1
|
Rahaman J, Mukherjee D. Insulin for oral bone tissue engineering: a review on innovations in targeted insulin-loaded nanocarrier scaffold. J Drug Target 2025; 33:648-665. [PMID: 39707830 DOI: 10.1080/1061186x.2024.2445737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of oral bone tissue degeneration and bone defects by osteoporosis, tooth extraction, obesity, trauma, and periodontitis are major challenges for clinicians. Traditional bone regeneration methods often come with limitations such as donor site morbidity, limitation of special shape, inflammation, and resorption of the implanted bone. The treatment oriented with biomimetic bone materials has achieved significant attention recently. In the oral bone tissue engineering arena, insulin has gained considerable attention among all the known biomaterials for osteogenesis and angiogenesis. It also exhibits osteogenic and angiogenic properties by interacting with insulin receptors on osteoblasts. Insulin influences bone remodelling both directly and indirectly. It acts directly through the PI3K/Akt and MAPK signalling pathways and indirectly by modulating the RANK/RANKL/OPG pathway, which helps reduce bone resorption. The current review reports the role of insulin in bone remodelling and bone tissue regeneration in the oral cavity in the form of scaffolds and nanomaterials. Different insulin delivery systems, utilising nanomaterials and scaffolds functionalised with polymeric biomaterials have been explored for oral bone tissue regeneration. The review put forward a theoretical basis for future research in insulin delivery in the form of scaffolds and composite materials for oral bone tissue regeneration.
Collapse
Affiliation(s)
- Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Mumbai, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur, India
| |
Collapse
|
2
|
Chen Y, Song H, Wang X, Huang R, Li S, Guan X. Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin. Int J Biol Macromol 2025; 291:139159. [PMID: 39725095 DOI: 10.1016/j.ijbiomac.2024.139159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs). The prepared IN-CS/PA HNPs exhibited high encapsulation efficiency (> 95 %) and loading capacity (∼10 %) for insulin. The system provided better protection for insulin in gastrointestinal environment compared to unmodified IN-CS HNPs. Moreover, the active functional group of propionate can be recognized and transported by mono-carboxylate transporter protein 1 (MCT1) targeting. Thus, in both Caco-2 cells and the ligated intestinal loops of rats, IN-CS/PA HNPs significantly improved permeability and uptake of insulin on intestinal epithelium, which was attributed to MCT1-mediated endocytosis. In type 1 diabetic (T1D) rats, oral delivery of IN-CS/PA HNPs with 60 IU/kg insulin led to more stable and long-lasting hypoglycemic effect than a 5IU/kg dose of subcutaneously injected insulin. It also generated 2.29-fold and 11.88-fold higher relative oral bioavailability compared with empty IN-CS HNPs and free insulin, respectively. This study demonstrated that propanoic acid-functionalized chitosan hydrogel nanoparticles could improve the oral absorption of insulin by overcoming multiple barriers in gastrointestinal tract, providing a promising active targeting strategy for the oral delivery of macromolecules drugs.
Collapse
Affiliation(s)
- Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruihan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
3
|
Maurya R, Ramteke S, Jain NK. Quality by design (QbD) approach-based development of optimized nanocarrier to achieve quality target product profile (QTPP)-targeted lymphatic delivery. NANOTECHNOLOGY 2024; 35:265101. [PMID: 38502955 DOI: 10.1088/1361-6528/ad355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Background.Insulin, commonly used for diabetes treatment, needs better ways to improve its effectiveness and safety due to its challenges with poor permeability and stability. Various system has been developed for oral peptide delivery. The non-targeted system can prevent gastric and enzymatic degradation of peptides but cannot increase the bulk transport of peptides across the membrane. However, the non-selectivity is the limitation of the existing system. Numerous carbohydrate-binding receptors overexpressed on intestinal macrophage cells (M-cells) of gut-associated lymphoid tissue. It is the most desirable site for receptor-mediated endocytosis and lymphatic drug delivery of peptides.Objective. The prime objective of the study was to fabricate mannose ligand conjugated nanoparticles (MNPs) employing a quality-by-design approach to address permeability challenges after oral administration. Herein, the study's secondary objective of this study is to identify the influencing factor for producing quality products. Considering this objective, the Lymphatic uptake of NPs was selected as a quality target product profile (QTPP), and a systematic study was conducted to identify the critical formulation attributes (CFAs) and critical process parameters (CPP) influencing critical quality attributes (CQAs). Mannosylated Chitosan concentrations (MCs) and TPP concentrations were identified as CFAs, and stirring speed was identified as CPP.Methods. MNPs were prepared by the inotropic gelation method and filled into the enteric-coated capsule to protect from acidic environments. The effect of CFAs and CPP on responses like particle size (X) and entrapment (Y) was observed by Box-Behnken design (BBD). ANOVA statistically evaluated the result to confirm a significant level (p< 0.05). The optimal conditions of NPs were obtained by constructing an overlay plot and determining the desirability value. HPLC and zeta-seizer analysis characterized the lyophilized NPs. Cell-line studies were performed to confirm the safety and M-cell targeting of NPs to enhance Insulin oral bioavailability.Results. The morphology of NPs was revealed by SEM. The developed NPs showed a nearly oval shape with the average size, surface potential, and % drug entrapment were 245.52 ± 3.37 nm, 22.12 ± 2.13 mV, and 76.15 ± 1.3%, respectively. MTT assay result exhibited that MNPs safe and Confocal imaging inference that NPs selectively uptake by the M-cell.Conclusion. BBD experimental design enables the effective formulation of optimized NPs. The statistical analysis estimated a clear assessment of the significance of the process and formulation variable. Cell line study confirms that NPs are safe and effectively uptake by the cell.
Collapse
Affiliation(s)
- Rahul Maurya
- School of Pharmaceutical Sciences, RGPV, Bhopal, MP, 462033, India
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Cheruthuruthy, Thrissur, Kerala, 679 531, India
| | - Suman Ramteke
- School of Pharmaceutical Sciences, RGPV, Bhopal, MP, 462033, India
| | | |
Collapse
|
4
|
Abd El-Hack ME, Kamal M, Alazragi RS, Alreemi RM, Qadhi A, Ghafouri K, Azhar W, Shakoori AM, Alsaffar N, Naffadi HM, Taha AE, Abdelnour SA. Impacts of chitosan and its nanoformulations on the metabolic syndromes: a review. BRAZ J BIOL 2024; 83:e276530. [PMID: 38422267 DOI: 10.1590/1519-6984.276530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.
Collapse
Affiliation(s)
- M E Abd El-Hack
- Zagazig University, Faculty of Agriculture, Department of Poultry, Zagazig, Egypt
| | - M Kamal
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza, Egypt
| | - R S Alazragi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - R M Alreemi
- University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia
| | - A Qadhi
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - K Ghafouri
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - W Azhar
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Clinical Nutrition Department, Makkah, Saudi Arabia
| | - A M Shakoori
- Umm Al-Qura University, Faculty of Applied Medical Sciences, Laboratory Medicine Department, Makkah, Kingdom of Saudi Arabia
| | - N Alsaffar
- Mohammed Al-Mana College for Medical Sciences, Biochemistry and Molecular Biology Department, Dammam, Saudi Arabia
| | - H M Naffadi
- Umm Al-Qura University, College of Medicine, Department of Medical Genetics, Makkah, Kingdom of Saudi Arabia
| | - A E Taha
- Alexandria University, Faculty of Veterinary Medicine, Department of Animal Husbandry and Animal Wealth Development, Edfina, Egypt
| | - S A Abdelnour
- Zagazig University, Faculty of Agriculture, Department of Animal Production, Zagazig, Egypt
| |
Collapse
|
5
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
6
|
Xiao M. Development of chitosan-based hydrogels for healthcare: A review. Int J Biol Macromol 2023:125333. [PMID: 37307979 DOI: 10.1016/j.ijbiomac.2023.125333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chitosan-based hydrogels (CSH) are promising materials for healthcare. Based on the relationship among structure, property and application, researches reported within last decade are chosen to elucidate the developing approaches and potential applications of target CSH. The applications of CSH are classified into the conventional biomedical fields, such as drug controlled release, tissue repair and monitoring, and the essential ones including food safety, water purification and air cleaning. The approaches focused on in this article are the reversible chemical and physical ones. Apart from describing the current status of the development, suggestions are presented as well.
Collapse
Affiliation(s)
- Mo Xiao
- Quanzhou Medical College, 362021, China.
| |
Collapse
|
7
|
Spoorthi Shetty S, Halagali P, Johnson AP, Spandana KMA, Gangadharappa HV. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int J Biol Macromol 2023:125114. [PMID: 37263330 DOI: 10.1016/j.ijbiomac.2023.125114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Diabetes Mellitus is characterized by a hyperglycemic condition which can either be caused by the destruction of the beta cells or by the resistance developed against insulin in the cells. Insulin is a peptide hormone that regulates the metabolism of carbohydrates, proteins, and fats. Type 1 Diabetes Mellitus needs the use of Insulin for efficient management. However invasive methods of administration may lead to reduced adherence by the patients. Hence there is a need for a non-invasive method of administration. Oral Insulin has several merits over the conventional method including patient compliance, and reduced cost, and it also mimics endogenous insulin and hence reaches the liver by the portal vein at a higher concentration and thereby showing improved efficiency. However oral Insulin must pass through several barriers in the gastrointestinal tract. Some strategies that could be utilized to bypass these barriers include the use of permeation enhancers, absorption enhancers, use of suitable polymers, use of suitable carriers, and other agents. Several formulation types have been explored for the oral delivery of Insulin like hydrogels, capsules, tablets, and patches which have been described briefly by the article. A lot of attempts have been made for developing oral insulin delivery however none of them have been commercialized due to numerous shortcomings. Currently, there are several formulations from the companies that are still in the clinical phase, the success or failure of some is yet to be seen in the future.
Collapse
Affiliation(s)
- S Spoorthi Shetty
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - K M Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| |
Collapse
|
8
|
Hou H, Chi C, Wang T, He Y, Chen L, Li X. Multi-responsive starch-based nanocapsules for colon-targeting delivery of peptides: In vitro and in vivo evaluation. Int J Biol Macromol 2023:124953. [PMID: 37211076 DOI: 10.1016/j.ijbiomac.2023.124953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Colon-targeting delivery of insulin is surging great interests in revolutionizing diabetes. Herein, insulin-loaded starch-based nanocapsules developed by layer-by-layer self-assembly technology were rationally structured. Interactions between starches and the structural changes of the nanocapsules were unraveled to understand in vitro and in vivo insulin release properties. By increasing the deposition layers of starches, the structural compactness of nanocapsules increased and in turn retarded insulin release in the upper gastrointestinal tract. Spherical nanocapsules deposited at least five layers of starches could deliver insulin to the colon in a high efficiency according to the in vitro and in vivo insulin release performance. The underlying mechanism of the insulin colon-targeting release should ascribe to the suitable changes in compactness of the nanocapsules and the interactions between deposited starches after multi-response to the changes in pH, time and enzymes in gastrointestinal tract. Starch molecules interacted with each other much stronger at the intestine than that at the colon, which guaranteed a compact structure in the intestine but a loose structure in the colon for the colon-targeting nanocapsules. It suggested that rather than controlling the deposition layer of the nanocapsules, controlling the interaction between starches could also regulate the structures of the nanocapsules for colon-targeting delivery system.
Collapse
Affiliation(s)
- Hongrui Hou
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengdeng Chi
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianxing Wang
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying He
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Liu K, Chen Y, Yang Z, Jin J. Preparation and characterization of CS/γ-PGA/PC complex nanoparticles for insulin oral delivery. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
10
|
Safdar R, Thanabalan M. Developments in insulin delivery and potential of chitosan for controlled release application: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral delivery of insulin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2145-2164. [PMID: 35773232 DOI: 10.1080/09205063.2022.2096527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Subcutaneous administration of insulin has been practiced for the clinical supervision of diabetes pathogenesis but it is often ineffective to imitate the glucose homeostasis and is always invasive. Therefore, it causes patient discomfort and infection of local tissue. These issues lead to finding an alternative route for insulin delivery that could be effective, promising, and non-invasive. However, delivery of insulin orally is the most suitable route but the rapid breakdown of insulin by the gastrointestinal enzymes becomes a major barrier to this method. Therefore, nanocarriers (which guard insulin against degradation and facilitate its uptake) are preferred for oral insulin delivery. Among various categories of nanocarriers, bio-polymeric nanocarriers draw special attention owing to their hydrophilic, non-toxic, and biodegradable nature. This review provides a detailed overview of insulin-loaded biopolymer-based nanocarriers, which give future direction in the optimization and development of a clinically functional formulation for their effective and safe delivery.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- Department of Biotechnology, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
12
|
Guo MJ, Xiang CC, Hu YY, Deng L, Pan SY, Lv C, Chen SX, Deng HT, Sun CD, Li JT, Zhou Y, Sun SG. A dual force cross-linked γ-PGA-PAA binder enhancing the cycle stability of silicon-based anodes for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Negi A, Kesari KK. Chitosan Nanoparticle Encapsulation of Antibacterial Essential Oils. MICROMACHINES 2022; 13:mi13081265. [PMID: 36014186 PMCID: PMC9415589 DOI: 10.3390/mi13081265] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 05/09/2023]
Abstract
Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH2 groups. The presence of NH2 groups allows for the facile grafting of functionalized molecules onto the chitosan surface, resulting in multifunctional materialistic applications. Quaternization of chitosan's free amino is one of the typical chemical modifications commonly achieved under acidic conditions. This quaternization improves its ionic character, making it ready for ionic-ionic surface modification. Although the cationic nature of chitosan alone exhibits antibacterial activity because of its interaction with negatively-charged bacterial membranes, the nanoscale size of chitosan further amplifies its antibiofilm activity. Additionally, the researcher used chitosan nanoparticles as polymeric materials to encapsulate antibiofilm agents (such as antibiotics and natural phytochemicals), serving as an excellent strategy to combat biofilm-based secondary infections. This paper provided a summary of available carbohydrate-based biopolymers as antibiofilm materials. Furthermore, the paper focuses on chitosan nanoparticle-based encapsulation of basil essential oil (Ocimum basilicum), mandarin essential oil (Citrus reticulata), Carum copticum essential oil ("Ajwain"), dill plant seed essential oil (Anethum graveolens), peppermint oil (Mentha piperita), green tea oil (Camellia sinensis), cardamom essential oil, clove essential oil (Eugenia caryophyllata), cumin seed essential oil (Cuminum cyminum), lemongrass essential oil (Cymbopogon commutatus), summer savory essential oil (Satureja hortensis), thyme essential oil, cinnamomum essential oil (Cinnamomum zeylanicum), and nettle essential oil (Urtica dioica). Additionally, chitosan nanoparticles are used for the encapsulation of the major essential components carvacrol and cinnamaldehyde, the encapsulation of an oil-in-water nanoemulsion of eucalyptus oil (Eucalyptus globulus), the encapsulation of a mandarin essential oil nanoemulsion, and the electrospinning nanofiber of collagen hydrolysate-chitosan with lemon balm (Melissa officinalis) and dill (Anethum graveolens) essential oil.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.)
| |
Collapse
|
14
|
Huang SM, Wu CY, Lin YH, Hsieh HH, Yang HC, Chiu SC, Peng SL. Differences in brain activity between normal and diabetic rats under isoflurane anesthesia: a resting-state functional MRI study. BMC Med Imaging 2022; 22:136. [PMID: 35927630 PMCID: PMC9354416 DOI: 10.1186/s12880-022-00867-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered neural activity based on the fractional amplitude of low-frequency fluctuations (fALFF) has been reported in patients with diabetes. However, whether fALFF can differentiate healthy controls from diabetic animals under anesthesia remains unclear. The study aimed to elucidate the changes in fALFF in a rat model of diabetes under isoflurane anesthesia. METHODS The first group of rats (n = 5) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to cause the development of diabetes. The second group of rats (n = 7) received a single intraperitoneal injection of the same volume of solvent. Resting-state functional magnetic resonance imaging was used to assess brain activity at 4 weeks after STZ or solvent administration. RESULTS Compared to the healthy control animals, rats with diabetes showed significantly decreased fALFF in various brain regions, including the cingulate cortex, somatosensory cortex, insula, and striatum (all P < 0.05). The decreased fALFF suggests the aberrant neural activities in the diabetic rats. No regions were detected in which the control group had a lower fALFF than that in the diabetes group. CONCLUSIONS The results of this study demonstrated that the fALFF could be used to differentiate healthy controls from diabetic animals, providing meaningful information regarding the neurological pathophysiology of diabetes in animal models.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan. .,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
16
|
Lin S, Wu F, Cao Z, Liu J. Advances in Nanomedicines for Interaction with the Intestinal Barrier. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Feng Wu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Zhenping Cao
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
17
|
Li J, Zhang Y, Yu M, Wang A, Qiu Y, Fan W, Hovgaard L, Yang M, Li Y, Wang R, Li X, Gan Y. The upregulated intestinal folate transporters direct the uptake of ligand-modified nanoparticles for enhanced oral insulin delivery. Acta Pharm Sin B 2022; 12:1460-1472. [PMID: 35530154 PMCID: PMC9072239 DOI: 10.1016/j.apsb.2021.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Transporters are traditionally considered to transport small molecules rather than large-sized nanoparticles due to their small pores. In this study, we demonstrate that the upregulated intestinal transporter (PCFT), which reaches a maximum of 12.3-fold expression in the intestinal epithelial cells of diabetic rats, mediates the uptake of the folic acid-grafted nanoparticles (FNP). Specifically, the upregulated PCFT could exert its function to mediate the endocytosis of FNP and efficiently stimulate the traverse of FNP across enterocytes by the lysosome-evading pathway, Golgi-targeting pathway and basolateral exocytosis, featuring a high oral insulin bioavailability of 14.4% in the diabetic rats. Conversely, in cells with relatively low PCFT expression, the positive surface charge contributes to the cellular uptake of FNP, and FNP are mainly degraded in the lysosomes. Overall, we emphasize that the upregulated intestinal transporters could direct the uptake of ligand-modified nanoparticles by mediating the endocytosis and intracellular trafficking of ligand-modified nanoparticles via the transporter-mediated pathway. This study may also theoretically provide insightful guidelines for the rational design of transporter-targeted nanoparticles to achieve efficient drug delivery in diverse diseases.
Collapse
Affiliation(s)
- Jingyi Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaorong Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aohua Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lars Hovgaard
- Oral Formulation Development, Novo Nordisk A/S, Maalov 2760, Denmark
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| | - Xiuying Li
- University of Texas at Dallas, Richardson, TX 75080, USA
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Corresponding authors. Tel.: +86 021 51322181, fax: +86 021 51322193 (Rui Wang); Tel.: +01 972 883 4480, fax: +01 972 883 4440 (Xiuying Li); Tel.: +86 021 20231975, fax: +86 021 20231000 1425 (Yong Gan).
| |
Collapse
|
18
|
Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery. Mar Drugs 2022; 20:md20030156. [PMID: 35323455 PMCID: PMC8953124 DOI: 10.3390/md20030156] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The present study aimed to fabricate surface-modified chitosan nanoparticles with two mucoadhesive polymers (sodium alginate and polyethylene glycol) to optimize their protein encapsulation efficiency, improve their mucoadhesion properties, and increase their stability in biological fluids. Method: Ionotropic gelation was employed to formulate chitosan nanoparticles and surface modification was performed at five different concentrations (0.05, 0.1, 0.2, 0.3, 0.4% w/v) of sodium alginate (ALG) and polyethylene glycol (PEG), with ovalbumin (OVA) used as a model protein antigen. The functional characteristics were examined by dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)/scanning transmission electron microscopy (STEM). Stability was examined in the presence of simulated gastric and intestinal fluids, while mucoadhesive properties were evaluated by in vitro mucin binding and ex vivo adhesion on pig oral mucosa tissue. The impact of the formulation and dissolution process on the OVA structure was investigated by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD). Results: The nanoparticles showed a uniform spherical morphology with a maximum protein encapsulation efficiency of 81%, size after OVA loading of between 200 and 400 nm and zeta potential from 10 to 29 mV. An in vitro drug release study suggested successful nanoparticle surface modification by ALG and PEG, showing gastric fluid stability (4 h) and a 96 h sustained OVA release in intestinal fluid, with the nanoparticles maintaining their conformational stability (SDS-PAGE and CD analyses) after release in the intestinal fluid. An in vitro mucin binding study indicated a significant increase in mucin binding from 41 to 63% in ALG-modified nanoparticles and a 27–49% increase in PEG-modified nanoparticles. The ex vivo mucoadhesion showed that the powdered particles adhered to the pig oral mucosa. Conclusion: The ALG and PEG surface modification of chitosan nanoparticles improved the particle stability in both simulated gastric and intestinal fluids and improved the mucoadhesive properties, therefore constituting a potential nanocarrier platform for mucosal protein vaccine delivery.
Collapse
|
19
|
Leung SW, Cheng PC, Chou CM, Lin C, Kuo YC, Lee YLA, Liu CY, Mi FL, Cheng CH. A novel low-molecular-weight chitosan/gamma-polyglutamic acid polyplexes for nucleic acid delivery into zebrafish larvae. Int J Biol Macromol 2022; 194:384-394. [PMID: 34822829 DOI: 10.1016/j.ijbiomac.2021.11.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/05/2022]
Abstract
Many challenges, such as virus infection, extreme weather and long cultivation periods, during the development of fish larvae have been observed, especially in aquaculture. Gene delivery is a useful method to express functional genes to defend against these challengers. However, the methods for fish larvae are insufficient. In our earlier report, low-molecular-weight chitosan (LMWCS) showed a strong positive charge and may be useful for polyplex formulation. Herein, we present a simple self-assembly of LMWCS polyplexes (LMWCSrNPs) for gene delivery into zebrafish larvae. Different weight ratios of LMWCS/gamma-polyglutamic acid (γ-PGA)/plasmid DNA were analyzed by gel mobility assay. Delivery efficiency determined by green fluorescent protein (GFP) expression in zebrafish liver (ZFL) cells showed that delivery efficiency at a weight ratio of 20:8:1 was higher than others. Zeta potential and transmission electron microscopy (TEM) analysis showed that the round shape of the particle size varied. In our earlier reports, IRF9S2C could induce interferon-stimulated gene (ISG) expression to induce innate immunity in zebrafish and pufferfish. Further delivery of pcDNA3-IRF9S2C-HA plasmid DNA into ZFL cells and zebrafish larvae by LMWCSrNP successfully induced ISG expression. Collectively, LMWCSrNP could be a novel gene delivery system for zebrafish larvae and might be used to improve applications in aquaculture.
Collapse
Affiliation(s)
- Stephen Wan Leung
- Department of Radiation Oncology, Yuan's General Hospital, Kaohsiung 80249, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chieh Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Lin Amy Lee
- Departments of Medicine and Pediatrics, Duke University Hospital, Durham, NC 27704, USA
| | - Cheng-Yang Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
20
|
Xie Z, Chen X. Healthy benefits and edible delivery systems of resveratrol: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhenfeng Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers (Basel) 2021; 13:polym13224036. [PMID: 34833334 PMCID: PMC8617804 DOI: 10.3390/polym13224036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed.
Collapse
|
22
|
de Morais SC, Bezerra BG, Castro BB, Balaban RDC. Evaluation of polyelectrolytic complexes based on poly(epichlorohydrin-co-dimethylamine) and poly (4-styrene-sulfonic acid-co-maleic acid) in the delivery of polyphosphates for the control of CaCO3 scale in oil wells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Balogun-Agbaje OA, Odeniyi OA, Odeniyi MA. Drug delivery applications of poly-γ-glutamic acid. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00280-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Poly-γ-glutamic acid (γ-PGA) is a biopolymer of microbial origin, consisting of repeating units of l-glutamic acid and/or D-glutamic acid. The biopolymer has found use in the fields of agriculture, food, wastewater, and medicine, owing to its non-toxic, biodegradable, and biocompatible properties. Due to its biodegradability, γ-PGA is being tipped to dislodge synthetic plastics in drug delivery application. High cost of production, relative to plastics, is however a clog in the wheel of achieving this.
Main body of abstract
This review looked at the production, nanoparticles fabrication, and drug delivery application of γ-PGA. γ-PGA production optimization by modifying the fermentation medium to tailor towards the production of desirable polymer at reduced cost and techniques for the formulation of γ-PGA nanoparticle as well as its characterization were discussed. This review also evaluated the application of γ-PGA and its nanoparticles in the delivery of drugs to action site. Characterization of γ-PGA and its nanoparticles is a crucial step towards determining the applicability of the biopolymer. γ-PGA has been used in the delivery of active agents to action sites.
Conclusion
This review highlights some of the efforts that have been made in the appraisal of γ-PGA and its nanoparticles for drug delivery. γ-PGA is a candidate for future extensive use in drug delivery.
Collapse
|
24
|
Fundamental and Practical Aspects in the Formulation of Colloidal Polyelectrolyte Complexes of Chitosan and siRNA. Methods Mol Biol 2021. [PMID: 33928582 DOI: 10.1007/978-1-0716-1298-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The formation of electrostatic interactions between polyanionic siRNA and polycations gives an easy access to the formation of colloidal particles capable of delivering siRNA in vitro or in vivo. Among the polycations used for siRNA delivery, chitosan occupies a special place due to its unique physicochemical and biological properties. In this chapter we describe the fundamental and practical aspects of the formation of colloidal complexes between chitosan and siRNA. The basis of the electrostatic complexation between oppositely charged polyelectrolytes is first introduced with a focus on the specific conditions to obtain stable colloid complex particles. Subsequent, the properties that make chitosan so special are described. In a third part, the main parameters influencing the colloidal properties and stability of siRNA/chitosan complexes are reviewed with emphasis on some practical aspects to consider in the preparation of complexes.
Collapse
|
25
|
Macedo A, Filipe P, Thomé NG, Vieira J, Oliveira C, Teodósio C, Ferreira R, Roque L, Fonte P. A Brief Overview of the Oral Delivery of Insulin as an Alternative to the Parenteral Delivery. Curr Mol Med 2021; 20:134-143. [PMID: 31965934 DOI: 10.2174/1566524019666191010095522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus greatly affects the quality of life of patients and has a worldwide prevalence. Insulin is the most commonly used drug to treat diabetic patients and is usually administered through the subcutaneous route. However, this route of administration is ineffective due to the low concentration of insulin at the site of action. This route of administration causes discomfort to the patient and increases the risk of infection due to skin barrier disturbance caused by the needle. The oral administration of insulin has been proposed to surpass the disadvantages of subcutaneous administration. In this review, we give an overview of the strategies to deliver insulin by the oral route, from insulin conjugation to encapsulation into nanoparticles. These strategies are still under development to attain efficacy and effectiveness that are expected to be achieved in the near future.
Collapse
Affiliation(s)
- Ana Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Patrícia Filipe
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Natália G Thomé
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - João Vieira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Carolina Oliveira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Teodósio
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Raquel Ferreira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Luís Roque
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Pedro Fonte
- LAQV, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.,Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,IBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
26
|
A Novel Formulation of Cisplatin with γ-Polyglutamic Acid and Chitosan Reduces Its Adverse Renal Effects: An In Vitro and In Vivo Animal Study. Polymers (Basel) 2021; 13:polym13111803. [PMID: 34070811 PMCID: PMC8198433 DOI: 10.3390/polym13111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II); CDDP) is a key chemotherapeutic agent but causes renal damage and other off-target effects. Here, we describe the pharmacological and biochemical characteristics of a novel formulation of CDDP complexed with γ-polyglutamic acid (γ-PGA) and chitosan (CS), γ-PGA/CDDP-CS, developed by complexing CDDP with γ-PGA, then adding CS (15 kDa; 10 mol%/γ-PGA). We analyzed tumor cytotoxicity in vitro, as well as blood kinetics, acute toxicity, and antitumor efficacy in vivo in BALB/cAJcl mice. γ-PGA/CDDP-CS showed pH-dependent release in vitro over 12 days (9.1% CDDP released at pH 7.4; 49.9% at pH 5.5). It showed in vitro cytotoxicity in a dose-dependent manner similar to that of uncomplexed CDDP. In a mesothelioma-bearing mouse model, a 15 mg/kg dose of CDDP inhibited tumor growth regardless of the type of formulation, complexed or uncomplexed; however, all mice in the uncomplexed CDDP group died within 13 days. γ-PGA/CDDP-CS was as effective as free CDDP in vivo but much less toxic.
Collapse
|
27
|
Dahdouh A, Kati DE, Bachir-Bey M, Aksas A, Rezgui F. Deployment of response surface methodology to optimize microencapsulation of peroxidases from turnip roots (Brassica rapa L.) by double emulsion in PLA polymer. J Food Sci 2021; 86:1893-1906. [PMID: 33895995 DOI: 10.1111/1750-3841.15721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 11/27/2022]
Abstract
In order to improve the preservation conditions and stability of peroxidase catalytic properties, a number of immobilization techniques have been widely developed. In this context, we set as objective, the optimization of synthesis and stability of microcapsules of peroxidases (POD) from turnip using polylactic acid (PLA) polymer with the double emulsion technique. The surfactant, polymer, and peroxidase concentrations were the optimized parameters. According to the results obtained using the Box-Behnken design, the optimal parameters found were 1.55% of PVA, 55 mg/mL of peroxidases, and 30 mg/mL of PLA polymer with an encapsulation efficiency of 57.29%. The scanning electron microscopy morphological characterization of the optimized microcapsules showed a regular spherical structure. Fourier transform infrared spectroscopy identified the specific functional groups and chemical bonds before and after microencapsulation. The elaborated microcapsules were characterized by an average size of 200 µm (mainly from 150 to 500 µm) with a low residual moisture content (2.26%) and the encapsulated peroxidases showed better thermal stability. The in vitro release of peroxidases confirmed that the microcapsules have an excellent sustained release in simulated gastric digestion. Encapsulated peroxidases' storage under 25 and 4 °C displays a good residual POD activity with about 60% of initial activities during 80 days of storage, whereas free POD losses its initial activity within 15 and 30 days, respectively. The obtained results are promising for the development of effective therapeutic treatment of some intestinal troubles due to oxidative stress. PRACTICAL APPLICATION: Brassica rapa L. root is well known for its richness on peroxidases and thus presents an interesting potential for developing high added value products. In order to preserve the activity of extracted peroxidases (POD) from turnip roots, microencapsulation was optimized using a polylactic acid polymer. The encapsulated POD showed the maintenance of its activity under the effect of different storage conditions (time and temperature) and demonstrated resistance to gastric acidity. According to the obtained results, the encapsulation of peroxidases opens up medicine and pharmaceutical applications such as intestinal and colic protection against inflammations.
Collapse
Affiliation(s)
- Amel Dahdouh
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Djamel Edine Kati
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Mostapha Bachir-Bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Farouk Rezgui
- Laboratoire des Matériaux organiques, Département de Génie des Procèdes, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
28
|
Yang T, Han H, Chen Y, Yang L, Parker R, Li Y, Kaplan DL, Xu Q. Study the lipidoid nanoparticle mediated genome editing protein delivery using 3D intestinal tissue model. Bioact Mater 2021; 6:3671-3677. [PMID: 33898871 PMCID: PMC8056182 DOI: 10.1016/j.bioactmat.2021.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Lipid nanoparticles are promising carriers for oral drug delivery. For bioactive cargos with intracellular targets, e.g. gene-editing proteins, it is essential for the cargo and carrier to remain complexed after crossing the epithelial layer of intestine in order for the delivery system to transport the cargos inside targeted cells. However, limited studies have been conducted to verify the integrity of cargo/carrier nanocomplexes and their capability in facilitating cargo delivery intracellularly after the nanocomplex crossing the epithelial barrier. Herein, we used a traditional 2D transwell system and a recently developed 3D tissue engineered intestine model and demonstrated the synthetic lipid nanoparticle (carrier) and protein (cargo) nanocomplexes are able to cross the epithelial layer and deliver the protein cargo inside the underneath cells. We found that the EC16-63 LNP efficiently encapsulated the GFP-Cre recombinase, penetrated the intestinal monolayer cells in both the 2D cell culture and 3D tissue models through temporarily interrupting the tight junctions between epithelial layer. After transporting across the intestinal epithelia, the EC16-63 and GFP-Cre recombinase nanocomplexes can enter the underneath cells to induce gene recombination. These results suggest that the in vitro 3D intestinal tissue model is useful for identifying effective lipid nanoparticles for potential oral drug delivery. Employed a 3D intestine model for nanodrug screening. Developed lipidoid nanoparticles for genome engineering protein delivery. Used 3D tissue model to test lipidoid nanoparticles for potential oral drug delivery.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Haobo Han
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Liu Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Rachael Parker
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
29
|
Wong CYJ, Al-Salami H, Dass CR. β-Cyclodextrin-containing chitosan-oligonucleotide nanoparticles improve insulin bioactivity, gut cellular permeation and glucose consumption. J Pharm Pharmacol 2021; 73:726-739. [PMID: 33769519 DOI: 10.1093/jpp/rgaa052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The main objective of the present study was to develop a nanoparticulate drug delivery system that can protect insulin against harsh conditions in the gastrointestinal (GI) tract. The effects of the following employed techniques, including lyophilisation, cross-linking and nanoencapsulation, on the physicochemical properties of the formulation were investigated. METHODS We herein developed a nanocarrier via ionotropic gelation by using positively charged chitosan and negatively charged Dz13Scr. The lyophilised nanoparticles with optimal concentrations of tripolyphosphate (cross-linking agent) and β-cyclodextrin (stabilising agent) were characterised by using physical and cellular assays. KEY FINDINGS The addition of cryoprotectants (1% sucrose) in lyophilisation improved the stability of nanoparticles, enhanced the encapsulation efficiency, and ameliorated the pre-mature release of insulin at acidic pH. The developed lyophilised nanoparticles did not display any cytotoxic effects in C2C12 and HT-29 cells. Glucose consumption assays showed that the bioactivity of entrapped insulin was maintained post-incubation in the enzymatic medium. CONCLUSIONS Freeze-drying with appropriate cryoprotectant could conserve the physiochemical properties of the nanoparticles. The bioactivity of the entrapped insulin was maintained. The prepared nanoparticles could facilitate the permeation of insulin across the GI cell line.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley,Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| |
Collapse
|
30
|
Sivanesan I, Muthu M, Gopal J, Hasan N, Kashif Ali S, Shin J, Oh JW. Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:821. [PMID: 33806968 PMCID: PMC8005131 DOI: 10.3390/nano11030821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Chitin (poly-N-acetyl-D-glucosamine) is the second (after cellulose) most abundant organic polymer. In its deacetylated form-chitosan-becomes a very interesting material for medical use. The chitosan nano-structures whose preparation is described in this article shows unique biomedical value. The preparation of nanochitosan, as well as the most vital biomedical applications (antitumor, drug delivery and other medical uses), have been discussed in this review. The challenges confronting the progress of nanochitosan from benchtop to bedside clinical settings have been evaluated. The need for inclusion of nano aspects into chitosan research, with improvisation from nanotechnological inputs has been prescribed for breaking down the limitations. Future perspectives of nanochitosan and the challenges facing nanochitosan applications and the areas needing research focus have been highlighted.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India; (M.M.); (J.G.)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Syed Kashif Ali
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia; (N.H.); (S.K.A.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
31
|
Li Y, Ji W, Peng H, Zhao R, Zhang T, Lu Z, Yang J, Liu R, Zhang X. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Am J Cancer Res 2021; 11:4452-4466. [PMID: 33754071 PMCID: PMC7977443 DOI: 10.7150/thno.54176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Insulin, a peptide hormone, is one of the most common and effective antidiabetic drugs. Although oral administration is considered to be the most convenient and safe choice for patients, the oral bioavailability of insulin is very low due to the poor oral absorption into blood circulation. Intestinal epithelium is a major barrier for the oral absorption of insulin. Therefore, it is vital to develop intestinal permeation enhancer to increase the antidiabetic efficacy of insulin after oral administration. Methods: Charge-switchable zwitterionic polycarboxybetaine (PCB) was used to load insulin to form PCB/insulin (PCB/INS) particles through the electrostatic interaction between positively charged PCB in pH 5.0 and negatively charged insulin in 0.01 M NaOH. The opening effect of PCB/INS particles on intestinal epithelium was evaluated by detecting the changes of claudin-4 (CLDN4) protein and transepithelial electrical resistance (TEER) after incubation or removal. The mechanism was further elucidated based on the results of Western blot and fluorescence images. The PCB/INS particles were then used for type 1 diabetes mellitus therapy after oral administration. Results: PCB could load insulin with the loading efficiency above 86% at weight ratio of 8:1. PCB/INS particles achieved sustained release of insulin at pH 7.4 due to their charge-switchable ability. Surprisingly, PCB/INS particles induced the open of the tight junctions of intestinal epithelium in endocytosis-mediated lysosomal degradation pathway, which resulted in increased intestinal permeability of insulin. Additionally, the opening effect of PCB/INS particles was reversible, and the decreased expression of CLDN4 protein and TEER values were gradually recovered after particles removal. In streptozotocin-induced type 1 diabetic rats, oral administration of PCB/INS particles with diameter sub-200 nm, especially in capsules, significantly enhanced the bioavailability of insulin and achieved longer duration of hypoglycemic effect than the subcutaneously injected insulin. Importantly, there was no endotoxin and pathological change during treatment, indicating that PCB/INS particles were safe enough for in vivo application. Conclusion: These findings indicate that this system can provide a platform for oral insulin and other protein drugs delivery.
Collapse
|
32
|
Mohammadi Z, Eini M, Rastegari A, Tehrani MR. Chitosan as a machine for biomolecule delivery: A review. Carbohydr Polym 2021; 256:117414. [DOI: 10.1016/j.carbpol.2020.117414] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
|
33
|
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021; 29:365-386. [PMID: 32876505 DOI: 10.1080/1061186x.2020.1817042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of orally administered protein drugs is challenging due to their intrinsic unfavourable features, including large molecular size and poor chemical stability, both of which limit gastrointestinal (GI) absorption efficiency. Nanoparticles can overcome the GI barriers effectively and improve the oral bioavailability of proteins in the GI tract. They possess large surface area to volume ratio, and can facilitate the GI absorption of nanoparticles via the paracellular and transcellular routes. Nanoparticles can be prepared by various fabrication techniques that can encapsulate the fragile therapeutic proteins via hydrophobic bonding and electrostatic interaction. A desirable technique should involve minimal harsh conditions and encapsulate therapeutic proteins with preserved functionalities. The current review examines the characteristics of each preparation technique, and illustrates the examples of insulin-loaded nanoparticles that have been developed in each fabrication method. The following techniques, which include nanoprecipitation, hydrophobic conjugation, flash nanocomplexation, double emulsion, ionotropic gelation, and layer-by-layer adsorption, have been used to formulate ligand-modified nanoparticles for targeted delivery of insulin. Other techniques, including reduction, complex coacervation (polyelectrolyte complexation), hydrophobic ion pairing and emulsion solvent diffusion method, and sol-gel technology, were also discussed in the latter part of the review due to their extensive use in fabrication of insulin nanoparticles. This review also discusses the strategies that have been utilised during the formulation process to improve the stability and bioactivity of therapeutic proteins.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
34
|
Nivethaa EAK, Dhanavel S, Narayanan V, Narayana Kalkura S, Sivasankari J, Sivanandham N, Stephen A. CS/Au/MWCNT nanohybrid as an efficient carrier for the sustained release of 5-FU and a study of its cytotoxicity on MCF-7. RSC Adv 2021; 11:4584-4592. [PMID: 35424384 PMCID: PMC8694463 DOI: 10.1039/d0ra08537e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/15/2020] [Indexed: 12/03/2022] Open
Abstract
The chemical reduction method has been used to adeptly synthesize a CS/Au/MWCNT nanocomposite, to be used as a carrier for the effectual delivery of the anticancer drug 5-Fluorouracil. The work aims at utilizing the less investigated ternary nanocomposite system containing chitosan (CS), gold (Au) and MWCNT's to attain higher encapsulation efficiency and to enable a more sustained and prolonged release of 5-FU. This system has improved cytotoxicity when compared to the CS/Au binary system. The prepared sample has been characterized using various techniques that confirm the formation of the nanocomposite, encapsulation of 5-FU into the nanocomposite, the structure of 5-FU and Au in the nanocomposite and the formation of the polymer matrix nanocomposite. An increase in the encapsulation efficiency to 98% and loading efficiency to 43% is observed when compared to the binary composite, elucidating the importance of incorporation of carbon nanotubes into the nanocomposite. A reduction in the release percentage of 5-FU by 40% indicates a more prolonged release, which will enable a reduction of the number of dosages that need to be administered. This in turn leads to a reduction in the side effects posed by the drug 5-FU. Moreover, the effectiveness of the drug loaded nanocomposite system towards the inhibition of breast cancer cells, apparent from the attainment of 50% cell viability while taking sample concentrations as low as 25 μg ml-1, makes this ternary nanocomposite superior and significant.
Collapse
Affiliation(s)
- E A K Nivethaa
- Department of Physics, Anna University Guindy Chennai-25 India
- Department of Nuclear Physics, University of Madras Guindy Campus Chennai-25 India +044-22351269 +044-22202802
| | - S Dhanavel
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research Kalpakkam India
- Department of Nuclear Physics, University of Madras Guindy Campus Chennai-25 India +044-22351269 +044-22202802
| | - V Narayanan
- Department of Inorganic Chemistry, University of Madras Guindy Campus Chennai 600 025 India
| | | | - J Sivasankari
- Department of Physics, Anna University Guindy Chennai-25 India
| | - N Sivanandham
- Department of Physics, Anna University Guindy Chennai-25 India
| | - A Stephen
- Department of Nuclear Physics, University of Madras Guindy Campus Chennai-25 India +044-22351269 +044-22202802
| |
Collapse
|
35
|
Zhang Y, Xiong GM, Ali Y, Boehm BO, Huang YY, Venkatraman S. Layer-by-layer coated nanoliposomes for oral delivery of insulin. NANOSCALE 2021; 13:776-789. [PMID: 33295926 DOI: 10.1039/d0nr06104b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crossing the intestinal epithelial cell barrier safely and reaching the blood with therapeutic levels of bioactive insulin have been the ultimate goal of oral insulin delivery. The optimum way to overcome the barrier lies in the design of an efficient high drug loading carrier, that can protect insulin from the harsh Gastrointestinal (GI) environment and enhance its uptake and transport by epithelial cells. In the present study, we developed a multi-layered insulin loading strategy on an anionic nanoliposome surface based on electrostatic interaction with chitosan. The layer-by-layer (LbL) coated nanoliposomes achieved high insulin loading (10.7% by weight) and offered superior protection with limited release in simulated gastric fluid (SGF) (about 6% in 1 h), simulated intestinal fluid (SIF) (2% in two weeks), and phosphate buffered saline (PBS) (5% in two weeks). Intracellular imaging revealed that the LbL coated liposomes were internalized and intracellularly trafficked towards the basolateral side of the Caco-2 monolayer. Transported insulin demonstrated retention of bioactivity while crossing the epithelial barrier in the glucose uptake study in 3T3 L1-MBX adipocytes. In rat studies, oral administration of the formulation resulted in rapid absorption with a peak in plasma insulin levels 0.5 h post oral gavaging. This technology thus serves as a promising platform for potential oral insulin applications.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Blk N4.1, Nanyang Avenue, Singapore 639798.
| | | | | | | | | | | |
Collapse
|
36
|
Bahman F, Greish K, Taurin S. Insulin nanoformulations for nonparenteral administration in diabetic patients. THEORY AND APPLICATIONS OF NONPARENTERAL NANOMEDICINES 2021:409-443. [DOI: 10.1016/b978-0-12-820466-5.00017-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Jana BA, Shinde U, Wadhwani A. Synthetic enzyme-based nanoparticles act as smart catalyst for glucose responsive release of insulin. J Biotechnol 2020; 324:1-6. [PMID: 32987063 DOI: 10.1016/j.jbiotec.2020.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Earlier studies have attempted to create electronic free insulin delivery systems using different glucose sensing mechanism, no successful clinical translation as hitherto been made. This study aimed to assess the faster responsiveness of the insulin release from this enzyme based nanoparticles which is a self-regulated insulin delivery system constructed by loading with insulin, enzyme glucose oxidase into hyaluronic acid and 2-nitroimidazole forming enzyme-based nanoparticles which works in accordance to the blood glucose level. MATERIALS AND METHOD Enzyme-based nanoparticles were prepared by ionic gelation method. Insulin content in the nanoparticles kept for stability study was estimated by human insulin enzyme based immunosorbent assay. In in-vitro studies; different concentrations of glucose were taken and the release study of insulin was recorded. RESULTS This enzyme-based nanoparticles were having average diameter of around 193 nm and stability studies showed that nanoparticles were stable upto 30 days at 4 °C. In-vitro studies showed the release of insulin from nanoparticle conjugates which was effectively correlated with the external glucose concentration created where different concentrations of glucose taken thus facilitating the stabilization of blood glucose levels in the hyperglycemia state which was achieved within 10 min. (400 mg/dL) wherein drug release rate remarkably increased in hyperglycemia state and no specific changes or small amount of release was observed in normoglycemia state (100 mg/dL). CONCLUSION Overall, this preliminary study of this enzyme-based nanoparticles formulation showed excellent rapid responsiveness towards hyperglycemia which might act as a potential biomimetic system in triggering the release of insulin in sustained manner.
Collapse
Affiliation(s)
- Baishali A Jana
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India.
| | - Ujwala Shinde
- Department of Pharmaceutics, Bombay College of Pharmacy, Mumbai, 400098, Maharashtra, India.
| | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS Academy of Higher Education & Research - JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India.
| |
Collapse
|
38
|
Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol 2020; 26:157-166. [PMID: 33183103 DOI: 10.1080/10837450.2020.1849282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral delivery of peptide and proteins is challenging due to their poor physical and chemical stability which usually results in inadequate therapeutic efficacy. Nanoparticles encapsulating insulin was developed by the ionic gelation technique using sulfobutyl ether-β-cyclodextrin as an anionic linker. Phospholipid hybrid nanoparticles were formulated by utilizing ionic gelation and thin-film hydration methods using D-α-Tocopheryl polyethylene glycol 1000 succinate, sodium deoxycholate separately and in combination to take the advantage of liposomes and nanoparticles also various absorption enhancement mechanisms. All formulations were characterized and tested for in vitro gastrointestinal stability, in vitro drug release, and cytotoxicity. On the other hand, in vivo effects of developed formulations on reducing blood glucose levels were monitored for 8 hours. Phospholipid hybrid nanoparticles including D-α-Tocopheryl polyethylene glycol 1000 succinate and sodium deoxycholate in combination with 548.7 nm particle size, 0.332 polydispersity index, 22.0 mV zeta potential, and 61.9% encapsulation efficiency, exhibited desired gastrointestinal stability and insulin release in vitro. In addition, the formulation proved its safety with cytotoxicity studies on L929 cells. The subjected phospholipid hybrid nanoparticle formulation was found to be the most effective formulation by reducing and maintaining blood glucose levels with avoiding fluctuations.
Collapse
Affiliation(s)
- N Basaran Mutlu-Agardan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | - S Han
- Faculty of Pharmacy, Department of Pharmacology, Gazi University, Ankara, Turkey
| |
Collapse
|
39
|
Yu F, Zhu Y, Liu Y, Qiu G, Shang X, Meng T, Yuan H, Hu F. Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis. Biomater Sci 2020; 8:5955-5968. [PMID: 32966382 DOI: 10.1039/d0bm01254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The active targeting strategy has achieved inspiring progress for drug accumulation in tumor therapy; however, the insufficient expression level of many potential receptors poses challenges for drug delivery. Poly-γ-glutamic acid (γ-pGluA), a naturally occurring anionic biopolymer, showed high affinity with tumor-associated gamma-glutamyl transpeptidase (GGT), which localized on the cell surface and exhibited intracellular redox homeostasis-dependent expression pattern; thus, GGT was utilized for mediating endocytosis of nanoparticles. Herein, GGT-targeting nanopolyplexes (γ-pGluA-CSO@Fe3+, PCFN) consisting of cationic chitosan and GGT-targeting γ-pGluA blended with iron ion were constructed to load reactive oxygen species-induced menadione (MA) and doxorubicin, which were utilized to investigate the mechanism of GGT up-regulation. Briefly, the pretreated PCFN/MA induced an intracellular oxidative stress environment, which facilitated adjusted up-regulated GGT expression and boosted tumor targeting. Subsequently, the destroyed redox homeostasis sensitized tumors for synergistic therapy. The innovative strategy of augmenting active targeting by disturbing intracellular redox homeostasis offers insight for the application of γ-pGluA-derived nanopolyplexes.
Collapse
Affiliation(s)
- Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym 2020; 247:116594. [PMID: 32829787 DOI: 10.1016/j.carbpol.2020.116594] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
|
41
|
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers. Macromol Biosci 2020; 21:e2000312. [PMID: 33016007 DOI: 10.1002/mabi.202000312] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/26/2022]
Abstract
Chitosan-based nanocarriers (ChNCs) are considered suitable drug carriers due to their ability to encapsulate a variety of drugs and cross biological barriers to deliver the cargo to their target site. Fluorescein isothiocyanate-labeled chitosan-based NCs (FITC@ChNCs) are used extensively in biomedical and pharmacological applications. The main advantage of using FITC@ChNCs consists of the ability to track their fate both intra and extracellularly. This journey is strictly dependent on the physico-chemical properties of the carrier and the cell types under investigation. Other applications make use of fluorescent ChNCs in cell labeling for the detection of disorders in vivo and controlling of living cells in situ. This review describes the use of FITC@ChNCs in the various applications with a focus on understanding their usefulness in labeled drug-delivery systems.
Collapse
Affiliation(s)
- Anna E Caprifico
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elena Polycarpou
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Peter J S Foot
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gianpiero Calabrese
- A. E. Caprifico, Dr. E. Polycarpou, Prof. P. J. S. Foot, Dr. G. Calabrese, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
42
|
Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angew Chem Int Ed Engl 2020; 59:19787-19795. [DOI: 10.1002/anie.202008879] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhongmin Tang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Chuang Liu
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Na Kong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Omid C. Farokhzad
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
43
|
Xiao Y, Tang Z, Wang J, Liu C, Kong N, Farokhzad OC, Tao W. Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yufen Xiao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Zhongmin Tang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Chuang Liu
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Na Kong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Omid C. Farokhzad
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
44
|
Zhang X, Xing H, Qi F, Liu H, Gao L, Wang X. Local delivery of insulin/IGF-1 for bone regeneration: carriers, strategies, and effects. Nanotheranostics 2020; 4:242-255. [PMID: 32923314 PMCID: PMC7484631 DOI: 10.7150/ntno.46408] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Bone defects caused by trauma, tumor resection, congenital malformation and infection are still a major challenge for clinicians. Biomimetic bone materials have attracted more and more attention in science and industry. Insulin and insulin-like growth factor-1 (IGF-1) have been increasingly recognized as an inducible factor for osteogenesis and angiogenesis. Spatiotemporal release of insulin may serve as the promising strategy. Considering the successful application of nanoparticles in drug loading, various insulin delivery systems have been developed, including (poly (lactic-co-glycolic acid), PLGA), hydroxyapatite (HA), gelatin, chitosan, alginate, and (γ-glutamic acid)/β-tricalcium phosphate, γ-PGA/β-TCP). Here, we have reviewed the progress on nanoparticles carrying insulin/IGF for bone regeneration. In addition, the key regulatory mechanism of insulin in bone regeneration is also summarized. The future application strategies and the challenges in bone regeneration are also discussed.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Hongchen Liu
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials.,Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
45
|
Nanoparticles and Colloidal Hydrogels of Chitosan-Caseinate Polyelectrolyte Complexes for Drug-Controlled Release Applications. Int J Mol Sci 2020; 21:ijms21165602. [PMID: 32764340 PMCID: PMC7460567 DOI: 10.3390/ijms21165602] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/02/2022] Open
Abstract
Chitosan–caseinate nanoparticles were synthesized by polyelectrolyte complex (PEC) formation. Caseinate is an anionic micellar nanocolloid in aqueous solutions, which association with the polycationic chitosan yielded polyelectrolyte complexes with caseinate cores surrounded by a chitosan corona. The pre-structuration of caseinate micelles facilitates the formation of natural polyelectrolyte nanoparticles with good stability and sizes around 200 nm. Such natural nanoparticles can be loaded with molecules for applications in drug-controlled release. In the nanoparticles processing, parameters such as the chitosan degree of acetylation (DA) and molecular weight, order of addition of the polyelectrolytes chitosan (polycation) and caseinate (polyanion), and added weight ratio of polycation:polyanion were varied, which were shown to influence the structure of the polyelectrolyte association, the nanoparticle size and zeta potential. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) analyses revealed the chemical structure of hydrogel colloidal systems consisting of nanoparticles that contain chitosan and caseinate. Transmission electron microscopy (TEM) allowed further characterization of the spherical morphology of the nanoparticles. Furtherly, insulin was chosen as a model drug to study the application of the nanoparticles as a safe biodegradable nanocarrier system for drug-controlled release. An insulin entrapment efficiency of 75% was achieved in the chitosan-caseinate nanoparticles.
Collapse
|
46
|
Preparation of enzyme based polymeric biomimetic nanoparticle for the controlled release of insulin. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target 2020; 28:882-903. [DOI: 10.1080/1061186x.2020.1759078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
48
|
Characterization and toxicology evaluation of low molecular weight chitosan on zebrafish. Carbohydr Polym 2020; 240:116164. [PMID: 32475540 DOI: 10.1016/j.carbpol.2020.116164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Chitosan is suggested as no or low toxicity and biocompatible biomaterial. Digestion of chitosan to reduce molecular weight and formulate nanoparticle was generally used to improve efficiency for DNA or protein delivery. However, the toxicity of low-molecular-weight chitosan (LMWCS) towards freshwater fishes has not been well evaluated. Here, we reported the toxic mechanism of LMWCS using zebrafish (Danio rerio) liver (ZFL) cell line, zebrafish larvae, and adult fish. LMWCS rapidly induced cytotoxicity of ZFL cells and death of zebrafish. Cell membrane damaged by LMWCS reduced cell viability. Damaged membrane of epithelial cell in zebrafish larvae induced breakage of the yolk. Adult fish exhibited hypoxia before death due to multiple damages induced by LMWCS. Although the toxicity of LMWCS was revealed in zebrafish model, the toxicity was only present in pH < 7 and easy be neutralized by other negative ions. Collectively, these data improved a new understanding of LMWCS properties.
Collapse
|
49
|
Wong CY, Al-Salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. J Drug Target 2020; 28:585-599. [DOI: 10.1080/1061186x.2020.1726356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani. Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
50
|
Characterization of dexamethasone loaded collagen-chitosan sponge and in vitro release study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|