1
|
Huang J, Qiu L, Ni C, Chen G, Zhao Q. Shape Memory Polymers with Patternable Recovery Onset Regulated by Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408324. [PMID: 39097949 DOI: 10.1002/adma.202408324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs.
Collapse
Affiliation(s)
- Jiacheng Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lintao Qiu
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Chujun Ni
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
3
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
4
|
Kalidindi S, Yi H. Robust and Reliable Fabrication of Gelatin Films Containing Micropatterned Opal Structures via Evaporative Deposition and Thermal Gelation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57481-57491. [PMID: 36512441 DOI: 10.1021/acsami.2c20266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biopolymeric hydrogel materials containing tunable optical properties such as micropatterned artificial opal structures hold significant potential in various applications. Despite recent advances in fabrication techniques, simple, reliable, and tunable production of stimuli-responsive micropatterned opal hydrogels under mild conditions remains challenging. We report a simple micromolding-based evaporative deposition-thermal gelation technique for gelatin films that capture uniform opal micropatterns, aided by a potent aminopolysaccharide chitosan (CS) that provides binding affinity and structural stability. Our results show reliable, tunable, and high-fidelity fabrication of gelatin hydrogel films containing CS-opal micropatterns, while the as-prepared films show responsiveness to pH, ionic strength, and water content indicating a robust nature. Uniform CS-opal microparticles can also be readily prepared via removal of the gelatin through various simple routes, illustrating the crucial roles of CS and gelatin. We envision that this robust, reliable, and simple evaporative deposition-thermal gelation technique can be readily extended to prepare responsive biopolymeric materials for various applications.
Collapse
Affiliation(s)
- Subhash Kalidindi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts02155, United States
| |
Collapse
|
5
|
Paderes MC, Diaz MJ, Pagtalunan CA, Bruzon DA, Tapang GA. Photo-Controlled [4+4] Cycloaddition of Anthryl-Polymer Systems: A Versatile Approach to Fabricate Functional Materials. Chem Asian J 2022; 17:e202200193. [PMID: 35452165 DOI: 10.1002/asia.202200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/11/2022] [Indexed: 11/07/2022]
Abstract
The reversible photo-induced [4+4] cycloaddition reaction of anthracene enables multiple cycles of dimerization and scission, allowing phototunable linkage of molecular fragments for the synthesis of polymer scaffolds. New functional materials ranging from hydrogels to shape-memory polymers were designed from anthryl-polymer systems because of their diverse photochemical reactivity and responsiveness. Light as an external stimulus allows for the remote and precise spatiotemporal control of materials without the need for additional reagents. Depending on how the photoreactive anthracene moieties were introduced, the interaction of anthryl-polymer systems with light results in various processes such as polymerization, cyclization, and cross-linking. Structural modifications of anthracene derivatives could shift their absorption from the ultraviolet to the visible light region, widening their range of applications including biologically relevant studies. These applications are further diversified and enhanced by the reversibility of the dimerization reaction using light and heat as stimuli. In this review, current developments in the synthesis and photodimerization of anthracene-containing polymers and their emerging applications in the fabrication of new materials are discussed.
Collapse
Affiliation(s)
- Monissa C Paderes
- University of the Philippines Diliman, Institute of Chemistry, Regidor St., 1101, Quezon City, PHILIPPINES
| | - Mark Jeffrey Diaz
- University of the Philippines Diliman, Institute of Chemistry, 1101, Quezon City, PHILIPPINES
| | - Cris Angelo Pagtalunan
- University of the Philippines Diliman, Institute of Chemistry, 1101, Quezon City, PHILIPPINES
| | - Dwight Angelo Bruzon
- University of the Philippines Diliman, Materials Science and Engineering, 1101, Quezon City, PHILIPPINES
| | - Giovanni A Tapang
- University of the Philippines Diliman, National Institute of Physics, 1101, Quezon City, PHILIPPINES
| |
Collapse
|
6
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Gao L, Luo H, Wang Q, Hu G, Xiong Y. Synergistic Effect of Hydrogen Bonds and Chemical Bonds to Construct a Starch-Based Water-Absorbing/Retaining Hydrogel Composite Reinforced with Cellulose and Poly(ethylene glycol). ACS OMEGA 2021; 6:35039-35049. [PMID: 34963985 PMCID: PMC8697600 DOI: 10.1021/acsomega.1c05614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The hydrogel prepared by graft copolymerization of starch (ST) and acrylamide (AM) is a commonly used absorbent material; however, due to their irregular network structure and a limited number of hydrophilic groups, starch-based hydrogels have poor water absorption and water retention. To overcome this, here, we provide a new preparation method for starch-based hydrogels. Using cerium ammonium nitrate (CAN) as an initiator, the starch-acrylamide-cellulose (CMC)/poly(ethylene glycol) (S-A-M/PEG) superabsorbent hydrogel was prepared by graft copolymerization. The starch-acrylamide-cellulose/poly(ethylene glycol) hydrogel network is constructed through the synergistic effect of hydrogen bonds and chemical bonds. The experimental results showed that the starch-acrylamide-cellulose/poly(ethylene glycol) superabsorbent hydrogel has a complete network structure that does not easily collapse due to its superior mechanical properties. The water swelling rate reached 80.24 times, and it reached 50.61% water retention after 16 days. This hydrogel has excellent water-absorbing and water-retaining properties, biocompatibility, and degradability, making it useful for further studies in medical, agricultural, and other fields.
Collapse
Affiliation(s)
- Longfei Gao
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Huiyuan Luo
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Qian Wang
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Guirong Hu
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Yuzhu Xiong
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
8
|
Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention. Molecules 2021; 26:molecules26133999. [PMID: 34209127 PMCID: PMC8272078 DOI: 10.3390/molecules26133999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
The performance of hydrogels prepared with traditional natural starch as raw materials is considerable; the fixed ratio of amylose/amylopectin significantly limits the improvement of hydrogel structure and performance. In this paper, starch hydrogels were prepared by physical blending and chemical grafting, with the aid of ultrasonic heating. The effects of different amylose/amylopectin ratios on the microstructure and water retention properties of starch hydrogels were studied. The results show that an increase in amylopectin content is beneficial to improve the grafting ratio of acrylamide (AM). The interaction between the AM grafted on amylopectin and amylose molecules through hydrogen bonding increases the pores of the gel network and thins the pore walls. When the amylopectin content was 70%, the water absorption (swelling 45.25 times) and water retention performance (16 days water retention rate 44.17%) were optimal. This study provides new insights into the preparation of starch-based hydrogels with excellent physical and chemical properties.
Collapse
|
9
|
Obireddy SR, Lai WF. Multi-Component Hydrogel Beads Incorporated with Reduced Graphene Oxide for pH-Responsive and Controlled Co-Delivery of Multiple Agents. Pharmaceutics 2021; 13:313. [PMID: 33670952 PMCID: PMC7997452 DOI: 10.3390/pharmaceutics13030313] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The development of combination therapy has received great attention in recent years because of its potential to achieve higher therapeutic efficacy than that achieved by mono-drug therapy. Carriers for effective and stimuli-responsive co-delivery of multiple agents, however, are highly deficient at the moment. To address this need, this study reports the generation of multi-component hydrogel beads incorporated with reduced graphene oxide (rGO). The beads are prepared by incorporating doxorubicin (DOX)-loaded gelatine (GL) microbeads into hydrogel beads containing rGO and 5-fluorouracil (5-FU). rGO-containing beads are shown to be more effective in inhibiting the growth of MCF-7 cells via the induction of reactive oxygen species (ROS) generation. In addition, the drug release sustainability of the beads is affected by the pH of the release medium, with the release rate increasing in neutral pH but decreasing in the acidic environment. Our beads warrant further development as carriers for pH-responsive and controlled co-delivery of multiple agents.
Collapse
Affiliation(s)
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| |
Collapse
|
10
|
Kalayci K, Frisch H, Truong VX, Barner-Kowollik C. Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline-controlling photoreactivity by pH. Nat Commun 2020; 11:4193. [PMID: 32826921 PMCID: PMC7443129 DOI: 10.1038/s41467-020-18057-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Photochemical reactions are a powerful tool in (bio)materials design due to the spatial and temporal control light can provide. To extend their applications in biological setting, the use of low-energy, long wavelength light with high penetration propertiesis required. Further regulation of the photochemical process by additional stimuli, such as pH, will open the door for construction of highly regulated systems in nanotechnology- and biology-driven applications. Here we report the green light induced [2+2] cycloaddition of a halochromic system based on a styrylquinoxaline moiety, which allows for its photo-reactivity to be switched on and off by adjusting the pH of the system. Critically, the [2+2] photocycloaddition can be activated by green light (λ up to 550 nm), which is the longest wavelength employed to date in catalyst-free photocycloadditions in solution. Importantly, the pH-dependence of the photo-reactivity was mapped by constant photon action plots. The action plots further indicate that the choice of solvent strongly impacts the system's photo-reactivity. Indeed, higher conversion and longer activation wavelengths were observed in water compared to acetonitrile under identical reaction conditions. The wider applicability of the system was demonstrated in the crosslinking of an 8-arm PEG to form hydrogels (ca. 1 cm in thickness) with a range of mechanical properties and pH responsiveness, highlighting the potential of the system in materials science.
Collapse
Affiliation(s)
- Kubra Kalayci
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hendrik Frisch
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Vinh X Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
11
|
Czarnecka E, Nowaczyk J. Semi-Natural Superabsorbents Based on Starch-g-poly(acrylic acid): Modification, Synthesis and Application. Polymers (Basel) 2020; 12:polym12081794. [PMID: 32785178 PMCID: PMC7464871 DOI: 10.3390/polym12081794] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 11/28/2022] Open
Abstract
Biopolymer-based superabsorbent polymers (SAPs) are being synthesized and investigated as a biodegradable alternative for an entirely synthetic SAPs, particularly those based on acrylic acid and its derivatives. This article focuses on the chemical modification of starch (S), and synthesis of new potentially biodegradable polymers using acrylic acid (AA) as side chain monomer and crosslinking mediator together with N,N’-methylenebisacrylamide (MBA). The graft co-polymerization was initiated by ceric ammonium nitrate (CAN) or potassium persulfate (KPS), leading to different reaction mechanisms. For each of the initiators, three different synthetic routes were applied. The structures of new bio-based SAPs were characterized by means of IR spectroscopy. Thermogravimetric measurements were made to test the thermal stability, and morphology of the samples were examined using scanning electron microscopy (SEM). Physico-chemical measurements were performed to characterize properties of new materials such as swelling characteristics. The water absorption capacity of resulting hydrogels was measured in distilled water and 0.9% NaCl solution.
Collapse
Affiliation(s)
- Elżbieta Czarnecka
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland;
- Plastica Sp. z o.o., Frydrychowo 55, 87-410 Kowalewo Pomorskie, Poland
- Correspondence:
| | - Jacek Nowaczyk
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina street, 87-100 Toruń, Poland;
| |
Collapse
|
12
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [PMID: 31480996 DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
13
|
Dual physically and chemically crosslinked regenerated cellulose – Gelatin composite hydrogels towards art restoration. Carbohydr Polym 2020; 234:115885. [DOI: 10.1016/j.carbpol.2020.115885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
|
14
|
Larrea-Wachtendorff D, Tabilo-Munizaga G, Ferrari G. Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach. Polymers (Basel) 2019; 11:E1673. [PMID: 31615036 PMCID: PMC6836192 DOI: 10.3390/polym11101673] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Starch-based hydrogels have received considerable interest due to their safe nature, biodegradability and biocompatibility. The aim of this study was to verify the possibility of producing natural hydrogels based on potato starch by high hydrostatic pressure (HHP), identifying suitable processing conditions allowing to obtain stable hydrogels, as well as to characterize structural and mechanical properties of these products. Sieved (small size granules and medium size granules) and unsieved potato starch samples were used to prepare aqueous suspensions of different concentrations (10-30% w/w) which were processed at 600 MPa for 15 min at different temperatures (25, 40 and 50 °C). Products obtained were characterized by different techniques (light and polarized microscopy, Fourier transform infrared spectroscopy (FTIR), rheology and differential scanning calorimetry (DSC)). Results obtained so far demonstrated that potato starch suspensions (20% starch-water concentration (w/w)) with granules mean size smaller than 25 µm treated at 600 MPa for 15 min and 50 °C showed a complete gelatinization and gel-like appearance. Potato HHP hydrogels were characterized by high viscosity, shear-thinning behavior and a highly structured profile (G' >> G''). Moreover, their FTIR spectra, similarly to FTIR profiles of thermal gels, presented three absorption bands in the characteristic starch-gel region (950-1200 cm-1), whose intensity increased with decreasing the particle size and increasing the processing temperature. In conclusion, potato starch hydrogels produced by HHP in well-defined processing conditions exhibited excellent mechanical properties, which can be tailored according to the requirements of the different applications envisaged.
Collapse
Affiliation(s)
| | | | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano (SA), Italy.
- ProdAl Scarl, Competence Center on Agro-Food Productions, University of Salerno, 84084 Fisciano (SA), Italy.
| |
Collapse
|
15
|
Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 2019; 97:46-73. [PMID: 31344513 DOI: 10.1016/j.actbio.2019.07.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
16
|
Ferreira N, Ferreira L, Cardoso V, Boni F, Souza A, Gremião M. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Yano S, Iwase T, Teramoto N, Shimasaki T, Shibata M. Synthesis, thermal properties and cell-compatibility of photocrosslinked cinnamoyl-modified hydroxypropyl cellulose. Carbohydr Polym 2018; 184:418-426. [PMID: 29352937 DOI: 10.1016/j.carbpol.2017.12.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
Biocompatibility of cinnamoyl-modified carbohydrate materials is not well-known, while they are attracting attention as a photoreactive material. In order to investigate biocompatible properties of cinnamoyl-modified carbohydrate, hydroxypropyl cellulose (HPC) was reacted with cinnamoyl chloride to yield cinnamoyl-modified HPC (HPC-C) for a cell proliferation test. HPC-Cs with three different degrees of substitution (DS) were prepared by changing a feed ratio of cinnamoyl chloride to HPC. The DS of the products ranged from 1.3 to 3.0 per one hydroxylpropyl anhydroglucose unit. Thermal analysis using DSC and TGA showed that the HPC-C with higher DS has a glass transition temperature and higher thermal stability. Ultraviolet (UV) light was irradiated on the HPC-C thin films, and changes in the UV-vis spectrum of the films were examined. In the course of UV irradiation, the absorbance at 280 nm was reduced. Fibroblast cells were cultured on the photocrosslinked HPC-C films, and cell growth was examined. The cell proliferation test revealed that the photocrosslinked HPC-C films have good compatibility with fibroblast cells.
Collapse
Affiliation(s)
- Shinya Yano
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Takumi Iwase
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.
| | - Toshiaki Shimasaki
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Mitsuhiro Shibata
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
18
|
Truong VX, Li F, Forsythe JS. Versatile Bioorthogonal Hydrogel Platform by Catalyst-Free Visible Light Initiated Photodimerization of Anthracene. ACS Macro Lett 2017; 6:657-662. [PMID: 35650867 DOI: 10.1021/acsmacrolett.7b00312] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent developments in photochemistry have introduced new methods to prepare hydrogels initiated by nonharmful light which is essential for encapsulation of cells and bioactive components. However, bioorthogonal photoclick reactions generally requires two components for cross-linking and, in many cases, the formation of a reactive intermediate that may cross-react with nucleophiles in biological media. Here we report the utilization of a visible light triggered dimerization of electron-rich anthracene for polymer cross-linking to form bulk hydrogels and microgels. Incorporation of gelatin within the hydrogel enhanced cell attachment and viability after 7 days of culture and spatiotemporal conjugation of a bioactive component using photochemical dimerization of anthracene was demonstrated. This work therefore introduces a simple yet powerful tool for light modulated bioorthogonal polymer cross-linking, which can be utilized in various bioengineering applications.
Collapse
Affiliation(s)
- Vinh X. Truong
- Department
of Materials Science and Engineering, Monash Institute of Medical
Engineering, Monash University, Clayton, 3800 VIC, Australia
| | - Fanyi Li
- Department
of Materials Science and Engineering, Monash Institute of Medical
Engineering, Monash University, Clayton, 3800 VIC, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - John S. Forsythe
- Department
of Materials Science and Engineering, Monash Institute of Medical
Engineering, Monash University, Clayton, 3800 VIC, Australia
| |
Collapse
|
19
|
The study of properties and nutrient determination of hydrogel made of soybean meal (okara) using microwave-assisted heating. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.06.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Wang Y, Wei N, Feng Q, Li S, Yang C, Liu Z, Zhang W, Li Q. Preparation and characterization of luminescent cellulose–Y4Si2O7N2:Ce4+ hybrid hydrogels. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s1560090416050122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Van Hoorick J, Declercq H, De Muynck A, Houben A, Van Hoorebeke L, Cornelissen R, Van Erps J, Thienpont H, Dubruel P, Van Vlierberghe S. Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:247. [PMID: 26411443 DOI: 10.1007/s10856-015-5566-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
The present work describes for the first time the production of self-supporting low gelatin density (<10 w/v%) porous scaffolds using methacrylamide-modified gelatin as an extracellular matrix mimicking component. As porous scaffolds starting from low gelatin concentrations cannot be realized with the conventional additive manufacturing techniques in the abscence of additives, we applied an indirect fused deposition modelling approach. To realize this, we have printed a sacrificial polyester scaffold which supported the hydrogel material during UV crosslinking, thereby preventing hydrogel structure collapse. After complete curing, the polyester scaffold was selectively dissolved leaving behind a porous, interconnective low density gelatin scaffold. Scaffold structural analysis indicated the success of the selected indirect additive manufacturing approach. Physico-chemical testing revealed scaffold properties (mechanical, degradation, swelling) to depend on the applied gelatin concentration and methacrylamide content. Preliminary biocompatibility studies revealed the cell-interactive and biocompatible properties of the materials developed.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium
- Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Heidi Declercq
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 6B3, 9000, Ghent, Belgium
| | - Amelie De Muynck
- UGCT - Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86/N12, 9000, Ghent, Belgium
| | - Annemie Houben
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium
| | - Luc Van Hoorebeke
- UGCT - Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86/N12, 9000, Ghent, Belgium
| | - Ria Cornelissen
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 6B3, 9000, Ghent, Belgium
| | - Jürgen Van Erps
- Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Hugo Thienpont
- Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.
- Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium.
| |
Collapse
|
22
|
Spoljaric S, Salminen A, Luong ND, Seppälä J. Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.03.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Cao L, Werkmeister JA, Wang J, Glattauer V, McLean KM, Liu C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials 2014; 35:2730-42. [PMID: 24438908 DOI: 10.1016/j.biomaterials.2013.12.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/13/2013] [Indexed: 01/27/2023]
Abstract
Although rhBMP-2 has excellent ability to accelerate the repair of normal bone defects, limitations of its application exist in the high cost and potential side effects. This study aimed to develop a composite photopolymerisable hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (PH/rhBMP-2/NPs) as the bone substitute to realize segmental bone defect repair at a low growth factor dose. Firstly rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles (rhBMP-2/NPs) were prepared and characterized by DLS and TEM. Composite materials, PH/rhBMP-2/NPs were developed and investigated by SEM-EDS as well as a series of physical characterizations. Using hMSCs as an in vitro cell model, composite photopolymerisable hydrogels incorporating NPs (PH/NPs) showed good cell viability, cell adhesion and time dependent cell ingrowth. In vitro release kinetics of rhBMP-2 showed a significantly lower initial burst release from the composite system compared with the growth factor-loaded particles alone or encapsulated directly within the hydrogel, followed by a slow release over time. The bioactivity of released rhBMP-2 was validated by alkaline phosphatase (ALP) activity as well as a mineralization assay. In in vivo studies, the PH/rhBMP-2/NPs induced ectopic bone formation in the mouse thigh. In addition, we further investigated the in vivo effects of rhBMP-2-loaded scaffolds in a rabbit radius critical defect by three dimensional micro-computed tomographic (μCT) imaging, histological analysis, and biomechanical measurements. Animals implanted with the composite hydrogel containing rhBMP-2-loaded nanoparticles underwent gradual resorption with more pronounced replacement by new bone and induced reunion of the bone marrow cavity at 12 weeks, compared with animals implanted with hydrogel encapsulated growth factors alone. These data provided strong evidence that the composite PH/rhBMP-2/NPs are a promising substitute for bone tissue engineering.
Collapse
Affiliation(s)
- Lingyan Cao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jerome A Werkmeister
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Veronica Glattauer
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Keith M McLean
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
24
|
Kaur G, Johnston P, Saito K. Photo-reversible dimerisation reactions and their applications in polymeric systems. Polym Chem 2014. [DOI: 10.1039/c3py01234d] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
|
26
|
Efficacy, safety, and biodegradation of a degradable scleral buckle of chitosan-gelatin polymer in rabbits. Retina 2013; 33:1062-9. [PMID: 23296049 DOI: 10.1097/iae.0b013e3182733a64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the efficacy, safety, and biodegradation of chitosan-gelatin scleral buckles in rabbit eyes. METHODS Segmental scleral buckling was performed on the left eye of each rabbit. There were 40 rabbits in chitosan-gelatin group and 20 rabbits in silicone sponge group. B-scan ocular ultrasonography was used to evaluate buckling effect. Retinal function after implantation was evaluated by electroretinograms. Tissue reaction and biocompatibility was examined by histology. Scanning electron microscope was used to analyze structural changes after episcleral implantation. Degradation of chitosan-gelatin was assessed by mass loss. RESULTS Indentation of both implants decreased over time. However, the indentation created by chitosan-gelatin implant was lower than the silicone sponge one. Extrusion of implant was found in 20% eyes of silicone sponge group. Electroretinography revealed no detectable difference in retinal function between the two groups. Partially degraded chitosan-gelatin, newly formed capillaries, loose connective tissue, and some cell infiltration were found in chitosan-gelatin; however, only a slight cell infiltration was found in silicone sponge. Over a 9-month observation period, degradation rate of the chitosan-gelatin was about 36%. CONCLUSION Chitosan-gelatin polymer was used effectively and safely as an implant for scleral buckling in a rabbit and showed good biodegradation.
Collapse
|
27
|
|
28
|
Wells LA, Brook MA, Sheardown H. Generic, Anthracene-Based Hydrogel Crosslinkers for Photo-controllable Drug Delivery. Macromol Biosci 2011; 11:988-98. [DOI: 10.1002/mabi.201100001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/10/2011] [Indexed: 11/11/2022]
|
29
|
|
30
|
Dong XM, Guo JB, Wei J. Photoreaction Behaviors of Two Liquid Crystalline Cinnamoyl Compounds with Different Phase in Solution and Mesomorphic States. CHINESE J CHEM PHYS 2010. [DOI: 10.1088/1674-0068/23/06/719-725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Elvin CM, Vuocolo T, Brownlee AG, Sando L, Huson MG, Liyou NE, Stockwell PR, Lyons RE, Kim M, Edwards GA, Johnson G, McFarland GA, Ramshaw JAM, Werkmeister JA. A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials 2010; 31:8323-31. [PMID: 20674967 DOI: 10.1016/j.biomaterials.2010.07.032] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/05/2010] [Indexed: 11/27/2022]
Abstract
Gelatin is widely used as a medical biomaterial because it is readily available, cheap, biodegradable and demonstrates favourable biocompatibility. Many applications require stabilisation of the biomaterial by chemical crosslinking, and this often involves derivatisation of the protein or treatment with cytotoxic crosslinking agents. We have previously shown that a facile photochemical method, using blue light, a ruthenium catalyst and a persulphate oxidant, produces covalent di-tyrosine crosslinks in resilin and fibrinogen to form stable hydrogel biomaterials. Here we show that various gelatins can also be rapidly crosslinked to form highly elastic (extension to break >650%) and adhesive (stress at break >100 kPa) biomaterials. Although the method does not require derivatisation of the protein, we show that when the phenolic (tyrosine-like) content of gelatin is increased, the crosslinked material becomes resistant to swelling, yet retains considerable elasticity and high adhesive strength. The reagents are not cytotoxic at the concentration used in the photopolymerisation reaction. When tested in vivo in sheep lung, the photopolymerised gelatin effectively sealed a wound in lung tissue from blood and air leakage, was not cytotoxic and did not produce an inflammatory response. The elastic properties, thermal stability, speed of curing and high tissue adhesive strength of this photopolymerised gelatin, offer considerable improvement over current surgical tissue sealants.
Collapse
Affiliation(s)
- Christopher M Elvin
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Curcio M, Gianfranco Spizzirri U, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Biopharm 2010; 76:48-55. [PMID: 20580821 DOI: 10.1016/j.ejpb.2010.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/24/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
In this paper, a novel class of microspheric hydrogels was synthesized by grafting of N-isopropyacrylamide (NIPAAm) with gelatin. The possibility of inserting commercial gelatin in a crosslinked structure bearing thermo-sensitive moieties, by radical process, represents an interesting innovation that significantly improves the device performance, opening new applications in biomedical and pharmaceutical fields. This synthetic approach allows a modification of the polymeric network composition, producing hydrogels with suitable physico-chemical properties and a transition temperature higher than NIPAAm homopolymers. The incorporation of monomers into the network was confirmed by infrared spectroscopy, and the composition of the polymerization feed was found to strictly influence the network density and the shape of hydrogels. Thermal analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the temperature range 34.6-34.8 degrees C, according to the amount of the hydrophilic portions in the network. In order to test the preformed materials as drug carriers, diclofenac sodium salt was loaded into the spherical microparticles. After the determination of the drug entrapment percent, drug release profiles in media at different temperature were analysed. By using semi-empirical equations, the release mechanism was extensively studied and the diffusional contribution was evaluated.
Collapse
Affiliation(s)
- Manuela Curcio
- Dipartimento di Scienze Farmaceutiche, Università della Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Kloxin CJ, Scott TF, Adzima BJ, Bowman CN. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers. Macromolecules 2010; 43:2643-2653. [PMID: 20305795 PMCID: PMC2841325 DOI: 10.1021/ma902596s] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymer networks possessing reversible covalent crosslinks constitute a novel material class with the capacity for adapting to an externally applied stimulus. These covalent adaptable networks (CANs) represent a trend in polymer network fabrication towards the rational design of structural materials possessing dynamic characteristics for specialty applications. Herein, we discuss the unique attributes of CANs that must be considered when designing, fabricating, and characterizing these smart materials that respond to either thermal or photochemical stimuli. While there are many reversible reactions which to consider as possible crosslink candidates in CANs, there are very few that are readily and repeatedly reversible. Furthermore, characterization of the mechanical properties of CANs requires special consideration owing to their unique attributes. Ultimately, these attributes are what lead to the advantageous properties displayed by CANs, such as recyclability, healability, tunability, shape changes, and low polymerization stress. Throughout this perspective, we identify several trends and future directions in the emerging field of CANs that demonstrate the progress to date as well as the essential elements that are needed for further advancement.
Collapse
Affiliation(s)
- Christopher J. Kloxin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
| | - Timothy F. Scott
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0427, USA
| | - Brian J. Adzima
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424, USA
| |
Collapse
|
34
|
Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 2009; 10:2619-25. [PMID: 19663418 DOI: 10.1021/bm900544e] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A design strategy to control the thermally triggered folding, self-assembly, and subsequent hydrogelation of amphiphilic beta-hairpin peptides in a pH-dependent manner is presented. Point substitutions of the lysine residues of the self-assembling peptide MAX1 were made to alter the net charge of the peptide. In turn, the electrostatic nature of the peptide directly influences the solution pH at which thermally triggered hydrogelation is permitted. CD spectroscopy and oscillatory rheology show that peptides of lower net positive charge are capable of folding and assembling into hydrogel material at lower values of pH at a given temperature. The pH sensitive folding and assembling behavior is not only dependent on the net peptide charge, but also on the exact position of substitution within the peptide sequence. TEM shows that these peptides self-assemble into hydrogels that are composed of well-defined fibrils with nonlaminated morphologies. TEM also indicates that fibril morphology is not influenced by making these sequence changes on the hydrophilic face of the hairpins. Rheology shows that the ultimate mechanical rigidity of these peptide hydrogels is dependent on the rate of folding and self-assembly. Peptides that fold and assemble faster afford more rigid gels. Ultimately, this design strategy yielded a peptide MAX1(K15E) that is capable of undergoing thermally triggered hydrogelation at physiological buffer conditions (pH 7.4, 150 NaCl, 37 degrees C).
Collapse
Affiliation(s)
- Karthikan Rajagopal
- Department of Chemistry and Biochemistry, University of Delaware, Newark Delaware 19716, USA
| | | | | | | | | |
Collapse
|
35
|
Chung AS, Waldeck H, Schmidt DR, Kao WJ. Monocyte inflammatory and matrix remodeling response modulated by grafted ECM-derived ligand concentration. J Biomed Mater Res A 2009; 91:742-52. [PMID: 19051303 PMCID: PMC2767419 DOI: 10.1002/jbm.a.32259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ligands presented on biomaterials are a common method to facilitate and control the host response. In a gelatin and polyethylene glycol diacrylate (PEGdA) based semi-interpenetrating network (sIPN), the effects of extracellular matrix (ECM)-derived peptide amount on monocyte adhesion and subsequent protein and mRNA expression were examined. Peptide amount on the sIPN surface was controlled by varying the wt % ratio of the peptide-PEG grafted gelatin to PEGdA. We hypothesized that increasing bioactive peptide amount would modulate human blood-derived monocyte adhesion, cytokine expression, and gene regulation. Monocyte adhesion, release of gelatin degrading proteases matrix metalloprotease-2 (MMP-2), matrix metalloprotease-9 (MMP-9), and proinflammatory protein interleukin-1beta (IL-1beta), and mRNA expression of these proteins were evaluated. We found RGD-PEG grafted sIPNs with higher surface RGD concentrations showed increased adherent density. MMP-2 and IL-1beta protein release was also influenced by the ligand concentration, as initial increase in protein concentration was observed at higher ligand concentrations. MMP-9 protein showed an initial increase that subsided then increased. A decreased IL-1beta protein and mRNA expression was observed over time but MMP-2 mRNA was not detected at any time though MMP-2 protein concentrations showed an initial burst. Hence, monocyte behavior was modulated by surface ligand identity in tandem with ligand concentration.
Collapse
Affiliation(s)
- Amy S Chung
- School of Pharmacy, University of Wisconsin-Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
36
|
Yu Y, Cui S. Facile preparation of chemically cross-linked microgels by irradiation of visible light at room temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:11272-11275. [PMID: 19719163 DOI: 10.1021/la9026464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the facile preparation of chemically cross-linked microgels in mild conditions by using the reversed microemulsion technique. Sodium alginate has been modified by partially grafting phenol groups to the backbone, on the basis of which microgels have been prepared by the irradiation of visible light in the presence of catalyst Ru(II) complex at room temperature. The irradiation of visible light instead of UV light or gamma rays brings many advantages. The mean diameters of the microgels are 15-40 microm in aqueous solution and 5-15 microm in the dried state. Although the size of the microgel is sensitive to the environment change, it presents excellent size stability in a broad range that covers the physiological condition. The applications of this biocompatible and biodegradable microgel in biology are greatly anticipated.
Collapse
Affiliation(s)
- You Yu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | | |
Collapse
|
37
|
Kuang GC, Ji Y, Jia XR, Li Y, Chen EQ, Zhang ZX, Wei Y. Photoresponsive organogels: an amino acid-based dendron functionalized with p-nitrocinnamate. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
In situ gel forming stereocomplex composed of four-arm PEG-PDLA and PEG-PLLA block copolymers. Macromol Res 2008. [DOI: 10.1007/bf03218584] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Extended interaction of beta1 integrin subunit-deficient cells (GD25) with surfaces modified with fibronectin-derived peptides: Culture optimization, adhesion and cytokine panel studies. Acta Biomater 2008; 4:1172-86. [PMID: 18514047 DOI: 10.1016/j.actbio.2008.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/05/2008] [Accepted: 03/20/2008] [Indexed: 01/15/2023]
Abstract
The modification of biomaterials with extracellular matrix-mimicking factors is a common technique used to influence the cellular response through integrin-mediated signaling. The inherent limitations of antibody-inhibition studies necessitate the use of complementary methods to block integrin function to confirm cell-surface interaction. In this study, we employed a beta1 integrin-deficient cell line, GD25, to investigate the role of beta1 subunit in cell adhesion and subsequent cytokine (granulocyte macrophage colony stimulating factor; interleukin (IL)-1alpha; IL-1beta; IL-6; monocyte chemoattractant protein-1; regulated upon activation, normal T-cell expressed, and secreted; tumor necrosis factor-alpha) release kinetics in the presence of tissue culture polystyrene (TCPS) and semi-interpenetrating polymer networks (sIPN) modified with fibronectin (FN)-mimic peptides (RGD, PHSRN). Culture conditions (i.e. seeding density, medium, serum supplementation) were optimized for long-term observation. Differences in cell adhesion, cell viability and cytokine release behavior were dependent on the presence of the beta1 integrin subunit, FN, sIPN cast method and peptide identity. By comparing two complementary techniques for assaying integrin function, we observed both similarities (i.e. decreased adhesion to FN-absorbed TCPS and increased IL-1beta release at 96h) and differences (i.e. no difference in adhesion or IL-1beta release in the presence of different sIPN surfaces) when the function of the beta1 subunit was blocked in cell adhesion and signaling in the presence of biomaterials.
Collapse
|
40
|
Fan H, Zhu X, Gao L, Li Z, Huang J. The Photodimerization of a Cinnamoyl Moiety Derivative in Dilute Solution Based on the Intramolecular Chain Interaction of Gemini Surfactant. J Phys Chem B 2008; 112:10165-70. [DOI: 10.1021/jp8017666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiming Fan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoming Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lining Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zichen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
41
|
Ding FC, Hsu SH, Chiang WY. Synthesis of a new photoreactive gelatin with BTDA and HEMA derivatives. J Appl Polym Sci 2008. [DOI: 10.1002/app.28025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Sirpal S, Gattás-Asfura KM, Leblanc RM. A photodimerization approach to crosslink and functionalize microgels. Colloids Surf B Biointerfaces 2007; 58:116-20. [PMID: 17400431 DOI: 10.1016/j.colsurfb.2007.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/13/2007] [Accepted: 02/22/2007] [Indexed: 11/18/2022]
Abstract
Microgels were prepared within reverse micelles via photocrosslinking. Gelation resulted from the [2+2] photodimerization reaction of nitrocinnamoyl (NC) groups on multi-arm polyethylene glycol (PEG) or gelatin. Because of the potential for biomedical and chemical applications, immobilization capacity within the microgels was investigated. Quantum dots (QDs), for example, share a similar size scale with proteins and can be physically trapped within the microgels. In addition, the optoelectronic properties of QDs could be utilized for analytical, imaging, and therapeutic purposes. Small molecules and recognition sequences (e.g. biotin) can also be covalently immobilized within the microgel networks through the photodimerization reaction. In the presence of biotin-PEG-NC, the resulting microgels added to streptavidin-coated plates. The microgel properties such as biodegradability and degree of swelling may be engineered for particular applications including targeted monitoring and controlled drug delivery systems.
Collapse
Affiliation(s)
- Sanjeev Sirpal
- University of Miami, Department of Chemistry, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | | | |
Collapse
|
43
|
Chung A, Gao Q, Kao WJ. Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multifunctional matrices via integrin complexation. Biomaterials 2007; 28:285-98. [PMID: 16979234 DOI: 10.1016/j.biomaterials.2006.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Macrophages are commonly observed at the biomaterial-tissue interface and interact with the extracellular matrix (ECM) mainly by integrin receptors to play a critical role in ECM turnover by secreting matrix metalloproteinases (MMPs). To investigate beta1 and beta3 containing integrin-mediated adhesion and subsequent MMP-2/-9 protein and gene expression in human blood-derived monocytes, biofunctional peptides immobilized onto flexible polyethylene glycol (PEG) arms were grafted onto a gelatin-based interpenetrating network (IPN). Adherent monocyte density was dramatically greater in the presence of RGD immobilized onto flexible PEG arms of the gelatin-based IPN. Pretreatment of monocytes with either anti-integrin beta1 or beta3 led to a significant decrease in adherent cell density on RGD-PEG-grafted IPNs. MMP-2 and MMP-9 protein and MMP-9 mRNA expression increased in the presence of IPNs initially, independent of ligand identity. Anti-integrin beta1 or beta3 antibody pretreatment of monocytes led to a general decrease in MMP-2/-9 protein expression. These results demonstrate the importance of beta1 and beta3 containing integrins in mediating monocyte adhesion onto RGD immobilized onto flexible PEG arms of the IPN. The results also reveal that MMP-2/-9 protein and gene expression is influenced by the presence of gelatin and not the ligands immobilized on the PEG arms of the IPN.
Collapse
Affiliation(s)
- Amy Chung
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | | | | |
Collapse
|
44
|
Kiuchi H, Kai W, Inoue Y. Preparation and characterization of poly(ethylene glycol) crosslinked chitosan films. J Appl Polym Sci 2007. [DOI: 10.1002/app.27546] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|