated these changes in Fe65 and PGC-1α; however, both overexpressed isoforms increased levels of Aβ. Taken together, these data suggest that P2×2 is upregulated in AD and it could be a key potentiator of the physiopathology of Aβ. Our results point to a possible participation in a toxic cycle that increases Aβ production, Ca2+ overload, and a decrease of PGC-1α. These novel findings put the P2×2R as a key novel pharmacological target to develop new therapeutic strategies to treat Alzheimer's Disease.
Collapse
Affiliation(s)
- Pamela A Godoy
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Daniela Mennickent
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550 Alicante, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Oscar Ramírez-Molina
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jessica Panes-Fernández
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550 Alicante, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
15
|
Babusikova E, Dobrota D, Turner AJ, Nalivaeva NN. Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:680-692. [PMID: 34225591 DOI: 10.1134/s0006297921060067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPβ produced by β-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic β-secretase pathway and accumulation of the neurotoxic Aβ peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.
Collapse
Affiliation(s)
- Eva Babusikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Dusan Dobrota
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| |
Collapse
|
16
|
Takada-Takatori Y. [Donepezil Reduces Amyloid Precursor Protein Endocytosis by Resulting from Increase in the Expression of Sorting Nexin Protein 33]. YAKUGAKU ZASSHI 2021; 141:851-856. [PMID: 34078793 DOI: 10.1248/yakushi.20-00251-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Donepezil, the most widely used drug for the treatment of Alzheimer's disease (AD), is an acetylcholinesterase (AChE) inhibitor and is thought to improve cognition by stimulating cholinergic neurotransmission. However, no correlation has yet been established between the inhibitory role of AChE inhibitors and their therapeutic effects when used in AD patients. The cleavage pathway of amyloid precursor protein (APP) includes amyloidgenic (β, γ-cleavage) and non-amyloidgenic (α-cleavage) pathways. The intracellular transportation of APP is important in determining these cleavage pathways. It has been suggested that sorting nexin (SNX) family proteins regulates the intracellular transport of APP, thereby enhancing α-cleavage. In this study, we examined the effects of donepezil on SNX33 expression changes and APP processing in primary cultures of fetal rat cortical neurons. While donepezil treatment increased the levels of SNX33 expression and soluble APPα (sAPPα) in culture media, no changes were observed regarding full-length APP expression in the cell lysate. Donepezil also reduced the release of amyloid β (Aβ) into culture media in a concentration- and time-dependent manner. This reduction was not affected by acetylcholine receptor antagonists. The membrane surface expression of APP was elevated by donepezil. Furthermore, SNX knockdown by antisense morpholino oligos prevented the effects of donepezil. These results indicated that donepezil increased APP expression at the surface of the plasma membrane by decreasing APP endocytosis through upregulation of SNX33, suggesting donepezil might stimulate the non-amyloidogenic pathway. This new mechanism of action for the currently used anti-AD drug may provide a valuable basis for future drug discovery.
Collapse
|
17
|
Peng Y, Tao H, Wang S, Xiao J, Wang Y, Su H. Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer's disease: A compendium of time-tested strategy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
18
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
19
|
Akasaka-Manya K, Manya H. The Role of APP O-Glycosylation in Alzheimer's Disease. Biomolecules 2020; 10:biom10111569. [PMID: 33218200 PMCID: PMC7699271 DOI: 10.3390/biom10111569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The number of people with dementia is increasing rapidly due to the increase in the aging population. Alzheimer’s disease (AD) is a type of neurodegenerative dementia caused by the accumulation of abnormal proteins. Genetic mutations, smoking, and several other factors have been reported as causes of AD, but alterations in glycans have recently been demonstrated to play a role in AD. Amyloid-β (Aβ), a cleaved fragment of APP, is the source of senile plaque, a pathological feature of AD. APP has been reported to undergo N- and O-glycosylation, and several Polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) have been shown to have catalytic activity for the transfer of GalNAc to APP. Since O-glycosylation in the proximity of a cleavage site in many proteins has been reported to be involved in protein processing, O-glycans may affect the cleavage of APP during the Aβ production process. In this report, we describe new findings on the O-glycosylation of APP and Aβ production.
Collapse
|
20
|
Thangavelu B, Wilfred BS, Johnson D, Gilsdorf JS, Shear DA, Boutté AM. Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues. Front Neurosci 2020; 14:915. [PMID: 33071724 PMCID: PMC7530327 DOI: 10.3389/fnins.2020.00915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is a risk factor for neurodegenerative diseases. Yet, the molecular events involving dysregulated miRNAs that may be associated with protein degradation in the brain remains elusive. Quantitation of more than 800 miRNAs was conducted using rat ipsilateral coronal brain tissues collected 1, 3, or 7 days after penetrating ballistic-like brain injury (PBBI). As a control for each time-point, Sham-operated animals received craniotomy alone. Microarray and systems biology analysis indicated that the amplitude and complexity of miRNAs affected were greatest 7 day after PBBI. Arrays and Q-PCR inferred that dysregulation of miR-135a, miR-328, miR-29c, and miR-21 were associated with altered levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), PSEN1, PSEN2, and amyloid precursor protein (APP) genes. These events were followed by increased levels of mature BACE1 protein and concomitant loss of full length APP within 3–7 days, then elevation of amyloid beta (Aβ)-40 7 days after PBBI. This study indicates that miRNA arrays, coupled with systems biology, may be used to guide study design prior validation of miRNA dysregulation. Associative analysis of miRNAs, mRNAs, and proteins within a proposed pathway are poised for further validation as biomarkers and therapeutic targets relevant to TBI-induced APP loss and subsequent Aβ peptide generation during neurodegeneration.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - David Johnson
- Department of Pathology and Area Laboratory Services, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
21
|
Kwon OH, Cho YY, Kim TW, Chung S. O-GlcNAcylation of Amyloid-β Protein Precursor by Insulin Signaling Reduces Amyloid-β Production. J Alzheimers Dis 2020; 69:1195-1211. [PMID: 31156159 DOI: 10.3233/jad-190060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is caused by the accumulation of neurotoxic amyloid-β (Aβ) peptides. Aβ is derived from amyloid-β protein precursor (AβPP). In the non-amyloidogenic pathway, AβPP is cleaved by α-secretase and γ-secretase at the plasma membrane, excluding Aβ production. Alternatively, AβPP in the plasma membrane is internalized via endocytosis, and delivered to early endosomes and lysosomes, where it is cleaved by β-secretase and γ-secretase. Recent studies have shown that insulin in the periphery crosses the blood-brain barrier, and plays important roles in the brain. Furthermore, impaired insulin signaling has been linked to the progression of AD, and intranasal insulin administration improves memory impairments and cognition. However, the underlying molecular mechanisms of insulin treatment remain largely unknown. To investigate the effects of insulin on AβPP processing, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing AβPP, and cultured rat cortical neurons. We found that insulin increased the level of cell surface AβPP, decreasing the endocytosis rate of AβPP. Insulin reduced Aβ generation through upregulation of AβPP O-GlcNAcylation via Akt insulin signaling. Our present data suggest that insulin affects Aβ production by regulating AβPP processing through AβPP O-GlcNAcylation. These results provide mechanistic insight into the beneficial effects of insulin, and a possible link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.
Collapse
Affiliation(s)
- Oh Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae-Wan Kim
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
22
|
Cone AS, Hurwitz SN, Lee GS, Yuan X, Zhou Y, Li Y, Meckes DG. Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Mol Cell Biol 2020; 21:58. [PMID: 32731849 PMCID: PMC7392838 DOI: 10.1186/s12860-020-00302-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endosomal trafficking and amyloidogenic cleavage of amyloid precursor protein (APP) is believed to play a role in the neurodegeneration observed in Alzheimer's disease (AD). Recent evidence has suggested that packaging and secretion of APP and its amyloidogenic cleaved products into small extracellular vesicles (EVs) may facilitate uptake of these neurotoxic factors during disease progression. However, the molecular mechanisms underlying trafficking of APP into EVs are poorly understood. RESULTS In this study, the mechanism and impact of APP trafficking into extracellular vesicles (EVs) were assessed by a series of inducible gene knockdowns. We demonstrate that vesicle-associated proteins Alix and Syntenin-1 are essential for proper subcellular localization and efficient EV secretion of APP via an endosomal sorting complexes required for transport (ESCRT)-independent pathway. The neurotoxic C-terminal fragment (CTFβ) of APP is similarly secreted in association with small vesicles. These mechanisms are conserved in terminally differentiated neuron-like cells. Furthermore, knockdown of Alix and Syntenin-1 alters the subcellular localization of APP, sequestering the precursor protein to endoplasmic reticulum and endolysosomal compartments, respectively. Finally, transfer of small EVs containing mutant APP confers an increase in reactive oxygen species production and neurotoxicity to human induced pluripotent stem cell-derived cortical neurons and naïve primary neurons, an effect that is ameliorated by Alix and Syntenin-1 depletion. CONCLUSIONS Altogether these findings elucidate a novel mechanism for understanding the intracellular trafficking of APP and CTFβ into secreted extracellular vesicles, and the resultant potential impact on neurotoxicity in the context of Alzheimer's disease amyloidopathy.
Collapse
Affiliation(s)
- Allaura S Cone
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Gloria S Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
23
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
24
|
Janitschke D, Nelke C, Lauer AA, Regner L, Winkler J, Thiel A, Grimm HS, Hartmann T, Grimm MOW. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019; 9:E689. [PMID: 31684105 PMCID: PMC6920871 DOI: 10.3390/biom9110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer's disease (AD). All MTXs decreased amyloid-β (Aβ) level by shifting the amyloid precursor protein (APP) processing from the Aβ-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas β-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased β-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aβ1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aβ and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Christopher Nelke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Liesa Regner
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Andrea Thiel
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| |
Collapse
|
25
|
Xie Y, Niu M, Ji C, Huang TY, Zhang C, Tian Y, Shi Z, Wang C, Zhao Y, Luo H, Can D, Xu H, Zhang YW, Zhang X. SNX8 Enhances Non-amyloidogenic APP Trafficking and Attenuates Aβ Accumulation and Memory Deficits in an AD Mouse. Front Cell Neurosci 2019; 13:410. [PMID: 31551717 PMCID: PMC6743354 DOI: 10.3389/fncel.2019.00410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of various APP trafficking components in the endosome has been previously implicated in Alzheimer’s disease (AD). Although single nucleotide polymorphisms within the gene locus encoding the endosomal component, SNX8 have been previously associated with AD, how SNX8 levels are altered and its contribution to AD onset is currently unknown. Here, we observe decreased expression of SNX8 in human AD and AD mouse brain. SNX8 predominantly localized to early and late endosomes, where SNX8 overexpression enhanced total APP levels, cell surface APP distribution and consequent soluble APPα cleavage. SNX8 depletion resulted in elevated β-amyloid (Aβ) levels, while SNX8 overexpression reduced Aβ levels in cells and in an APP/PS1 AD mouse model. Importantly, SNX8 overexpression rescued cognitive impairment in APP/PS1 mice. Together, these results implicate a neuroprotective role for SNX8 in enhancing non-amyloidogenic APP trafficking and processing pathways. Given that endosomal dysfunction is an early event in AD, restoration of dysfunctional endosomal components such as SNX8 may be beneficial in future therapeutic strategies.
Collapse
Affiliation(s)
- Yongzhuang Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Mengxi Niu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Chengxiang Ji
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cuilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ye Tian
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Zhun Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China.,Department of Neurology, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
27
|
DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis 2019; 127:449-461. [PMID: 30885793 PMCID: PMC6588454 DOI: 10.1016/j.nbd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied because of its association with Alzheimer's disease (AD). However, APP distribution across different subcellular membrane compartments and its function in neurons remains unclear. We generated an APP fusion protein with a pH-sensitive green fluorescent protein at its ectodomain and a pH-insensitive blue fluorescent protein at its cytosolic domain and used it to measure APP's distribution, subcellular trafficking, and cleavage in live neurons. This reporter, closely resembling endogenous APP, revealed only a limited correlation between synaptic activities and APP trafficking. However, the synaptic surface fraction of APP was increased by a reduction in membrane cholesterol levels, a phenomenon that involves APP's cholesterol-binding motif. Mutations at or near binding sites not only reduced both the surface fraction of APP and membrane cholesterol levels in a dominant negative manner, but also increased synaptic vulnerability to moderate membrane cholesterol reduction. Our results reveal reciprocal modulation of APP and membrane cholesterol levels at synaptic boutons.
Collapse
Affiliation(s)
- Claire E DelBove
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America
| | - Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, United States of America
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, United States of America; Department of Medicine, Vanderbilt University Medical Center, United States of America
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, United States of America; Brain Institute, Florida Atlantic University, United States of America.
| |
Collapse
|
28
|
Tsatsanis A, Dickens S, Kwok JCF, Wong BX, Duce JA. Post Translational Modulation of β-Amyloid Precursor Protein Trafficking to the Cell Surface Alters Neuronal Iron Homeostasis. Neurochem Res 2019; 44:1367-1374. [PMID: 30796750 PMCID: PMC6525264 DOI: 10.1007/s11064-019-02747-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
Cell surface β-Amyloid precursor protein (APP) is known to have a functional role in iron homeostasis through stabilising the iron export protein ferroportin (FPN). Mechanistic evidence of this role has previously only been provided through transcriptional or translational depletion of total APP levels. However, numerous post-translational modifications of APP are reported to regulate the location and trafficking of this protein to the cell surface. Stable overexpressing cell lines were generated that overexpressed APP with disrupted N-glycosylation (APPN467K and APPN496K) or ectodomain phosphorylation (APPS206A); sites selected for their proximity to the FPN binding site on the E2 domain of APP. We hypothesise that impaired N-glycosylation or phosphorylation of APP disrupts the functional location on the cell surface or binding to FPN to consequentially alter intracellular iron levels through impaired cell surface FPN stability. Outcomes confirm that these post-translational modifications are essential for the correct location of APP on the cell surface and highlight a novel mechanism by which the cell can modulate iron homeostasis. Further interrogation of other post-translational processes to APP is warranted in order to fully understand how each modification plays a role on regulating intracellular iron levels in health and disease.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Stuart Dickens
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Jessica C F Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
- The ALBORADO Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.
- The ALBORADO Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK.
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Chun YS, Kwon OH, Oh HG, Cho YY, Yang HO, Chung S. Justicidin A Reduces β-Amyloid via Inhibiting Endocytosis of β-Amyloid Precursor Protein. Biomol Ther (Seoul) 2019; 27:276-282. [PMID: 30332887 PMCID: PMC6513189 DOI: 10.4062/biomolther.2018.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 09/01/2018] [Indexed: 11/05/2022] Open
Abstract
β-amyloid precursor protein (APP) can be cleaved by α-, and γ-secretase at plasma membrane producing soluble ectodomain fragment (sAPPα). Alternatively, following endocytosis, APP is cleaved by β-, and γ-secretase at early endosomes generating β-amyloid (Aβ), the main culprit in Alzheimer's disease (AD). Thus, APP endocytosis is critical for Aβ production. Recently, we reported that Monsonia angustifolia, the indigenous vegetables consumed in Tanzania, improved cognitive function and decreased Aβ production. In this study, we examined the underlying mechanism of justicidin A, the active compound of M. angustifolia, on Aβ production. We found that justicidin A reduced endocytosis of APP, increasing sAPPα level, while decreasing Aβ level in HeLa cells overexpressing human APP with the Swedish mutation. The effect of justicidin A on Aβ production was blocked by endocytosis inhibitors, indicating that the decreased APP endocytosis by justicidin A is the underlying mechanism. Thus, justicidin A, the active compound of M. angustifolia, may be a novel agent for AD treatment.
Collapse
Affiliation(s)
- Yoon Sun Chun
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun Geun Oh
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun Ok Yang
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Abstract
Plasma membrane proteins organize into structures named compartments, microdomains, rafts, phases, crowds, or clusters. These structures are often smaller than 100 nm in diameter. Despite their importance in many cellular functions, little is known about their inner organization. For instance, how densely are molecules packed? Being aware of the protein compaction may contribute to our general understanding of why such structures exist and how they execute their functions. In this study, we have investigated plasma membrane crowds formed by the amyloid precursor protein (APP), a protein well known for its involvement in Alzheimer's disease. By combining biochemical experiments with conventional and super-resolution stimulated emission depletion microscopy, we quantitatively determined the protein packing density within APP crowds. We found that crowds occurring with reasonable frequency contain between 20 and 30 molecules occupying a spherical area with a diameter between 65 and 85 nm. Additionally, we found the vast majority of plasmalemmal APP residing in these crowds. The model suggests a high molecular density of protein material within plasmalemmal APP crowds. This should affect the protein's biochemical accessibility and processing by nonpathological α-secretases. As clustering of APP is a prerequisite for endocytic entry into the pathological processing pathway, elucidation of the packing density also provides a deeper understanding of this part of APP's life cycle.
Collapse
|
31
|
Tan JZA, Gleeson PA. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J Biol Chem 2019; 294:1618-1631. [PMID: 30545942 PMCID: PMC6364769 DOI: 10.1074/jbc.ra118.005222] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Amyloid precursor protein (APP) is processed along the amyloidogenic pathway by the β-secretase, BACE1, generating β-amyloid (Aβ), or along the nonamyloidogenic pathway by α-secretase, precluding Aβ production. The plasma membrane is considered the major site for α-secretase-mediated APP cleavage, but other cellular locations have not been rigorously investigated. Here, we report that APP is processed by endogenous α-secretase at the trans-Golgi network (TGN) of both transfected HeLa cells and mouse primary neurons. We have previously shown the adaptor protein complex, AP-4, and small G protein ADP-ribosylation factor-like GTPase 5b (Arl5b) are required for efficient post-Golgi transport of APP to endosomes. We found here that AP-4 or Arl5b depletion results in Golgi accumulation of APP and increased secretion of the soluble α-secretase cleavage product sAPPα. Moreover, inhibition of γ-secretase following APP accumulation in the TGN increases the levels of the membrane-bound C-terminal fragments of APP from both α-secretase cleavage (α-CTF, named C83 according to its band size) and BACE1 cleavage (β-CTF/C99). The level of C83 was ∼4 times higher than that of C99, indicating that α-secretase processing is the major pathway and that BACE1 processing is the minor pathway in the TGN. AP-4 silencing in mouse primary neurons also resulted in the accumulation of endogenous APP in the TGN and enhanced α-secretase processing. These findings identify the TGN as a major site for α-secretase processing in HeLa cells and primary neurons and indicate that both APP processing pathways can occur within the TGN compartment along the secretory pathway.
Collapse
Affiliation(s)
- Jing Zhi A Tan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
32
|
The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:697-712. [PMID: 30639513 DOI: 10.1016/j.bbamem.2018.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive accumulation of misfolded proteins, which form senile plaques and neurofibrillary tangles, and the release of inflammatory mediators by innate immune responses. β-Amyloid peptide (Aβ) is derived from sequential processing of the amyloid precursor protein (APP) by membrane-bound proteases, namely the β-secretase, BACE1, and γ-secretase. Membrane trafficking plays a key role in the regulation of APP processing as both APP and the processing secretases traffic along distinct pathways. Genome wide sequencing studies have identified several AD susceptibility genes which regulate membrane trafficking events. To understand the pathogenesis of AD it is critical that the cell biology of APP and Aβ production in neurons is well defined. This review discusses recent advances in unravelling the membrane trafficking events associated with the production of Aβ, and how AD susceptible alleles may perturb the sorting and transport of APP and BACE1. Mechanisms whereby inflammation may influence APP processing are also considered.
Collapse
|
33
|
Buechler J, Salinas PC. Deficient Wnt Signaling and Synaptic Vulnerability in Alzheimer's Disease: Emerging Roles for the LRP6 Receptor. Front Synaptic Neurosci 2018; 10:38. [PMID: 30425633 PMCID: PMC6218458 DOI: 10.3389/fnsyn.2018.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Synapse dysfunction and loss represent critical early events in the pathophysiology of Alzheimer’s disease (AD). While extensive research has elucidated the direct synaptotoxic effects of Amyloid-β (Aβ) oligomers, less is known about how signaling pathways at the synapse are affected by Aβ. A better understanding of the cellular and molecular mechanisms underlying synaptic vulnerability in AD is key to illuminating the determinants of AD susceptibility and will unveil novel therapeutic avenues. Canonical Wnt signaling through the Wnt co-receptor LRP6 has a critical role in maintaining the structural and functional integrity of synaptic connections in the adult brain. Accumulating evidence suggests that deficient Wnt signaling may contribute to AD pathology. In particular, LRP6 deficiency compromises synaptic function and stability, and contributes to Aß production and plaque formation. Here, we review the role of Wnt signaling for synaptic maintenance in the adult brain and the contribution of aberrant Wnt signaling to synaptic degeneration in AD. We place a focus on emerging evidence implicating the LRP6 receptor as an important modulator of AD risk and pathology.
Collapse
Affiliation(s)
- Johanna Buechler
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
34
|
Iron dysregulates APP processing accompanying with sAPPα cellular retention and β-secretase inhibition in rat cortical neurons. Acta Pharmacol Sin 2018; 39:177-183. [PMID: 28836584 DOI: 10.1038/aps.2017.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
Amyloid precursor protein (APP) and iron both play pivotal roles in the central nervous system, but whether and how iron influences the processing of endogenous APP in neurons remain unclear. Here, we investigated the regulatory effects and underlying mechanisms of iron on non-amyloidogenic and amyloidogenic processing of APP in rat primary cortical neurons. Treatment of the neurons with ferric ammonium citrate (FAC, 100 μmol/L) markedly facilitated the non-amyloidogenic processing of APP, as evidenced by a robust increase in α-secretase-derived carboxy-terminal fragment α (CTFα). Furthermore, the distribution of sAPPα was altered after iron treatment, and sAPPα remained in the cellular lysates instead of being secreted into the extracellular milieu. Moreover, the levels of APP amyloidogenic products, including sAPPβ and Aβ were both decreased. We further revealed that FAC did not alter the expression of β-secretase, but significantly suppressed its enzymatic activity in iron-treated neurons. In a cell-free β-secretase activity assay, FAC dose-dependently inhibited the activity of purified β-secretase with an IC50 value of 21.67 μmol/L. Our data provide the first evidence that iron overload alters the neuronal sAPPα distribution and directly inhibits β-secretase activity. These findings shed light on the regulatory mechanism of bio-metals on APP processing.
Collapse
|
35
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
36
|
Lau A, Bourkas M, Lu YQQ, Ostrowski LA, Weber-Adrian D, Figueiredo C, Arshad H, Shoaei SZS, Morrone CD, Matan-Lithwick S, Abraham KJ, Wang H, Schmitt-Ulms G. Functional Amyloids and their Possible Influence on Alzheimer Disease. Discoveries (Craiova) 2017; 5:e79. [PMID: 32309597 PMCID: PMC7159844 DOI: 10.15190/d.2017.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids play critical roles in human diseases but have increasingly been recognized to also exist naturally. Shared physicochemical characteristics of amyloids and of their smaller oligomeric building blocks offer the prospect of molecular interactions and crosstalk amongst these assemblies, including the propensity to mutually influence aggregation. A case in point might be the recent discovery of an interaction between the amyloid β peptide (Aβ) and somatostatin (SST). Whereas Aβ is best known for its role in Alzheimer disease (AD) as the main constituent of amyloid plaques, SST is intermittently stored in amyloid-form in dense core granules before its regulated release into the synaptic cleft. This review was written to introduce to readers a large body of literature that surrounds these two peptides. After introducing general concepts and recent progress related to our understanding of amyloids and their aggregation, the review focuses separately on the biogenesis and interactions of Aβ and SST, before attempting to assess the likelihood of encounters of the two peptides in the brain, and summarizing key observations linking SST to the pathobiology of AD. While the review focuses on Aβ and SST, it is to be anticipated that crosstalk amongst functional and disease-associated amyloids will emerge as a general theme with much broader significance in the etiology of dementias and other amyloidosis.
Collapse
Affiliation(s)
- Angus Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Matthew Bourkas
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Yang Qing Qin Lu
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lauren Anne Ostrowski
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Danielle Weber-Adrian
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Carlyn Figueiredo
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hamza Arshad
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Seyedeh Zahra Shams Shoaei
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Daniel Morrone
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Stuart Matan-Lithwick
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Karan Joshua Abraham
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
37
|
Chun YS, Kwon OH, Chung S. O-GlcNAcylation of amyloid-β precursor protein at threonine 576 residue regulates trafficking and processing. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Hou H, Habib A, Zi D, Tian K, Tian J, Giunta B, Sawmiller D, Tan J. Low-Density Lipoprotein Receptor-Related Protein-1 (LRP1) C4408R Mutant Promotes Amyloid Precursor Protein (APP) α-Cleavage in Vitro. Neuromolecular Med 2017; 19:300-308. [PMID: 28612181 DOI: 10.1007/s12017-017-8446-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Previous studies have demonstrated that the low-density lipoprotein receptor-related protein-1 (LRP1) plays conflicting roles in Alzheimer's disease (AD) pathogenesis, clearing β-amyloid (Aβ) from the brain while also enhancing APP endocytosis and resultant amyloidogenic processing. We have recently discovered that co-expression of mutant LRP1 C-terminal domain (LRP1-CT C4408R) with Swedish mutant amyloid precursor protein (APPswe) in Chinese hamster ovary (CHO) cells decreases Aβ production, while also increasing sAPPα and APP α-C-terminal fragment (α-CTF), compared with CHO cells expressing APPswe alone. Surprisingly, the location of this mutation on LRP1 corresponded with the α-secretase cleavage site of APP. Further experimentation confirmed that in CHO cells expressing APPswe or wild-type APP (APPwt), co-expression of LRP1-CT C4408R decreases Aβ and increases sAPPα and α-CTF compared with co-expression of wild-type LRP1-CT. In addition, LRP1-CT C4408R enhanced the unglycosylated form of LRP1-CT and reduced APP endocytosis as determined by flow cytometry. This finding identifies a point mutation in LRP1 which slows LRP1-CT-mediated APP endocytosis and amyloidogenic processing, while enhancing APP α-secretase cleavage, thus demonstrating a potential novel target for slowing AD pathogenesis.
Collapse
Affiliation(s)
- Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Dan Zi
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA.,Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, 55004, China
| | - Kathy Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Jun Tian
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Brian Giunta
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA.
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, 33613, USA
| |
Collapse
|
39
|
Dysregulation of intracellular trafficking and endosomal sorting in Alzheimer's disease: controversies and unanswered questions. Biochem J 2017; 473:1977-93. [PMID: 27407168 DOI: 10.1042/bcj20160147] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid plaques in the brain consisting of an aggregated form of amyloid β-peptide (Aβ) derived from sequential amyloidogenic processing of the amyloid precursor protein (APP) by membrane-bound proteases β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. The initial processing of APP by BACE1 is re-gulated by intracellular sorting events of the enzyme, which is a prime target for therapeutic intervention. GWAS (genome-wide sequencing studies) have identified several AD-susceptibility genes that are associated with the regulation of membrane trafficking, and substantial evidence now indicates that AD is likely to arise from defective membrane trafficking in either or both of the secretory and endocytic pathways. Considerable progress has been made in defining the intracellular trafficking pathways of BACE1 and APP and the sorting signals of these membrane proteins that define their itineraries. In this review we highlight recent advances in understanding the regulation of the intracellular sorting of BACE1 and APP, discuss how dysregulation of these trafficking events may lead to enhanced generation of the neurotoxic Aβ products in AD and highlight the unresolved questions in the field.
Collapse
|
40
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptor Antagonist NPS 2143 Restores Amyloid Precursor Protein Physiological Non-Amyloidogenic Processing in Aβ-Exposed Adult Human Astrocytes. Sci Rep 2017; 7:1277. [PMID: 28455519 PMCID: PMC5430644 DOI: 10.1038/s41598-017-01215-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Physiological non-amyloidogenic processing (NAP) of amyloid precursor holoprotein (hAPP) by α-secretases (e.g., ADAM10) extracellularly sheds neurotrophic/neuroprotective soluble (s)APPα and precludes amyloid-β peptides (Aβs) production via β-secretase amyloidogenic processing (AP). Evidence exists that Aβs interact with calcium-sensing receptors (CaSRs) in human astrocytes and neurons, driving the overrelease of toxic Aβ42/Aβ42-os (oligomers), which is completely blocked by CaSR antagonist (calcilytic) NPS 2143. Here, we investigated the mechanisms underlying NPS 2143 beneficial effects in human astrocytes. Moreover, because Alzheimer's disease (AD) involves neuroinflammation, we examined whether NPS 2143 remained beneficial when both fibrillary (f)Aβ25-35 and a microglial cytokine mixture (CMT) were present. Thus, hAPP NAP prevailed over AP in untreated astrocytes, which extracellularly shed all synthesized sAPPα while secreting basal Aβ40/42 amounts. Conversely, fAβ25-35 alone dramatically reduced sAPPα extracellular shedding while driving Aβ42/Aβ42-os oversecretion that CMT accelerated but not increased, despite a concurring hAPP overexpression. NPS 2143 promoted hAPP and ADAM10 translocation to the plasma membrane, thereby restoring sAPPα extracellular shedding and fully suppressing any Aβ42/Aβ42-os oversecretion, but left hAPP expression unaffected. Therefore, as anti-AD therapeutics calcilytics support neuronal viability by safeguarding astrocytes neurotrophic/neuroprotective sAPPα shedding, suppressing neurons and astrocytes Aβ42/Aβ42-os build-up/secretion, and remaining effective even under AD-typical neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy.
| | - Ubaldo Armato
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy
| | - Daisong Liu
- The Third Xiangya Hospital of Central South University, Department of Plastic Surgery, Changsha, Hunan, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy.
| |
Collapse
|
41
|
Grimm MOW, Mett J, Grimm HS, Hartmann T. APP Function and Lipids: A Bidirectional Link. Front Mol Neurosci 2017; 10:63. [PMID: 28344547 PMCID: PMC5344993 DOI: 10.3389/fnmol.2017.00063] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Extracellular neuritic plaques, composed of aggregated amyloid-β (Aβ) peptides, are one of the major histopathological hallmarks of Alzheimer's disease (AD), a progressive, irreversible neurodegenerative disorder and the most common cause of dementia in the elderly. One of the most prominent risk factor for sporadic AD, carrying one or two aberrant copies of the apolipoprotein E (ApoE) ε4 alleles, closely links AD to lipids. Further, several lipid classes and fatty acids have been reported to be changed in the brain of AD-affected individuals. Interestingly, the observed lipid changes in the brain seem not only to be a consequence of the disease but also modulate Aβ generation. In line with these observations, protective lipids being able to decrease Aβ generation and also potential negative lipids in respect to AD were identified. Mechanistically, Aβ peptides are generated by sequential proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. The α-secretase appears to compete with β-secretase for the initial cleavage of APP, preventing Aβ production. All APP-cleaving secretases as well as APP are transmembrane proteins, further illustrating the impact of lipids on Aβ generation. Beside the pathological impact of Aβ, accumulating evidence suggests that Aβ and the APP intracellular domain (AICD) play an important role in regulating lipid homeostasis, either by direct effects or by affecting gene expression or protein stability of enzymes involved in the de novo synthesis of different lipid classes. This review summarizes the current literature addressing the complex bidirectional link between lipids and AD and APP processing including lipid alterations found in AD post mortem brains, lipids that alter APP processing and the physiological functions of Aβ and AICD in the regulation of several lipid metabolism pathways.
Collapse
Affiliation(s)
- Marcus O. W. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| | - Janine Mett
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Heike S. Grimm
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland UniversityHomburg/Saar, Germany
- Neurodegeneration and Neurobiology, Saarland UniversityHomburg/Saar, Germany
- Deutsches Institut für DemenzPrävention (DIDP), Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
42
|
Carroll CM, Li YM. Physiological and pathological roles of the γ-secretase complex. Brain Res Bull 2016; 126:199-206. [PMID: 27133790 DOI: 10.1016/j.brainresbull.2016.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022]
Abstract
Gamma-secretase (GS) is an enzyme complex that cleaves numerous substrates, and it is best known for cleaving amyloid precursor protein (APP) to form amyloid-beta (Aβ) peptides. Aberrant cleavage of APP can lead to Alzheimer's disease, so much research has been done to better understand GS structure and function in hopes of developing therapeutics for Alzheimer's. Therefore, most of the attention in this field has been focused on developing modulators that reduce pathogenic forms of Aβ while leaving Notch and other GS substrates intact, but GS provides multiple avenues of modulation that could improve AD pathology. GS has complex regulation, through its essential subunits and other associated proteins, providing other targets for AD drugs. Therapeutics can also alter GS trafficking and thereby improve cognition, or move beyond Aβ entirely, effecting Notch and neural stem cells. GS also cleaves substrates that affect synaptic morphology and function, presenting another window by which GS modulation could improve AD pathology. Taken together, GS presents a unique cross road for neural processes and an ideal target for AD therapeutics.
Collapse
Affiliation(s)
- Courtney M Carroll
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, NY, United States; Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, NY, United States.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, NY, United States; Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, NY, United States; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, NY, United States
| |
Collapse
|
43
|
Kim BM, You MH, Chen CH, Suh J, Tanzi RE, Ho Lee T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum Mol Genet 2016; 25:2498-2513. [PMID: 27094130 DOI: 10.1093/hmg/ddw114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Extracellular deposition of amyloid-beta (Aβ) peptide, a metabolite of sequential cleavage of amyloid precursor protein (APP), is a critical step in the pathogenesis of Alzheimer's disease (AD). While death-associated protein kinase 1 (DAPK1) is highly expressed in AD brains and its genetic variants are linked to AD risk, little is known about the impact of DAPK1 on APP metabolism and Aβ generation. In this study, we demonstrated a novel effect of DAPK1 in the regulation of APP processing using cell culture and mouse models. DAPK1, but not its kinase deficient mutant (K42A), significantly increased human Aβ secretion in neuronal cell culture models. Moreover, knockdown of DAPK1 expression or inhibition of DAPK1 catalytic activity significantly decreased Aβ secretion. Furthermore, DAPK1, but not K42A, triggered Thr668 phosphorylation of APP, which may initiate and facilitate amyloidogenic APP processing leading to the generation of Aβ. In Tg2576 APPswe-overexpressing mice, knockout of DAPK1 shifted APP processing toward non-amyloidogenic pathway and decreased Aβ generation. Finally, in AD brains, elevated DAPK1 levels showed co-relation with the increase of APP phosphorylation. Combined together, these results suggest that DAPK1 promotes the phosphorylation and amyloidogenic processing of APP, and that may serve a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Byeong Mo Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Mi-Hyeon You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chun-Hau Chen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jaehong Suh
- Genetics and Aging Research Unit, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
44
|
Lee TH, Park S, You MH, Lim JH, Min SH, Kim BM. A potential therapeutic effect of saikosaponin C as a novel dual-target anti-Alzheimer agent. J Neurochem 2016; 136:1232-1245. [PMID: 26710244 DOI: 10.1111/jnc.13515] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the risk of developing it increases with advancing age. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the main bioactive components produced by the traditional Chinese herb, radix bupleuri, the root of Bupleurum falcatum, against AD in various neuronal models. Interestingly, we found that SSc has dual effects on AD by targeting amyloid beta (Aβ) and tau, two key proteins in AD. SSc significantly suppressed the release of both Aβ peptides 1-40 and 1-42 into cell culture supernatants, though it does not affect BACE1 activity and expression. SSc also inhibited abnormal tau phosphorylation at multiple AD-related residues. Moreover, SSc seems to have beneficial effects on cellular tau function; it accelerated nerve growth factor-mediated neurite outgrowth and increased the assembly of microtubules. In addition, SSc increased synaptic marker proteins such as synaptophysin and PSD-95. Considering its various biological activities, our results suggest that SSc might be a novel therapeutic tool for treating human AD and other neurodegenerative diseases. Tau and amyloid beta are two key features in Alzheimer's disease. Saikosaponin C, an active component of Bupleuri Radix, inhibits abnormal tau phosphorylation and amyloid beta production, thereby promoting synaptic integrity. Saikosaponin C also prevents amyloid beta-induced apoptosis in brain vascular endothelial cells. Therefore, Saikosaponin C may provide a new therapeutic strategy for treatment of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungha Park
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Hyeon You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | | | - Byeong Mo Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Germinated Brown Rice Alters Aβ(1-42) Aggregation and Modulates Alzheimer's Disease-Related Genes in Differentiated Human SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:153684. [PMID: 26858770 PMCID: PMC4700861 DOI: 10.1155/2015/153684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ) protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR) on the morphology of Aβ(1-42) were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42) suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.
Collapse
|
46
|
Zhu M, Zhao X, Chen J, Xu J, Hu G, Guo D, Li Q, Zhang X, Chang CCY, Song B, Xiong Y, Chang T, Li B. ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-α-processing alteration. Acta Biochim Biophys Sin (Shanghai) 2015; 47:951-9. [PMID: 26474739 DOI: 10.1093/abbs/gmv101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.
Collapse
Affiliation(s)
- Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaonan Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
47
|
Chun YS, Kwon OH, Oh HG, Kim TW, McIntire L, Park MK, Chung S. Threonine 576 residue of amyloid-β precursor protein regulates its trafficking and processing. Biochem Biophys Res Commun 2015; 467:955-60. [DOI: 10.1016/j.bbrc.2015.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 02/08/2023]
|
48
|
Williams TL, Urbanc B, Marshall KE, Vadukul DM, Jenkins ATA, Serpell LC. Europium as an inhibitor of Amyloid-β(1-42) induced membrane permeation. FEBS Lett 2015; 589:3228-36. [PMID: 26450778 PMCID: PMC4641243 DOI: 10.1016/j.febslet.2015.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
Europium ions complex with GM1 gangliosides in phospholipid membranes. Europium ions cause inhibition Aβ–membrane interactions. Europium blocks an Aβ receptor protecting against membrane permeation. Discrete Aβ binding events correlate to specific membrane permeation events.
Soluble Amyloid-beta (Aβ) oligomers are a source of cytotoxicity in Alzheimer’s disease (AD). The toxicity of Aβ oligomers may arise from their ability to interact with and disrupt cellular membranes mediated by GM1 ganglioside receptors within these membranes. Therefore, inhibition of Aβ–membrane interactions could provide a means of preventing the toxicity associated with Aβ. Here, using Surface Plasmon field-enhanced Fluorescence Spectroscopy, we determine that the lanthanide, Europium III chloride (Eu3+), strongly binds to GM1 ganglioside-containing membranes and prevents the interaction with Aβ42 leading to a loss of the peptides ability to cause membrane permeation. Here we discuss the molecular mechanism by which Eu3+ inhibits Aβ42-membrane interactions and this may lead to protection of membrane integrity against Aβ42 induced toxicity.
Collapse
Affiliation(s)
- Thomas L Williams
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK; Physics Department, Drexel University, Philadelphia, PA 19104, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Brigita Urbanc
- Physics Department, Drexel University, Philadelphia, PA 19104, USA
| | - Karen E Marshall
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Devkee M Vadukul
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | | | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK.
| |
Collapse
|
49
|
Bauereiss A, Welzel O, Jung J, Grosse-Holz S, Lelental N, Lewczuk P, Wenzel EM, Kornhuber J, Groemer TW. Surface Trafficking of APP and BACE in Live Cells. Traffic 2015; 16:655-75. [PMID: 25712587 PMCID: PMC6680167 DOI: 10.1111/tra.12270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Amyloid‐β (Aβ)‐peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aβ precursor protein (APP) by β‐site APP‐cleaving enzyme (BACE). Using live‐cell imaging of APP and BACE labeled with pH‐sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α‐secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual‐color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.
Collapse
Affiliation(s)
- Anna Bauereiss
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Simon Grosse-Holz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Natalia Lelental
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Eva M Wenzel
- Institute for Cancer Research, Department of Biochemistry, The Norwegian Radium Hospital, Montebello, N-0310, Oslo, Norway
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Teja W Groemer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| |
Collapse
|
50
|
Dienemann C, Coburger I, Mehmedbasic A, Andersen OM, Than ME. Mutants of Metal Binding Site M1 in APP E2 Show Metal Specific Differences in Binding of Heparin but Not of sorLA. Biochemistry 2015; 54:2490-9. [DOI: 10.1021/acs.biochem.5b00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Dienemann
- Leibniz
Institute for Age Research, Fritz Lipmann Institute (FLI), Protein Crystallography Group, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ina Coburger
- Leibniz
Institute for Age Research, Fritz Lipmann Institute (FLI), Protein Crystallography Group, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Arnela Mehmedbasic
- The
Lundbeck Foundation Research Center MIND, Danish Research Institute
of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership,
Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 Aarhus C, Denmark
| | - Olav M. Andersen
- The
Lundbeck Foundation Research Center MIND, Danish Research Institute
of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership,
Department of Biomedicine, Aarhus University, Ole Worms Allé 3, DK-8000 Aarhus C, Denmark
| | - Manuel E. Than
- Leibniz
Institute for Age Research, Fritz Lipmann Institute (FLI), Protein Crystallography Group, Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|