1
|
Guo J, He X, Tao J, Sun H, Yang J. Unraveling the Molecular Mechanisms of Mosquito Salivary Proteins: New Frontiers in Disease Transmission and Control. Biomolecules 2025; 15:82. [PMID: 39858476 PMCID: PMC11764250 DOI: 10.3390/biom15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Mosquito-borne diseases are a group of illnesses caused by pathogens transmitted by mosquitoes, and they are globally prevalent, particularly in tropical and subtropical regions. Pathogen transmission occurs during mosquito blood feeding, a process in which mosquito saliva plays a crucial role. Mosquito saliva contains a variety of biologically active proteins that facilitate blood feeding by preventing blood clotting, promoting vasodilation, and modulating the host's immune and inflammatory responses. These effects create an environment conducive to pathogen invasion and dissemination. Specific mosquito salivary proteins (MSPs) can promote pathogen transmission through mechanisms that either regulate hosts' anti-infective immune responses or directly enhance pathogens' activity. Strategies targeting these MSPs have emerged as an innovative and promising approach for the control of mosquito-borne diseases. Meanwhile, the diversity of these proteins and their complex interactions with the host immune system necessitate further research to develop safer and more effective interventions. This review examines the functional diversity of MSPs and their roles in disease transmission, discusses the advantages and challenges of strategies targeting these proteins, and explores potential future directions for research in this area.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| | - Jianli Tao
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| |
Collapse
|
2
|
Yu H, Kumar S, Frederiksen JW, Kolyadko VN, Pitoc G, Layzer J, Yan A, Rempel R, Francis S, Krishnaswamy S, Sullenger BA. Aptameric hirudins as selective and reversible EXosite-ACTive site (EXACT) inhibitors. Nat Commun 2024; 15:3977. [PMID: 38730234 PMCID: PMC11087511 DOI: 10.1038/s41467-024-48211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Surgery, Duke University, Durham, NC, USA
| | - Shekhar Kumar
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Vladimir N Kolyadko
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Pitoc
- Department of Surgery, Duke University, Durham, NC, USA
| | | | - Amy Yan
- Department of Surgery, Duke University, Durham, NC, USA
| | - Rachel Rempel
- Department of Surgery, Duke University, Durham, NC, USA
| | - Samuel Francis
- Department of Emergency Medicine, Duke University Hospital, Durham, NC, USA
| | - Sriram Krishnaswamy
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Bruce A Sullenger
- Department of Surgery, Duke University, Durham, NC, USA.
- Departments of Pharmacology & Cancer Biology and Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Chuang YM, Alameh MG, Abouneameh S, Raduwan H, Ledizet M, Weissman D, Fikrig E. A mosquito AgTRIO mRNA vaccine contributes to immunity against malaria. NPJ Vaccines 2023; 8:88. [PMID: 37286568 PMCID: PMC10244833 DOI: 10.1038/s41541-023-00679-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. To prevent malaria, vaccination is the most effective strategy and there is an urgent need for new strategies to enhance current pathogen-based vaccines. Active or passive immunization against a mosquito saliva protein, AgTRIO, contributes to protection against Plasmodium infection of mice. In this study, we generated an AgTRIO mRNA-lipid nanoparticle (LNP) and assessed its potential usefulness as a vaccine against malaria. Immunization of mice with an AgTRIO mRNA-LNP generated a robust humoral response, including AgTRIO IgG2a isotype antibodies that have been associated with protection. AgTRIO mRNA-LNP immunized mice exposed to Plasmodium berghei-infected mosquitoes had markedly reduced initial Plasmodium hepatic infection levels and increased survival compared to control mice. In addition, as the humoral response to AgTRIO waned over 6 months, additional mosquito bites boosted the AgTRIO IgG titers, including IgG1 and IgG2a isotypes, which offers a unique advantage compared to pathogen-based vaccines. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Mohamad-Gabriel Alameh
- Institute for RNA Innovation and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Drew Weissman
- Institute for RNA Innovation and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Aggarwal KK. A Non-competitive Serpin-Like Thrombin Inhibitor Isolated from Moringa oleifera Exhibit a High Affinity for Thrombin. Protein J 2023:10.1007/s10930-023-10116-6. [PMID: 37149510 DOI: 10.1007/s10930-023-10116-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
The majority of the clotting factors involved in blood coagulation pathways are serine proteases and thrombin is one of the key serine proteases involved in blood clotting. Many synthetic and chemical drugs targeting these proteases as therapeutics are known. However, they are associated with serious side effects such as bleeding, haemorrhage, edema etc. Serine protease inhibitors from plants have been suggested as one of the potential anticoagulant molecules against thrombosis. In the present work, a direct thrombin inhibitor from Moringa oleifera was isolated, purified and characterized. The homogeneity of the inhibitor is confirmed on native- PAGE. The purified inhibitor (5 µg) showed 63% thrombin inhibition at pH 7.2 at 37 °C. The IC50 value of the isolated inhibitor was determined as 4.23 µg. The inhibitor on SDS-PAGE appeared as a single protein-stained band corresponding to 50 kDa thereby indicating its molecular weight as 50 kDa. Purified thrombin inhibitor (5 µg) showed 12% inhibition of trypsin, and 17% inhibition of chymotrypsin. This suggests more specificity of purified inhibitor towards thrombin. The isolated inhibitor showed a non-competitive mode of inhibition against thrombin as determined by the Dixon plot. The inhibition constant (Ki) was calculated as 4.35 × 10-7 M. The present work reports for the first time a direct thrombin inhibitor from M. oleifera which may be further explored as an antithrombotic drug.
Collapse
Affiliation(s)
- Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16-C Dwarka, New Delhi, 110078, India.
| |
Collapse
|
5
|
Smith LB, Duge E, Valenzuela-León PC, Brooks S, Martin-Martin I, Ackerman H, Calvo E. Novel salivary antihemostatic activities of long-form D7 proteins from the malaria vector Anopheles gambiae facilitate hematophagy. J Biol Chem 2022; 298:101971. [PMID: 35460690 PMCID: PMC9123270 DOI: 10.1016/j.jbc.2022.101971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/20/2022] Open
Abstract
To successfully feed on blood, hematophagous arthropods must combat the host's natural hemostatic and inflammatory responses. Salivary proteins of blood-feeding insects such as mosquitoes contain compounds that inhibit these common host defenses against blood loss, including vasoconstriction, platelet aggregation, blood clotting, pain, and itching. The D7 proteins are some of the most abundantly expressed proteins in female mosquito salivary glands and have been implicated in inhibiting host hemostatic and inflammatory responses. Anopheles gambiae, the primary vector of malaria, expresses three D7 long-form and five D7 short-form proteins. Previous studies have characterized the AngaD7 short-forms, but the D7 long-form proteins have not yet been characterized in detail. Here, we characterized the A. gambiae D7 long-forms by first determining their binding kinetics to hemostatic agonists such as leukotrienes and serotonin, which are potent activators of vasoconstriction, edema formation, and postcapillary venule leakage, followed by ex vivo functional assays. We found that AngaD7L1 binds leukotriene C4 and thromboxane A2 analog U-46619; AngaD7L2 weakly binds leukotrienes B4 and D4; and AngaD7L3 binds serotonin. Subsequent functional assays confirmed AngaD7L1 inhibits U-46619-induced platelet aggregation and vasoconstriction, and AngaD7L3 inhibits serotonin-induced platelet aggregation and vasoconstriction. It is therefore possible that AngaD7L proteins counteract host hemostasis by scavenging these mediators. Finally, we demonstrate that AngaD7L2 had a dose-dependent anticoagulant effect via the intrinsic coagulation pathway by interacting with factors XII, XIIa, and XI. The uncovering of these interactions in the present study will be essential for comprehensive understanding of the vector-host biochemical interface.
Collapse
Affiliation(s)
- Leticia Barion Smith
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Duge
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paola Carolina Valenzuela-León
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Lu S, Andersen JF, Bosio CF, Hinnebusch BJ, Ribeiro JMC. Integrated analysis of the sialotranscriptome and sialoproteome of the rat flea Xenopsylla cheopis. J Proteomics 2022; 254:104476. [PMID: 34990822 PMCID: PMC8883501 DOI: 10.1016/j.jprot.2021.104476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Over the last 20 years, advances in sequencing technologies paired with biochemical and structural studies have shed light on the unique pharmacological arsenal produced by the salivary glands of hematophagous arthropods that can target host hemostasis and immune response, favoring blood acquisition and, in several cases, enhancing pathogen transmission. Here we provide a deeper insight into Xenopsylla cheopis salivary gland contents pairing transcriptomic and proteomic approaches. Sequencing of 99 pairs of salivary glands from adult female X. cheopis yielded a total of 7432 coding sequences functionally classified into 25 classes, of which the secreted protein class was the largest. The translated transcripts also served as a reference database for the proteomic study, which identified peptides from 610 different proteins. Both approaches revealed that the acid phosphatase family is the most abundant salivary protein group from X. cheopis. Additionally, we report here novel sequences similar to the FS-H family, apyrases, odorant and hormone-binding proteins, antigen 5-like proteins, adenosine deaminases, peptidase inhibitors from different subfamilies, proteins rich in Glu, Gly, and Pro residues, and several potential secreted proteins with unknown function. SIGNIFICANCE: The rat flea X. cheopis is the main vector of Yersinia pestis, the etiological agent of the bubonic plague responsible for three major pandemics that marked human history and remains a burden to human health. In addition to Y. pestis fleas can also transmit other medically relevant pathogens including Rickettsia spp. and Bartonella spp. The studies of salivary proteins from other hematophagous vectors highlighted the importance of such molecules for blood acquisition and pathogen transmission. However, despite the historical and clinical importance of X. cheopis little is known regarding their salivary gland contents and potential activities. Here we provide a comprehensive analysis of X. cheopis salivary composition using next generation sequencing methods paired with LC-MS/MS analysis, revealing its unique composition compared to the sialomes of other blood-feeding arthropods, and highlighting the different pathways taken during the evolution of salivary gland concoctions. In the absence of the X. cheopis genome sequence, this work serves as an extended reference for the identification of potential pharmacological proteins and peptides present in flea saliva.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher F Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Tyrosine-O-sulfation is a widespread affinity enhancer among thrombin interactors. Biochem Soc Trans 2022; 50:387-401. [PMID: 34994377 DOI: 10.1042/bst20210600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.
Collapse
|
8
|
Screening of the Promising Direct Thrombin Inhibitors from Haematophagous Organisms. Part I: Recombinant Analogues and Their Antithrombotic Activity In Vitro. Biomedicines 2021; 10:biomedicines10010011. [PMID: 35052692 PMCID: PMC8772750 DOI: 10.3390/biomedicines10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The success in treatment of venous thromboembolism and acute coronary syndromes using direct thrombin inhibitors has stimulated research aimed at finding a new anticoagulant from haematophagous organisms. This study deals with the comparison between hirudin-1 from Hirudomedicinalis(desirudin), being the first-known and most well-studied natural anticoagulant, along with recombinant analogs of haemadin from the leech Haemadipsa sylvestris, variegin from the tick Amblyomma variegatum, and anophelin from Anopheles albimanus. These polypeptides were chosen due to their high specificity and affinity for thrombin, as well as their distinctive inhibitory mechanisms. We have developed a universal scheme for the biotechnological production of these recombinant peptides as pharmaceutical substances. The anticoagulant activities of these peptides were compared using the thrombin amidolytic activity assay and prolongation of coagulation time (thrombin time, prothrombin time, and activated partial thromboplastin time) in mouse and human plasma. The preliminary results obtained suggest haemadin as the closest analog of recombinant hirudin-1, the active substance of the medicinal product Iprivask (Aventis Pharmaceuticals, USA) for the prevention of deep venous thrombosis in patients undergoing elective hip or knee replacement surgery. In contrast, variegin can be regarded as a natural analog of bivalirudin (Angiomax, The Medicines Company), a synthetic hirudin-1 derivative certified for the treatment of patients undergoing percutaneous coronary intervention and of patients with unstable angina pectoris after percutaneous transluminal coronary angioplasty.
Collapse
|
9
|
Koh CY, Shih N, Yip CYC, Li AWL, Chen W, Amran FS, Leong EJE, Iyer JK, Croft G, Mazlan MIB, Chee YL, Yap ES, Monroe DM, Hoffman M, Becker RC, de Kleijn DPV, Verma V, Gupta A, Chaudhary VK, Richards AM, Kini RM, Chan MY. Efficacy and safety of next-generation tick transcriptome-derived direct thrombin inhibitors. Nat Commun 2021; 12:6912. [PMID: 34824278 PMCID: PMC8617063 DOI: 10.1038/s41467-021-27275-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/28/2021] [Indexed: 01/18/2023] Open
Abstract
Despite their limitations, unfractionated heparin (UFH) and bivalirudin remain standard-of-care parenteral anticoagulants for percutaneous coronary intervention (PCI). We discovered novel direct thrombin inhibitors (DTIs) from tick salivary transcriptomes and optimised their pharmacologic activity. The most potent, ultravariegin, inhibits thrombin with a Ki of 4.0 pM, 445-fold better than bivalirudin. Unexpectedly, despite their greater antithrombotic effect, variegin/ultravariegin demonstrated less bleeding, achieving a 3-to-7-fold wider therapeutic index in rodent thrombosis and bleeding models. When used in combination with aspirin and ticagrelor in a porcine model, variegin/ultravariegin reduced stent thrombosis compared with antiplatelet therapy alone but achieved a 5-to-7-fold lower bleeding time than UFH/bivalirudin. Moreover, two antibodies screened from a naïve human antibody library effectively reversed the anticoagulant activity of ultravariegin, demonstrating proof-of-principle for antidote reversal. Variegin and ultravariegin are promising translational candidates for next-generation DTIs that may reduce peri-PCI bleeding in the presence of antiplatelet therapy.
Collapse
Affiliation(s)
- Cho Yeow Koh
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Norrapat Shih
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christina Y. C. Yip
- grid.412106.00000 0004 0621 9599Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Aaron Wei Liang Li
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Weiming Chen
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fathiah S. Amran
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Jia En Leong
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Janaki Krishnamoorthy Iyer
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Grace Croft
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Muhammad Ibrahim Bin Mazlan
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen-Lin Chee
- Department of Haematology, National Cancer Institute, Singapore, Singapore
| | - Eng-Soo Yap
- Department of Haematology, National Cancer Institute, Singapore, Singapore
| | - Dougald M. Monroe
- grid.10698.360000000122483208Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Maureane Hoffman
- grid.26009.3d0000 0004 1936 7961Department of Pathology, Duke University, Durham, NC USA
| | - Richard C. Becker
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Dominique P. V. de Kleijn
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.7692.a0000000090126352Department of Vascular Surgery, University Medical Center Utrecht & Netherlands heart Institute, Utrecht, The Netherlands
| | - Vaishali Verma
- grid.8195.50000 0001 2109 4999Centre for Innovation in Infectious Disease Research, Education, and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- grid.8195.50000 0001 2109 4999Centre for Innovation in Infectious Disease Research, Education, and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - Vijay K. Chaudhary
- grid.8195.50000 0001 2109 4999Centre for Innovation in Infectious Disease Research, Education, and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
| | - A. Mark Richards
- grid.410759.e0000 0004 0451 6143Cardiovascular Research Institute, NUHS, Singapore, Singapore ,grid.29980.3a0000 0004 1936 7830Christchurch Heart Institute, University of Otago, Otago, New Zealand
| | - R. Manjunatha Kini
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pharmacology, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark Y. Chan
- grid.4280.e0000 0001 2180 6431Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.488497.e0000 0004 1799 3088Cardiac Department, National University Heart Centre, Singapore, Singapore
| |
Collapse
|
10
|
Identification and characterization of a novel elastase inhibitor from Hirudinaria manillensis. Chin J Nat Med 2021; 19:540-544. [PMID: 34247778 DOI: 10.1016/s1875-5364(21)60054-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 11/23/2022]
Abstract
A large number of protease inhibitors have been found from leeches, which are essential in various physiological and biological processes. In the curret study, a novel elastase inhibitor was purified and characterized from the leech of Hirudinaria manillensis, which was named HMEI-A. Primary structure analysis showed that HMEI-A belonged to a new family of proteins. HMEI-A exerted inhibitory effects on elastase and showed potent abilities to inhibit elastase with an inhibition constant (Ki) of 1.69 × 10-8 mol·L-1. Further study showed that HMEI-A inhibited the formation of neutrophil extracellular trap (NET). These results suggested that HMEI-A from the leech of H. manillensis is a novel elastase inhibitor which can suppress NET formation. It may play a significant role in blood-sucking of leeches and is a potential candidate as an anti-inflammatory agent.
Collapse
|
11
|
Alves E Silva TL, Radtke A, Balaban A, Pascini TV, Pala ZR, Roth A, Alvarenga PH, Jeong YJ, Olivas J, Ghosh AK, Bui H, Pybus BS, Sinnis P, Jacobs-Lorena M, Vega-Rodríguez J. The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. SCIENCE ADVANCES 2021; 7:7/6/eabe3362. [PMID: 33547079 PMCID: PMC7864569 DOI: 10.1126/sciadv.abe3362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.
Collapse
Affiliation(s)
- Thiago Luiz Alves E Silva
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andrea Radtke
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Amanda Balaban
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tales Vicari Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patricia H Alvarenga
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Anil K Ghosh
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hanhvy Bui
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brandon S Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Joel Vega-Rodríguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Strayer EC, Lu S, Ribeiro J, Andersen JF. Salivary complement inhibitors from mosquitoes: Structure and mechanism of action. J Biol Chem 2020; 296:100083. [PMID: 33199367 PMCID: PMC7948415 DOI: 10.1074/jbc.ra120.015230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.
Collapse
Affiliation(s)
- Ethan C Strayer
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Stephen Lu
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Jose Ribeiro
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA.
| |
Collapse
|
13
|
Chen F, Huang G. Mechanism and inhibition kinetics of peptide P13 as thrombin inhibitor. Int J Biol Macromol 2019; 150:1046-1052. [PMID: 31743711 DOI: 10.1016/j.ijbiomac.2019.10.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
Excessive coagulation can easily lead to arterial and venous thrombosis, which is the main reason for the evolution of myocardial infarction and cerebrovascular accidents. As a key coagulation factor for the coagulation pathway, thrombin has become a remarkable target for the control of thrombosis. The synthesized peptide P13 with amino acid sequence of N-RGDAGFAGDDAPR was expected to be an inhibitor with higher antithrombotic activity. The results showed that the IC50 (50% inhibition of thrombin activity) of the peptide P13 was determined by colorimetric method to be 115 µM. And enzyme kinetic experiments showed that P13 was a competitive inhibitor of thrombin with Ki = 106 µM. Fluorescence spectra and three-dimensional fluorescence showed that P13 could alter the secondary structure of thrombin and the microenvironment of certain chromogenic amino acids. P13 can spontaneously bind with thrombin exosite 1 in the form of 1:1 mainly through hydrogen bonding and van der Waals force. And the optimal docking mode of P13 and thrombin was revealed by molecular docking with "-CDOCKER_Energy" of 178.679 kcal mol-1. This study revealed P13 may become a potential anticoagulant drug widely used after further studies in preclinical and clinical trials.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Guangrong Huang
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China.
| |
Collapse
|
14
|
Sachetto A, Mackman N. Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects. Thromb Res 2019; 178:145-154. [DOI: 10.1016/j.thromres.2019.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
|
15
|
Scarpassa VM, Debat HJ, Alencar RB, Saraiva JF, Calvo E, Arcà B, Ribeiro JMC. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genomics 2019; 20:166. [PMID: 30832587 PMCID: PMC6399984 DOI: 10.1186/s12864-019-5545-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background Saliva of mosquitoes contains anti-platelet, anti-clotting, vasodilatory, anti-complement and anti-inflammatory substances that help the blood feeding process. The salivary polypeptides are at a fast pace of evolution possibly due to their relative lack of structural constraint and possibly also by positive selection on their genes leading to evasion of host immune pressure. Results In this study, we used deep mRNA sequence to uncover for the first time the sialomes of four Amazonian anophelines species (Anopheles braziliensis, A. marajorara, A. nuneztovari and A. triannulatus) and extend the knowledge of the A. darlingi sialome. Two libraries were generated from A. darlingi mosquitoes, sampled from two localities separated ~ 1100 km apart. A total of 60,016 sequences were submitted to GenBank, which will help discovery of novel pharmacologically active polypeptides and the design of specific immunological markers of mosquito exposure. Additionally, in these analyses we identified and characterized novel phasmaviruses and anpheviruses associated to the sialomes of A. triannulatus, A. marajorara and A. darlingi species. Conclusions Besides their pharmacological properties, which may be exploited for the development of new drugs (e.g. anti-thrombotics), salivary proteins of blood feeding arthropods may be turned into tools to prevent and/or better control vector borne diseases; for example, through the development of vaccines or biomarkers to evaluate human exposure to vector bites. The sialotranscriptome study reported here provided novel data on four New World anopheline species and allowed to extend our knowledge on the salivary repertoire of A. darlingi. Additionally, we discovered novel viruses following analysis of the transcriptomes, a procedure that should become standard within future RNAseq studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5545-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Margarete Scarpassa
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Humbeto Julio Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba, Argentina
| | - Ronildo Baiatone Alencar
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - José Ferreira Saraiva
- Laboratório de Genética de Populações e Evolução de Mosquitos Vetores de Malária e Dengue, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Rome, Italy
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
16
|
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59:S81-S95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.
Collapse
Affiliation(s)
- Shuzheng Cheng
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China.,b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Maolin Tu
- c Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Hanxiong Liu
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| | - Guanghua Zhao
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Ming Du
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| |
Collapse
|
17
|
Fang YJ, Yan ZT, Chen B. Sialotranscriptome sequencing and analysis of Anopheles sinensis and comparison with Psorophora albipes sialotranscriptome (Diptera: Culicidae). INSECT SCIENCE 2018; 25:368-378. [PMID: 27996203 DOI: 10.1111/1744-7917.12431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Most of adult female mosquitoes secrete saliva to facilitate blood sucking, digestion and nutrition, and mosquito-borne disease prevention. The knowledge of classification and characteristics of sialotranscriptome genes are still quite limited. Anopheles sinensis is a major malaria vector in China and southeast Asian countries. In this study, the An. sinensis sialotranscriptome was sequenced using Illumina sequencing technique with a total of 10 907 unigenes to be obtained and annotated in biological functions and pathways, and 10 470 unigenes were mapped to An. sinensis reference genome with 70.46% of genes having 90%-100% genome mapping through bioinformatics analysis. These mapped genes were classified into four categories: housekeeping (6632 genes), secreted (1177), protein-coding genes with function-unknown (2646) and transposable element (15). The housekeeping genes were divided into 27 classes, and the secreted genes were divided into 11 classes and 96 families. The classification, characteristics and evolution of these classes/families of secreted genes are further described and discussed. The comparison of the 1177 secreted genes in An. sinensis in the Anophelinae subfamily with 811 in Psorophora albipes in the Culicinae subfamily show that six classes/subclasses have the gene number more than twice and two classes (uniquely found in anophelines, and Orphan proteins of unique standing) are unique in the former compared with the latter, whereas four classes/subclasses are much expanded and uniquely found in the Aedes class and is unique in the later. The An. sinensis sialotranscriptome sequence data is the most complete in mosquitoes to date, and the analyses provide a comprehensive information frame for further research of mosquito sialotranscriptome.
Collapse
Affiliation(s)
- Ya-Jie Fang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
18
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
19
|
Velásquez JJ, Navarro-Vargas JR, Moncada L. Potential pharmacological use of salivary compounds from hematophagous organisms. REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n3.52835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. La saliva de los artrópodos hematófagos contiene un arsenal de compuestos que les permite acceder a la sangre de sus hospederos vertebrados sin ser detectados.Objetivo. Explorar los compuestos salivares de insectos hematófagos que tienen propiedades vasodilatadoras, anticoagulantes, antiinflamatorias, inmunomoduladoras y anestésicas, las cuales se pueden aprovechar por su alto potencial farmacológico.Materiales y métodos. Se realizó una revisión no sistemática de la literatura mediante búsqueda electrónica en las bases de datos PubMed, EMBASE, OvidSP y ScienceDirect; la búsqueda no se limitó por fecha, idioma ni tipo de artículo. Se buscaron artículos sobre los compuestos salivares de los insectos hematófagos, cuyo tema central fuese los efectos en la hemostasia, inmunomodulación y uso farmacológico. Se encontraron 59 artículos que cumplían con los criterios para ser incluidos en la revisión.Conclusión. La saliva de los insectos hematófagos posee gran variedad de moléculas, lo que ofrece una fuente de investigación y un potencial incalculable para el descubrimiento de compuestos que podrían llegar a tener utilidad farmacológica.
Collapse
|
20
|
Pirone L, Ripoll-Rozada J, Leone M, Ronca R, Lombardo F, Fiorentino G, Andersen JF, Pereira PJB, Arcà B, Pedone E. Functional analyses yield detailed insight into the mechanism of thrombin inhibition by the antihemostatic salivary protein cE5 from Anopheles gambiae. J Biol Chem 2017; 292:12632-12642. [PMID: 28592490 DOI: 10.1074/jbc.m117.788042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/23/2017] [Indexed: 11/06/2022] Open
Abstract
Saliva of blood-feeding arthropods carries several antihemostatic compounds whose physiological role is to facilitate successful acquisition of blood. The identification of novel natural anticoagulants and the understanding of their mechanism of action may offer opportunities for designing new antithrombotics disrupting blood clotting. We report here an in-depth structural and functional analysis of the anophelin family member cE5, a salivary protein from the major African malaria vector Anopheles gambiae that specifically, tightly, and quickly binds and inhibits thrombin. Using calorimetry, functional assays, and complementary structural techniques, we show that the central region of the protein, encompassing amino acids Asp-31-Arg-62, is the region mainly responsible for α-thrombin binding and inhibition. As previously reported for the Anopheles albimanus orthologue anophelin, cE5 binds both thrombin exosite I with segment Glu-35-Asp-47 and the catalytic site with the region Pro-49-Arg-56, which includes the highly conserved DPGR tetrapeptide. Moreover, the N-terminal Ala-1-Ser-30 region of cE5 (which includes an RGD tripeptide) and the additional C-terminal serine-rich Asn-63-Glu-82 region (absent in orthologues from anophelines of the New World species A. albimanus and Anopheles darlingi) also played some functionally relevant role. Indeed, we observed decreased thrombin binding and inhibitory properties even when using the central cE5 fragment (Asp-31-Arg-62) alone. In summary, these results shed additional light on the mechanism of thrombin binding and inhibition by this family of salivary anticoagulants from anopheline mosquitoes.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Jorge Ripoll-Rozada
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Raffaele Ronca
- Department of Biology, Universita' degli Studi di Napoli Federico II, Via Cinthia, 80126 Naples, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gabriella Fiorentino
- Department of Biology, Universita' degli Studi di Napoli Federico II, Via Cinthia, 80126 Naples, Italy
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
21
|
Iqbal A, Goldfeder MB, Marques-Porto R, Asif H, Souza JGD, Faria F, Chudzinski-Tavassi AM. Revisiting antithrombotic therapeutics; sculptin, a novel specific, competitive, reversible, scissile and tight binding inhibitor of thrombin. Sci Rep 2017; 7:1431. [PMID: 28469161 PMCID: PMC5431157 DOI: 10.1038/s41598-017-01486-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 02/01/2023] Open
Abstract
Thrombin is a multifunctional enzyme with a key role in the coagulation cascade. Its functional modulation can culminate into normal blood coagulation or thrombosis. Thus, the identification of novel potent inhibitors of thrombin are of immense importance. Sculptin is the first specific thrombin inhibitor identified in the transcriptomics analysis of tick’s salivary glands. It consists of 168 residues having four similar repeats and evolutionary diverged from hirudin. Sculptin is a competitive, specific and reversible inhibitor of thrombin with a Ki of 18.3 ± 1.9 pM (kon 4.04 ± 0.03 × 107 M−1 s−1 and koff 0.65 ± 0.04 × 10−3 s−1). It is slowly consumed by thrombin eventually losing its activity. Contrary, sculptin is hydrolyzed by factor Xa and each polypeptide fragment is able to inhibit thrombin independently. A single domain of sculptin alone retains ~45% of inhibitory activity, which could bind thrombin in a bivalent fashion. The formation of a small turn/helical-like structure by active site binding residues of sculptin might have made it a more potent thrombin inhibitor. In addition, sculptin prolongs global coagulation parameters. In conclusion, sculptin and its independent domain(s) have strong potential to become novel antithrombotic therapeutics.
Collapse
Affiliation(s)
- Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Rafael Marques-Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Huma Asif
- Laboratory of Gene Expression in Eukaryotes, Butantan Institute, São Paulo, SP, Brazil
| | - Jean Gabriel de Souza
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Faria
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil. .,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Iyer JK, Koh CY, Kazimirova M, Roller L, Jobichen C, Swaminathan K, Mizuguchi J, Iwanaga S, Nuttall PA, Chan MY, Kini RM. Avathrin: a novel thrombin inhibitor derived from a multicopy precursor in the salivary glands of the ixodid tick,
Amblyomma variegatum. FASEB J 2017; 31:2981-2995. [DOI: 10.1096/fj.201601216r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Janaki Krishnamoorthy Iyer
- Protein Science LaboratoryDepartment of Biological SciencesNational University of Singapore Singapore
- Department of Pathology and Molecular MedicineMcMaster UniversityHamilton Ontario Canada
| | - Cho Yeow Koh
- Protein Science LaboratoryDepartment of Biological SciencesNational University of Singapore Singapore
| | - Maria Kazimirova
- Institute of ZoologySlovak Academy of SciencesBratislava Slovakia
| | - Ladislav Roller
- Institute of ZoologySlovak Academy of SciencesBratislava Slovakia
| | - Chacko Jobichen
- Protein Science LaboratoryDepartment of Biological SciencesNational University of Singapore Singapore
| | | | - Jun Mizuguchi
- The Chemo‐Sero‐Therapeutic Research InstituteKumamoto Japan
| | | | | | - Mark Y. Chan
- Yong Loo Lin School of MedicineNational University of Singapore Singapore
- Department of CardiologyNational University Heart Centre Singapore
| | - R. Manjunatha Kini
- Protein Science LaboratoryDepartment of Biological SciencesNational University of Singapore Singapore
- Singapore Eye Research Institute Singapore
| |
Collapse
|
23
|
Arcà B, Lombardo F, Struchiner CJ, Ribeiro JMC. Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen Anopheles species. BMC Genomics 2017; 18:153. [PMID: 28193177 PMCID: PMC5307786 DOI: 10.1186/s12864-017-3579-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquito saliva is a complex cocktail whose pharmacological properties play an essential role in blood feeding by counteracting host physiological response to tissue injury. Moreover, vector borne pathogens are transmitted to vertebrates and exposed to their immune system in the context of mosquito saliva which, in virtue of its immunomodulatory properties, can modify the local environment at the feeding site and eventually affect pathogen transmission. In addition, the host antibody response to salivary proteins may be used to assess human exposure to mosquito vectors. Even though the role of quite a few mosquito salivary proteins has been clarified in the last decade, we still completely ignore the physiological role of many of them as well as the extent of their involvement in the complex interactions taking place between the mosquito vectors, the pathogens they transmit and the vertebrate host. The recent release of the genomes of 16 Anopheles species offered the opportunity to get insights into function and evolution of salivary protein families in anopheline mosquitoes. RESULTS Orthologues of fifty three Anopheles gambiae salivary proteins were retrieved and annotated from 18 additional anopheline species belonging to the three subgenera Cellia, Anopheles, and Nyssorhynchus. Our analysis included 824 full-length salivary proteins from 24 different families and allowed the identification of 79 novel salivary genes and re-annotation of 379 wrong predictions. The comparative, structural and phylogenetic analyses yielded an unprecedented view of the anopheline salivary repertoires and of their evolution over 100 million years of anopheline radiation shedding light on mechanisms and evolutionary forces that contributed shaping the anopheline sialomes. CONCLUSIONS We provide here a comprehensive description, classification and evolutionary overview of the main anopheline salivary protein families and identify two novel candidate markers of human exposure to malaria vectors worldwide. This anopheline sialome catalogue, which is easily accessible as hyperlinked spreadsheet, is expected to be useful to the vector biology community and to improve the capacity to gain a deeper understanding of mosquito salivary proteins facilitating their possible exploitation for epidemiological and/or pathogen-vector-host interaction studies.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, Brazil.,Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
24
|
Exploiting the antithrombotic effect of the (pro)thrombin inhibitor bothrojaracin. Toxicon 2016; 119:46-51. [PMID: 27179421 DOI: 10.1016/j.toxicon.2016.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
Abstract
Bothrojaracin is a 27 kDa C-type lectin-like protein from Bothrops jararaca snake venom. It behaves as a potent thrombin inhibitor upon high-affinity binding to thrombin exosites. Bothrojaracin also forms a stable complex with prothrombin that can be detected in human plasma. Formation of the zymogen-inhibitor complex severely decreases prothrombin activation and contributes to the anticoagulant activity of bothrojaracin. In the present study, we employed two rodent models to evaluate the antithrombotic effect of bothrojaracin in vivo: stasis-induced thrombosis and thrombin-induced pulmonary thromboembolism. It was observed that bothrojaracin interacts with rat prothrombin in plasma. Ex-vivo assays showed stable complex formation even after 24 h of a single bothrojaracin dose. As a result, bothrojaracin showed significant antithrombotic activity in a rat venous thrombosis model elicited by thromboplastin combined with stasis. The antithrombotic activity of bothrojaracin (1 mg/kg) persisted for up to 24 h and it was associated with moderate bleeding as assessed by a tail transection method. Formation of bothrojaracin-prothrombin complex has been also observed following intravenous administration of the inhibitor into mice. As a result, bothrojaracin effectively protected mice from thrombin-induced fatal thromboembolism. We conclude that bothrojaracin is a potent antithrombotic agent in vivo and may serve as a prototype for the development of new zymogen-directed drugs that could result in prolonged half-life and possible decreased hemorrhagic risk.
Collapse
|
25
|
Shabareesh PRV, Kaur KJ. Structural and Functional Characterization of Hirudin P6 Derived Novel Bivalent Thrombin Inhibitors - Studying the Effect of Linker Length and Glycosylation on Their Function. Chem Biol Drug Des 2016; 88:129-41. [DOI: 10.1111/cbdd.12742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- PRV Shabareesh
- National Institute of Immunology; Aruna Asaf Ali Marg New Delhi 110067 India
| | - Kanwal J. Kaur
- National Institute of Immunology; Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
26
|
Assumpção TC, Ma D, Mizurini DM, Kini RM, Ribeiro JMC, Kotsyfakis M, Monteiro RQ, Francischetti IMB. In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus. PLoS Negl Trop Dis 2016; 10:e0004298. [PMID: 26745503 PMCID: PMC4706430 DOI: 10.1371/journal.pntd.0004298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/20/2015] [Indexed: 01/29/2023] Open
Abstract
Background Hematophagous mosquitos and ticks avoid host hemostatic system through expression of enzyme inhibitors targeting proteolytic reactions of the coagulation and complement cascades. While most inhibitors characterized to date were found in the salivary glands, relatively few others have been identified in the midgut. Among those, Boophilin is a 2-Kunitz multifunctional inhibitor targeting thrombin, elastase, and kallikrein. However, the kinetics of Boophilin interaction with these enzymes, how it modulates platelet function, and whether it inhibits thrombosis in vivo have not been determined. Methodology/Principal Findings Boophilin was expressed in HEK293 cells and purified to homogeneity. Using amidolytic assays and surface plasmon resonance experiments, we have demonstrated that Boophilin behaves as a classical, non-competitive inhibitor of thrombin with respect to small chromogenic substrates by a mechanism dependent on both exosite-1 and catalytic site. Inhibition is accompanied by blockade of platelet aggregation, fibrin formation, and clot-bound thrombin in vitro. Notably, we also identified Boophilin as a non-competitive inhibitor of FXIa, preventing FIX activation. In addition, Boophilin inhibits kallikrein activity and the reciprocal activation, indicating that it targets the contact pathway. Furthermore, Boophilin abrogates cathepsin G- and plasmin-induced platelet aggregation and partially affects elastase-mediated cleavage of Tissue Factor Pathway Inhibitor (TFPI). Finally, Boophilin inhibits carotid artery occlusion in vivo triggered by FeCl3, and promotes bleeding according to the mice tail transection method. Conclusion/Significance Through inhibition of several enzymes involved in proteolytic cascades and cell activation, Boophilin plays a major role in keeping the midgut microenvironment at low hemostatic and inflammatory tonus. This response allows ticks to successfully digest a blood meal which is critical for metabolism and egg development. Boophilin is the first tick midgut FXIa anticoagulant also found to inhibit thrombosis. Hematophagous animals express a repertoire of anti-hemostatics which target enzymes involved in proteolytic reactions. These molecules are present in the salivary glands or midguts and target components of both coagulation and complement cascades, in addition to cells involved in hemostasis and immune system. These inhibitors are critical for development and survival of mosquitoes and ticks, and might also contribute to parasite transmission and completion of their life cycle. While much is known regarding sialomics and functional genomics of the salivary glands components, comparatively less information has been gained over the years with respect to midgut anti-hemostatics and their mechanisms of action. The vector of Babesiosis and Q fever, Rhipicephalus microplus, expresses Boophilin, a midgut thrombin inhibitor with low specificity, which contributes to tick development. Notably, we reported that Boophilin targets FXIa, kallikrein, and neutrophil enzymes elastase and cathepsin G, which play a direct or indirect role in the contact pathway of the coagulation cascade. Boophilin also abrogates platelet aggregation by cathepsin G and plasmin, and attenuates Tissue Factor Pathway Inhibitor cleavage by elastase. In vivo, Boophilin inhibits thrombosis and promotes bleeding in mice. It is concluded that Boophilin redundantly down-modulates host biochemical reactions involved in mounting and sustaining pro-inflammatory events which are detrimental to tick development.
Collapse
Affiliation(s)
- Teresa C. Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Dongying Ma
- Vector Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Daniella M. Mizurini
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michail Kotsyfakis
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivo M. B. Francischetti
- Vector Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: ,
| |
Collapse
|
27
|
Jablonka W, Kotsyfakis M, Mizurini DM, Monteiro RQ, Lukszo J, Drake SK, Ribeiro JMC, Andersen JF. Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin. PLoS One 2015; 10:e0133991. [PMID: 26244557 PMCID: PMC4526366 DOI: 10.1371/journal.pone.0133991] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/04/2015] [Indexed: 12/05/2022] Open
Abstract
A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic.
Collapse
Affiliation(s)
- Willy Jablonka
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michalis Kotsyfakis
- Institute of Parasitology, Academy of Sciences of the Czech Republic, České Budejovice, Czech Republic
| | - Daniella M. Mizurini
- Instituto de Bioquimica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Instituto de Bioquimica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jan Lukszo
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Steven K. Drake
- Critical Care Medicine Department, Clinical Center; National Institutes of Health, Bethesda, Maryland, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, United States of America
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Comparative Analysis of the Effectiveness of C-terminal Cleavage Intein-Based Constructs in Producing a Recombinant Analog of Anophelin, an Anticoagulant from Anopheles albimanus. Appl Biochem Biotechnol 2014; 175:2468-88. [DOI: 10.1007/s12010-014-1400-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
|
29
|
Rochael NC, Lima LG, Oliveira SMPD, Barcinski MA, Saraiva EM, Monteiro RQ, Pinto-da-Silva LH. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva. Mem Inst Oswaldo Cruz 2014; 108:679-85. [PMID: 24037188 PMCID: PMC3970692 DOI: 10.1590/0074-0276108062013002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
Leishmania parasites expose phosphatidylserine (PS) on their
surface, a process that has been associated with regulation of host's immune
responses. In this study we demonstrate that PS exposure by metacyclic
promastigotes of Leishmania amazonensis favours blood
coagulation. L. amazonensis accelerates in vitro coagulation of
human plasma. In addition, L. amazonensis supports the assembly
of the prothrombinase complex, thus promoting thrombin formation. This process
was reversed by annexin V which blocks PS binding sites. During blood meal,
Lutzomyia longipalpis sandfly inject saliva in the bite
site, which has a series of pharmacologically active compounds that inhibit
blood coagulation. Since saliva and parasites are co-injected in the host during
natural transmission, we evaluated the anticoagulant properties of sandfly
saliva in counteracting the procoagulant activity of L.
amazonensis . Lu. longipalpis saliva reverses
plasma clotting promoted by promastigotes. It also inhibits thrombin formation
by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS
vesicles or in L. amazonensis . Sandfly saliva inhibits factor
X activation by the intrinsic tenase complex assembled on PC/PS vesicles and
blocks factor Xa catalytic activity. Altogether our results show that metacyclic
promastigotes of L. amazonensis are procoagulant due to PS
exposure. Notably, this effect is efficiently counteracted by sandfly
saliva.
Collapse
Affiliation(s)
- Natalia Cadaxo Rochael
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de JaneiroRJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
30
|
Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog 2014; 10:e1004338. [PMID: 25211214 PMCID: PMC4161438 DOI: 10.1371/journal.ppat.1004338] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/02/2014] [Indexed: 01/05/2023] Open
Abstract
Background Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear. Principal Findings Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein containing a single Kazal domain with a Leu in the P1 position. Agaphelin displays high homology to orthologs present in Aedes sp and Culex sp salivary glands, indicating an evolutionarily expanded family. Kinetics and surface plasmon resonance experiments determined that chemically synthesized Agaphelin behaves as a slow and tight inhibitor of neutrophil elastase (KD∼10 nM), but does not affect other enzymes, nor promotes vasodilation, or exhibit antimicrobial activity. TAXIscan chamber assay revealed that Agaphelin inhibits neutrophil chemotaxis toward fMLP, affecting several parameter associated with cell migration. In addition, Agaphelin reduces paw edema formation and accumulation of tissue myeloperoxidase triggered by injection of carrageenan in mice. Agaphelin also blocks elastase/cathepsin-mediated platelet aggregation, abrogates elastase-mediated cleavage of tissue factor pathway inhibitor, and attenuates neutrophil-induced coagulation. Notably, Agaphelin inhibits neutrophil extracellular traps (NETs) formation and prevents FeCl3-induced arterial thrombosis, without impairing hemostasis. Conclusions Blockade of neutrophil elastase emerges as a novel antihemostatic mechanism in hematophagy; it also supports the notion that neutrophils and the innate immune response are targets for antithrombotic therapy. In addition, Agaphelin is the first antihemostatic whose expression is induced by Plasmodium sp infection. These results suggest that an important interplay takes place in parasite-vector-host interactions. Malaria is transmitted by Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Salivary gland contributes to the development of the parasite by creating a favorable environment for the infection and facilitating blood feeding and reproduction of the vector. However, the molecular mechanism by which the vector salivary gland modulates parasite/host interactions is not understood. We discovered that infection of the mosquito salivary gland upregulates several genes; among them, one codes for a protease inhibitor named Agaphelin. Notably, Agaphelin was found to exhibit multiple antihemostatic functions by targeting elastase. As a result, it inhibits platelet function which is required for blood to clot, and it prevents cleavage of TFPI, an anticoagulant that has recently been found to play a crucial role in thrombus formation in vivo. Agaphelin also attenuates neutrophils chemotaxis and the release of Neutrophil Extracellular Traps. These results provide evidence that neutrophils serve as a link between coagulation and the innate immune response. Agaphelin also exhibits anti-inflammatory and antithrombotic effects in vivo. Furthermore, Agaphelin did not promote bleeding, suggesting that targeting neutrophil exhibits potential therapeutic value. Altogether, these results highlight that the interplay between parasite, vector and host is a dynamic process that contributes and sustains the interface among Plasmodium, Anopheles and humans.
Collapse
|
31
|
Francischetti IMB, Ma D, Andersen JF, Ribeiro JMC. Evidence for a lectin specific for sulfated glycans in the salivary gland of the malaria vector, Anopheles gambiae. PLoS One 2014; 9:e107295. [PMID: 25207644 PMCID: PMC4160252 DOI: 10.1371/journal.pone.0107295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023] Open
Abstract
Salivary gland homogenate (SGH) from the female mosquitoes Anopheles gambiae, An. stephensi, An. freeborni, An. dirus and An. albimanus were found to exhibit hemagglutinating (lectin) activity. Lectin activity was not found for male An. gambiae, or female Ae aegypti, Culex quinquefasciatus, Phlebotomus duboscqi, and Lutzomyia longipalpis. With respect to species-specificity, An. gambiae SGH agglutinates red blood cells (RBC) from humans, horse, sheep, goat, pig, and cow; it is less active for rats RBC, and not detectable for guinea-pigs or chicken RBC. Notably, lectin activity was inhibited by low concentrations of dextran sulfate 50–500 K, fucoidan, heparin, laminin, heparin sulfate proteoglycan, sialyl-containing glycans (e.g. 3′-sialyl Lewis X, and 6′-sialyl lactose), and gangliosides (e.g. GM3, GD1, GD1b, GTB1, GM1, GQ1B), but not by simple sugars. These results imply that molecule(s) in the salivary gland target sulfated glycans. SGH from An. gambiae was also found to promote agglutination of HL-60 cells which are rich in sialyl Lewis X, a glycan that decorates PSGL-1, the neutrophils receptor that interacts with endothelial cell P-selectin. Accordingly, SGH interferes with HL-60 cells adhesion to immobilized P-selectin. Because An. gambiae SGH expresses galectins, one member of this family (herein named Agalectin) was expressed in E. coli. Recombinant Agalectin behaves as a non-covalent homodimer. It does not display lectin activity, and does not interact with 500 candidates tested in a Glycan microarray. Gel-filtration chromatography of the SGH of An. gambiae identified a fraction with hemagglutinating activity, which was analyzed by 1D PAGE followed by in-gel tryptic digestion, and nano-LC MS/MS. This approach identified several genes which emerge as candidates for a lectin targeting sulfated glycans, the first with this selectivity to be reported in the SGH of a blood-sucking arthropod. The role of salivary molecules (sialogenins) with lectin activity is discussed in the context of inflammation, and parasite-vector-host interactions.
Collapse
Affiliation(s)
- Ivo M. B. Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Dongying Ma
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John F. Andersen
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
32
|
Veiga ABG, Ribeiro JMC, Francischetti IMB, Xu X, Guimarães JA, Andersen JF. Examination of the ligand-binding and enzymatic properties of a bilin-binding protein from the poisonous caterpillar Lonomia obliqua. PLoS One 2014; 9:e95424. [PMID: 24972000 PMCID: PMC4074040 DOI: 10.1371/journal.pone.0095424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 03/27/2014] [Indexed: 11/18/2022] Open
Abstract
The bilin-binding proteins (BBP) from lepidopteran insects are members of the lipocalin family of proteins and play a special role in pigmentation through the binding of biliverdin IXγ. Lopap, a BBP-like protein from the venom of the toxic caterpillar Lonomia obliqua has been reported to act as a serine protease that activates the coagulation proenzyme prothrombin. Here we show that BBPLo, a variant of lopap from the same organism binds biliverdin IXγ, forming a complex that is spectrally identical with previously described BBP proteins. Although BBPLo is nearly identical in sequence to lopap, no prothrombinase activity was detected in our recombinant preparations using reconstituted systems containing coagulation factors Xa and Va, as well as anionic phospholipids. In addition to biliverdin, BBPLo was found to form a 1∶1 complex with heme prompting us to examine whether the unusual biliverdin IXγ ligand of BBPs forms as a result of oxidation of bound heme in situ rather than by a conventional heme oxygenase. Using ascorbate or a NADPH+-ferredoxin reductase-ferredoxin system as a source of reducing equivalents, spectral changes are seen that suggest an initial reduction of heme to the Fe(II) state and formation of an oxyferrous complex. The complex then disappears and a product identified as a 5-coordinate carbonyl complex of verdoheme, an intermediate in the biosynthesis of biliverdin, is formed. However, further reaction to form biliverdin was not observed, making it unlikely that biliverdin IXγ is formed by this pathway.
Collapse
Affiliation(s)
- Ana B. G. Veiga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xueqing Xu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jorge A. Guimarães
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lehiy CJ, Drolet BS. The salivary secretome of the biting midge, Culicoides sonorensis. PeerJ 2014; 2:e426. [PMID: 24949243 PMCID: PMC4060021 DOI: 10.7717/peerj.426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/21/2014] [Indexed: 11/20/2022] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous insects with over 1400 species distributed throughout the world. Many of these species are of particular agricultural importance as primary vectors of bluetongue and Schmallenberg viruses, yet little is known about Culicoides genomics and proteomics. Detailed studies of members from other blood-feeding Dipteran families, including those of mosquito (Culicidae) and black fly (Simuliidae), have shown that protein components within the insect's saliva facilitate the blood feeding process. To determine the protein components in Culicoides sonorensis midges, secreted saliva was collected for peptide sequencing by tandem mass spectrometry. Forty-five secreted proteins were identified, including members of the D7 odorant binding protein family, Kunitz-like serine protease inhibitors, maltase, trypsin, and six novel proteins unique to C. sonorensis. Identifying the complex myriad of proteins in saliva from blood-feeding Dipteran species is critical for understanding their role in blood feeding, arbovirus transmission, and possibly the resulting disease pathogenesis.
Collapse
Affiliation(s)
- Christopher J Lehiy
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, KS , USA
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, KS , USA
| |
Collapse
|
34
|
Atanassov A, Tchorbanov B. Synthetic and Natural Peptides as Antithrombotic Agents—A View on the Current Development. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2009.10817623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
35
|
Kong Y, Chen H, Wang YQ, Meng L, Wei JF. Direct thrombin inhibitors: patents 2002-2012 (Review). Mol Med Rep 2014; 9:1506-14. [PMID: 24604304 DOI: 10.3892/mmr.2014.2025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/21/2014] [Indexed: 11/06/2022] Open
Abstract
Acute vascular diseases and other thromboses of the blood system constitute major health risks in developing countries. Thrombin plays a central role in blood coagulation, which is a crucial process involved in thrombosis. Direct thrombin inhibitors (DTIs) such as argatroban, dabigatran, dabigatran etexilate, lepirudin, desirudin and bivalirudin, which bind to thrombin and block its enzymatic activity, are widely and effectively used in the treatment of thromboembolic diseases. DTIs appear to overcome the disadvantages of indirect thrombin inhibitors such as unfractionated heparins (UFH). Although these DTIs show specific advantages over indirect inhibitors, they still present limitations, such as a narrow therapeutic window, and bleeding and anaphylaxis as side-effects. Novel anticoagulant drugs need thus to be developed to overcome these limitations. In the search for additional candidate agents with improved efficacy, safety and high bioavailability in oral administration, a high number of compounds has been identified, such as those derived from the tripeptide template D-Phe-Pro-Arg, aptamers and peptides isolated from blood-sucking animals. These candidates may prove the new agents of choice for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Kong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Hao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ling Meng
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
36
|
Chagas AC, Calvo E, Rios-Velásquez CM, Pessoa FAC, Medeiros JF, Ribeiro JMC. A deep insight into the sialotranscriptome of the mosquito, Psorophora albipes. BMC Genomics 2013; 14:875. [PMID: 24330624 PMCID: PMC3878727 DOI: 10.1186/1471-2164-14-875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/04/2013] [Indexed: 01/29/2023] Open
Abstract
Background Psorophora mosquitoes are exclusively found in the Americas and have been associated with transmission of encephalitis and West Nile fever viruses, among other arboviruses. Mosquito salivary glands represent the final route of differentiation and transmission of many parasites. They also secrete molecules with powerful pharmacologic actions that modulate host hemostasis, inflammation, and immune response. Here, we employed next generation sequencing and proteome approaches to investigate for the first time the salivary composition of a mosquito member of the Psorophora genus. We additionally discuss the evolutionary position of this mosquito genus into the Culicidae family by comparing the identity of its secreted salivary compounds to other mosquito salivary proteins identified so far. Results Illumina sequencing resulted in 13,535,229 sequence reads, which were assembled into 3,247 contigs. All families were classified according to their in silico-predicted function/ activity. Annotation of these sequences allowed classification of their products into 83 salivary protein families, twenty (24.39%) of which were confirmed by our subsequent proteome analysis. Two protein families were deorphanized from Aedes and one from Ochlerotatus, while four protein families were described as novel to Psorophora genus because they had no match with any other known mosquito salivary sequence. Several protein families described as exclusive to Culicines were present in Psorophora mosquitoes, while we did not identify any member of the protein families already known as unique to Anophelines. Also, the Psorophora salivary proteins had better identity to homologs in Aedes (69.23%), followed by Ochlerotatus (8.15%), Culex (6.52%), and Anopheles (4.66%), respectively. Conclusions This is the first sialome (from the Greek sialo = saliva) catalog of salivary proteins from a Psorophora mosquito, which may be useful for better understanding the lifecycle of this mosquito and the role of its salivary secretion in arboviral transmission.
Collapse
Affiliation(s)
| | | | | | | | | | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
37
|
Valdés JJ, Schwarz A, Cabeza de Vaca I, Calvo E, Pedra JHF, Guallar V, Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS One 2013; 8:e62562. [PMID: 23658744 PMCID: PMC3643938 DOI: 10.1371/journal.pone.0062562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. RESULTS We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). CONCLUSIONS By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
38
|
Zocevic A, Carmi-Leroy A, Sautereau J, d'Alayer J, Lenormand P, Rousselle JC, Namane A, Choumet V. New markers in Anopheles gambiae salivary glands after Plasmodium berghei infection. Vector Borne Zoonotic Dis 2013; 13:119-27. [PMID: 23289400 DOI: 10.1089/vbz.2012.0964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In malaria, mosquito saliva and salivary glands play central roles in the multi-faceted interactions that occur among the parasite, its vector, and its host. Analyzing the processes involved in the survival and maintenance of the Plasmodium parasite in mosquito organs, and in its transmission into vertebrate hosts, may lead to the identification of new molecular targets for parasite control. We used comparative two-dimensional gel polyacrylamide electrophoresis (2D-PAGE), surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS), and high-performance liquid chromatography (HPLC), followed by Edman sequencing, to study saliva and salivary gland samples from Anopheles gambiae mosquitoes infected or not with Plasmodium berghei. Quantitative 2D-PAGE profile analysis showed that the intensities of seven spots were affected by the presence of the parasite in the salivary glands. Most of the proteins identified possessed a signal peptide. SELDI-TOF-MS revealed 32 proteins/peptides whose peak intensities differed between the Plasmodium-infected and non-infected control groups. Quantitative comparison of HPLC profiles of low-molecular-weight components from salivary gland extracts revealed several peptides and proteins with levels that were modulated by parasite infection. The results of these complementary approaches suggest that the infection of female A. gambiae mosquitoes by P. berghei alters the production levels of several salivary gland proteins and peptides, some of which (e.g., protein cE5, B3VDI9_ANOGA, and AGAP008216-PA) are known or predicted to be secreted in saliva and involved in blood feeding.
Collapse
Affiliation(s)
- Aleksandar Zocevic
- Unité de Biochimie et de Biologie Moléculaire des Insectes, Institut Pasteur, Paris Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sor-suwan S, Jariyapan N, Roytrakul S, Paemanee A, Saeung A, Thongsahuan S, Phattanawiboon B, Bates PA, Poovorawan Y, Choochote W. Salivary gland proteome of the human malaria vector, Anopheles campestris-like (Diptera: Culicidae). Parasitol Res 2012; 112:1065-75. [DOI: 10.1007/s00436-012-3233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/30/2012] [Indexed: 12/20/2022]
|
40
|
Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proc Natl Acad Sci U S A 2012; 109:E3649-58. [PMID: 23223529 DOI: 10.1073/pnas.1211614109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anopheles mosquitoes are vectors of malaria, a potentially fatal blood disease affecting half a billion humans worldwide. These blood-feeding insects include in their antihemostatic arsenal a potent thrombin inhibitor, the flexible and cysteine-less anophelin. Here, we present a thorough structure-and-function analysis of thrombin inhibition by anophelin, including the 2.3-Å crystal structure of the human thrombin·anophelin complex. Anophelin residues 32-61 are well-defined by electron density, completely occupying the long cleft between the active site and exosite I. However, in striking contrast to substrates, the D50-R53 anophelin tetrapeptide occupies the active site cleft of the enzyme, whereas the upstream residues A35-P45 shield the regulatory exosite I, defining a unique reverse-binding mode of an inhibitor to the target proteinase. The extensive interactions established, the disruption of thrombin's active site charge-relay system, and the insertion of residue R53 into the proteinase S(1) pocket in an orientation opposed to productive substrates explain anophelin's remarkable specificity and resistance to proteolysis by thrombin. Complementary biophysical and functional characterization of point mutants and truncated versions of anophelin unambiguously establish the molecular mechanism of action of this family of serine proteinase inhibitors (I77). These findings have implications for the design of novel antithrombotics.
Collapse
|
41
|
Ronca R, Kotsyfakis M, Lombardo F, Rizzo C, Currà C, Ponzi M, Fiorentino G, Ribeiro JM, Arcà B. The Anopheles gambiae cE5, a tight- and fast-binding thrombin inhibitor with post-transcriptionally regulated salivary-restricted expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:610-20. [PMID: 22617725 PMCID: PMC3416949 DOI: 10.1016/j.ibmb.2012.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 06/01/2023]
Abstract
Mosquito saliva carries a large number of factors with anti-hemostatic, anti-inflammatory and immuno-modulatory activities. The cE5 protein was initially identified during an Anopheles gambiae salivary gland transcriptome study and later shown to share sequence similarity with anophelin, a thrombin inhibitor from the saliva of the New World mosquito Anopheles albimanus. The cE5 gene was found to encode different mRNA isoforms coexisting in several tissues of both male and female mosquitoes, a highly unusual profile for a gene potentially encoding an anti-thrombin and involved in blood feeding. Expression of the cE5 protein and assessment of its activity and inhibitory properties showed that it is a highly specific and tight-binding thrombin inhibitor, which differs from the A. albimanus orthologue for the fast-binding kinetics. Despite the widespread occurrence of cE5 transcripts in different mosquito tissues the corresponding protein was only found in female salivary glands, where it undergoes post-translational modification. Therefore, tissue-specific restriction of the A. gambiae cE5 is not achieved by transcriptional control, as common for mosquito salivary genes involved in hematophagy, but by post-trascriptional gene regulatory mechanisms. Our observations provide a paradigm of post-transcriptional regulation as key determinant of tissue specificity for a protein from an important disease vector and point out that transcriptomic data should be interpreted with caution in the absence of concomitant proteomic support.
Collapse
Affiliation(s)
- Raffaele Ronca
- Department of Structural and Functional Biology, “Federico II” University - Via Cinthia, 80126 Naples, Italy
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Sapienza University - Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Rizzo
- Department of Public Health and Infectious Diseases, Sapienza University - Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Currà
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marta Ponzi
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriella Fiorentino
- Department of Structural and Functional Biology, “Federico II” University - Via Cinthia, 80126 Naples, Italy
| | - Josè M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Twinbrook III, 12735 Twinbrook Parkway, National Institute of Health, Rockville, MD 20852, USA
| | - Bruno Arcà
- Department of Structural and Functional Biology, “Federico II” University - Via Cinthia, 80126 Naples, Italy
- Department of Public Health and Infectious Diseases, Sapienza University - Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
42
|
Collin N, Assumpção TCF, Mizurini DM, Gilmore DC, Dutra-Oliveira A, Kotsyfakis M, Sá-Nunes A, Teixeira C, Ribeiro JMC, Monteiro RQ, Valenzuela JG, Francischetti IMB. Lufaxin, a novel factor Xa inhibitor from the salivary gland of the sand fly Lutzomyia longipalpis blocks protease-activated receptor 2 activation and inhibits inflammation and thrombosis in vivo. Arterioscler Thromb Vasc Biol 2012; 32:2185-98. [PMID: 22796577 DOI: 10.1161/atvbaha.112.253906] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.
Collapse
Affiliation(s)
- Nicolas Collin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Calvo E, Mizurini DM, Sá-Nunes A, Ribeiro JMC, Andersen JF, Mans BJ, Monteiro RQ, Kotsyfakis M, Francischetti IMB. Alboserpin, a factor Xa inhibitor from the mosquito vector of yellow fever, binds heparin and membrane phospholipids and exhibits antithrombotic activity. J Biol Chem 2011; 286:27998-8010. [PMID: 21673107 DOI: 10.1074/jbc.m111.247924] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) ~ 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.
Collapse
Affiliation(s)
- Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Das S, Radtke A, Choi YJ, Mendes AM, Valenzuela JG, Dimopoulos G. Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding. BMC Genomics 2010; 11:566. [PMID: 20946652 PMCID: PMC3091715 DOI: 10.1186/1471-2164-11-566] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 10/14/2010] [Indexed: 02/05/2023] Open
Abstract
Background The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Results We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. Conclusions The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.
Collapse
Affiliation(s)
- Suchismita Das
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | | | | | |
Collapse
|
46
|
Ribeiro JMC, Valenzuela JG, Pham VM, Kleeman L, Barbian KD, Favreau AJ, Eaton DP, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA. An insight into the sialotranscriptome of Simulium nigrimanum, a black fly associated with fogo selvagem in South America. Am J Trop Med Hyg 2010; 82:1060-75. [PMID: 20519601 DOI: 10.4269/ajtmh.2010.09-0769] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pemphigus foliaceus is a life threatening skin disease that is associated with autoimmunity to desmoglein, a skin protein involved in the adhesion of keratinocytes. This disease is endemic in certain areas of South America, suggesting the mediation of environmental factors triggering autoimmunity. Among the possible environmental factors, exposure to bites of black flies, in particular Simulium nigrimanum has been suggested. In this work, we describe the sialotranscriptome of adult female S. nigrimanum flies. It reveals the complexity of the salivary potion of this insect, comprised by over 70 distinct genes within over 30 protein families, including several novel families, even when compared with the previously described sialotranscriptome of the autogenous black fly, S. vittatum. The uncovering of this sialotranscriptome provides a platform for testing pemphigus patient sera against recombinant salivary proteins from S. nigrimanum and for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- José M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
48
|
Calvo E, Sanchez-Vargas I, Favreau AJ, Barbian KD, Pham VM, Olson KE, Ribeiro JM. An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis. BMC Genomics 2010; 11:51. [PMID: 20089177 PMCID: PMC2823692 DOI: 10.1186/1471-2164-11-51] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saliva of adult female mosquitoes help sugar and blood feeding by providing enzymes and polypeptides that help sugar digestion, control microbial growth and counteract their vertebrate host hemostasis and inflammation. Mosquito saliva also potentiates the transmission of vector borne pathogens, including arboviruses. Culex tarsalis is a bird feeding mosquito vector of West Nile Virus closely related to C. quinquefasciatus, a mosquito relatively recently adapted to feed on humans, and the only mosquito of the genus Culex to have its sialotranscriptome so far described. RESULTS A total of 1,753 clones randomly selected from an adult female C. tarsalis salivary glands (SG) cDNA library were sequenced and used to assemble a database that yielded 809 clusters of related sequences, 675 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 283 protein sequences, 80 of which code for putative secreted proteins. CONCLUSION Comparison of the C. tarsalis sialotranscriptome with that of C. quinquefasciatus reveals accelerated evolution of salivary proteins as compared to housekeeping proteins. The average amino acid identity among salivary proteins is 70.1%, while that for housekeeping proteins is 91.2% (P < 0.05), and the codon volatility of secreted proteins is significantly higher than those of housekeeping proteins. Several protein families previously found exclusive of mosquitoes, including only in the Aedes genus have been identified in C. tarsalis. Interestingly, a protein family so far unique to C. quinquefasciatus, with 30 genes, is also found in C. tarsalis, indicating it was not a specific C. quinquefasciatus acquisition in its evolution to optimize mammal blood feeding.
Collapse
Affiliation(s)
- Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Calvo E, Tokumasu F, Mizurini DM, McPhie P, Narum DL, Ribeiro JMC, Monteiro RQ, Francischetti IMB. Aegyptin displays high-affinity for the von Willebrand factor binding site (RGQOGVMGF) in collagen and inhibits carotid thrombus formation in vivo. FEBS J 2009; 277:413-27. [PMID: 20015075 DOI: 10.1111/j.1742-4658.2009.07494.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aegyptin is a 30 kDa mosquito salivary gland protein that binds to collagen and inhibits platelet aggregation. We have studied the biophysical properties of aegyptin and its mechanism of action. Light-scattering plot showed that aegyptin has an elongated monomeric form, which explains the apparent molecular mass of 110 kDa estimated by gel-filtration chromatography. Surface plasmon resonance identified the sequence RGQOGVMGF (where O is hydroxyproline) that mediates collagen interaction with von Willebrand factor (vWF) as a high-affinity binding site for aegyptin, with a K(D) of approximately 5 nM. Additionally, aegyptin interacts with the linear peptide RGQPGVMGF and heat-denatured collagen, indicating that the triple helix and hydroxyproline are not a prerequisite for binding. However, aegyptin does not interact with scrambled RGQPGVMGF peptide. Aegyptin also recognizes the peptides (GPO)(10) and GFOGER with low affinity (microM range), which respectively represent glycoprotein VI and integrin alpha2beta1 binding sites in collagen. Truncated forms of aegyptin were engineered, and the C-terminus fragment was shown to interact with collagen and to attenuate platelet aggregation. In addition, aegyptin prevents laser-induced carotid thrombus formation in the presence of Rose Bengal in vivo, without significant bleeding in rats. In conclusion, aegyptin interacts with distinct binding sites in collagen, and is useful tool to inhibit platelet-collagen interaction in vitro and in vivo.
Collapse
Affiliation(s)
- Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases/NIH, Bethesda, MD 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Neither mosquito saliva nor immunity to saliva has a detectable effect on the infectivity of Plasmodium sporozoites injected into mice. Infect Immun 2009; 78:545-51. [PMID: 19884338 DOI: 10.1128/iai.00807-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria infection is initiated when a female Anopheles mosquito probing for blood injects saliva, together with sporozoites, into the skin of its mammalian host. Prior studies had suggested that saliva may enhance sporozoite infectivity. Using rodent malaria models (Plasmodium berghei and P. yoelii), we were unable to show that saliva had any detectable effect on sporozoite infectivity. This is encouraging for plans to immunize humans with washed, attenuated P. falciparum sporozoites because many individuals develop cutaneous, hypersensitivity reactions to mosquito saliva after repeated exposure. If washed sporozoites have no appreciable loss of infectivity, they likely do not have decreased immunogenicity; thus, vaccinees are unlikely to develop cutaneous reactions against mosquito saliva during attempted immunization with such sporozoites. Earlier studies also suggested that repeated prior exposure to mosquito saliva reduces infectivity of sporozoites injected by mosquitoes into sensitized hosts. However, our own studies show that prior exposure of mice to saliva had no detectable effect on numbers of sporozoites delivered by infected mosquitoes, the rate of disappearance of these sporozoites from the skin or infectivity of the sporozoites. Under natural conditions, sporozoites are delivered both to individuals who may exhibit cutaneous hypersensitivity to mosquito bite and to others who may have not yet developed such reactivity. It was tempting to hypothesize that differences in responsiveness to mosquito bite by different individuals might modulate the infectivity of sporozoites delivered into a milieu of changes induced by cutaneous hypersensitivity. Our results with rodent malaria models, however, were unable to support such a hypothesis.
Collapse
|