1
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Tokura D, Konarita K, Suzuki M, Ogata K, Honda Y, Miura Y, Nishiyama N, Nomoto T. Active control of pharmacokinetics using light-responsive polymer-drug conjugates for boron neutron capture therapy. J Control Release 2024; 371:445-454. [PMID: 38844180 DOI: 10.1016/j.jconrel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
In boron neutron capture therapy (BNCT), boron drugs should exhibit high intratumoral boron concentrations during neutron irradiation, while being cleared from the blood and normal organs. However, it is usually challenging to achieve such tumor accumulation and quick clearance simultaneously in a temporally controlled manner. Here, we developed a polymer-drug conjugate that can actively control the clearance of the drugs from the blood. This polymer-drug conjugate is based on a biocompatible polymer that passively accumulates in tumors. Its side chains were conjugated with the low-molecular-weight boron drugs, which are immediately excreted by the kidneys, via photolabile linkers. In a murine subcutaneous tumor model, the polymer-drug conjugate could accumulate in the tumor with the high boron concentration ratio of the tumor to the surrounding normal tissue (∼10) after intravenous injection while a considerable amount remained in the bloodstream as well. Photoirradiation to blood vessels through the skin surface cleaved the linker to release the boron drug in the blood, allowing for its rapid clearance from the bloodstream. Meanwhile, the boron concentration in the tumor which was not photoirradiated could be maintained high, permitting strong BNCT effects. In clinical BNCT, the dose of thermal neutrons to solid tumors is determined by the maximum radiation exposure to normal organs. Thus, our polymer-drug conjugate may enable us to increase the therapeutic radiation dose to tumors in such a practical situation.
Collapse
Affiliation(s)
- Daiki Tokura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kakeru Konarita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Keisuke Ogata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
3
|
Phan H, Cavanagh R, Jacob P, Destouches D, Vacherot F, Brugnoli B, Howdle S, Taresco V, Couturaud B. Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly. Polymers (Basel) 2023; 15:3070. [PMID: 37514459 PMCID: PMC10383388 DOI: 10.3390/polym15143070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red and hydrophilic sulfo-cyanine5-NHS ester as model drugs) encapsulation, stimulus responsiveness, and surface-ligand modifications. Polymersomes constituting poly(N-2-hydroxypropylmethacrylamide)-b-poly(N-(2-(methylthio)ethyl)acrylamide) (PHPMAm-b-PMTEAM) are prepared by aqueous dispersion RAFT-mediated polymerization-induced self-assembly (PISA). The hydrophilic block lengths have an effect on the obtained morphologies, with short chain P(HPMAm)16 affording spheres and long chain P(HPMAm)43 yielding vesicles. This further induces different responses to H2O2, with spheres fragmenting and vesicles aggregating. Folic acid (FA) is successfully conjugated to the P(HPMAm)43, which self-assembles into FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes. The FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes entrap both hydrophobic Nile red (NR) and hydrophilic Cy5 dye. The NR-loaded FA-linked polymersomes exhibit a controlled release of the encapsulated NR dye when exposed to 10 mM H2O2. All the polymersomes formed are stable in human plasma and well-tolerated in MCF-7 breast cancer cells. These preliminary results demonstrate that, with simple and scalable chemistry, PISA offers access to different shapes and opens up the possibility of the one-pot synthesis of multicompartmental and responsive polymersomes.
Collapse
Affiliation(s)
- Hien Phan
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Robert Cavanagh
- School of Medicine, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Philippa Jacob
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | - Benedetta Brugnoli
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steve Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
4
|
Investigation of self-assembled poly(ethylene glycol)-poly(L-lactic acid) micelle as potential drug delivery system for poorly water soluble anticancer drug abemaciclib. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Xiong W, Wang X, Liu Y, Luo C, Lu X, Cai Y. Polymerization-Induced Electrostatic Self-Assembly Governed by Guanidinium Ionic Hydrogen Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weixing Xiong
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanyuan Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Caihui Luo
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
7
|
Anane-Adjei AB, Fletcher NL, Cavanagh RJ, Houston ZH, Crawford T, Pearce AK, Taresco V, Ritchie AA, Clarke P, Grabowska AM, Gellert PR, Ashford MB, Kellam B, Thurecht KJ, Alexander C. Synthesis, characterisation and evaluation of hyperbranched N-(2-hydroxypropyl) methacrylamides for transport and delivery in pancreatic cell lines in vitro and in vivo. Biomater Sci 2022; 10:2328-2344. [PMID: 35380131 DOI: 10.1039/d1bm01548f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched polymers have many promising features for drug delivery, owing to their ease of synthesis, multiple functional group content, and potential for high drug loading with retention of solubility. Here we prepared hyperbranched N-(2-hydroxypropyl)methacrylamide (HPMA) polymers with a range of molar masses and particle sizes, and with attached dyes, radiolabel or the anticancer drug gemcitabine. Reversible addition-fragmentation chain transfer (RAFT) polymerisation enabled the synthesis of pHPMA polymers and a gemcitabine-comonomer functionalised pHPMA polymer pro-drug, with diameters of the polymer particles ranging from 7-40 nm. The non-drug loaded polymers were well-tolerated in cancer cell lines and macrophages, and were rapidly internalised in 2D cell culture and transported efficiently to the centre of dense pancreatic cancer 3D spheroids. The gemcitabine-loaded polymer pro-drug was found to be toxic both to 2D cultures of MIA PaCa-2 cells and also in reducing the volume of MIA PaCa-2 spheroids. The non-drug loaded polymers caused no short-term adverse effects in healthy mice following systemic injection, and derivatives of these polymers labelled with 89Zr-were tracked for their distribution in the organs of healthy and MIA PaCa-2 xenograft bearing Balb/c nude mice. Tumour accumulation, although variable across the samples, was highest in individual animals for the pHPMA polymer of ∼20 nm size, and accordingly a gemcitabine pHPMA polymer pro-drug of ∼18 nm diameter was evaluated for efficacy in the tumour-bearing animals. The efficacy of the pHPMA polymer pro-drug was very similar to that of free gemcitabine in terms of tumour growth retardation, and although there was a survival benefit after 70 days for the polymer pro-drug, there was no difference at day 80. These data suggest that while polymer pro-drugs of this type can be effective, better tumour targeting and enhanced in situ release remain as key obstacles to clinical translation even for relatively simple polymers such as pHPMA.
Collapse
Affiliation(s)
- Akosua B Anane-Adjei
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Robert J Cavanagh
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Zachary H Houston
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Theodore Crawford
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia.
| | - Amanda K Pearce
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Vincenzo Taresco
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | | | - Phillip Clarke
- School of Medicine, University of Nottingham, NG7 2RD, UK
| | | | - Paul R Gellert
- Product Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D AstraZeneca, Macclesfield, UK
| | - Barrie Kellam
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Subasic CN, Ardana A, Chan LJ, Huang F, Scoble JA, Butcher NJ, Meagher L, Chiefari J, Kaminskas LM, Williams CC. Poly(HPMA-co-NIPAM) copolymer as an alternative to polyethylene glycol-based pharmacokinetic modulation of therapeutic proteins. Int J Pharm 2021; 608:121075. [PMID: 34481889 DOI: 10.1016/j.ijpharm.2021.121075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
PEGylation is the standard approach for prolonging the plasma exposure of protein therapeutics but has limitations. We explored whether polymers prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) may provide better alternatives to polyethylene glycol (PEG). Four RAFT polymers were synthesised with varying compositions, molar mass (Mn), and structures, including a homopolymer of N-(2-hydroxypropyl)methacrylamide, (pHPMA) and statistical copolymers of HPMA with poly(ethylene glycol methyl ether acrylate) p(HPMA-co-PEGA); HPMA and N-acryloylmorpholine, p(HPMA-co-NAM); and HPMA and N-isopropylacrylamide, p(HPMA-co-NIPAM). The intravenous pharmacokinetics of the polymers were then evaluated in rats. The in vitro activity and in vivo pharmacokinetics of p(HPMA-co-NIPAM)-conjugated trastuzumab Fab' and full length mAb were then evaluated. p(HPMA-co-NIPAM) prolonged plasma exposure more avidly compared to the other p(HPMA) polymers or PEG, irrespective of molecular weight. When conjugated to trastuzumab-Fab', p(HPMA-co-NIPAM) prolonged plasma exposure of the Fab' similar to PEG-Fab'. The generation of anti-PEG IgM in rats 7 days after intravenous and subcutaneous dosing of p(HPMA-co-NIPAM) conjugated trastuzumab mAb was also examined and was shown to exhibit lower immunogenicity than the PEGylated construct. These data suggest that p(HPMA-co-NIPAM) has potential as a promising copolymer for use as an alternative conjugation strategy to PEG, to prolong the plasma exposure of therapeutic proteins.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Aditya Ardana
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Linda J Chan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fei Huang
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Judith A Scoble
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Laurence Meagher
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia; Department of Materials Science and Engineering, Monash University, 20 Research Way, Clayton, Victoria 3168, Australia
| | - John Chiefari
- CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
9
|
Wang Y, Li C, Ma L, Wang X, Wang K, Lu X, Cai Y. Interfacial Liquid–Liquid Phase Separation-Driven Polymerization-Induced Electrostatic Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ye Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Li
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kai Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Sincari V, Petrova SL, Konefał R, Hruby M, Jäger E. Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Dendronized polymer conjugates with amplified immunogenic cell death for oncolytic immunotherapy. J Control Release 2021; 329:1129-1138. [PMID: 33098912 DOI: 10.1016/j.jconrel.2020.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
The architecture of multivalent polymers exerts an amplified interaction between attached ligands and targets. In current research, we reveal that a dendronized polymer augments the efficacy of an oncolytic peptide (OP; KKWWKKWDipK) for immunotherapy by exploiting (i) "flexible" linear polymer backbone to facilitate interactions with biomembrane systems, and (ii) "rigid" dendronized side chains to enhance the membrane lytic property. We show that a dendronized N-(2-hydroxypropyl)methacrylamide (HPMA) polymer-OP conjugate (PDOP) adopts α-helix secondary structure and induces robust immunogenic cell death (ICD) in cancer cells as characterized by multiple damage-associated molecular patterns (DAMPs) which include intracellular formation of reactive oxygen species (ROS) and surface exposure of calreticulin (CRT). These events convert immunosuppressive 4T1 tumor to an immunoresponsive one by recruiting CD8+ cytotoxic T cells into tumor beds. Combination of PDOP with anti-PD-L1 immune checkpoint blockade (ICB) increases the number of effector memory T cells and completely eradicates 4T1 tumors in mice. Our findings suggest that PDOP is a promising platform for oncolytic immunotherapy.
Collapse
|
12
|
Pearce AK, Anane‐Adjei AB, Cavanagh RJ, Monteiro PF, Bennett TM, Taresco V, Clarke PA, Ritchie AA, Alexander MR, Grabowska AM, Alexander C. Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Adv Healthc Mater 2020; 9:e2000892. [PMID: 33073536 DOI: 10.1002/adhm.202000892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Indexed: 02/01/2023]
Abstract
The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through architecture change and biodegradation to control in vivo fate. Here, polymeric materials are synthesized with linear, hyperbranched, star, and micellar-like architectures based on 2-hydroxypropyl methacrylamide (HPMA), and the effects of 3D architecture and redox-responsive biodegradation on biological transport are investigated. Variations in "stealth" behavior between the materials are quantified in vitro and in vivo, whereby reduction-responsive hyperbranched polymers most successfully avoid accumulation within the liver, and none of the materials target the spleen or lungs. Functionalization of selected architectures with doxorubicin (DOX) demonstrates enhanced efficacy over the free drug in 2D and 3D in vitro models, and enhanced efficacy in vivo in a highly aggressive orthotopic breast cancer model when dosed over schedules accounting for the biodistribution of the carriers. These data show it is possible to direct materials of the same chemistries into different cellular and physiological regions via modulation of their 3D architectures, and thus the work overall provides valuable new insight into how nanoparticle architecture and programmed degradation can be tailored to elicit specific biological responses for drug delivery.
Collapse
Affiliation(s)
- Amanda K. Pearce
- School of Chemistry University of Birmingham Edgbaston B15 2TT UK
- School of Pharmacy University of Nottingham Nottingham NG72RD UK
| | | | | | | | | | - Vincenzo Taresco
- School of Pharmacy University of Nottingham Nottingham NG72RD UK
| | - Phil A. Clarke
- School of Medicine University of Nottingham Nottingham NG72RD UK
| | | | | | | | | |
Collapse
|
13
|
Bobde Y, Biswas S, Ghosh B. Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Shi Y, Yin M, Song Y, Wang T, Guo S, Zhang X, Sun K, Li Y. Oral delivery of liraglutide-loaded Poly-N-(2-hydroxypropyl) methacrylamide/chitosan nanoparticles: Preparation, characterization, and pharmacokinetics. J Biomater Appl 2020; 35:754-761. [PMID: 32842851 DOI: 10.1177/0885328220947889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The delivery of peptides or protein drugs via the oral route has always presented a significant challenge. Here, nanoparticles for the oral delivery of liraglutide are prepared. The nanoparticles are composed of the biodegradable carrier materials chitosan and poly-N-(2-hydroxypropyl) methacrylamide (pHPMA). In addition, CSKSSDYQC (CSK) and hemagglutinin-2 (HA2) are introduced into the particles to improve the in vivo bioavailability of liraglutide. The size of the nanoparticles is less than 200 nm, and the encapsulation efficiency is approximately 80%. Compared with the subcutaneously injected liraglutide solution group (100%), the relative bioavailability of the nanoparticle group modified with CSK and HA2 reached 10.12%, which is 2.53 times that of the oral liraglutide solution group. In vivo imaging results showed that pHPMA/HA2-CSK chitosan nanoparticles (pHPMA/HA-CCNPs) are retained in the gastrointestinal tract for up to 12 h, which is beneficial for oral absorption. CSK and HA2 modified pHPMA/chitosan nanoparticles significantly improved liraglutide oral bioavailability and therefore have the potential to be applied for oral administration of peptides and proteins.
Collapse
Affiliation(s)
- Yanan Shi
- College of Life Science, Yantai University, Yantai, P.R. China
| | - Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yina Song
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Tengteng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Xuemei Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.,State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| |
Collapse
|
15
|
Zhao X, Chen M, Zhang W, Wang C, Wang F, You Y, Zhang W, Hong C. Polymerization‐Induced Self‐Assembly to Produce Prodrug Nanoparticles with Reduction‐Responsive Camptothecin Release and pH‐Responsive Charge‐Reversible Property. Macromol Rapid Commun 2020; 41:e2000260. [PMID: 32648310 DOI: 10.1002/marc.202000260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao Zhao
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Miao Chen
- Xi’an Modern Chemistry Research Institute Xi’an Shanxi 710065 China
| | - Wei‐Guo Zhang
- The First Affiliated Hospital of Xinxiang Medical University Xinxiang Henan 453100 China
| | - Chang‐Hui Wang
- Department of CardiologyFirst Affiliated Hospital of Anhui Medical University Hefei Anhui 230026 China
| | - Fei Wang
- Neurosurgical DepartmentThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of China Hefei Anhui 230036 China
| | - Ye‐Zi You
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Wen‐Jian Zhang
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Chun‐Yan Hong
- CAS Key Laboratory of Soft Matter ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
16
|
Krywko-Cendrowska A, di Leone S, Bina M, Yorulmaz-Avsar S, Palivan CG, Meier W. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers (Basel) 2020; 12:E1003. [PMID: 32357541 PMCID: PMC7285097 DOI: 10.3390/polym12051003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| |
Collapse
|
17
|
Cao L, Zhao Q, Liu Q, Ma L, Li C, Wang X, Cai Y. Electrostatic Manipulation of Triblock Terpolymer Nanofilm Compartmentalization during Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Cao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qingqing Zhao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qizhou Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Li
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front Bioeng Biotechnol 2020; 8:89. [PMID: 32117952 PMCID: PMC7033645 DOI: 10.3389/fbioe.2020.00089] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
The impact of protein therapeutics in healthcare is steadily increasing, due to advancements in the field of biotechnology and a deeper understanding of several pathologies. However, their safety and efficacy are often limited by instability, short half-life and immunogenicity. Nanodelivery systems are currently being investigated for overcoming these limitations and include covalent attachment of biocompatible polymers (PEG and other synthetic or naturally derived macromolecules) as well as protein nanoencapsulation in colloidal systems (liposomes and other lipid or polymeric nanocarriers). Such strategies have the potential to develop next-generation protein therapeutics. Herein, we review recent research progresses on these nanodelivery approaches, as well as future directions and challenges.
Collapse
Affiliation(s)
| | | | - Francesco Cellesi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
19
|
Fan B, Wan J, McKay A, Qu Z, Thang SH. Facile synthesis of well-controlled poly(1-vinyl imidazole) by the RAFT process. Polym Chem 2020. [DOI: 10.1039/d0py00985g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis of well-controlled poly(1-vinyl imidazole).
Collapse
Affiliation(s)
- Bo Fan
- School of Chemistry
- Monash University
- Australia
| | - Jing Wan
- School of Chemistry
- Monash University
- Australia
| | | | | | | |
Collapse
|
20
|
Multivalent HER2-binding polymer conjugates facilitate rapid endocytosis and enhance intracellular drug delivery. J Control Release 2019; 319:285-299. [PMID: 31899273 DOI: 10.1016/j.jconrel.2019.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023]
Abstract
Incorporating targeting moieties that recognize cancer-specific cellular markers can enhance specificity of anticancer nanomedicines. The HER2 receptor is overexpressed on numerous cancers, making it an attractive target. However, unlike many receptors that trigger endocytosis upon ligand binding, HER2 is an internalization-resistant receptor. As most chemotherapeutics act on intracellular targets, this presents a significant challenge for exploiting HER2 overexpression for improved tumor killing. However, hyper-crosslinking of HER2 has been shown to override the receptor's native behavior and trigger internalization. This research co-opts this crosslinking-mediated internalization for efficient intracellular delivery of an anticancer nanomedicine - specifically a HPMA copolymer-based drug delivery system. This polymeric carrier was conjugated with a small (7 kDa) HER2-binding affibody peptide to produce a panel of polymer-affibody conjugates with valences from 2 to 10 peptides per polymer chain. The effect of valence on surface binding and uptake was evaluated separately. All conjugates demonstrated similar (nanomolar) binding affinity towards HER2-positive ovarian carcinoma cells, but higher-valence conjugates induced more rapid endocytosis, with over 90% of the surface-bound conjugate internalized within 4 h. Furthermore, this enhancement was sensitive to crowding - high surface loading reduced conjugates' ability to crosslink receptors. Collectively, this evidence strongly supports a crosslinking-mediated endocytosis mechanism. Lead candidates from this panel achieved high intracellular delivery even at picomolar treatment concentrations; untargeted HPMA copolymers required 1000-fold higher treatment concentrations to achieve similar levels of intracellular accumulation. This increased intracellular delivery also translated to a more potent nanomedicine against HER2-positive cells; incorporation of the chemotherapeutic paclitaxel into this targeted carrier enhanced cytotoxicity over untargeted polymer-drug conjugate.
Collapse
|
21
|
Pan X, Zhang F, Choi B, Luo Y, Guo X, Feng A, Thang SH. Effect of solvents on the RAFT polymerization of N-(2-hydroxypropyl) methacrylamide. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Francini N, Cochrane D, Illingworth S, Purdie L, Mantovani G, Fisher K, Seymour LW, Spain SG, Alexander C. Polyvalent Diazonium Polymers Provide Efficient Protection of Oncolytic Adenovirus Enadenotucirev from Neutralizing Antibodies while Maintaining Biological Activity In Vitro and In Vivo. Bioconjug Chem 2019; 30:1244-1257. [PMID: 30874432 DOI: 10.1021/acs.bioconjchem.9b00189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses offer many advantages for cancer therapy when administered directly to confined solid tumors. However, the systemic delivery of these viruses is problematic because of the host immune response, undesired interactions with blood components, and inherent targeting to the liver. Efficacy of systemically administered viruses has been improved by masking viral surface proteins with polymeric materials resulting in modulation of viral pharmacokinetic profile and accumulation in tumors in vivo. Here we describe a new class of polyvalent reactive polymer based on poly( N-(2-hydroxypropyl)methacrylamide) (polyHPMA) with diazonium reactive groups and their application in the modification of the chimeric group B oncolytic virus enadenotucirev (EnAd). A series of six copolymers with different chain lengths and density of reactive groups was synthesized and used to coat EnAd. Polymer coating was found to be extremely efficient with concentrations as low as 1 mg/mL resulting in complete (>99%) ablation of neutralizing antibody binding. Coating efficiency was found to be dependent on both chain length and reactive group density. Coated viruses were found to have reduced transfection activity both in vitro and in vivo, with greater protection against neutralizing antibodies resulting in lower transgene production. However, in the presence of neutralizing antibodies, some in vivo transgene expression was maintained for coated virus compared to the uncoated control. The decrease in transgene expression was found not to be solely due to lower cellular uptake but due to reduced unpackaging of the virus within the cells and reduced replication, indicating that the polymer coating does not cause permanent inactivation of the virus. These data suggest that virus activity may be modulated by the appropriate design of coating polymers while retaining protection against neutralizing antibodies.
Collapse
Affiliation(s)
- Nora Francini
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Daniel Cochrane
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Sam Illingworth
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
| | - Laura Purdie
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Giuseppe Mantovani
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Kerry Fisher
- PsiOxus Therapeutics Limited , 4-10, The Quadrant, Abingdon Science Park , Abingdon , Oxfordshire OX14 3YS , U.K
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Leonard W Seymour
- Department of Oncology , Old Road Campus Research Building , Roosevelt Drive , Oxford OX3 7DQ , U.K
| | - Sebastian G Spain
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , U.K
| | - Cameron Alexander
- School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
23
|
Ma Y, Gao P, Ding Y, Huang L, Wang L, Lu X, Cai Y. Visible Light Initiated Thermoresponsive Aqueous Dispersion Polymerization-Induced Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02490] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajie Ma
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Pan Gao
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Ding
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Leilei Huang
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Wang
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
24
|
Raus V, Kostka L. Optimizing the Cu-RDRP ofN-(2-hydroxypropyl) methacrylamide toward biomedical applications. Polym Chem 2019. [DOI: 10.1039/c8py01569d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous Cu-RDRP ofN-(2-hydroxypropyl) methacrylamide was optimized to achieve co(polymers) of low dispersity and controlled molecular weight at high conversions.
Collapse
Affiliation(s)
- Vladimír Raus
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| |
Collapse
|
25
|
Tabujew I, Cokca C, Zartner L, Schubert US, Nischang I, Fischer D, Peneva K. The influence of gradient and statistical arrangements of guanidinium or primary amine groups in poly(methacrylate) copolymers on their DNA binding affinity. J Mater Chem B 2019; 7:5920-5929. [DOI: 10.1039/c9tb01269a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, we report the first gradient guanidinium containing cationic copolymers and investigate their binding ability to plasmid DNA (pDNA).
Collapse
Affiliation(s)
- Ilja Tabujew
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Leon Zartner
- Institute of Pharmacy
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Ulrich S. Schubert
- Jena Center of Soft Matter
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
| | - Ivo Nischang
- Jena Center of Soft Matter
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
| | - Dagmar Fischer
- Institute of Pharmacy
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter
| |
Collapse
|
26
|
Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Preparation of pH- and reductive-responsive prodrug nanoparticles via polymerization-induced self-assembly. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9268-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Fan X, Cheng H, Wu Y, Loh XJ, Wu YL, Li Z. Incorporation of Polycaprolactone to Cyclodextrin-Based Nanocarrier for Potent Gene Delivery. MACROMOLECULAR MATERIALS AND ENGINEERING 2018. [DOI: 10.1002/mame.201800255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 China
| | - Hongwei Cheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Yihong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology; School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| |
Collapse
|
29
|
Weeber R, Hermes M, Schmidt AM, Holm C. Polymer architecture of magnetic gels: a review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:063002. [PMID: 29261097 DOI: 10.1088/1361-648x/aaa344] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this review article, we provide an introduction to ferrogels, i.e. polymeric gels with embedded magnetic particles. Due to the interplay between magnetic and elastic properties of these materials, they are promising candidates for engineering and biomedical applications such as actuation and controlled drug release. Particular emphasis will be put on the polymer architecture of magnetic gels since it controls the degrees of freedom of the magnetic particles in the gel, and it is important for the particle-polymer coupling determining the mechanisms available for the gel deformation in magnetic fields. We report on the different polymer architectures that have been realized so far, and provide an overview of synthesis strategies and experimental techniques for the characterization of these materials. We further focus on theoretical and simulational studies carried out on magnetic gels, and highlight their contributions towards understanding the influence of the gels' polymer architecture.
Collapse
Affiliation(s)
- Rudolf Weeber
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
30
|
Abbasi S, Yousefi G, Tamaddon AM. Polyacrylamide–b-copolypeptide hybrid copolymer as pH-responsive carrier for delivery of paclitaxel: Effects of copolymer composition on nanomicelles properties, loading efficiency and hemocompatibility. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Larnaudie SC, Brendel JC, Jolliffe KA, Perrier S. pH-Responsive, Amphiphilic Core-Shell Supramolecular Polymer Brushes from Cyclic Peptide-Polymer Conjugates. ACS Macro Lett 2017; 6:1347-1351. [PMID: 35650815 DOI: 10.1021/acsmacrolett.7b00728] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and self-assembly of pH-responsive, amphiphilic cyclic peptide-polymer conjugates are described. The design relies on the introduction of a poly(2-(diisopropylamino)ethyl methacrylate) (pDPA) block between the cyclic peptide and a hydrophilic block. These conjugates are disassembled and protonated at low pH but assemble into core-shell nanotubes at physiological pH, as determined by a combination of titration experiments and scattering techniques.
Collapse
Affiliation(s)
- Sophie C. Larnaudie
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Johannes C. Brendel
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville VIC 3052, Australia
| | - Katrina A. Jolliffe
- The University of Sydney, School of Chemistry, Building F11, Sydney, NSW 2006, Australia
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville VIC 3052, Australia
- Warwick
Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
32
|
Larnaudie SC, Brendel JC, Romero-Canelón I, Sanchez-Cano C, Catrouillet S, Sanchis J, Coverdale JPC, Song JI, Habtemariam A, Sadler PJ, Jolliffe KA, Perrier S. Cyclic Peptide-Polymer Nanotubes as Efficient and Highly Potent Drug Delivery Systems for Organometallic Anticancer Complexes. Biomacromolecules 2017; 19:239-247. [PMID: 29156128 DOI: 10.1021/acs.biomac.7b01491] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.
Collapse
Affiliation(s)
- Sophie C Larnaudie
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Johannes C Brendel
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Sylvain Catrouillet
- Institut Charles Gerhardt Montpellier , Place E Bataillon CC1702, 34095 Montpellier cedex 05, France
| | - Joaquin Sanchis
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, VIC 3052, Australia
| | - James P C Coverdale
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ji-Inn Song
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Katrina A Jolliffe
- The University of Sydney, School of Chemistry , Building F11, Sydney NSW 2006, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, VIC 3052, Australia.,Warwick Medical School, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
33
|
Alfurhood JA, Sun H, Kabb CP, Tucker BS, Matthews JH, Luesch H, Sumerlin BS. Poly( N-(2-Hydroxypropyl) Methacrylamide)-Valproic Acid Conjugates as Block Copolymer Nanocarriers. Polym Chem 2017; 8:4983-4987. [PMID: 28959359 PMCID: PMC5612619 DOI: 10.1039/c7py00196g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report nanoassemblies based on block copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) in which drug cleavage enhances the biological compatibility of the original polymer carrier by regeneration of HPMA units. Drug release via ester hydrolysis suggests this approach offers potential for stimuli-responsive drug delivery under acidic conditions.
Collapse
Affiliation(s)
- Jawaher A Alfurhood
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Christopher P Kabb
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - Bryan S Tucker
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| | - James H Matthews
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610-7200, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA
| |
Collapse
|
34
|
Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol Biosci 2017; 18. [PMID: 28805040 DOI: 10.1002/mabi.201700209] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity.
Collapse
Affiliation(s)
- Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
35
|
Koziolová E, Goel S, Chytil P, Janoušková O, Barnhart TE, Cai W, Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. NANOSCALE 2017; 9:10906-10918. [PMID: 28731080 PMCID: PMC5551419 DOI: 10.1039/c7nr03306k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here, we describe a novel polymer platform suitable for efficient diagnostics and potential theranostics based on 89Zr-labeled N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer conjugates. A set of polymers differing in molecular weight with either low dispersity or high dispersity were designed and synthesized and their biodistribution in vivo was successfully and precisely observed over 72 h. Moreover, the feasibility of two imaging techniques, fluorescence imaging (FI) and positron emission tomography (PET), was compared using labeled polymer conjugates. Both methods gave comparable results thus showing the enhanced diagnostic potential of the prepared polymer-dye or polymer-chelator-89Zr constructs. The in vivo and ex vivo PET/FI studies indicated that the dispersity and molecular weight of the linear HPMA polymers have a significant influence on the pharmacokinetics of the polymer conjugates. The higher molecular weight and narrower distribution of molecular weights of the polymer carriers improve their pharmacokinetic profile for highly prolonged blood circulation and enhanced tumor uptake. Moreover, the same polymer carrier with the anticancer drug doxorubicin bound by a pH-sensitive hydrazone bond showed higher cytotoxicity and cellular uptake in vitro. Therefore, HPMA copolymers with low dispersity and a molecular weight near the limit of renal filtration can be used as highly efficient polymer carriers of tumor-targeted therapeutics or for theranostics with minimal side effects.
Collapse
Affiliation(s)
- Eva Koziolová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| | - Shreya Goel
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weibo Cai
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, USA and Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA and University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.
| |
Collapse
|
36
|
The Light at the End of the Tunnel-Second Generation HPMA Conjugates for Cancer Treatment. Curr Opin Colloid Interface Sci 2017; 31:30-42. [PMID: 29276426 DOI: 10.1016/j.cocis.2017.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is almost four decades since N-(2-hydroxypropyl)methacrylamide (HPMA) - based copolymers arose as drug carriers. Although fundamentals have been established and significant advantages have been proved, the commercialization of this platform technology was hampered due to modest outcome of clinical trial initiated with PK1, the symbol of first generation polymer-drug conjugates. In this review, we illustrate the exciting progress and approaches offered by more effective 2nd generation HPMA-based polymer-drug conjugates in cancer treatment. For example, a new synthetic strategy endorses inert HPMA polymer with biodegradability, which permitted to prepare high molecular weight HPMA-drug conjugates with simple linear architecture while maintaining good biocompatibility. As expected, extended long-circulating pharmacokinetics and enhanced antitumor activities were achieved in several preclinical investigations. In addition, greater inhibition of tumor growth in combination regimes exhibits the remarkable capability and flexibility of HPMA-based macromolecular therapeutics. The review also discusses the main challenges and strategies for further translation development of 2nd generation HPMA-based polymer-drug conjugates.
Collapse
|
37
|
Cao H, Cui Z, Gao P, Ding Y, Zhu X, Lu X, Cai Y. Metal-Folded Single-Chain Nanoparticle: Nanoclusters and Self-Assembled Reduction-Responsive Sub-5-nm Discrete Subdomains. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Cao
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhigang Cui
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Pan Gao
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yi Ding
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xuechao Zhu
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
38
|
Zhang WJ, Hong CY, Pan CY. Artificially Smart Vesicles with Superior Structural Stability: Fabrication, Characterizations, and Transmembrane Traffic. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15086-15095. [PMID: 28418640 DOI: 10.1021/acsami.7b02966] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Intelligent vesicles are fabricated at up to 30% solid content via an approach of polymerization-induced self-assembly and reorganization (PISR). Upon irradiation with UV light (365 nm), light-triggered dimerization of the coumarin moieties anchored in the membrane leads to the membrane cross-linking of the vesicles, which endows the vesicles with superior structural stability. Due to the tertiary amine groups in the membrane, the vesicles go through a swelling/deswelling change upon switching the pH values. In acidic aqueous solution, the pores in the membrane of vesicles are opened, which is beneficial for transmembrane traffic. The pore size in the membrane of vesicles is in accordance with the extent of membrane cross-linking, which can be conveniently regulated by the irradiation time of UV light (365 nm). The size range of the substance for transmembrane traffic is effectively enlarged; even 15 nm gold nanoparticles can be postloaded into the vesicles with lower extents of the membrane cross-linking through the diffusion method. Although the pores in the vesicle membrane are opened in acidic aqueous solution, transmembrane traffic is inhibited for the electropositive substance because of electrostatic repulsion but is allowed for the electronegative substance. These reported vesicles herein may be the smartest artificial vesicles to date due to their multiple selective permeability.
Collapse
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
39
|
Influence of molar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability of amphiphilic HPMA-based polymer drug carriers. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4027-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Zhang WJ, Hong CY, Pan CY. Efficient Fabrication of Photosensitive Polymeric Nano-objects via an Ingenious Formulation of RAFT Dispersion Polymerization and Their Application for Drug Delivery. Biomacromolecules 2017; 18:1210-1217. [DOI: 10.1021/acs.biomac.6b01887] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
41
|
Cui Z, Cao H, Ding Y, Gao P, Lu X, Cai Y. Compartmentalization of an ABC triblock copolymer single-chain nanoparticle via coordination-driven orthogonal self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py00582b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present coordination-driven intramolecular orthogonal self-assembly of ABC triblock copolymer into protein-like compartmentalized SCNP, whose sub-10 nm ultrafine subdomains are discrete and can respond to aqueous surroundings individually.
Collapse
Affiliation(s)
- Zhigang Cui
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Hui Cao
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yi Ding
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Pan Gao
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
42
|
Mužíková G, Pola R, Laga R, Pechar M. Biodegradable Multiblock Polymers Based onN-(2-Hydroxypropyl)methacrylamide Designed as Drug Carriers for Tumor-Targeted Delivery. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gabriela Mužíková
- Institute of Macromolecular Chemistry; The Czech Academy of Sciences; v.v.i., Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry; The Czech Academy of Sciences; v.v.i., Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry; The Czech Academy of Sciences; v.v.i., Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry; The Czech Academy of Sciences; v.v.i., Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
43
|
Zhou K, Cao H, Gao P, Cui Z, Ding Y, Cai Y. Autocatalytic Self-Sorting in Biomimetic Polymer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kaiyi Zhou
- State and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Suzhou Key
Laboratory of Macromolecular Design and Precision Synthesis, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hui Cao
- State and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Suzhou Key
Laboratory of Macromolecular Design and Precision Synthesis, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Pan Gao
- State and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Suzhou Key
Laboratory of Macromolecular Design and Precision Synthesis, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Cui
- State and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Suzhou Key
Laboratory of Macromolecular Design and Precision Synthesis, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Ding
- State and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Suzhou Key
Laboratory of Macromolecular Design and Precision Synthesis, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory
of Advanced Functional Polymer Design and Application, Suzhou Key
Laboratory of Macromolecular Design and Precision Synthesis, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
44
|
Hartley JM, Zhang R, Gudheti M, Yang J, Kopeček J. Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM. J Control Release 2016; 231:50-9. [PMID: 26855050 DOI: 10.1016/j.jconrel.2016.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/30/2022]
Abstract
We used a single-molecule localization technique called direct stochastic optical reconstruction microscopy (dSTORM) to quantify both colocalization and spatial distribution on a cellular level for two conceptually different N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates. Microscopy images were acquired of entire cells with resolutions as high as 25nm revealing the nanoscale distribution of the fluorescently labeled therapeutic components. Drug-free macromolecular therapeutics consisting of two self-assembling nanoconjugates showed slight increase in nanoclusters on the cell surface with time. Additionally, dSTORM provided high resolution images of the nanoscale organization of the self-assembling conjugates at the interface between two cells. A conjugate designed for treating ovarian cancer showed that the model drug (Cy3) and polymer bound to Cy5 were colocalized at an early time point before the model drug was enzymatically cleaved from the polymer. Using spatial descriptive statistics it was found that the drug was randomly distributed after 24h while the polymer bound dye remained in clusters. Four different fluorescent dyes were used and two different therapeutic systems were tested to demonstrate the versatility and possible general applicability of dSTORM for use in studying drug delivery systems.
Collapse
Affiliation(s)
- Jonathan M Hartley
- Department of Bioengineering, University of Utah, 20 S. 2030 E., Rm. 108, Salt Lake City, UT 84112, USA
| | - Rui Zhang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 20 S. 2030 E., Rm. 205, Salt Lake City, UT 84112, USA
| | - Manasa Gudheti
- Department of Biology, University of Utah, 257S 1400 E, Salt Lake City, UT 84112, USA; Bruker Nano Surfaces, 630 Komas Drive, Salt Lake City, UT 84108, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 20 S. 2030 E., Rm. 205, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Department of Bioengineering, University of Utah, 20 S. 2030 E., Rm. 108, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 20 S. 2030 E., Rm. 205, Salt Lake City, UT 84112, USA.
| |
Collapse
|
45
|
Kleinberger RM, Burke NAD, Zhou C, Stöver HDH. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:351-69. [PMID: 26754568 DOI: 10.1080/09205063.2015.1130407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.
Collapse
Affiliation(s)
- Rachelle M Kleinberger
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| | - Nicholas A D Burke
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| | - Christal Zhou
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| | - Harald D H Stöver
- a Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Canada
| |
Collapse
|
46
|
Yildirim E, Cimen D, Zengin A, Caykara T. Synthesis of poly(N-(2-hydroxypropyl) methacrylamide) brushes by interface-mediated RAFT polymerization. RSC Adv 2016. [DOI: 10.1039/c6ra04189b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel poly(N-(2-hydroxypropyl) methacrylamide) [poly(HPMA)] brush with a moderate density polymer brush (0.52 chains per nm2) was synthesized by an interface-mediated RAFT polymerization.
Collapse
Affiliation(s)
- Ertan Yildirim
- Department of Chemistry
- Faculty of Science
- Gazi University
- Ankara
- Turkey
| | - Dilek Cimen
- Department of Chemistry
- Faculty of Science
- Gazi University
- Ankara
- Turkey
| | - Adem Zengin
- Department of Chemical Engineering
- Faculty of Engineering
- Yuzuncu Yil University
- Van
- Turkey
| | - Tuncer Caykara
- Department of Chemistry
- Faculty of Science
- Gazi University
- Ankara
- Turkey
| |
Collapse
|
47
|
Alfurhood JA, Sun H, Bachler PR, Sumerlin BS. Hyperbranched poly(N-(2-hydroxypropyl) methacrylamide) via RAFT self-condensing vinyl polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00111d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first synthesis of hyperbranched poly(N-(2-hydroxypropyl) methacrylamide) (HB-PHPMA) using reversible addition–fragmentation chain transfer (RAFT) self-condensing vinyl polymerization (SCVP).
Collapse
Affiliation(s)
- Jawaher A. Alfurhood
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Hao Sun
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Patricia R. Bachler
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|
48
|
Du N, Guo W, Yu Q, Guan S, Guo L, Shen T, Tang H, Gan Z. Poly(d,l-lactic acid)-block-poly(N-(2-hydroxypropyl)methacrylamide) nanoparticles for overcoming accelerated blood clearance and achieving efficient anti-tumor therapy. Polym Chem 2016. [DOI: 10.1039/c6py01113f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The substitution of PEG with PHPMA maintained the long circulation of PDLLA-b-PEG and alleviated the accelerated blood clearance (ABC).
Collapse
Affiliation(s)
- Nan Du
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Wenxuan Guo
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Qingsong Yu
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Shuli Guan
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Linyi Guo
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Tong Shen
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Hao Tang
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Zhihua Gan
- The State Key Laboratory of Organic–Inorganic Composites
- Beijing Laboratory of Biomedical Materials
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
49
|
Albertin L. Protecting-Group-Free Synthesis of Well-Defined Glycopolymers Featuring Negatively Charged Oligosaccharides. Methods Mol Biol 2016; 1367:13-28. [PMID: 26537461 DOI: 10.1007/978-1-4939-3130-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Control of the macromolecular architecture is essential to enable sophisticated functions for glycopolymers and to allow a precise correlation between these functions and the polymer structure. A number of biologically important ligands are negatively charged oligosaccharides that are difficult to manipulate in organic solvent and that are hardly amenable to protection/deprotection strategies. RAFT polymerization is a simple and robust technique that enables the synthesis of well-defined glycopolymers directly in aqueous solution and starting from unprotected vinyl glycomonomers. Here I describe how RAFT polymerization can be combined with reductive amination to transform negatively charged oligosaccharides having 5-20 monosaccharide units into well-defined glycopolymers directly in water and without the need to resort to protecting-group chemistry.
Collapse
Affiliation(s)
- Luca Albertin
- Laboratoire de Chimie et Biologie des Métaux, UMR 5249-Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, 38054, Grenoble, France.
| |
Collapse
|
50
|
Danial M, Telwatte S, Tyssen D, Cosson S, Tachedjian G, Moad G, Postma A. Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polym Chem 2016. [DOI: 10.1039/c6py01882c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerisation has been used to create a library of copolymers outfitted with a combination of self-immolative reverse transcriptase inhibitor prodrug pendents comprising zidovudine (AZT) and lamivudine (3TC).
Collapse
Affiliation(s)
| | - Sushama Telwatte
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
| | - David Tyssen
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
| | - Steffen Cosson
- CSIRO Manufacturing
- Clayton VIC 3168
- Australia
- Australian Institute for Bioengineering & Nanotechnology
- University of Queensland
| | - Gilda Tachedjian
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
- Monash University
| | - Graeme Moad
- CSIRO Manufacturing
- Clayton VIC 3168
- Australia
| | | |
Collapse
|